
Recursive Array Comprehensions in a Call-by-Value Language
Artjoms Šinkarovs

School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, Scotland, UK
a.sinkarovs@hw.ac.uk

Sven-Bodo Scholz
School of Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh, Scotland, UK

s.scholz@hw.ac.uk

Robert Stewart
School of Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh, Scotland, UK
r.stewart@hw.ac.uk

Hans-Nikolai Vießmann
School of Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh, Scotland, UK

hv15@hw.ac.uk

ABSTRACT
Recursive value definitions in the context of functional program-
ming languages that are based on a call-by-value semantics are
known to be challenging. A lot of prior work exists in the context
of languages such as Scheme and OCaml.

In this paper, we look at the problem of recursive array defin-
itions within a call-by-value setting. We propose a solution that
enables recursive array definitions as long as there are no cyclic
dependences between array elements. The paper provides a formal
semantics definition, sketches possible compiler implementations
and relates to a prototypical implementation of an interpreter in
OCaml. Furthermore, we briefly discuss how this approach could
be extended to other data structures and how it could serve as a
basis to further extend mutually recursive value definitions in a
call-by-value setting in general.

CCS CONCEPTS
• Software and its engineering → Functional languages; Re-
cursion; Compilers; • Computing methodologies → Parallel
programming languages;
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1 INTRODUCTION
The use of arrays for parallel computing has seen a renaissance over
the last decade. Array based languages have gained popularity not
only in the mainstream (e.g. Matlab, R, Julia) but also in the realm of
functional programming languages. As demonstrated by languages
such as SaC [25], DpH [6], Accelerate [7], Futhark [14], Feldspar [4],
and others, array operations can be embedded into a functional
setting in a way that combines nicely high-level abstractions with
ample opportunities for program optimisations and code generation
of high-performance codes for parallel architectures.

The core of functional array languages is typically built around
a small set of array generating skeletons. By and large, these are
variants of map, reduce or scan combinators that relate generators
of index sets to computations of corresponding array elements. We
refer to these generically with the term array comprehensions.

Array comprehensions enable specifications very close to their
mathematical counterparts. As an example, consider transposition
of a matrix a and its formulation using SaC language array com-
prehensions:

bi j = aji b = { [i,j] -> a[j,i] }

Similarly, for matrix multiplication we have:

ci j =
n∑

k=1
(aikbk j ) c = { [i,j] -> sum (a[i,.] * b[.,j]) }

As long as array expressions do not refer to the elements they
are defining, translation from mathematical specification into ar-
ray comprehensions is usually straight forward. In case of self-
referential definitions some extra work is required. For example,
consider Choleski Decomposition [11] that computes a matrix l
from a matrix a using the following equation:

li j =



√
aj j −

j−1∑
k=1

l2jk i = j

1
lj j

(
ai j −

j−1∑
k=1

lik ljk

)
i > j

0 i < j

Note that most of the element definitions refer to other elements
of the matrix l itself. In a strict setting, this usually precludes a dir-
ect implementation through a single array comprehension. Instead,
a programmer needs to identify and break recursive dependencies,
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usually by composing array comprehensions that compute parts
of the problem. Often, this is being done by expressing the com-
putation as a suitably chosen sequential traversal over all array
elements. For the above computation of the array l, a row-major
traversal observes the required dependencies. In SaC this can be
expressed as:

l = a ;
for ( i = 0 ; i < shape ( a ) [ 0 ] ; i ++) {

for ( j = 0 ; j < i + 1 ; j ++) {
s = sum ( t ake ( [ j ] , l [ i ] ) ∗ t ake ( [ j ] , l [ j ] ) ) ;
l [ i , j ] = ( i == j ) ? s q r t ( a [ i , i ]− s )

: ( i > j ) ? ( 1 . 0 / l [ j , j ] ) ∗ ( a [ i , j ]− s )
: 0 . 0 ;

}
}

where take ([j], l[i]) selects first j elements from a vector l[i];
and sum adds all the elements of its argument array. Note that the
order of computation of all elements of l has been fixed. Explicit
for-loops suggests an element by element computation.

We see two major disadvantages of such an approach. First, a
programmer has to identify a suitable order that implements the
given recursive specification. This is far from trivial in the general
case.

Secondly, the order of computation chosen by a programmer
might be overly restrictive, unnecessarily constraining concurrency
of the original formulation. In our example, it would be possible to
compute all elements at positions l[i,0] from the very beginning.
Likewise, as soon as all elements l[i,0]. . . l[i,j] are computed,
all elements l[k,0]. . . l[k,j] with k>i can be computed as well.
While advanced compiler technology, e.g. the work in the context
of the Polyhedral Model [10], can be leveraged to regain the con-
currency that is inherent in the mathematical specification of the
given example, in general, this is not always possible.

In this paper, we propose a way for enabling recursively defined
array comprehensions within a strict array language. We envision
specification of Cholesky decomposition to look like this:

l e t r e c l = {
[ i , j ] −> {

s = sum ( t ake ( [ j ] , l [ i ] ) ∗ t ake ( [ j ] , l [ j ] ) ) ;
( i == j ) ? s q r t ( a [ i , i ] − s )

: ( i > j ) ? ( 1 . 0 / l [ j , j ] ) ∗ ( a [ i , j ]− s )
: 0 . 0

} }

The idea here is to introduce a scope for recursive definitions by
means of a letrec construct. It ensures that all occurrences of the
variable l on the right hand side of the assignment recursively refer
to the array that is being defined. This program does not only match
the mathematical specification directly but it also alleviates the pro-
grammer from identifying and correctly specifying dependencies,
and it facilitates more parallelism to be directly available.

At this point, one might wonder whether switching from strict
to lazy evaluation would not solve this problem immediately. While
lazy evaluation would ensure that the above array comprehension
delivers the desired result, a switch to lazy evaluation or at least
lazy arrays in general would have several undesirable implications.

Firstly, it would very likely restrict the possible parallelism since,
in a lazy setting, evaluations are triggered by demand, and demand
does not usually come in parallel.

Secondly, a key for compiling compositions of array compre-
hensions into code whose performance levels are commensurate
with, or superior to, those of hand-tuned imperative codes lies in a
tight control when arrays are being materialised in memory and
when they can be reused for updates or entirely new arrays. In
most cases, this is achieved by a combination of strict evaluation
(call by value) and some mechanism to enable updates in place,
be it non-delayed garbage collection (reference counting) [12] or
single-threaded use of arrays through mechanisms such as state
monads [20] or uniqueness typing [5].

Strictness fosters parallelism in the evaluation of array elements
and it ensures that references to arrays that contribute to the com-
putation of a new array do not need to be kept alive due to delayed
element computations. Additionally, some form of update in place
mechanisms is crucial to reuse arrays that are no longer needed. In
particular when dealing with large arrays, these aspects often turn
out to be dominating the overall performance.

The contributions of this paper are:
• We suggest a mechanism for integrating recursive array
comprehensions into a call-by-value setting. Thismechanism
is based on some form of temporal lazy evaluation but is
designed to keep the need for persisting closures as low as
possible.

• We provide a formal semantics for recursive array compre-
hensions in the setting of a small applied λ-calculus that can
be seen as the core language of SaC or other functional array
languages. An implementation of that semantics is provided
in the form of an interpreter written in OCaml and available
on GitHub1.

• We discuss how a compiled code may look like, including
aspects related to parallel executions.

• We provide an outline how this approach can be applied
to extend other call-by-value languages’ capabilities to deal
with recursive value definitions.

2 CORE ARRAY LANGUAGE
To simplify our presentation, and to keep the proposed ideas lan-
guage-agnostic, we introduce a minimalistic strict higher-order
functional language which we use to present our techniques. It con-
stitutes an applied λ-calculus extended by an array comprehension
construct, called imap operator.

Any of the existing strict array-based languages, e.g. APL, SaC,
Futhark can be mapped into our core language. Although we re-
strict ourselves to one-dimensional arrays, this is purely done for
conciseness of the presentation. An extension to support multi-
dimensional arrays can be done straight-forwardly. Syntactically
different array comprehensions such as Futhark’s map, SaC’s with-
loop or APL’s ‘Double-Dot’ operator can be expressed using our
imap operator.

2.1 Language Syntax
We define the syntax for our minimalistic language as:

e F c (constants)

1The interpreter can be found at https://github.com/ashinkarov/heh. See Section 4.1
for more details.

https://github.com/ashinkarov/heh
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| x (variables)
| λx .e (abstractions)
| e e (applications)
| if e then e else e (conditionals)
| letrec x = e in e (recursive let)
| e + e, . . . (built-in binary)
| imap e e (index map)
| e .e (selections)

c F d

| [ d, . . . ] (constant array)
d F 0, 1, . . . (natural numbers)

As constants, we support only natural numbers and arrays of
constants. Abstractions and applications use standard notation.
Conditionals expect a natural number as predicate; 0 is considered
false and any other number represents true. The letrec construct
is a recursive let binding. Primitive operations are built-in and
they are defined on scalars in the usual way. The key operations
are the imap (index map) construct for defining immutable one-
dimensional arrays, and the selection operation that provides access
to individual array elements.

As a simple example for our imap contruct consider the following
expression:

imap 5 λ i . i = [ 0 , 1 , 2 , 3 , 4 ]

it has two arguments: the length of the resulting array and the
mapping function from indexes to values. The function is called for
the range of indexes from 0 to 5 (including 0, but excluding 5), and
results of its application are put together at the corresponding array
indices forming an array value. The above expression evaluates to
an immutable array of 5 elements. We assume that all arrays are
one-dimensional. Array indexing starts with 0.

Conditionals within the imap function, make it possible to parti-
tion the imap index-space:

imap 5 λ i . i f i < 2 then 1 e l se 2 = [ 1 , 1 , 2 , 2 , 2 ]

2.2 Language Core Rules
To give a meaning to programs we will use natural semantics [19].
We use the following values:

v ::= vu | [vu , . . . ,vu ] vu ::= d | ⟦λx .e, ρ⟧
wherevu can be a scalar constant or a function closure; [vu , . . . ,vu ]
is a homogeneous array of numbers or functions; ρ is the environ-
ment. To make sharing more visible, instead of binding variables to
values in the environment, we bind variables to pointers. Pointer-
value bindings are kept in a storage, commonly denoted with S in
this paper.

ρ ::= · | ρ,x 7→ p S ::= · | S,p 7→ v

Environment and storage look-ups happen right to left and are de-
noted as ρ(x) and S(p) respectively. Judgements take the following
form:

S ; ρ ⊢ e ⇓ S ′;p

This means that within the storage S and the environment ρ we can
show that e reduces to the storage S ′ and the pointer p. To improve

readability we introduce a shortcut notation

S ; ρ ⊢ e ⇓ S ′;p ⇒ v for S ; ρ ⊢ e ⇓ S ′;p ∧ S ′(p) = v

The core rules are:
Const
S1 = S,p 7→ c

S ; ρ ⊢ c ⇓ S1;p

Var
x ∈ ρ ρ(x) ∈ S

S ; ρ ⊢ x ⊢ S ; ρ(x)

Prf
⊕ ∈ {+,−, . . . } S ; ρ ⊢ e1 ⇓ S1;p1 ⇒ v1

S1; ρ ⊢ e2 ⇓ S2;p2 ⇒ v2 S3 = S2,p 7→ v1 sem (⊕)v2
S ; ρ ⊢ e1 ⊕ e2 ⇓ S3;p

Abs
S1 = S,p 7→ ⟦λx .e, ρ⟧
S ; ρ ⊢ λx .e ⇓ S1;p

App
S ; ρ ⊢ e1 ⇓ S1;p1 ⇒

�
λx .e ′, ρ ′

�
S1; ρ ⊢ e2 ⇓ S2;p2

S2; ρ ′,x 7→ p2 ⊢ e
′ ⇓ S3;p3

S ; ρ ⊢ e1e2 ⇓ S3;p3
If-true
S ; ρ ⊢ e1 ⇓ S1;p1 ⇒ n ∈ N,n , 0 S1; ρ ⊢ e2 ⇓ S2;p2

S ; ρ ⊢ if e1 then e2 else e3 ⇓ S2;p2

If-false
S ; ρ ⊢ e1 ⇓ S1;p1 ⇒ n n = 0 S1; ρ ⊢ e3 ⇓ S2;p3

ρ ⊢ if e1 then e2 else e3 ⇓ S2;p3
Here, ‘sem (⊕)’ corresponds to the meaning of the binary operation.
The rules for imap and selections are:

Imap
S ; ρ ⊢ e1 ⇓ S ′;pn ⇒ n ∈ N S ′; ρ ⊢ e2 ⇓ S0;pf

∀k ∈ {0, . . . ,n−1} : Sk ; ρ, f 7→ pf ⊢ f k ⇓ Sk+1;pk ⇒ vk

S ; ρ ⊢ imap e1 e2 ⇓ Sn ,p 7→ [v0, . . . ,vn−1];p

Sel
S ; ρ ⊢ e1 ⇓ S1;p1 ⇒ [v0, . . . ,vn−1]
S1; ρ ⊢ e2 ⇓ S2;p2 ⇒ k ∈ N,k < n

S ; ρ ⊢ e1.e2 ⇓ S2,p 7→ vk

The imap rule evaluates the length of the array and the map-
ping function, then it applies the mapping function to indices
{0, . . . ,n−1} and combines results into a vector. The selection rule
extracts the k-th element from the array (where array indexing is
zero-based).

The rules we have defined so far are sufficient to prove evaluation
of non-recursive imaps. For example, we can show that

· ; · ⊢ imap 5 λ i . i ⇓ S ;p ⇒ [0, 1, 2, 3, 4]

An interpreter for the presented language can be straight-forwardly
derived from the presented rules.

2.3 Letrec Rule
The rule for the letrec given in [19] can be transliterated in our
notation as follows:

Letrec-Kahn
S,p 7→ v ; ρ,x 7→ p ⊢ e1 ⇓ S1;p′ ⇒ v

S1; ρ,x 7→ p ⊢ e2 ⇓ S2;p2
S ; ρ ⊢ letrec x = e1 in e2 ⇓ S2;p2
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Before evaluating e1 we need to guess the value that e1 evaluates
to. This means that the entire mechanics of recursive evaluation is
not exposed. This makes the rule concise, but the previous claim
that the interpreter is straight-forwardly deducible from the rules
does not hold anymore. However, this rule makes it possible to
prove that recursive imaps evaluate to arrays; for example:

· ; · ⊢ l e t r e c a = imap 5
λ i . i f i = 0 then 0

e l se a . ( i −1)+1
in a

⇓ S ;p ⇒ [0, 1, 2, 3, 4]

Let us define a more explicit version of the letrec rule, yet pre-
serving the above property. We start with a typical approach to
letrec evaluation used in many strict languages. This can be denoted
as follows:

Letrec
S1 = S,p 7→ ⊥ ρ1 = ρ,x 7→ p S1; ρ1 ⊢ e1 ⇓ S2;p2

S3 = S2[p2/p] S3; ρ,x 7→ p2 ⊢ e2 ⇓ S4;p4
S ; ρ ⊢ letrec x = e1 in e2 ⇓ S4;p4

The ⊥ value ensures that if a letrec variable is accessed during the
computation of e1, as for example in the expression letrec x = x in x ,
the evaluation will fail. S[p2/p] denotes substitution of the x 7→ p
bindings with x 7→ p2 inside of all enclosed environments, for all
variables x that bind to p. Such a rule makes it possible to create the
circular references that we need. Consider an example of evaluating
the program letrec f = λx . f x in f :

· ; · letrec f = λx .f x in f Letrec
S = p 7→ ⊥; ρ = f 7→ p λx .f x Abs
S1 = S, p1 7→ ⟦λx .f x, f 7→ p⟧ ; · letrec f = p1 in f S2 = S1[p1/p]
S2 = S, p1 7→ ⟦λx .f x, f 7→ p1⟧ ; f 7→ p1 f Var
S2; · p1 □

As can be seen, the closure with the recursive function has the
environment that correctly references the closure. Unfortunately,
this rule does not treat recursive imaps properly. The reason for
this is the inability to evaluate selections into imaps while their
evaluation is in progress, even if the elements that are to be accessed
have already been computed.

3 RECURSIVE IMAPS
To regain this ability, we can extend the above language and allow
lazy evaluation of imaps. One way of doing this is to introduce a
new value for an imap closure:�

imap pn pf , {}
�

which contains the imap, where both arguments are pre-evaluated
and an index-value mapping to store a partial result. The partial
result will be updated each time we make a selection into an imap
closure. The rules to create such a closure and evaluate selections
into it are:

Imap-Lazy
S ; ρ ⊢ e1 ⇓ S1;p1

S1; ρ ⊢ e2 ⇓ S2;p2 S3 = S2,p 7→ ⟦imap p1 p2, {}⟧
S ; ρ ⊢ imap e1 e2 ⇓ S3;p

Sel-Lazy-Imap-Full
S ; ρ ⊢ e1 ⇓ S1;p1 ⇒

�
imap p′1 p

′
2,M

�
S1; ρ ⊢ e2 ⇓ S2;p2 ⇒m ∈ N,m < S1(p

′
1) m ∈ M

ρ ⊢ e1.e2 ⇓ S2,p 7→ M(m);p
Sel-Lazy-Imap-Empty

S ; ρ ⊢ e1 ⇓ S1;p1 ⇒
�
imap p′1 p

′
2,M

�
S1; ρ ⊢ e2 ⇓ S2;p2 ⇒m ∈ N,m < S1(p

′
1)

m < M S2; ρ, f 7→ p′2 ⊢ f m ⇓ S3;p3 ⇒ v
S4 = S3 ⊕p1

�
imap p′1 p

′
2,M ∪ {m 7→ v}

�
ρ ⊢ e1.e2 ⇓ S4,p 7→ v ;p

The Imap-Lazy rule evaluates imap arguments and creates a
closure, with an empty partial result. The Sel-Lazy-Imap-Full rule
asserts that the value at the given index can be found within the
partial result M of the imap closure. In this case we look-up the
value inM . The Sel-Lazy-Imap-Empty rule asserts that the value
is not within the mapping M , in which case we apply the imap
function at the given index and we memoize the evaluated result.
To do the memoization we update the storage using S⊕pv operation
that replaces p 7→ _ mapping with p 7→ v in S .

These extensions make it possible to handle recursive imaps,
even if some of the elements are not defined:

l e t r e c a = imap 5
λ i . i f i = 0 then a . i

e l se 1
in a

That is, all the selections into a will deliver a result, except if we
select at index 0. The price for this is the necessity to maintain and
update partial results within imap closures. This suggests that we
cannot arbitrarily swap Imap and Imap-Lazy, as such a choice has
an implication on termination properties of our programs.

At this point, we have two sets of rules for imap and selections.
How do we chose which one to use, assuming that we prefer strict
evaluation over the non-strict one.

3.1 Approach
Our approach lies in minimizing the lifetime of imap closures. To
do this, we restrict the way recursive imaps can be defined. A valid
recursive imap shall be defined as:

l e t r e c x = imap es ef in e

For such cases we intend to create closures only in case ef po-
tentially references x at runtime. This can be approximated by
checking whether x can be found in free variables of ef . We denote
this as x ∈ FV (ef ). Note that this check does not imply that x will
be referenced at runtime, as x can be a part of a sub-expression that
discards x . As an example, consider the expression:

l e t r e c x = imap 5 λ i . i f 0 then x e l se 1 in x

However, in case we statically know that x < FV (ef ), the corres-
ponding imap can be evaluated strictly.

While the aforementioned measure avoids the creation of imap-
closures for all non-recursive definitions, all other cases will gener-
ate imap-closures and these will persist until either all elements of
the array have been accessed at least once or no further references
to the array exist anymore. To shorten the lifetime of imap-closures
and, with them, the lifetime of references to all arrays that contrib-
ute to the computation of such closures, we insist that all elements
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of such imap-closures are being evaluated as soon as the closures
have been created. We achieve this using the following two rules.

Force
S0(p) =

�
imap ps pf M

�
S0(ps ) = n

∀i ∈ {0, . . . ,n−1} : Si ,pi 7→ i; ρ,a 7→ p, ix 7→ pi ⊢ a.ix ⇓ Si+1;pi ⇒ vi
Sr = Sn ,pr 7→ [v0, . . . ,vn−1]

S0; ρ ⊢ force p ⇓ Sr ;pr

Letrec-1
x ∈ FV (e1) S1 = S,p 7→ ⊥

ρ1 = ρ,x 7→ p S1; ρ1 ⊢ es ⇓ S2;ps S2; ρ1 ⊢ ef ⇓ S3;pf
S3 ⊕p

�
imap ps pf {}

�
; ρ1 ⊢ force p ⇓ S4;p′

S5 = S4 ⊕p S4(p
′) S5; ρ1 ⊢ e ⇓ S6;pr

S ; ρ ⊢ letrec x = imap es ef in e ⇓ S6;pr
To simplify the notation we introduce a meta-operator called

force which has a single argument — a pointer to an imap closure.
The Force rule evaluates force by evaluating selections into the
closure for all the elements in the given index space.

The Letrec-1 rule starts with evaluating shape2 expression es
and function expression ef for the given imap. Note that letrec
variable x is bound to p which is bound to ⊥, which ensures that
any immediate references to x will result in failure. When es and ef
are evaluated, the value of p is being updated with a fresh closure.
After that all the values in this closure are forced via force operator,
then the value of p is substituted with the value returned by force.
Finally the goal expression of the letrec is evaluated.

Such a formulation guarantees that when we start evaluating
the body of the letrec, any potential imap closure has been evalu-
ated completely. In other words, the arrays are strictly evaluated
again. Consequently, recursive definitions that contain circular de-
pendencies will lead to non-termination, even if the corresponding
elements are never being accessed. We will discuss the performance
implications of this decision in the next section.

The final semantics of our language includes all the rules from
Section 2, the rules for lazy selections (Sel-Lazy-Imap-Full and
Sel-Lazy-Imap-Empty), and the two rules Force and Letrec-1. The
rule Imap-Lazy is not included, as we want the only way to create
an imap closure to be by means of Letrec-1.

4 IMPLEMENTATIONS
4.1 The Heh Interpreter
We demonstrate that the proposed idea works by implementing it
in the Heh3 programming language [27]. Heh is an interpretered
language implemented in OCaml. The core features of Heh are
very similar to the language we have presented in this paper. The
main difference is that Heh natively supports multi-dimensional
and infinite arrays, and evaluates all the imaps lazily.

First of all, we implement a flag -finite-imap-strict that makes
Heh behave according to the semantics described in Section 2 (mod-
ulo minor differences in syntax). That is, all the imaps are evaluated

2In the context of this paper shape of array is its length.
3The implementation of Heh is freely available on GitHub: https://github.com/
ashinkarov/heh

strictly, and as a consequence, recursive array comprehensions fail
with exception.

Secondly, we implement a flag -force-letrec-imap that imple-
ments the extensions from Section 3.1. That is, imaps that appear
within letrecs like: letrec x = imap e1 e2 are put in closures and
immediately forced, provided x occurs freely in e2.

Both of the changes are implemented in a separate branch4 called
force-imaps. As a case study, we implement Cholesky decomposi-
tion in Heh: http://goo.gl/9a5dCA. When running the interpreter
with the described flags, it can be seen that the program fails when
all imaps are evaluated strictly and succeeds with the proposed
approach. This demonstrates that the proposed approach is imple-
mentable, and indeed makes it possible to support recursive array
comprehensions within strict array-based languages.

4.2 Compilation Approaches
After we have demonstrated how to extend an interpreter, we in-
vestigate how to implement a compiler for a language with recurs-
ive array comprehensions. At the time of writing, Heh supports
compilation to SaC, but SaC does not support recursive array com-
prehensions. Therefore, we sketch a possible implementation in C.
We focus on finding a runtime representation for values and on
possible code generation for imaps and selections. We show

• that we can detect cycles in recursive imaps in sequential
implementation; and

• how to parallelize recursive imaps using pthreads.
All the C code snippets below have been implemented. They can
be seen as a core library used by code generators. When testing
our implementation, we manually write programs in terms of the
proposed library. For more details please refer to the c-backend
directory in the Heh repository5.

Core language. First, consider how the compiled code may look
like for a simple version of the language without imaps with self-
references. Let us start with data structures that describe a value:

/ / Kind o f v a l u e s
enum va l u e_k ind {

k _ s c a l a r ,
k _ eva l u a t ed_a r r ay ,
/ / . . .

} ;

/ / S c a l a r
s t ruc t s c a l a r _ v a l u e {

enum va l u e_k ind kind ;
in t v a l ;

} ;

/ / S t r i c t a r r ay
s t ruc t e v a l u a t e d _ a r r a y {

enum va l u e_k ind kind ;
s i z e _ t s i z e ;
in t ∗ v a l ;

} ;

/ / A sum typ e f o r s c a l a r and s t r i c t a r r ay .
typedef union va lue_un ion {

enum va l u e_k ind vk ;
s t ruc t s c a l a r _ v a l u e vs ;
s t ruc t e v a l u a t e d _ a r r a y vev ;

4 Available at https://github.com/ashinkarov/heh/tree/force-imaps.
5 See https://github.com/ashinkarov/heh/tree/force-imaps/c-backend.

https://github.com/ashinkarov/heh
https://github.com/ashinkarov/heh
http://goo.gl/9a5dCA
https://github.com/ashinkarov/heh/tree/force-imaps
https://github.com/ashinkarov/heh/tree/force-imaps/c-backend
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/ / . . .
} v a l u e ;

Evaluating imap and selections into a strict array can be defined as
follows:

typedef va lue ( ∗ imap_fun ) ( v a l u e ) ;

v a l u e eva l_ imap ( s i z e _ t s i z e , imap_fun f )
{

s t ruc t e v a l u a t e d _ a r r a y v ;

v = mk_eva lua t ed_a r r ay ( s i z e ) . vev ;
for ( s i z e _ t i = 0 ; i < s i z e ; i ++) {

v a l u e v i = f ( mk_sca l a r ( i ) ) ;
v . v a l [ i ] = v i . vs . v a l ;

}

return ( v a l u e ) v ;
}

v a l u e e v a l _ s e l ( v a l u e a , v a l u e i dx )
{

a s s e r t ( a . v a l _ k i nd == k_ ev a l u a t e d _ a r r a y ) ;
a s s e r t ( i ndex_ in_ r ange ( i dx . vs . va l ,

a . vev . s i z e ) ) ;
in t e l = a . vev . v a l [ i dx . vs . v a l ] ;
return mk_sca l a r ( e l ) ;

}

Here imap_fun is a type for a function from index to scalar value.
We omit definition of mk_* functions that create a fresh instance
of the value of the chosen kind. We can see that imap updates a
continuous piece of memory, and selections can access this memory
without extra costs. In the general case, we have to perform a range
check (index_in_range function) that is expressed as assertion, but
very often this can be eliminated by static analysis.

Extended Language. Closures introduce a new value_kind name,
a new function to construct a closure, and require an update of the
selection function.

enum va l u e_k ind {
/ / . . .
k _ a r r a y _ c l o s u r e

} ;

s t ruc t a r r a y _ c l o s u r e {
enum va l u e_k ind kind ;
s i z e _ t s i z e ;
in t ∗ v a l ;
boo l ∗mask ;
imap_fun f ;

} ;

typedef union va lue_un ion {
/ / . . .
s t ruc t a r r a y _ c l o s u r e v c l ;

} v a l u e ;

Selections and imaps are updated as follows:
va lue e v a l _ imap_ c l o s u r e ( s i z e _ t s i z e , imap_fun f )
{

return mk_ar r ay_c l o su re ( s i z e , f ) ;
}

v a l u e e v a l _ s e l ( v a l u e a , v a l u e i dx )
{

/ / . . . a s s e r t i n d e x i n range . . .
switch ( a . vk ) {
case k_ e v a l u a t e d _ a r r a y :

/ / T h i s i s t h e c a s e from above

return mk_sca l a r ( a . vev . v a l [ i dx . vs . v a l ] ) ;

case k _ a r r a y _ c l o s u r e :
i f ( a . v c l . mask [ i dx . vs . v a l ] )

/ / I f a v a l u e has been computed
return mk_sca l a r ( a . v c l . v a l [ i dx . vs . v a l ] ) ;

e l se {
/ / Compute a r r ay e l emen t a t i n d e x i d x
va lue t = a . v c l . f ( i d x ) ;
a . v c l . mask [ i dx . vs . v a l ] = t r u e ;
a . v c l . v a l [ i dx . vs . v a l ] = t . vs . v a l ;
return t ;

}
}

}

As it can be seen, selections got more complex, and most im-
portantly, every selection now has to check what kind of object we
select from. This introduces a runtime overhead.

Note that as we require the first argument of an imap to be
strict, we can immediately allocate memory for the final result.
This means that selections into a closure never have to allocate
additional memory, and when all the elements of the imap are
computed, a closure can be turned into a strict array by swapping
the pointer.

The implementation sketched so far implements the rules of the
previous section. However, in doing so, it does not terminate in case
the body of an imap contains cyclic dependencies in its element
definitions. For example:

l e t r e c x =
imap 5 λ i . i f i = 0 then a . 1

e l se i f i = 1 then a . 0
e l se 1

The interesting observation here is that we can detect such a
cycle easily almost at no cost. All it takes is a switch from a two-state
boolean mask to a three-state mask, e.g. a mask of the following
type:

enum v a l _ s t a t u s {
s_no_va lue ,
s _ i n _p r og r e s s ,
s _ v a l u e

} ;

Then selections into a closure have to be adjusted as follows:
va lue
e v a l _ s e l ( v a l u e a , v a l u e i dx )
{

/ / . . .
case k _ a r r a y _ c l o s u r e :

switch ( a . v c l . mask [ i dx . vs . v a l ] ) {
case s _ v a l u e :

return mk_sca l a r ( a . v c l . v a l [ i dx . vs . v a l ] ) ;

case s_no_va lue : {
a . v c l . mask [ i dx . vs . v a l ] = s _ i n _ p r o g r e s s ;
v a l u e t = a . v c l . f ( i d x ) ;
a . v c l . mask [ i dx . vs . v a l ] = s _v a l u e ;
a . v c l . v a l [ i dx . vs . v a l ] = t . vs . v a l ;
return t ;

}

defaul t : / / s _ i n _ p r o g r e s s
d i e ( " c y c l e d e t e c t e d " ) ;

}
/ / . . .

}
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Finally, forcing imap closure in the letrec binding can be implemen-
ted as follows:

va lue
eva l _ imap_b ind ing ( v a r _ t x , s i z e _ t s i z e , imap_fun f )
{

v a l u e v = mk_ar r ay_c l o su r e ( s i z e , f ) ;
b i n d _ v a r i a b l e ( x , v ) ;
/ / F o r c e r e s u l t s
for ( s i z e _ t i = 0 ; i < s i z e ; i ++) {

switch ( v . v c l . mask [ i dx . vs . v a l ] ) {
case s _ v a l u e :

continue ;
case s_no_va lue :

/ / t r i g g e r e v a l u a t i o n o f ( f i d x )
/ / s t o r e r e s u l t i n v

defaul t : / / s _ i n _ p r o g r e s s :
d i e ( " c y c l e d e t e c t e d " ) ;

}
}
v a l u e r = mk_evakuated_array ( s i z e ) ;
r . vev . v a l = v . v c l . v a l ;
b i n d _ v a r i a b l e ( x , r ) ;
return r ;

}

Note that in the implementation we can take a “shortcut” when
it comes to implementing the Force rule. We do not have to call
selection functions and accumulate their return values in a separate
location. We can simply trigger function computations, for all the
elements that are not yet computed and then swap result pointers.

4.3 Performance Considerations
4.3.1 Parallel execution. Currently, the evaluation of imaps for-

ces an order in which array elements are evaluated. In the variant
of our language with strict imaps, it can be shown that the order
of evaluation can be arbitrary. This is because a functions are free
of side-effects. As soon as we deal with imap closures this is no
longer the case as selections into closures change the state of those
closures, creating a side-effect. However, forcing all the elements
of a closure can be done in arbitrary order.

When it comes to implementing the closure-free evaluation of
imaps in parallel, we use a fork/join model. We cut the index-space
of such an imap in n sub-spaces, spawn n threads, and wait until
they finish. As an imap always evaluates to a single result, all the
writes into memory are guaranteed to be disjoint. Therefore threads
do not need to communicate and can write results into memory
without using any locking.

In case of imap closures, parallel execution gets a bit more chal-
lenging. The index-space of an imap can be still divided into n
subspaces, however, the property that each thread only writes the
memory within the given subspace is lost. This happens because
self-references may cause a cascade of writes at arbitrary indices.
This means that threads have to alter the state of the mask and
write results exclusively. Here is a sketch for the code for a selection
operation that is capable to run in a multi-threaded context.

va lue e v a l _ s e l ( v a l u e a , v a l u e i dx )
{

/ / . . .
case k _ a r r a y _ c l o s u r e : {

lock_mutex ( mutex ) {
vs = a . v c l . mask [ i dx . vs . v a l ] ;
i f ( vs == s_no_va lue ) {

a . v c l . mask [ i dx . vs . v a l ] = s _ i n _ p r o g r e s s ;

compute_ i t = t r u e ;
}

}

i f ( compute_ i t ) {
v a l u e t = a . v c l . f ( i d x ) ;
lock_mutex ( mutex ) {

a . v c l . mask [ i dx . vs . v a l ] = s _v a l u e ;
a . v a l _ c l a r r . v a l [ i dx . vs . v a l ] = t . vs . v a l ;

}
return t ;

}

i f ( vs == s _v a l u e )
/ / r e t u r n v a l u e

e l se {
/ / s _ i n _ p r o g r e s s
while ( a . v c l . mask [ i dx . vs . v a l ]

== s _ i n _ p r o g r e s s )
; / / busy wa i t i n g

return mk_sca l a r ( a . v c l . v a l [ i dx . vs . v a l ] ) ;
}

}
/ / . . .

}

We assume that lock_mutex is a macro that calls a function to
lock the mutex at the beginning of the block and calls a function to
unlock mutex at the end of the block.

The mutex variable is shared by all threads, and it is responsible
to guarantee exclusive access to the mask and to the value of a
closure. Each closure has to define its ownmutex. In the code above
we exclusively read the status of an element and check whether
it has been computed. If it has not, we immediately change the
status and set a local compute_it flag. We do the flip of the status
immediately to avoid two threads computing the same value twice.
Note that in principle, we can recompute results as often as we like,
as we are in a functional setting. However, generally predicting
when recomputing a dependency is faster than communicating
with neighbouring threads is very difficult. Therefore we prefer
communication over duplicated evaluation.

In case the value is marked as s_in_progress we cannot conclude
that we found a cycle, as this status might have been set by a
different thread. This means, that we have to wait for a status
change for this value, which in turn means that the above code will
not detect dependency cycles.

Regaining this ability in a multi-threaded execution is possible by
for example maintaining a global graph of dependencies, checking
for a cycle on every newly added dependency. This can be imple-
mented in various ways, any such an implementation will create
major overheads which are often impractical in high-performance
setting.

4.3.2 Conditional within selections. Since our rules force the
immediate evaluation of all imaps one might think that there is no
need to keep a check within array selections whether the array is
a closure or not. Unfortunately, we cannot easily statically decide
whether a selection is potentially called while forcing a recursive
imap or after the closure has been resolved.While it is possible to de-
cide and optimise this in some cases, in general, this is undecidable.
It might be possible to use a type system to further approximate
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which selections can be specialised but further investigations into
this issue lie outside of the scope of this paper.

4.3.3 Using Memoization. Another way to implement recursive
imaps is to have it memoize its function, and force applications of
first n elements. For example, the following recursive imap, assum-
ing that n has been evaluated before:

l e t r e c a = imap n λ i . i f i = 0 then 0
e l se a . ( i −1)+1 in . . .

can be treated as:
l e t r e c a = λ i . i f i = 0 then 0 e l se a . ( i −1)+1 in
l e t r e c a ' = memoize a in
l e t r e c a = imap n λ i . a ' i in . . .

In principle this works, however it requires a support for memo-
ization. To make it efficient, a memoization mechanism should be
instructed to keep memoized data in a continuous chunk of memory
and forcing can be done without copying. In case memoization is
not built-in, its implementation has to be able to express sharing of
data with implicit updates efficiently. Usually one uses references,
but they are not part of pure functional languages.

4.3.4 Evaluating Shapes Lazily. Our semantics insists that shapes
of recursive imaps should be evaluated strictly. In principle, this re-
quirement can be relaxed. For example one could envision an imap
where its shape depends on the elements. However, the downside
of such an approach, is that within the closure it is not possible
to preallocate a continuous piece of memory for the result. This
means that potentially, we introduce overheads when evaluating
such a closure in parallel, as memory allocation would be a blocking
operation, and it might be necessary to copy data from the clos-
ure to a strict array, in case the memory within the closure is not
continuous.

4.4 Adoption into General Purpose Languages
Our approach to recursive array comprehensions is designed with
array languages such as SaC in mind. An integration into those
languages is rather straight-forward as outlined in the previous
sections. This section explores the potential to transfer the key
ideas into mainstream languages. Specifically, we look into what it
would take to implement an imap-like construct in a strict language
like OCaml and in a lazy language like Haskell. For OCaml we also
show how our imap construct can be used in the context of general
mutually-recursive lets to relax existing restrictions on the order
of bindings, making the language to accept more programs.

4.4.1 In OCaml. Given the strict evaluation setting of OCaml,
the built-in operator ‘lazy’ [21] makes it possible to convert any
expression into a lazy value. The evaluation of such an expression
is delayed, and can be triggered using the ‘Lazy.force’ operator. The
‘lazy’ operator changes the type of its argument from a to a Lazy.t.

In principle, such a lazy construct in a strict language is sufficient
to implement what we propose: instead of an array of base type int,
we can create an array of base type int Lazy.t and hide recursive
selection self-references within the imap function behind the ‘lazy’
operator.

The downside of this solution is that we have to distinguish
between strict and lazy values explicitly in the code. Therefore
it gets harder to reuse functions in the body of an imap. Also,

one would have to implement the forcing part explicitly for every
recursive imap.

4.4.2 Improving Letrec in OCaml. Supporting recursive array
comprehensions is very similar to dealing with a letrec with mul-
tiple variable bindings. Currently, in many strict languages like
OCaml, in a letrec with multiple bindings, variables cannot directly
depend on each other. For example, the following expression:

l e t rec a = 1 and b = 2 in a + b

is valid. However, an expression with mutual references to defined
variables:

l e t rec a = b and b = 2 in a + b

is rejected with the error message that says: This kind of expression
is not allowed as right-hand side of ‘let rec’. However, an expression

l e t rec a = ( fun x −> b ) and b = 1 in a b

is perfectly valid. The problem here is that in order to satisfy letrec
with mutual dependencies in a call-by-value language, one needs to
guess the order in which expressions shall be evaluated. In general
case this is undecidable statically. We can work around this problem
by using the approach proposed in this paper. Assuming that imap
as described in this paper would exist in OCaml, we could apply
the following code transformation:

l e t rec
x0 = e0
and
. . .
and
xn−1 = en−1

in e

⇒

l e t rec x = imap n ( λ i .
i f i = 0 then
e0 [ x . 0 / x0 ] . . . [x .(n−1 ) / xn−1 ]

. . .
e l se i f i = n−1 then
en−1 [ x . 0 / x0 ] . . . [x .(n−1 ) / xn−1 ] )

in
l e t x0=x . 0 and . . . and xn−1=x .(n−1)
in e

For a letrec with n variables x0 to xn−1, we create an array of
n elements, where each element i evaluates an expression from
the i-th binding, where all the accesses to variables x0 to xn−1
are substituted with corresponding indexes into the newly created
array. Further, in the goal expression of the letrec, we bind x0 to
xn−1 to the array elements x .0 to x .(n − 1).

The above expression demonstrates the basic idea. For full in-
tegration, we would have to support heterogeneous arrays, where
all the elements could be of a different type. In OCaml terms — an
n-element tuple. Then we would have to support imap-like con-
structs for such tuples, at least internally. Finally, we should be able
to evaluate such a tuple lazily, which requires selections into a tuple
to operate correctly on tuple-closures.

This idea is closely related to [15], where the authors propose a
scheme that supports mutual recursion within a letrec with mul-
tiple bindings. However, as it seems, the order in which bound
expressions are evaluated determines which values can be accessed
within bound expressions safely. That is:

l e t rec a = 1 and b = a in . . .

is allowed, but

l e t rec a = b and b = 1 in . . .

is not supported.
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4.4.3 In Haskell. definitions such as the ones above are valid in
the first place:

l e t a = 2
b = a in a + b

reduces to 4 as evaluation happens in a call-by-need manner. So the
only consideration in this context is whether the explicit forcing of
arrays would offer the same benefits in Haskell as it does in a strict
setting such as SaC or OCaml. In the same way as in the strict
setting, forcing imap closures in Haskell would avoid such closures
to persist as well. However, as all the other evaluation happens un-
der call-by-need semantics, the gain in loosing references to other
arrays in the environment of imap closures has much less overall
effect. References will persist in other closures that live in envir-
onments inhibiting update-in-place opportunities and potentially
creating space leaks. Consider the following example:

l e t x = f o r c e ( imap ( 1 0 ^ 5 ) λ i . E [ x ] ) in
l e t y = f x in . . .

assuming that E[x] is an expression that makes a reference to x .
The f x expression won’t be evaluated up to the moment when y
will be needed. Therefore, any operation on x like passing it as an
argument, or referring to its elements, potentially requires forcing
as well. Otherwise, our assumption about immediate memory reuse
of arrays does not hold.

5 SPECULATIVE APPROACH
The syntactical restriction on recursive imaps that we introduce
in Section 3.1 causes the evaluation of a number of programs to
fail which would succeed under semantics where all imaps are
evaluated lazily. For example, consider a program where the imap
does not immediately appear on the right hand side of a letrec
binding:

l e t r e c x =
i f 1 then imap 10 λ i . i f i = 0 then 1 e l se x . 0
e l se 0

in . . .

As imap does not appear syntactically immediately on the right
hand side of the binding, the imap inside the conditional is evaluated
strictly leading to a non-terminating execution.

We can improve our approach by extending the syntactic scope
and check if the expression on the right hand side of a recursively
defined variable contains an imap as a sub-expression which con-
tains any free variable. However, such analysis quickly becomes
tricky, as the imap could be placed inside a function body:

l e t r e c f = λ s e l f . imap 10 λ i . i f i = 0 then 1
e l se s e l f . 0 in

l e t r e c c = f c in c

Another aspect of our approach that can be improved is the
criterion which we use to decide whether to compute an imap
lazily. Currently, we check whether the variable we bind is free.
However, this check does not guarantee that this variable will ever
be looked up during the evaluation. This means that we could have
evaluated some of recursive imaps strictly, e.g.

l e t r e c x = imap 10 λ i . i f 0 then x . 0 e l se 1

which would allow us to further eliminate conditionals from the
selection operations as discussed in Section 4.3.2.

In order to support all the programs that succeed under the
semantics with lazy imaps, and still avoid creating and keeping
closures unnecessarily, we can use a speculative approach. Inform-
ally, this can be summarised as follows: always start evaluating
expressions strictly; in cases where we fail to look-up a variable,
throw an exception. If an exception occurs in the process of letrec
binding evaluation, restart the evaluation, but treat some of the
imaps lazily.

We can fit this approach within the core semantics of our lan-
guage. We do this by evaluating the right hand side of a letrec
binding in a strict mode. In case a variable look-up hits the value
⊥, we propagate ⊥ up the call chain until it hits either an imap or
a letrec that initiated the computation of the ⊥ value. In case the
value ⊥ reaches an imap, the imap is turned into a closure. Finally,
if the letrec binding evaluates to an imap closure, the closure has
to be turned into a strict value.

There are several implications to using such an approach. First
of all, letrecs will have to annotate ⊥ values with a fresh identifier
so that ⊥ values do not escape the scope of a letrec evaluation.
Consider an example:

imap 10 λ i . l e t r e c x = x in x

While evaluating letrec, a variable look-up will deliver ⊥, but it
should not turn the outer imap into a closure. This means that le-
trecs will have to start with⊥p and if the right hand side expression
evaluates to ⊥p then the evaluation should fail. Values ⊥q , where
p , q shall be propagated as the result of the definition.

When evaluating expressions of any other type (except letrec
bindings or imap),⊥p values should be propagated as results, in case
any of the dependent sub-expressions evaluate it. That is ⊥p + 1 =
⊥p , etc.

Finally, forcing should be able to bypass imap closures. Consider
the following example:

l e t r e c x = l e t r e c y = imap 5 λ i . i f i = 0 then
x . 1 e l se 1

in y
in x . 0

A reference to x will turn the imap into a closure. The letrec that
binds variabley will attempt to force this closure, but such a forcing
will fail with ⊥x , as x is not yet bound. This means that if ⊥p value
appears during forcing, and ⊥p was not initiated by the letrec we
are currently evaluating, force has to return imap closure as a result.
Also, to maintain termination properties, all such closures will have
to be forced after the corresponding variable will be bound.

Despite the theoretical benefits that this approach could give,
any practical implementation will come with very large overheads.
Most importantly, evaluation of any expression will have to check
whether any of the sub-expressions evaluate to⊥. Exception-handling
techniques could help here, but for a realistic compiler implement-
ation we find such an approach to be too expensive.

6 RELATEDWORK
6.1 Laziness
Languages with support for lazy evaluation either do so for a spe-
cial collection of data structures in a strict call-by-value setting, or
they support full laziness. Lazy evaluation of data structures can
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save memory use (space) and avoid performing unnecessary com-
putation (time), e.g. when the size of a lazy data structure is pruned
or when more information about an algorithm’s solution is known
during runtime e.g. [1]. Even if an entire lazy data structure is ul-
timately needed, only the parts required by a consumer/producer
chain are manifested in memory at once [16].

Evaluation strategies are often defaults, and language primit-
ives provide a switch to turn laziness on or off. For example, to
inject laziness into the strict-by-default languages Scala [22] and
Swift [17], the lazy keyword delays the creation of objects. Whereas
to inject strictness, for example into Haskell code, bang patterns on
data types force the manifestation of data structures into memory,
and seq forces evaluations of functions, data types and bindings.
These can be enabled for an entire module using the StrictData and
Strict Haskell language extensions respectively.

Whilst lazy evaluation can yield time efficiencies by not carrying
out unnecessary work, and space efficiencies by not manifesting en-
tire data structure into memory at once, it can also have a desirable
effect on the semantics of a program: turning a non-terminating
program into a terminating one. For example, laziness can avoid
evaluating ⊥, exceptions, non-terminating computations and non-
terminating evaluation of infinite data structures, if these values
are never needed.

6.1.1 Lazy Producer/Consumer Patterns. The consumer/produ-
cer programming pattern is a technique for modularising programs
into generators and selectors and is supported by lazy evaluation,
such as the evaluation rules for imap in Section 3. A generator pro-
duces a potentially large number of solutions, and selectors choose
the appropriate one.

A subset of the producer/consumer pattern is the ability to sup-
port lazy sequences, such as lists or streams, which is perhaps the
most widely supported laziness feature for languages with lazi-
ness support. A user-defined Python generator [23] produces a
sequence of results on-demand: the yield statement in a generator
function computes the value to return with each next () call by a
consumer. Lazy sequences are supported in Clojure [9] with the
lazy-seq macro, and many functions in Clojure’s core library use
it, such as the repeat and iterate generators, and list combinators
including map, filter and take. Haskell’s list combinators are also
lazy, e.g. applying head to a list will preserve laziness in its tail.
Scala’s Stream data type shares the same laziness properties as
Haskell lists and Clojure’s seqable structures, whilst Scala lists are
strict. Perl [26] also supports lazy lists with the ‘. . . ’ operator and
with the gather/take pattern. Haskell’s support for lazy generators
is more general than just sequences because all data types are lazy
by default, i.e. Haskell generator functions can supply consumers
with lazy lists, lazy trees, lazy arrays, lazy graphs, and so on.

6.1.2 Comparisons with imap. There are a number of key differ-
ences between languages with laziness support such as Scala, Swift,
Perl, Python, Clojure and Haskell (Section 6.1.1), and the semantics
of imap:

Random access Selection into sequences, e.g. as supported
by Python, Scala, Haskell and Perl, is ordered: to access an
element at position n, the sequence has to be consumed up to
position n. In contrast, selections into an imap can be random.

For example, selection of A[4] does not trigger evaluation
of elements at positions [0..3] unless the computation at
position 4 recurses into selections at these earlier positions.

Finite arrays Infinite sequence data structures are supported
by some languages, including Scala Streams, Python gener-
ators, and lists in Clojure, Perl and Haskell. Our approach
with imap is applicable in the context of finite arrays with a
strict shape only.

Automatic laziness/strictness Unlike other languages with
lazy evaluation support, including Scala, Swift and Haskell,
in our approach there are no language annotations for switch-
ing between strict and lazy evaluation modes. Instead the
evaluation semantics are built into the programming primit-
ives: imap is lazy as shown in the Sel-Lazy-Imap-Full and
Sel-Lazy-Imap-Empty selection rules in Section 3, and the
rest of the language is strict (Section 2).

High performance + increased expressivity For high per-
formance, array processing must have good CPU cache beha-
viour, such that array elements must be in cache at the time
that they are to be processed. Lazy evaluation can result in
poor cache performance, when too much time can be spent
moving arrays between the heap in memory and the CPU for
partial reduction. The programmer can overcome this using
strictness annotations, or they can hope that strictness ana-
lysis e.g. [18] in compilers for lazy languages are successful
enough in eliminating laziness in array processing pipelines.
With a language design that combines strict array operators
(Section 2) with the lazy imap (Section 3), the programmer
gets the benefits of both: recursive array definitions with
imap when this expressivity is needed, which memoises res-
ults for amortising computational complexity, within a strict
array language that enables compiler optimisations [25] and
good CPU cache performance.

6.2 I-Structures
6.2.1 Implicit Assignment with Laziness. The imap data struc-

tures is an extension to I-Structures [3] in Id [24], a functional
language with non-strict semantics. I-Structures are allocated with
the expression I_array (m,n), which immediately returns an empty
array, just as a lazy imap does. Assignment into the I-Structure and
selection is explicit, with A[i]=v and A[i] respectively. The imap
construct extends the I-Structuremechanism bymaking assignment
implicit. It hides the explicit A[i] = ‹expr › assignment operation
on I-Structures, by instead forcing evaluation of λ i . ‹expr › from
the lazy generator.

6.2.2 Determinacy. The imap primitive shares a determinacy
property with I-Structures, due to restrictions shared by both:

Write-once Elements are empty or full, and can only be writ-
ten to once. Writes to each position in an imap are con-
trolled by the Sel-Lazy-Imap-Empty rule, which writes the
value of evaluating the λ i . ‹expr › closure at each position.
Subsequent selections use the Sel-Lazy-Imap-Full rule, and
hence do not write to the imap again at this position.

Deferred reads If a selection is applied to an empty imap loc-
ation, then there may be a delay until its value is computed.
That is, a selection with the Sel-Lazy-Imap-Empty rule will
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block on an empty element until its suspended λ i . ‹expr ›
expression is evaluated.

No test for emptiness As with I-Structures, there is no non-
blocking test for emptiness at imap positions.

Thanks to this determinacy property, the timing of reads relat-
ive to writes do not change the final value of an imap because all
selections at a position in an imap return a single, consistent value.
Determinancy of reads/writes on I-Structures can be exploited for
parallel execution on fine grained dataflow architectures [2], which
can be supported for imaps too with careful implementation (Sec-
tion 4.3.1).

6.3 Recursive Array Definitions
Only a few array-oriented languages make it possible to use self
references in array comprehensions.

Accelerate [7] is an embedded array processingDSL insideHaskell
with fully strict semantics, and targets multicore CPUs and GPUs.
To avoid excessive SIMD divergence, it does not support recursive
array definitions, contrasting with the expressive power of imap
which allows recursive array definitions.

AlphaZ [29] is a generic set of tools for program analysis, trans-
formation and parallelization in the Polyhedral Equational Model.
An equational language named Alpha/Alphabets, which is a part of
AlphaZ, makes it possible to specify a program as a set of depend-
encies between input and output data. Inputs and outputs are sets
of points on an n-dimensional plane, where each set is bound by a
polyhedron. Consider the LU decomposition problem6:

a f f i n e LUD {N | N>0 }
i npu t

f l o a t A { i , j | 1 <= ( i , j ) <=N} ;
ou tpu t

f l o a t L { i , j | 1 < i <=N && 1<= j < i } ;
f l o a t U { i , j |1 <= j <=N && 1<= i <= j } ;

l e t
U[ i , j ] = c a s e

{ | 1 = = i } : A[ i , j ] ;
{ | 1 < i } : A[ i , j ]

− reduce ( + , [ k ] , L [ i , k ] ∗U[k , j ] ) ;
e s a c ;
L = ca s e

{ i , j | 1== j } : A / ( i , j −>j , j )@U ;
{ i , j | 1 < j } : (A − reduce ( + , ( i , j , k−>i , j ) ,

( i , j , k−>i , k )@L
∗ ( i , j , k−>k , j )@U) )

/ ( i , j −>j , j )@U ;
e s a c ;

.

Input A is defined as a 2-dimensional rectangular array, indexed
from 1 to N on every dimension. The outputs of this computa-
tion are sets L and U that have a triangular shape (lower/upper
triangulars of N × N rectangular). The computation inside the let
expression is a set of equations describing how elements ofU de-
pend on elements of A and L, and elements of L on elements of
A and U . The let expression can define multiple bindings, where
bound expressions can have mutual references.

Such a specification is passed to the polyhedral model [10] which
tries to infer a schedule on how to traverse the points within the
output sets, so that all the dependencies are respected. If such a
6This code is taken from: http://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=
tutorial_lud

schedule exists, the polyhedral tools are capable to generate a code
for the given specification.

The main difference between AlphaZ and the approach proposed
in this paper lies in the necessity to find a schedule statically. In
case of imap, if a schedule is not found statically, the computation
will be performed in a lazy fashion. In case of AlphaZ, if a schedule
is not found, the specification is being rejected.

One of the extension proposals of APL [13] introduces the notion
of recursive arrays. The proposal investigates how to deal with
arrays of arbitrary nesting in the context of existing APL primitives.
The proposed system makes it possible to treat trees of any shape
as arrays, but neither the trees nor the specifications that construct
them allow for self-references.

7 CONCLUSIONS
This paper presents a technique for adding recursive array compre-
hensions in a call-by-value array-oriented language. The key idea
of the approach lies in treating arrays with possible self-references
lazily, while the array is being computed. If a letrec binds an imap
with potential self references, we create a closure for it, but we
immediately force computations of all the elements within that
closure, converting it into a strict array, if the imap is used.

This use of lazy evaluation yields three desirable properties for
array programming:

Dependencies When implementing recursive array-based al-
gorithms with existing strict array programming languages,
the programmer must split recursive algorithms into non-
recursive implementation phases, specifying recursive de-
pendencies between them. With our approach, the program-
mer is alleviated from this requirement, since we support
array expressions with self-references.

Expressive power With support for recursive array defini-
tions, programs are shorter and are closer to their recursive
mathematical definition. This is useful for real world ap-
plications, as shown in the two versions of the Choleski
Decomposition in Section 1.

Parallelism Lazy imaps open up fine grained parallelism op-
portunities for compilers to exploit (Section 4.2). This makes
it possible to avoid sequential bottlenecks in programs that
have explicit dependency synchronisation points.

To ensure that programs benefit from the lazy imap evaluation
rules without falling into the pitfalls of the performance overheads
associated with laziness, lazy structures only reside in memory
as long as they are needed. That is, imaps are fully evaluated in
totality and hence can be garbage collected once used, or not at all.
Dealing with strict values makes it possible to avoid overheads from
running a conditional inside selection operations. This is important
in the context of big data array processing.

7.1 Future Work
7.1.1 Exploiting Lazy imap. The imap evaluation rules in Sec-

tion 3 could be exploited in several ways.
Dataflow analysis our criterion for evaluation of imaps lazily

can be at times too restrictive. Currently, it is a syntactic
restriction of the form letrec x = imap. This syntactic re-
striction can be eliminated by running a dataflow analysis

http://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=tutorial_lud
http://www.cs.colostate.edu/AlphaZ/wiki/doku.php?id=tutorial_lud
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that checks whether a letrec variable can be found in any
imap context.

Types for laziness Laziness and strictness properties for imaps
could be lifted static type system rules, for exploitation dur-
ing type-driven auto-parallelisation compilation.

Runtime laziness analysis Alternatively, runtime systems
could exploit lazy imaps for parallelism, either tracking
imap contexts or by preserving type information. However,
runtime analysis with the speculative approach may come
with substantial overheads (Section 5).

Eliminating laziness Some recursive imaps can be evaluated
without creating a closure, given that we can choose an order
of evaluation of elements that avoids forward dependencies.
For example:

l e t r e c a = imap 5 λ i . i f i = 0 then 0
e l se a . ( i −1)+1 in a

can be compiled to the following C code:

in t a [ 5 ] ;
for ( s i z e _ t i = 0 ; i < 5 ; i ++)

a [ i ] = i == 0 ? 0 : a [ i −1 ]+1 ;

given that we have fixed left-to-right order of index traversal.
Finding such an order of evaluation statically is a non-trivial

task, and sometimes it will be undecidable (e.g. when an array index
depends on data). Polyhedral model [10] in general, and AlphaZ [29]
specifically can be leveraged here. Dependencies of an imap can be
translated into a description of a polyhedron and then the model
can attempt to find a schedule that respects these dependencies.

7.1.2 Machine Learning Guided imap Use. Machine learning
approaches could be adopted for identifying performance-optimal
use of the imap evaluation rules from Section 3, influenced by
two recent approaches: (1) machine learning in [28] identifies op-
timal combinations of low level parallel implementations of strict
high level functional array processing programs, and (2) machine
learning in [8] identifies optimal combinations of adding laziness
annotations into strict programs. An extension of our work could
combine both, by profiling array programs to identify optimal com-
binations of injecting the lazy imap evaluation rules in real world
array processing programs.

The approach presented in this paper can be generalised beyond
array processing. The proposed technique can be used in other
strict languages like OCaml (Section 4.4) to implement evaluation
of recursive let expressions with arbitrary mutual recursion.
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