
Graphical Program Transformations for Embedded Systems
Robert Stewart

Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh, UK
R.Stewart@hw.ac.uk

Bernard Berthomieu
LAAS-CNRS

Université de Toulouse
Toulouse, France

Paulo Garcia
Systems and Computer Engineering
Faculty of Engineering and Design

Carleton University
Ottawa, Canada

Idris Ibrahim
Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh, UK

Greg Michaelson
Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh, UK

Andrew Wallace
Engineering and Physical Sciences

Heriot-Watt University
Edinburgh, UK

ABSTRACT
Dataflow languages are widely used for real-time embedded sys-
tems. This paper presents a dataflow program transformation tool
for Orcc, a high level embedded systems programming environment.
The aim of the tool is to increase program throughput performance
of FPGAs and other embedded systems.

ACM Reference Format:
Robert Stewart, Bernard Berthomieu, Paulo Garcia, Idris Ibrahim, Greg
Michaelson, and AndrewWallace. 2019. Graphical ProgramTransformations
for Embedded Systems. In The 34th ACM/SIGAPP Symposium on Applied
Computing (SAC ’19), April 8–12, 2019, Limassol, Cyprus. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3297280.3297555

1 INTRODUCTION
Dataflow Programming. Dataflow languages and visual program-

ming environments are widely used for designing real-time em-
bedded systems. The dataflow programming model is especially
suitable for FPGAs, as mapping and routing distributes dataflow
pipelines across the programmable fabric. In the dataflow model,
the execution of actors depends only on data availability, allowing
each actor in a program to execute asynchronously without a global
control flow sequentialising their execution. Large data structures
in actors such as intermediate arrays may use on-chip block RAM
(BRAMs), which are distributed across FPGA fabric, meaning there
is no memory contention when multiple actors update their kernel
variables. The number of actors in a program derives the number
of independent processing elements, subject to hardware resource
availability, i.e. both memory access and computation is inherently
parallel.

Parallel Refactoring. Parallel refactoring tools aim to speed up
code execution by parallelising sequential code across multiple
processing elements e.g. the cores of a CPU. Some tools exploit
language properties to parallelise code, e.g. the referential trans-
parency of pure code and equational laws to rewrite a map as a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5933-7/19/04.
https://doi.org/10.1145/3297280.3297555

parallel parMap. Software languages for which parallel transforma-
tion tools exist include Haskell [8], Erlang [6] and C++ [7].

For customisable hardware like FPGAs, dataflow programming
environments represent a high level abstraction above Hardware
Description Languages (HDLs) i.e. Verilog or VHDL. This abstrac-
tion enables program analysis e.g. optimal static scheduling [10]
and program transformation (this paper). Some dataflow program-
ming environments support static dataflow models only, e.g. direct
feedthrough function blocks in Simulink [12]. The open source
Orcc development environment [16] supports CAL, a dataflow lan-
guage for programming real-time embedded systems, which was
developed as part of the Ptolemy II project [15]. Programmers can
implement CAL actors that have dynamic data rates and internal
state.

Parallel code execution can improve performance. However, par-
allel transformations must preserve a program’s functional seman-
tics, i.e. a transformed program must have identical functional be-
haviour to the original program. Related work on verified program
transformation includes verification of functional code refactoring
using proofs assistants [14]. Value-dependent code scheduling and
dynamic data rates complicates auto-parallelisation of dynamic
Dataflow Process Network (DPN) [11] actors. Our approach (Fig. 1)
overcomes this limitation by using model checking to identify par-
allelisable multi-rate static (MRDF) [9] and cyclo-static (CSDF) [5]
actors in DPN programs. The approach is general to any dynamic
dataflow language, this paper demonstrates the approach with CAL
in the Orcc development environment.

MRDF

CSDF

DPN

 

LTL model
checking

Figure 1: Verifying and Transforming Cyclo-Static Dataflow

2 DATAFLOW
Dataflow programs are directed graphs of connected actors. Each
actor encapsulates an algorithmic kernel. Lossless, order-preserving
FIFOs through which tokens flow connect actors. Multiple actors

https://doi.org/10.1145/3297280.3297555
https://doi.org/10.1145/3297280.3297555


SAC ’19, April 8–12, 2019, Limassol, Cyprus R. Stewart et al.

can execute in parallel if the underlying hardware architecture has
multiple processing elements, each assigned at least one actor.

➊ actor Amplifier () In, Volume ==> Out :
➋ vol := 1;
➌ volume: action Volume :[newV] ==>
➍ do vol := newV; end
➎ amplify: action In:[d] ==> Out:[d*vol] end
➏ schedule fsm s0 :

s0 (volume) --> s0;
s0 (amplify) --> s0;

end
➐ priority volume > amplify; end

end
(a) Actor Implementation

s0volume[1,0] amplify[1,1]

(b) Actor FSM Execution Model

Figure 2: An Amplifier Dataflow Actor

Actor Programming. Fig. 2a shows a volume amplifier example.
➊ labels actor ports. The actor may have a store of private variables
➋. Actors contain procedures, called actions. Actions match on
input patterns to consume tokens and output patterns produce
tokens (➌ and ➎). Actions may also update store variables ➍. A
Finite State Machine (FSM) determines enabled actions from each
FSM state ➏. When multiple actions are fireable from a given state,
a priority block can disambiguate multiple enabled actions ➐.

Programmed actors are then instantiated in Orcc’s graphical de-
velopment environment to construct dataflow graphs. The parallel
transformation in Section 3 treats instantiated actors as the unit of
computation to be parallelised.

Actor Execution Model. An FSM transition system drives actor
execution, e.g. the FSM in Fig. 2b. Actions have data rates [C/P],
meaning they consume C tokens and produce P tokens when fired.
The transition sequence in dynamic DPN actors may depend on the
value of these tokens. Satisfying both of the following conditions
enables an action:

(1) its value-dependent guard evaluates to true (if a guard exists),
(2) there is enough tokens to match its input patterns (if an

input pattern exists).

3 DATAFLOW TRANSFORMATIONS

Figure 3: Interactive Dataflow Transformation

Graphical Transformations Environment. We have extended Orcc
with a refactoring tool for parallelising static and cyclo-static actors

(a) original (b) 4 actors (c) 8 actors

Figure 4: Parallel Program after Transformation

which introduces fork and join actors to scatter/gather data to/from
parallel replicas of a single (sequential) actor (Fig. 3). The user
chooses how much parallelism they want (Fig. 4).

Model Checking Dataflow Actors. Our verification approach is:
(1) Translate an actor to a Fiacre specification [1]. Fiacre is a

formal intermediate model to represent both the behavioural
and timing aspects of embedded and distributed systems for
formal verification.

(2) Fiacre specifications are checkedwith the TINAmodel checker [2]
against Linear Temporal Logic (LTL) properties that we have
formulated to capture cyclo-static actor scheduling.

(3) Our graphical transformations tool parallelises cyclo-static
actors where the model checker is unable to find counterex-
amples to the LTL properties.

Parallelisation Algorithm. The transformation algorithm of an
actor A in the transformation tool is:

(1) Extract the number of firings required for an FSM cycle, and
the consumption and production data rates in this sequence.

(2) Create N parallel instances A1 to AN .
(3) Create a fork actor that distributes data across A1, ..,AN .
(4) Create a join actor to consume chunks from actorsA1, ..,AN .
(5) Output the joined chunks as a sequential stream.

Figure 5: FPGAWaveforms of fork Actor Data Scattering

The transformed graph remains partially sequential due to the
nature of the linear stream that the fork actor distributes. Fig. 5
shows the sequential nature of stream propagation as it broadcasts
tokens to each parallel instance in sequence, in this case transmit-
ting 10 tokens, 1 token per cycle, to each identical actor. Stream
gathering by the join actor is sequentially also. These sequential
phases limits the achievable speedup using the transformation tool.

Hardware Profiling. The Xronos [3] Orcc backend generates Ver-
ilog for FPGAs. It uses Xilinx’s open source OpenForge [4] compiler
to generate hardware cost reports for each actor at compile time.
These are: 1) the number of BRAM blocks, and 2) the datapath



Graphical Program Transformations for Embedded Systems SAC ’19, April 8–12, 2019, Limassol, Cyprus

depth for each action in an actor. The datapath depth determines
the minimum latency (microseconds) between each clock cycle. The
action with the longest datapath determines the clock frequency of
the generated FPGA design. To identify hardware performance bot-
tlenecks, our tool lifts these hardware costs into the visual dataflow
editor (Fig. 6). Green actors have small datapath depths relative to
the orange critical actor(s). BRAM counts for implementing actor
internal variables is also shown to the programmer.

(a) Graph hardware critical path (b) one actor

Figure 6: Visualising FPGA Resource Costs

4 CONCLUSION

(a) transformation 1

⇓

(b) transformation 2

⇓

(c) final version

Figure 7: Successive Transformations

This paper presents a program transformation tool that veri-
fies and parallelises a single cyclo-static actor into multiple parallel
actors. LTL formulas capture cyclo-static actor data rates. The work-
flow abstracts dataflow actors to Fiacre specifications, and the TINA
model checker searches for counterexamples of the LTL formulas
in the Fiacre abstraction to verify the correctness of parallel trans-
formation.

Our approach provides a step towards auto-parallelisation of
dynamic dataflow programs with a data-parallel transformation. It

also serves as an optimisation layer for high level FPGA languages
that compile to dataflow graph intermediate representations [13].
Verifying other parallel transformations, e.g. task and pipelined
parallelism, and successive transformations of subgraphs of actors,
would extend our approach. We have prototyped the latter in Orcc
(Fig. 7). The broader aim of this work is to integrate automated
formal verification into everyday embedded systems development.

ACKNOWLEDGMENTS
We acknowledge the support of the Engineering and Physical Re-
search Council grant references EP/K009931/1 (Programmable em-
bedded platforms for remote and compute intensive image process-
ing applications), EP/N014758/1 (The Integration and Interaction
of Multiple Mathematical Reasoning Processes) and EP/N028201/1
(Border Patrol: Improving Smart Device Security through Type-
Aware Systems Design), and the Scottish Funding Council for a
SICSA Postdoctoral and Early Career Researcher Exchanges grant.

REFERENCES
[1] Bernard Berthomieu, Jean-Paul Bodeveix, Patrick Farail, Mamoun Filali, Hubert

Garavel, Pierre Gaufillet, Frédéric Lang, and François Vernadat. 2008. Fiacre: an
Intermediate Language for Model Verification in the Topcased Environment. In
ERTS 2008. Toulouse, France.

[2] B. Berthomieu, P.O. Ribet, and F. Vernadat. 2004. The tool TINA - Construction
of abstract state spaces for petri nets and time petri nets. International Journal of
Production Research 42, 14 (July 2004), 2741–2756.

[3] Endri Bezati. 2015. High-Level Synthesis of Dataflow Programs for Heterogeneous
Platforms: Design Flow Tools and Design Space Exploration. Ph.D. Dissertation.
School of Engineering, Ecole Polytechnique Federale de Lausanne, Switzerland.

[4] Endri Bezati, Hervé Yviquel, Mickaël Raulet, and Marco Mattavelli. 2011. A
Unified Hardware/Software Co-Synthesis Solution for Signal Processing Systems.
In DASIP 2011, Tampere, Finland, November 2-4, 2011. IEEE, Tampere, Finland,
186–191.

[5] Greet Bilsen, Marc Engels, Rudy Lauwereins, and J. A. Peperstraete. 1996. Cycle-
static dataflow. IEEE Trans. Signal Processing 44, 2 (1996), 397–408.

[6] Christopher Brown, Marco Danelutto, Kevin Hammond, Peter Kilpatrick, and
Archibald Elliott. 2014. Cost-Directed Refactoring for Parallel Erlang Programs.
International Journal of Parallel Programming 42, 4 (2014), 564–582.

[7] Christopher Brown, Kevin Hammond, Marco Danelutto, Peter Kilpatrick, Holger
Schöner, and Tino Breddin. 2011. Paraphrasing: Generating Parallel Programs Us-
ing Refactoring. In FMCO 2011, October 3-5, 2011, Revised Selected Papers. Springer,
Turin, Italy, 237–256.

[8] Christopher Brown, Hans-Wolfgang Loidl, and Kevin Hammond. 2011. ParaForm-
ing: Forming Parallel Haskell Programs Using Novel Refactoring Techniques.
In TFP 2011, May 16-18, 2011, Revised Selected Papers. Springer, Madrid, Spain,
82–97.

[9] Rudy Lauwereins, Marc Engels, Marleen Adé, and J. A. Peperstraete. 1995. Grape-
II: A System-Level Prototyping Environment for DSP Applications. IEEE Com-
puter 28, 2 (1995), 35–43.

[10] Edward A. Lee and David G. Messerschmitt. 1987. Static Scheduling of Synchro-
nous Data Flow Programs for Digital Signal Processing. IEEE Trans. Computers
36, 1 (1987), 24–35.

[11] E. A. Lee and T. M. Parks. 1995. Dataflow process networks. Proc. IEEE 83, 5 (May
1995), 773–801.

[12] MATLAB. 2018. Simulink. https://uk.mathworks.com/products/simulink.html.
[13] Robert Stewart, Kirsty Duncan, Greg Michaelson, Paulo Garcia, Deepayan

Bhowmik, and Andrew Wallace. 2018. RIPL: A Parallel Image Processing Lan-
guage for FPGAs. TRETS 11, 1 (2018), 7:1–7:24.

[14] Nik Sultana and Simon J. Thompson. 2008. Mechanical verification of refactorings.
In Proceedings of the 2008 ACM SIGPLAN, PEPM 2008, January 7-8, 2008. ACM,
San Francisco, California, USA, 51–60.

[15] University of California at Berkeley. 2018. The Ptolemy Project. https://ptolemy.
eecs.berkeley.edu/.

[16] Hervé Yviquel, Antoine Lorence, Khaled Jerbi, Gildas Cocherel, Alexandre
Sanchez, and Mickaël Raulet. 2013. Orcc: multimedia development made easy.
In ACM Multimedia Conference, MM ’13, October 21-25, 2013. ACM, Barcelona,
Spain, 863–866.

https://uk.mathworks.com/products/simulink.html
https://ptolemy.eecs.berkeley.edu/
https://ptolemy.eecs.berkeley.edu/

	Abstract
	1 Introduction
	2 Dataflow
	3 Dataflow Transformations
	4 Conclusion
	Acknowledgments
	References

