
An Image Processing Language: External and
Shallow/Deep Embeddings

Robert Stewart
Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh, Scotland

R.Stewart@hw.ac.uk

ABSTRACT
Programming language users demand high performance, easy
to understand syntax, and tooling such as profilers, debug-
gers and integrated development environments. Historically
they were standalone, each with its own lexer and parser to
implement a syntax, and an interpreter or compiler to im-
plement a semantics. This approach incurs substantial en-
gineering costs, both for the initial construction and also for
ongoing maintenance as a language and its standard library
grows. Modern language technology enables a more cost
effective approach, namely to embed new languages inside
existing languages, inheriting a host language’s tooling, and
its community as potential users. This paper uses a small
image processing language to compare shallow and deep lan-
guage embeddings with the external language approach. It
focuses on optimisation opportunities, performance, ease of
use and engineering costs.

CCS Concepts
•Software and its engineering→Domain specific lan-
guages; Specialized application languages; Data types and
structures;

Keywords
Domain specific languages; image processing

1. INTRODUCTION
The motivation for using a DSL is productivity. They

should be easy to use and read for a domain expert, so should
lift a concise collection of domain concepts into meaning-
ful notation that abstract common computational patterns.
They should also hide details of the machine such as memory
management, system calls, pointers and concrete data struc-
ture details, thus stripping away details outside the domain.
The motivation for building a DSL is often performance or
to attract domain experts as users. To satisfy power users,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RWDSL ’16, March 12 2016, Barcelona, Spain
c© 2016 ACM. ISBN 978-1-4503-4051-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2889420.2892270

a DSL compiler should embody domain knowledge to elim-
inate unnecessary computation with algorithmic simplifica-
tion rules, and a DSL runtime system may exploit common
computational compositions for parallelism and memory ef-
ficiency.

Historically the approach was to build an external lan-
guage with its own lexer and parser to parse its syntax,
and an interpreter or compiler to implement its semantics.
Or alternatively they were compiled to general purpose lan-
guages like C for execution, meaning that the notation in
the language on top could bear resemblance to particular
domains. The programmer was not hindered by the pro-
gramming model of the target language, and the language
engineer did not have to compile all the way to native code.

Advances in language engineering techniques offer new ap-
proaches for DSL implementations, namely by embedding
them into existing languages. They can be embedded shal-
lowly, where language primitives are implemented as compu-
tations in the host language, as values to which they evalu-
ate. Or they can be embedded deeply, where each primitive
returns a structure, not a value. They preserve their ar-
guments into an AST, to be turned into a program of its
own. The engineering cost of shallow embedding is cheap.
The costs of deep embedding is less cheap because a com-
piler must be written to an external language, but is cheaper
than building an external language from scratch. Deep em-
beddings geared for performance are very often compiled to
a foreign language, bypassing the host’s compiler, because
the host language compiler 1) cannot compile to the tar-
get hardware, 2) has limited or no optimisations suitable for
the domain, or 3) a foreign language compiler can generate
better code for the domain.

This paper uses a small image processing language to com-
pare two shallow embeddings, three deep embeddings and
one external language. It presents a broad comparison of
these distinct language approaches, rather than a deep com-
parison of complex optimisation opportunities in the image
processing domain. The image processing language is there-
fore constricted to four image processing operators, and two
for reading and writing image files. The language is pre-
sented in Section 2, six implementations of it are described
in Section 3 and runtime performance for five benchmarks
is reported in Section 4. The paper ends with a discussion
in Section 5 on the trade-offs for optimisation, performance,
ease of use and engineering costs.

http://dx.doi.org/10.1145/2889420.2892270

2. THE END LANGUAGE

2.1 Primitives
Expressive Notation for the image processing Domain (END)

is a small language, with four image operations and two IO
operations. The term language in this context is a collec-
tion of primitives, rather than a specific implementation.
The language is in Figure 1. Image files are loaded with
imread and written to with imwrite. The brightenBy and
darkenBy primitives increase and reduce the pixel values at
each position in the image by a user specific integer value.
The blurX and blurY primitives blur the appearance of an
image by applying a one dimensional weighted convolution
with the kernel

[
1 2 1

]
at each position and its adjacent row

or column wise neighbours. The nearest pixel is mirrored at
the edges.

imread : String → Image
imwrite : Image → String → ()
blurX : Image → Image
blurY : Image → Image
brightenBy : Int → Image → Image
darkenBy : Int → Image → Image

Figure 1: END Language Primitives

2.2 Benchmarks & Optimisations
The END implementations are compared using the five

benchmarks in Figure 2. Program 1 will assess raw image
traversal performance. Program 2 presents an opportunity
for the language implementations to fuse two blurX oper-
ations at each pixel point with only one image traversal.
Program 3 could be optimised by eliminating the compo-
sition of brightenBy and darkenBy, as their composition
brightens then darkens an image to the same degree. Pro-
gram 4 could be optimised in the same way, with an added
complication that the brightening then darkening values are
known only at runtime. Program 5 represents an optimisa-
tion challenge when traversal is first row wise, then column
wise, then point wise.

3. LANGUAGE IMPLEMENTATIONS
When a programmer wants to write a new software pro-

gram, should they use a domain specific embedded language
or a domain specific external language? This question is
unpacked in the discussion Section 5. For image processing
needs, the programmer can choose to use image process-
ing specific notation, such as Halide [12] or the widely used
OpenCV [2]. They may instead choose an array program-
ming language and represent images as 2D integer arrays,
using embeddings such as Repa [9] or Accelerate [3], or an
external language like SaC [13]. Or they may just use plain
sequential arrays or vectors in a general purpose language
like Haskell. Table 1 summarises these different approaches.
There is a distinction made between source and target lan-
guages. The source language is the one used by the program-
mer to express their image processing application, and the
target language is the one compiled to native code. This sec-
tion uses the image processing benchmarks from Section 2.2
to compare the image processing library route with Halide,
array programming with Repa and Accelerate, two toy em-
beddings ShallowEND and DeepEND, and external array

Program 1
img1 ← imread(”in.png”)
img2 ← brightenBy(20 , img1)
imwrite(img2 , ”out.png”)

Program 2
img1 ← imread(”in.png”)
img2 ← blurX(img1)
img3 ← blurX(img2)
imwrite(img3 , ”out.png”)

Program 3
img1 ← imread(”in.png”)
m ← getLine
img2 ← brightenBy(m , img1)
img3 ← darkenBy(m , img2)
imwrite(img3 , ”out.png”)

Program 4
img1 ← imread(”in.png”)
m ← getLine
n ← getLine
img2 ← brightenBy(m , img1)
img3 ← darkenBy(n , img2)
imwrite(img3 , ”out.png”)

Program 5
img1 ← imread(”in.png”)
img2 ← blurX(img1)
img3 ← blurY (img2)
img4 ← brightenBy(30 , img3)
imwrite(img4 , ”out.png”)

Figure 2: Benchmark Programs

programming with SaC. All implementations are available
online [14].

3.1 Shallow Embeddings

3.1.1 ShallowEND
The simplest implementation of the END language is Shal-

lowEND. The concrete implementation of an image is an al-
gebraic data type with three values: a vector of unboxed
integer values representing pixels, and the width and height
of the image:

data Image = Image { pixels :: Vector Int
, width :: Int
, height :: Int }

The entire ShallowEND implementation is based on im-
mutable images of type Image, and function calls to the
vectors 1 library to create new images from existing images.
Haskell has a number of features that make it a good lan-
guage for implementing DSLs, including type classes, infix
syntax, quasi quotation and operator overloading. In the
spirit of the domain, brightenBy and darkenBy are exposed
with overloadings of + and -. Program 3 brightens an in-
put image twice, using a user specified runtime value. The
ShallowEND program for Program 3 is:

1http://hackage.haskell.org/package/vector

http://hackage.haskell.org/package/vector

Domain Optimisations Embedding Language
Image Array General Compile Run

Shallow Deep Source Compiled
processing processing purpose time time

ShallowEND 3 3 3 Haskell Haskell
OpenCV 3 3 3 C++ C++
DeepEND 3 3 3 Haskell Haskell
Halide 3 3 3 C++ LLVM
Repa 3 3 3 Haskell Haskell
Accelerate 3 3 3 Haskell LLVM
SaC 3 3 external SaC C
Haskell 3 3 external Haskell Haskell

Table 1: Summary of Image Processing Approaches

main = do
img1 ← imread ”in.png”
m ←read <$> getLine
let img2 = ((−) m ◦ (+) m) img1
imwrite ”out.png” img2

As ShallowEND is a shallow embedding, there are no run-
time optimisations of this program. All domain specific op-
timisations must happen at compile time. Fortunately, the
GHC compiler includes a rewrite rule system [8] that lets us
define the identity function optimisation when brightenBy is
composed with darkenBy :

{−# RULES ”darkenBy.brightenBy” forall img n.
darkenBy n (brightenBy n img) = img #−}

In order for this rule to fire, the NOINLINE pragma is at-
tached to these functions, to ensure they are not inlined be-
fore the GHC compiler starts applying user defined rewrite
rules. Strictly speaking, the composition of brightenBy with
darkenBy is not the identity function, because e.g. bright-
ening a pixel with value 200 by 100 would saturate it to
the white value 255. Brightening pixels modifies their val-
ues to at most 255, darkening to at least 0 for black. This
can therefore be considered a domain specific optimisation
that trades accuracy for efficiency, and one that no compiler
should infer, at least not without the user’s permission.

A similar optimisation is one that calculates the difference
between brightenBy and darkenBy values, and replaces the
two calls with a single brigtenBy call that accepts negative
values. This does preserve accuracy, and is an optimisation
that image processing language and array language compil-
ers are able to apply by using loop fusion.

As the vector library is neither designed for array or image
processing, it does not include built in support for handling
boundary conditions. The mirroring of image pixels over its
edges in order to compute blurX and blurY is therefore the
responsibility of the programmer, shown in Figure 3. This
concern is abstracted away with Accelerate and Halide, both
languages provide the functionality to impose boundary con-
ditions when applying overlapping stencil computations.

3.1.2 Repa
Repa [9] is a shallowly embedded parallel array DSL. Un-

like ShallowEND, the Repa library has been carefully crafted
for parallel performance. It takes ideas from the deep em-
bedding approach, whereby computations are built up rather
than being directly executed, as a way of performing fu-
sion on array computation pipelines. Unlike those deep em-

blurX :: Image → Image
blurX (Image pixels w h) = Image (imap blurPixel pixels) w h
where
normalise x = round (fromIntegral x / 4.0)
blurPixel i p
−− right end of a row
| (i+1) ‘mod‘ w == 0 =
normalise ((pixels ! (i−1)) + p∗2 + p)

−− left start to a row
| i ‘mod‘ w == 0 =
normalise (p + p∗2 + (pixels ! (i+1)))

−− somewhere in between
| otherwise =
normalise (pixels ! (i−1) + p∗2 + (pixels ! (i+1)))

Figure 3: Hand Written Vector Image Boundary Condition

bedding approaches shown later, Repa function calls do not
build up AST structures, they return Haskell array values.
Those values, however, still represent fusible array opera-
tions because the returned arrays have delayed representa-
tions. Delayed arrays are represented by functions from in-
dices to array elements at each position, rather than there
being an unboxed value at each position. Array fusion is
achieved by building up these plain Haskell functions as
compositions. Manifest arrays are represented as unboxed
values, i.e. real data.

Repa exposes the choice of when to use delayed and man-
ifest array representations using Haskell’s data families. To
maximise the optimisation opportunities of END programs,
images in the Repa implementation are all delayed, indicated
by the type index D :

type Image = Array D DIM2 Int

Each call to an END primitive adds to the λ(x, y)→ pixel
composition for each position in the delayed array. Repa’s
important function is computeP, which separates the delayed
array into chunks for multi-threaded parallelism, and the
λ(x, y)→ pixel at each position is then evaluated to an un-
boxed value, with an array type index U. The call to com-
puteP is hidden inside the END primitive imwrite, when we
know the user demands that image.

For efficient code generation, Repa uses the LLVM back-
end of the GHC Haskell compiler. The Repa implementation
uses GHC primitive calls to transform aliasing information
in the LLVM optimiser to encourage the LLVM compiler to

generate native SIMD vector opcodes. Because Repa’s host
is Haskell, it can also make use of the GHC rewrite rule that
ShallowEND benefits from, to eliminate all image processing
computation for Program 3.

3.2 Deep Embeddings
Calling primitives in deeply embedded languages return

structures, not values. Compilers for deep embeddings are
often optimised for particular computational models, e.g.
deep embeddings in Haskell to compile structures to the high
performance Intel Array Building Blocks C++ library [15],
to CUDA [3] and to LLVM [10]. To illustrate this point,
shallow and deep executions of Program 5 are shown in Fig-
ure 4. In the shallow embedding (Section 3.1), calls to the
END primitives result in direct execution of Haskell code
to return image values. Any optimisations are applied by
the GHC compiler, e.g. compile time fusion of vector op-
erations. Deep embeddings of END primitives instead re-
turn structures, not values. Optimisations can be applied
on those structures, before evaluating the program struc-
ture to a value using the host language at runtime (Sec-
tion 3.2.1). Alternatively, those structures can be compiled
to another language before being compiled to native code —
bypassing the host language’s compiler, possibly targeting a
processor architecture the host language’s compiler cannot
support (Section 3.2.2). This section compares deeps em-
beddings of a sequential vector based END implementation,
and LLVM backends of deep C++ and Haskell embeddings.

shallow

compile time
optimisations

Host

BrightenBy

BlurY

BlurX

Map

Stencil

Stencil
deep

runtime
optimisations

+

50blurY

blurX

syntax structure structure

Foreign

run runtime
optimisations compile time

optimisations

run

(CUDA/LLVM/...)

I 50 Int 50

Figure 4: Shallow and Deep Embedding of Program 5

3.2.1 DeepEND

data DeepEND a where
Img :: Image →Exp Image
I :: Int → Exp Int
BlurX :: Exp Image →Exp Image
BlurY :: Exp Image →Exp Image
BrightenBy :: Exp Int → Exp Image →Exp Image
DarkenBy :: Exp Int → Exp Image →Exp Image

brigtenBy = BrightenBy
...

Figure 5: DeepEND GADT

The DeepEND implementation uses generalised algebraic
datatypes (GADTs), a type indexing feature in its host lan-
guage Haskell. This deep embedding is shown in Figure 5.
It has constructors I and Img for lifting integers and images
into structures. The four DeepEND operations are exposed
with data constructors, each with a smart constructors for
convenience and do no computation, e.g. brigtenBy. Shal-
lowEND and DeepEND programs look similar in Haskell,
as illustrated in their respective expressions of Program5
in Figure 6. Smart constructors are used to lift the integer
30 and image img1 into structures, and run interprets the
deeply constructed AST.

−− | using ShallowEND
img1 ← imRead ”in.png”
let img2 = (brightenBy 30 ◦ blurY ◦ blurX) img1

−− | using DeepEND
img1 ← imRead ”in.png”
let img2 = run $ (brightenBy (integer 30) ◦ blurY ◦ blurX) (image img1)

Figure 6: DSL Notation for Program 5

The implementation of the run interpreter of DeepEND
programs is shown in Figure 7. It uses the same image
processing computations as the shallowly embedded Shal-
lowEND. The difference is that the de-coupling between pro-
gram construction and program evaluation offers the deep
embedding the opportunity to optimise DSL programs be-
fore evaluation with eval. The optimiseAST function in-
spects ASTs at runtime to identify optimisations.

run :: Exp a → a
run ast = eval (optimiseAST ast)

eval :: Exp a → a
eval (I i) = i
eval (Img img) = img
eval (BrightenBy i exp) = Shallow.brightenBy (eval i) (eval exp)
eval (DarkenBy i exp) = Shallow.darkenBy (eval i) (eval exp)
eval (BlurX exp) = Shallow.blurX (eval exp)
eval (BlurY exp) = Shallow.blurY (eval exp)

optimiseAST :: Exp a → Exp a
optimiseAST (BrightenBy (DarkenBy subExp (I j)) (I i))
−− fire optimisation: (brightenBy m ◦ darkenBy n) = id
| i == j = optimiseAST subExp
| otherwise =

BrightenBy (DarkenBy (optimiseAST subExp) (I j)) (I i)
optimiseAST (DarkenBy (BrightenBy subExp (I j)) (I i))
−− fire optimisation: (darkenBy m ◦ brightenBy n) = id
| i == j = optimiseAST subExp
| otherwise =

DarkenBy (BrightenBy (optimiseAST subExp) (I j)) (I i)
optimiseAST (BlurX exp) = BlurX (optimiseAST exp)
optimiseAST exp@Img{} = exp
...

Figure 7: Optimising then Evaluating DeepEND ASTs

The (darkenBy n . brightenBy n) = id optimisation is
implemented by pattern matching in the optimiser. One
benefit to runtime, as opposed to compile time, optimisation
is that values known only at runtime can be used in the
deep embedding optimiser. In Program 4, two integers are
acquired with getLine from the user and these values are
used to brighten and then darken the image. If these runtime
values are the same, the optimiseAST can eliminate the two

computations. This is not possible with ShallowEND, which
relies on rewrite rules on values known at compile time.

3.2.2 Accelerate
Accelerate is a deeply embedded Haskell DSL with strict

evaluation semantics for parallel array processing on multi-
core CPUs and GPUs. The library is a collection of array
operations parameterised by types and scalar expressions.
The programming model is quite similar to that of Repa,
except that choices about when to delay and when to man-
ifest array values is done automatically by the Accelerate
compiler. So the Array type in Accelerate is not decorated
with a D or U type index. The backend implementation of
each array operation is tuned for each compute resource, e.g.
fast on-chip shared memory for intra-block communication
on GPUs in the CUDA backend [3].

As with the DeepEND implementation, the Accelerate
functions construct an AST representation of programs. The
functions in the Accelerate library are used to implement
END primitives, e.g. brightenBy and its corresponding AST
is shown in Figure 8.

−− | DSL primitive implemented with Accelerate
brightenBy :: Int → Acc Image →Acc Image
brightenBy i img = map (+(lift i)) img

−− | Constructed Accelerate AST for ’brightenBy’
Map add img
where
add = \x y →PrimAdd (<elided types>)

‘PrimApp‘
Tuple (NilTup ‘SnocTup‘ x

‘SnocTup‘ y)

Figure 8: From END to Accelerate ASTs

Each Accelerate backend is exposed with a run function,
the user selects the desired backend by importing the correct
module into their program. All array programming is done
in the DSL, and each backend does the heavy lifting. There
are numerous online code generators for compiling Acceler-
ate ASTs to code at (Haskell) runtime, including CUDA [3]
and LLVM [10] backends. The GPU backend uses Haskell’s
foreign function interface bound to a CUDA C API to trans-
fer arrays to the GPU, generate GPU kernels for each collec-
tive array operation in the AST, and to transfer the resulting
array back from the GPU to the host.

3.2.3 Halide
Halide is an image processing language that separates the

expression of an algorithm from the parallel schedule to
execute that algorithm. It is deeply embedded in C++,
and takes a similar approach to Accelerate, by having on-
line CUDA and LLVM code generators for parallel execu-
tion on multicore CPUs and GPUs. One difference is that
the Halide compiler generates SIMD opcodes directly for
each architecture (on ARM using NEON, on x86 using SSE
and AVX), whereas Accelerate’s LLVM backend relies on the
LLVM compiler to vectorise the generated LLVM IR code.

Halide can be regarded as a small embedded functional
programming DSL inside C++. Images that may otherwise
be implemented as mutable 2D arrays in C++ are instead
side-effect free functions from image indices to array ele-
ments. Expressions inside these pure image functions can
be arithmetic operations, if-then-else expressions, references

to function arguments or let expressions and calls to other
functions.

Func imread (string filename) ;
Func imwrite (string fname , Func imgFun) ;
Func brightenBy (int i , Func imgFun) ;
Func darkenBy (int i , Func imgFun) ;
Func blurY (Func imgFun) ;

/∗ Halide implementation of blurX ∗/
Func blurX (Func imgFun)
{ Var x (”x ”) , y (”y ”) , c (”c ”) ;

Func input_16 (”i npu t 16 ”) ;
input_16 (x , y , c) = cast<uint16_t>(imgFun (x , y , c)) ;
Func blur_x (”b l u r x ”) ;
blur_x (x , y , c) = (input_16 (x−1, y , c) +

2 ∗ input_16 (x , y , c) +
input_16 (x+1, y , c)) / 4 ;

blur_x . vectorize (x , 8) . parallel (y) ;
blur_x . compute_root () ;
Func output (”outputBlurX ”) ;
output (x , y , c) = cast<uint8_t>(blur_x (x , y , c)) ;
return output ; }

Figure 9: Halide Implementation of END

The type signatures for the Halide functions that imple-
ment END are shown in Figure 9, along with the body of
the blurX function to show the Halide programming model.
Var objects are names to use as variables in the language
embedding. The user defined Halide function blur x scope
variables x and y on the left side, and on the right is an
expression that uses those variables. In this case, x and
y combined represent a pixel coordinate, indexing into the
image column and row respectively. The third argument to
blur x, the variable c, represents the colour channel dimen-
sion. Operations on c are applied to every channel. In this
case the image is a grayscale image so + is applied to a single
colour channel, though blurX can be used on images with
multiple colour channels such as RGB images.

The Halide approach is slightly different to the languages
described so far. The programming model separates algo-
rithms from schedules, enabling the programmer to hand
craft the parallelism for each stage of the pipeline. The
traversal of the image in Figure 9 is done with an outer
loop traversing columnwise, and an inner loop traversing
row wise. When applying the 1D convolution kernel

[
1 2 1

]
,

the inner loop over rows is vectorised with vector(x,8).
This schedule can be good for locality performance if the

λ(x, y)→ pixel function overlaps source coordinates to cre-
ate target pixels. This is the case for the row wise 1D blur
kernel, where the inner loop is likely to fit neatly into regis-
ters for SIMD SSE vector opcode generation. The parallel(y)
call splits the source image function into chunks of rows for
thread level parallelism with a parallel outer for loop.

The implementation of END Program 5 is in Figure 10.
The input image file is loaded and converted to a greyscale
image with imread. The pipeline corresponding to the END
Program 5 is constructed by passing λ(x, y) → pixel func-
tions around. The implementation of END’s imwrite calls
Halide’s save image() to save the image to a file.

Programs are constructed as feed forward pipelines of func-
tions. A function builds on top of an existing image func-
tion, to define what value each pixel should have in an out-
put image. Building an in-memory Halide program struc-
ture is done by passing around higher order functions. Pro-

Func img1Fun (x , y , c) = imread (” i n . png ”) ;
Func img2Fun = blurX (img1Fun) ;
Func img3Fun = blurY (img2Fun) ;
Func img4Fun = brightenBy (30 , img3Fun) ;
imwrite (”outpng ” , width , height , img4Fun) ;

Figure 10: END Program 5 with Halide

grams are evaluated by calling the Halide function realize()
on a user defined pipeline of functions. It JIT compiles the
pipeline, then runs it and returns the resulting buffer as an
image.

3.3 External

3.3.1 SaC
Single Aassignment C (SaC) is an external functional ar-

ray programming language, with syntax familiar to C pro-
grammers with notable exclusions of pointers and global
variables. The language treats N -dimensional arrays as first
class data structures. Like the Repa and Accelerate lan-
guages, SaC language primitives operate on arrays, e.g. to
inspect the dimensionality, access array elements, and to
generate new arrays from existing arrays. The compiler gen-
erates C code and relies on existing C compilers to optimise
this further and to generate native code.

typedef int [. , .] image ;
image imread (string fname)
void imwrite (string fname , image img)
image blurX (image img)
image blurY (image img)
image darkenBy (int i , image img)

/∗ implementing brightenBy with SaC ∗/
image brightenBy (int i , image img)
{ return min (img + i , 255) ; }

Figure 11: END Implementation with SaC

The type signatures for the SaC implementation of the
END language is in Figure 11, along with the implementa-
tion of brightenBy. The image type is a typedef for int[.,.],
representing a 2D array of integers whose exact image shape
is not known until runtime. SaC doesn’t have a built in
primitive for clamping arrays at their edges, so the imple-
mentation of blurX and blurY is more involved than Ac-
celerate or Halide, as it involves shifting the image left and
right to handle the image boundary conditions. All array
arithemtic operations in the SaC standard library are im-
plemented with SaC’s with loop construct. The END imple-
mentation uses those array operations, so the optimisations
to END programs are achieved by fusing the underlying with
loops beneath the four END image operations. In contrast
to Halide, all scheduling choices are automatically decided
by the compiler.

4. BENCHMARK EVALUATION
All language implementations of the END image process-

ing programs from Section 2.2 have been benchmarked on a

Type
END Program

1 2 3 4 5

ShallowEND shallow 80 2089 0 154 2132
Repa shallow 886 7863 542 1412 8926
DeepEND deep 78 2953 0 0 2988
Accelerlate deep 77 623 81 88 629
Halide deep 184 343 203 202 742
SaC external 85 447 64 126 723

Table 2: Image processing Runtimes in Milliseconds

four core Intel i5 3.20GHz CPU with 16GB of main mem-
ory running the 4.2.8 Linux kernel. GHC 7.10.2 was used to
compile and run the embedded Haskell implementations, a
git snapshot of the SaC compiler was used to compile SaC
to C, and GCC 5.3.1 to compile the Halide C++ and SaC-
generated C. A git snapshot of the accelerate-llvm Haskell
was used in the Accelerate implementation, whilst Repa and
vector library versions 3.4.0.2 and 0.11.0.0 respectively were
used.

The benchmark results, reported in milliseconds, are in
Table 2. They are the mean of five runs. To assess the
image processing performance and to observe the effects of
optimisations, the reported runtimes are for the image pro-
cessing computation, the time taken to read and write image
files is ignored. The same 7050 × 4525 8bit color RGB im-
age is the input to every program. The value obtained with
getLine for Program 3 was 30, and the two getLine calls for
Program 4 both returned 30 at runtime.

As discussed in Section 3.1.1, the optimisation that elimi-
nates image brightening used with image darkening, and vice
versa, represents a domain specific trade-off between accu-
racy and efficiency. The GHC rewrite rule in Section 3.1.1
successfully substitutes the composition of brightenBy n and
darkenBy n with the identity function in Program 3 at com-
pile time, resulting in a 0ms runtime. The rule was also
used in the Repa implementation, so the 542ms is likely
the time to setup the Repa scheduler with the computeP
call. The runtime AST optimiser in DeepEND eliminated
all computation in Program 3 and Program 4, resulting in a
0ms runtime for both.

Of the parallel implementations, SaC and Accelerate achieve
very similar fast runtimes, whilst Halide is marginally slower
perhaps due to the runtime latency of JIT compiling and
running the image processing pipeline. Repa was signif-
icantly slower for Program 2 and Program 5. These re-
sults are measurements of very simple image processing, and
should not be taken too seriously. For a more rigorous per-
formance comparison of these parallel libraries and language,
a much wider variety of real world and higher order image
processing algorithms should be used as the benchmark.

5. DISCUSSION

5.1 Domain Specificity
What constitutes a DSL? Is it a language that constrains

the programmer so that efficient native code can be gener-
ated, or is it a language that empowers the programmer to
express algorithms more easily? Can a DSL be a control flow
oriented language? It was argued [7] at the Nvidia technol-

ogy conference in 2009 that OpenGL is a DSL, one which
captures code structure bracketed by glBegin() and glEnd()
with sequences of instructions in between. Programmers in-
dent their code as if these primitives are control structures
of the host language.

In terms of image processing with END, the ShallowEND
implementation is the embedding that is most directly con-
nected to its host. Images pixels are stored as vectors in the
host language, and the image operations are implemented
using calls to functions in the vectors library. There are
many Haskell libraries that also use that library, so it is
trivial to use this END implementation in conjunction with
other domains. The Repa implementation of END repre-
sents three layers of specialisation. The host language is
general purpose, Repa at the next level is for array pro-
gramming, and END image processing sits at the top. SaC,
the only external language in this comparison, is more spe-
cialised than any of the embedded implementations because
Haskell is general purpose and SaC is restricted to array
programming.

Halide is the interesting case when testing the notion of
domain specificity for image processing. To question the
notion of domain specificity, the author has used Halide to
implement an audio processing program, which is available
online [14]. It uses a MIDI audio file parser library 2 for
Halide’s host language C++, and wraps the MIDI track data
into buffers and then into Halide image data structures. A
MIDI file contains tracks, and a track contains events. Event
data takes the following form, one line per MIDI event:

1200 0 x f f 51 3 4 86 9c
1200 0x90 43 30
1440 0x90 48 31

The first column is the tick, indicating the duration of
the note. The second column is the command byte, The
0x90 value represents a note to be on, whilst 0xff indicates
a meta message about a lyric, cue point, or set tempo. The
third column is the note, and the fourth column is the note’s
volume. A segment of the program is shown in Figure 12. It
extracts the note from each 0x90 MIDI event into an array,
passes this into an Halide image as a buffer for processing,
then reconstructs a new MIDI file using the modified notes.

The author has chosen to process Ludwig van Beethoven’s
Piano Sonata No. 8 in C minor, Op. 13. The program mod-
ifies E[to E, B[to B and A[to A, such that the piece is
transformed into the parallel key of C major, for a cheerier
and more spirited sound. The processing of Piano Sonata
No. 8 is mapped into a very wide image with one row, and
that row is vectorised by a factor of 8 for faster process-
ing. This leakage of another domain into Halide is primarily
due to Halide’s embedding in an otherwise general purpose
language for which there are many libraries satisfying other
domains.

Halide lacks library calls for reading non-image files, mak-
ing it is less easy to process other file formats. Nevertheless,
this MIDI experiment shows that domain specific does not
always mean domain exclusive. A deeper investigation could
assess, across different DSLs, how often DSL misuse is pos-
sible and whether misuse results in bad performance. For
example, using the Halide image structure to host dense 2D
arrays and measure the performance of applications from

2https://github.com/craigsapp/midifile

other domains, given that Halide’s code generator has been
tuned with image processing in mind.

It’s never certain how languages end up being used. For
example LISP, invented by John McCarthy in 1958, quickly
became popular primarily for artificial intelligence research.
Clojure however, a dialect of LISP, is today widely used in
many other domains including web programming and dis-
tributed databases.

Func noFlats (Func music)
{ Var x , y , c ;

Expr value = music (x , y , c) ;
// Eb to Es, Bb to B, Ab to A
value = select(38==value , 39 , value) ;
value = select(50==value , 51 , value) ;
. . .
Func noFlats (”noF l a t s ”) ;
noFlats (x , y , c) = value ;
noFlats . vectorize (x , 8) ;
noFlats . compute_root () ;
return noFlats ; }

int main ()
{ // parse MIDI data

MidiFile file ;
file . read (” i n . mid ”) ;
int width = file . getEventCount (0) ;
uint8_t pitches [width] ;
for (int event=0; event<file [0] . size () ; event++)

{ uint8_t pitch = (uint8_t) file [0] [event] [1] ;
pitches [event] = pitch ; }

// C minor to para l l e l C major with Halide
Buffer in = Buffer (UInt (8) , width , 1 , 1 , 0 , pitches) ;
Image<uint8_t> image (in) ;
songFun (x , y , c) = cast<uint8_t>(image (x , y , c)) ;
Func songWithNoFlats = noFlats (songFun) ;
Image<uint8_t> newSong (width , 1 , 1) ;
songWithNoFlats . realize (newSong) ;

// extract MIDI data from the image
MidiFile outFile ;
outputfile . addTrack (1) ;
buffer_t image_buffer = ∗(newImg . raw_buffer ()) ;
for (int event=0; event < events ; event++)

{ MidiEvent event = midifile [0] [event] ;
event [1] = image_buffer . host [event] ;
outFile . addEvent (1 , event . tick , event) ; }

outFile . write (”out . mid ”) ;
}

Figure 12: Leaking Audio Processing into Halide

5.2 Ease of Use
Closely relating to language domain specificity is ease of

use. How easy a programming language or library is to use is
a notoriously difficult metric to measure. An embedded lan-
guage like Repa or Accelerate is likely to be easy to learn if
the host language is already known to the programmer, and
potentially difficult to learn otherwise. For the image pro-
cessing domain expert, an image processing specialised lan-
guage like Halide or OpenCV are likely to be easier to read
and write, because of their primitive types like Image, their
built in support for common operations like stencil compu-
tations, support for handling boundary conditions and their
standard libraries. Using Halide effectively is slightly more
involved than using any of the other languages, because of
its separation of algorithm to scheduling. An efficient Halide
programmer needs to know the image processing domain
and also have knowledge of parallel computing too. The

https://github.com/craigsapp/midifile

scheduling choices include vectorisation, thread parallelism,
unrolling, image tiling and nesting orders of loops. These
choices are embedded into automatic compiler optimisations
in other languages, including SaC.

There are several usability drawbacks when using embed-
ded DSLs. DSL programs can be awkward to write if the
host syntax is rigid. Moreover, domain specific error report-
ing of domain errors in an embedded setting can be difficult
to implement in the language.

An important subtlety that can result in poor performance
is the unclear boundary where the DSL ends and the host
language begins. For example, an Halide programmer may
start out by writing their functions as ones that take an im-
age and return an image, just as you would when using SaC
or a general purpose language. As described in Section 3.2.3,
the “correct” programming model is instead to build up a
pipeline of λ(x, y)→ pixel functions bypassing higher order
functions around. Not doing so eliminates all fusion opti-
misations in the Halide compiler. And yet a C++ compiler
will compile λimage → image functions just as happily as
higher order Halide functions, and this incorrect program-
ming style was a mistake the author made when starting out
with Halide.

A programmer’s ability to use array based languages like
Repa, Accelerate and SaC depends largely on their under-
standing of shapes, functional ranks and rank-N arrays –
prevalent concepts in these languages. If the user is famil-
iar with the programming model, these languages will likely
yield high performance for their programs, because the com-
pilers are rich in optimisable array metadata so can aggres-
sively fuse and parallelise array computations. SaC has the
ability to define a typedef for common structures in a do-
main, such a images, making programs easier for the domain
expert to read. Nevertheless, an external language like SaC
is yet another syntax and semantics the programmer must
learn before they can become productive using it.

5.3 Software Scalability
Another consideration for language adoption is whether

the language can be used at scale. Real world large scale
software must satisfy the requirements of multiple domains.
One framework may involve database querying, web ser-
vices, and data processing.

It may be implemented as a collection of microservice writ-
ten in different languages, glued together with language ag-
nostic APIs. Alternatively if executable files, as opposed to
language functions, each provide modularised functionality,
then they can each be implemented in different languages
then lifted into a scripting language and composed by pipel-
ing stdout of one to stdin of another. A third approach is to
use a hybrid language, which is the interspersion of multiple
languages in one, e.g. JavaServer Pages programs consist
of HTML with fragments of Java [5]. A fourth approach
is to unify different problems into one language such as [4],
which is a single web functional language for specifying what
appears in the browser, what happens on the server and re-
lational database queries.

The most common approach however, is to use a gen-
eral purpose language and adopt domain specific libraries
available for that language. In this case, Repa and Acceler-
ate array programming can easily be integrated with other
domains within Haskell, the same is true for Halide image
processing amongst other domains with C++. External ap-

proaches are vulnerable to language cacophony, i.e. can it
be used in conjunction with others? Despite being a spe-
cialised array programming language, SaC functions can be
called from C programs thanks to SaC’s foreign function
interface, although this does require to the programmer to
maintain code written in two different languages.

5.4 Engineering Costs
By far the cheapest engineering cost is the shallow em-

bedding approach. The engineer implements each primi-
tive using the host language, and relies entirely on the host
language’s compiler to generate native code. The expense
here is the high probability of inferior performance when
compared to deep embeddings and external languages. Pro-
grams in these latter approaches are able to be optimised
holistically, and these optimisations are not constrained by
the host’s compiler’s ability to generate good machine code.
Deep embeddings overcome this problem, at the expense of
needing to implement a compiler for the language, one for
each targeted processor architecture. It comes then as little
surprise that deep embedding efforts can bit rot, which is
discussed in [10].

Functional programming languages are particularly well
suited for hosting embedded DSLs, with features such as al-
gebraic data types for hosting deep embeddings. Construct-
ing and optimising ASTs in the absence of algebraic data
types can become unworkable and tedious at scale [6]. An
alternative to the GADT approach for separating an API
from its implementation is type classes. A programmer de-
fines a language API as a type class, and this allows multi-
ple implementations (instances) of that class. Two syntactic
features for DSL implementation is quasi quotation [11] and
operator overloading, both can be used to depart from the
host’s syntax to present a more domain focused syntax.

External languages are the most expensive to develop and
maintain. As the language evolves and as standard libraries
grow, maintaining the compiler can become a tiresome and
thankless task. Moreover, any tooling surround an exter-
nal language, such as profilers, debuggers, and integrated
development environments can easily bit rot if not kept in
sync with the language as it changes. In contrast, embed-
ded DSLs inherit all of the tooling from the host language
for free.

5.5 Performance
The invention of ShallowEND and DeepEND were primar-

ily motivated by the author’s intention to demonstrate two
forms of optimisation. The first, applied to ShallowEND, is
to use domain specific rewrite rules to be fired at compile
time (Section 3.1.1), which eliminates all computation for
the END Program3. This approach means that there is no
runtime overhead to judge whether optimisations can take
place or not.

The author raised a question [1] with the Halide compiler
developers on whether the Halide DSL enables the expres-
sion of image processing compile time rewrite rules. Their
view is that such optimisations should happen in DSLs on
top of Halide, in a very similar way to how the END em-
bedding using Repa uses a rewrite rule to avoid generating
Repa computations when possible.

The second optimisation approach, applied to DeepEND,
uses AST optimisation at runtime. This AST transforma-
tion approach can optimise programs in ways that compile

time optimisations cannot. Because they fire at runtime,
runtime values can be used to e.g. using two 30 values
returned by getLine to eliminate the composition of bright-
enBy and darkenBy in Program 4. Another example might
be a JIT compiled array programming language, by spe-
cialising functions for exact array shapes once these shapes
are known, e.g. by inspecting at runtime the dimensions
of an image returned with imread. However, the complex-
ity of runtime AST transformation increases as the size of
a deeply embedded language increases. As this complexity
grows, so too does the time it takes to transform the AST,
representing a runtime overhead. Balancing the runtime cost
of optimisation, with the runtime saved by applying those
optimisations, represents a delicate trade-off the language
implementer needs to consider.

Of the six END implementations compared in this pa-
per, four do image processing in parallel. One is shallowly
embedded (Repa), two are deeply embedded (Accelerate and
Halide), and one is external (SaC). The three embedded im-
plementations share one common programming trope: they
all have the programmer build up compositions of image pro-
cessing computations, and expose a primitive for optimising
and evaluating that composition. In all three cases, that
composition is pipelines of λ(x, y) → pixel functions. In
Repa, the programmer builds builds up this function using
Repa’s delayed array representation, which is hidden inside
the END abstraction on top of Repa. In Accelerate, the pro-
grammer uses the Acc embedded language to build up array
computations. In Halide, the user passes around functions
to build up these compositions directly. The three respective
primitives to turn program structures into values is shown
in Figure 13. These image processing compositions are fused
at runtime when these primitives are called.

−− | Turns a delayed Repa array into a manifest array
−− holding unboxed values, (simplified types shown).
computeP :: Array D DIM2 Int →IO (Array U DIM2 Int)

−− | Compile and run Accelerate program on a CPU or GPU
run :: Arrays a ⇒ Acc a → a

/∗ Evaluate Halide function into exis t ing buffer ∗/
Func : : realize (Image<T> dst)

Figure 13: Turning Program Runtime Structure into Values

The Halide approach of separating algorithms from sched-
ules represents an interesting trade off between relying on
an optimising compiler like the ones for SaC and Acceler-
ate, versus letting a programmer making better optimisation
choices or indeed bad choices. A more thorough benchmark
is needed than the one in this paper, with a wider cover-
age of more complex image processing algorithms, to judge
whether user guided scheduling yields better performance
than optimising compilers for array languages.

6. ACKNOWLEDGMENTS
The author would like to thank Trevor McDonell for his

insights into the performance of shallow and deep embed-
dings, Greg Michaelson for thought provoking discussions on
the very notion of DSLs, and the developers of the SaC com-
piler for providing technical support. Thanks also to Patrick
Maier and Blair Archibald for feedback on an earlier draft.

This work was funded by the Engineering and Physical Sci-
ence Research Council (EPSRC) under the EP/K009931/1
Rathlin project grant.

7. REFERENCES
[1] A. Adams. ”Rewrite rule system for user defined

Halide pipeline transformations?”. Halide-dev mailing
list thread https://lists.csail.mit.edu/pipermail/
halide-dev/2016-February/002209.html, February
2016.

[2] G. R. Bradski and A. Kaehler. Learning OpenCV -
Computer Vision with the OpenCV Library: Software
That Sees. O’Reilly, 2008.

[3] M. M. T. Chakravarty, G. Keller, S. Lee, T. L.
McDonell, and V. Grover. Accelerating Haskell Array
Codes with Multicore GPUs. In Proceedings of the
POPL 2011 Workshop on Declarative Aspects of
Multicore Programming, DAMP 2011, Austin, TX,
USA, January 23, 2011, pages 3–14. ACM, 2011.

[4] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links:
Web Programming Without Tiers. In Formal Methods
for Components and Objects, 5th International
Symposium, FMCO 2006, Amsterdam, The
Netherlands, November 7-10, 2006, Revised Lectures,
volume 4709 of Lecture Notes in Computer Science,
pages 266–296. Springer, 2007.

[5] M. Fowler. Domain-Specific Languages. The
Addison-Wesley signature series. Addison-Wesley,
2011.

[6] J. Gibbons. Functional Programming for
Domain-Specific Languages. In Central European
Functional Programming School - 5th Summer School,
CEFP 2013, Cluj-Napoca, Romania, July 8-20, 2013,
Revised Selected Papers, volume 8606 of Lecture Notes
in Computer Science. Springer, 2015.

[7] P. Hanrahan. Domain-Specific Languages for
Heterogeneous GPU Computing. Invited talk at the
Nvidia Technology Conference, October 2009.
http://www.graphics.stanford.edu/˜hanrahan/talks/
dsl/dsl1.pdf.

[8] S. P. Jones, A. Tolmach, and T. Hoare. Playing By
The Rules: Rewriting as a Practical Optimisation
Technique in GHC. In Proceedings of the ACM
SIGPLAN Haskell Workshop, Firenze, Italy,
September 2, 2001, pages 203–233. ACM, 2001.

[9] B. Lippmeier, M. M. T. Chakravarty, G. Keller, and
S. P. Jones. Guiding Parallel Array Fusion with
Indexed Types. In Proceedings of the 5th ACM
SIGPLAN Symposium on Haskell, Haskell 2012,
Copenhagen, Denmark, 13 September 2012, pages
25–36. ACM, 2012.

[10] T. L. McDonell, M. M. T. Chakravarty, V. Grover,
and R. R. Newton. Type-Safe Runtime Code
Generation: Accelerate to LLVM. In Proceedings of
the 8th ACM SIGPLAN Symposium on Haskell,
Haskell 2015, Vancouver, BC, Canada, September 3-4,
2015, pages 201–212. ACM, 2015.

[11] S. Najd, S. Lindley, J. Svenningsson, and P. Wadler.
Everything Old is New Again: Quoted
Domain-Specific Languages. In Proceedings of the
2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM 2016,

https://lists.csail.mit.edu/pipermail/halide-dev/2016-February/002209.html
https://lists.csail.mit.edu/pipermail/halide-dev/2016-February/002209.html
http://www.graphics.stanford.edu/~hanrahan/talks/dsl/dsl1.pdf
http://www.graphics.stanford.edu/~hanrahan/talks/dsl/dsl1.pdf

St. Petersburg, FL, USA, January 20 - 22, 2016,
pages 25–36. ACM, 2016.

[12] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris,
F. Durand, and S. P. Amarasinghe. Halide: A
Language and Compiler for Optimizing Parallelism,
Locality, and Recomputation in Image Processing
Pipelines. In ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages
519–530. ACM, 2013.

[13] S. Scholz. Single Assignment C: Efficient Support for
High-Level Array Operations in a Functional Setting.
J. Funct. Program., 13(6):1005–1059, 2003.

[14] R. Stewart. Sources for END DSL Implementations.
GitHub repository https://github.com/robstewart57/
END-dsl-implementations, February 2016.

[15] B. J. Svensson and M. Sheeran. Parallel Programming
in Haskell Almost For Free: An Embedding of Intel’s
Array Building Blocks. In Proceedings of the 1st ACM
SIGPLAN workshop on Functional high-performance
computing, Copenhagen, Denmark. ICFP 2012,
September 9-15, 2012, pages 3–14. ACM, 2012.

https://github.com/robstewart57/END-dsl-implementations
https://github.com/robstewart57/END-dsl-implementations

	Introduction
	The END Language
	Primitives
	Benchmarks & Optimisations

	Language Implementations
	Shallow Embeddings
	ShallowEND
	Repa

	Deep Embeddings
	DeepEND
	Accelerate
	Halide

	External
	SaC

	Benchmark Evaluation
	Discussion
	Domain Specificity
	Ease of Use
	Software Scalability
	Engineering Costs
	Performance

	Acknowledgments
	References

