Transparent Fault Tolerance for Scalable
Functional Computation

Rob Stewart 1 Patrick Maier 2 Phil Trinder 2
26" July 2016

IHeriot-Watt University Edinburgh

2University of Glasgow

Motivation

Tolerating faults with irregular parallelism

The success of future HPC architectures will depend on the
ability to provide reliability and availability at scale. —
Understanding Failures in Petascale Computers. B Schroeder and G
Gibson. Journal of Physics: Conference Series, 78, 2007.

= As HPC & Cloud architectures grow, failure rates increase.
= Non traditional HPC workloads: irregular parallel workloads.

= How do we scale languages whilst tolerating faults?

Language approaches

Fault tolerance with explicit task placement

Erlang 'let it crash’ philosophy:

= Live together, die together:
Pid = spawn(NodeB, fun() -> foo() end)
link (Pid)

= Be notified of failure:

monitor (process, spawn(NodeB, fun() -> foo() end)).

= Influence on other languages:
-- Akka

spawnLinkRemote [MyActor] (host, port)

-- CloudHaskell
spawnLink :: NodeId — Closure (Process ()) — Process ProcessId

Limitations of eager work placement

= Only explicit task placement

= irregular parallelism. ..
= Explicit placement cannot fix scheduling accidents

= Only lazy scheduling

= nodes initially idle until saturation
= |oad balancing communication protocols cause delays

= Solution is to use both lazy and eager scheduling

= push big tasks early on
= Joad balance smaller tasks to fix scheduling accidents

Fault tolerant load balancing

Problem 1: irregular parallelism

= Explicit "spawn at" not suitable for irregular workloads

Solution!

= Employ lazy scheduling and load balancing

Problem 2: fault tolerance

= How do know what to recover?

= What tasks were lost when the a node disappears?

HdpH-RS: a fault tolerant
distributed parallel DSL

HdpH-RS

H implemented in Haskell
d distributed at scale
pH task parallel Haskell DSL
RS reliable scheduling

An extension of the HdpH DSL:

The HdpH DSLs for Scalable Reliable Computation. P Maier, R Stewart and P
Trinder, ACM SIGPLAN Haskell Symposium, 2014. Géteborg, Sweden.

Distributed fork join parallelism

IVar put
spawnAt
IVar get NS o
dependence V
spawn —
Parallel thread))

Node A \ Caller invokes spawn/spawnAt Sync points upon get

HdpH-RS API

data Par a -- monadic parallel computation of type ’a’
runParI0 :: RTSConf — Par a — IO (Maybe a)

-- * task distribution

type Task a = Closure (Par (Closure a))

spawn :: Task a — Par (Future a) -- lazy
spawnAt :: Node — Task a — Par (Future a) -- eager

-- % communication of results via futures

data IVar a -- write-once buffer of type ’a’

type Future a = IVar (Closure a)

get :: Future a — Par (Closure a) -- local read

rput :: Future a — Closure a — Par () -- global write (internal)

sparks can migrate (spawn)
threads cannot migrate (spawnAt)
sparks get converted to threads for execution

HdpH-RS scheduling

S put Node A
cPu spawnAt
(migrate) \
CPU rput \‘
spawn

Node B
sparkpool threadpool

HdpH-RS example

parSumLiouville :: Integer — Par Integer

parSumLiouville n = do
let tasks = [$(mkClosure [| liouville k | 1) | k < [1..n]]
futures < mapM spawn tasks
results < mapM get futures

return $ sum $ map unClosure results

liouville :: Integer — Par (Closure Integer)
liouville k = eval $ toClosure $ (-1)~ (length $ primeFactors k)

Fault tolerant algorithmic skeletons

parMapSliced, pushMapSliced -- slicing parallel maps
(Binary b) -- result type serialisable
= Int -- number of tasks
— Closure (a — b) -- function closure
— [Closure a] -- input list
— Par [Closure b] -- output list
parMapReduceRangeThresh -- map/reduce with lazy scheduling
: Closure Int -— threshold
— Closure InclusiveRange -- range over which to calculate
— Closure (Closure Int —-- compute one result

— Par (Closure a))

— Closure (Closure a —-- compute two results (associate)
— Closure a
— Par (Closure a))

— Closure a -- initial wvalue

— Par (Closure a)

10

HdpH-RS fault tolerance semantics

HdpH-RS syntax for states

States R,S, T

S| T parallel composition

(M)p thread on node p, executing M

(M) p spark on node p, to execute M

i{M}p full IVar i on node p, holding M

i{{M)q}p empty IVar i on node p, supervising thread (M)q
i{{(M))q}p empty IVar i on node p, supervising spark (M))q
i{L}p zombie IVar i on node p

dead, notification that node p is dead
Meta-variables i, j names of [Vars
p,q nodes

P,Q sets of nodes
X,y term variables

The key to tracking and recovery:

i{(M)q4}p supervised threads

i{{(M))q}p supervised sparks

11

Creating tasks

States R,S, T

S| T parallel composition
(M)p thread on node p, executing M
(M) p spark on node p, to execute M
i{M}p full IVar i on node p, holding M
i{{M)q}p empty IVar i on node p, supervising thread (M)q
i{{(M))q}p empty IVar i on node p, supervising spark (M))q
i{L}p zombie IVar i on node p
dead, notification that node p is dead

(E[spasm M])p — vi.((E[returni])p | i{{M »=rput i) 53 }p | (M >=rput i))p),

(spawn)

(E[spawnAt g M])p, — vi.((E[returni])p | i{{(M »=rputi)q}p | (M »=rputi)q),

(spawnAt)

12

Scheduling

States R,S, T

(M)py | I{(M)p
(M)p | iI{{M) P,
(m

S| T parallel composition

M), thread on node p, executing M

(M) p spark on node p, to execute M

i{M}p full IVar i on node p, holding M

i{{M)q}p empty IVar i on node p, supervising thread (M)q
i{{(M))q}p empty IVar i on node p, supervising spark (M))q
i{L}p zombie IVar i on node p

/\

dead, notification that node p is dead

Yo — Mg, [i{{M)p}q, if p1,p2 € P (migrate)
g — {M)p | i{{M))p,}q, if pEPLNP, (track)
Do —> (M)p (convert)

13

Communicating results

States R,S, T ::

S| T parallel composition

/\

M), thread on node p, executing M

(M) p spark on node p, to execute M

i{M}p full IVar i on node p, holding M

i{{M)q}p empty IVar i on node p, supervising thread (M)q
i{{(M))q}p empty IVar i on node p, supervising spark (M))q
i{L}p zombie IVar i on node p

dead, notification that node p is dead

(Elrput i M))p | i{{(N)p}q — (E[return QO])p | i{M}q (rput_empty__thread)
(E[rput i MD)p | i{{(N)@tq — (Elreturn O])p | i{M}q (rput_empty_spark)
(E[rput i M])p | i{N}q — (E[return O])p | i{N}q, (rput_full)
(Elrput i M])p | i{L}q — (E[return O])p | i{L}q (rput_zombie)
(Elget p | i{M}p — (E[return M])p [i{M}p, (get)

14

Failure

States R,S, T :=S| T parallel composition
| (M) thread on node p, executing M
| (M), spark on node p, to execute M
| i{M}p full IVar i on node p, holding M
| i{(M)q}p empty IVar i on node p, supervising thread (M)q
| i{{M))qg}p empty IVar i on node p, supervising spark (M))q
| i{L}p zombie IVar i on node p
| dead, notification that node p is dead
dead,, | (M), — deadp (kill_spark)
dead,, | (M), — dead,, (kill_thread)

dead,, | i{?}p, — dead, | i{L}, (kill_ivar)

ii5)

Recovery

States R,S, T = parallel composition

| () thread on node p, executing M
| (M), spark on node p, to execute M
| i{M}p full IVar i on node p, holding M
| i{(M)q}p empty IVar i on node p, supervising thread (M)q
| i{{M))qg}p empty IVar i on node p, supervising spark (M))q
| i{L}p zombie IVar i on node p
| dead, notification that node p is dead

i{{M)q}p | deadq — i{(M)p}p | (M)p | deadq, if p# q (recover__thread)

H{(M)o}p | deadq — (M) (py o | (M), | deadg, if p+# qand q € Q (recover_spark)

16

Fault tolerant load balancing

Successful work stealing

Node A Node B Node C
supervisor victim thief
FISH
REQ [
AUTH L
SCHEDULE
AJK
| | ;

17

Supervised work stealing

FISH

REQ

. DENIED .\
SCHEDULE NOWORK
/ ®

M
$ ACK

18

Correspondence with language semantics

Node A Node B Node C
[vietim | [thiet]
@ B!P“ISHC ’{<<M>>{B}}A I <<M>>B

FISH C
B 7 FISH C

1
A ! REQ i r0 B C

I
REQir0BC : : (track)
A7 REQir0BC I 1
a i I
B ! AUTH i C Il I
AUTH C I T
In’I‘ransitionBCi B?AE‘I‘HlC H i{<<M>){B‘C}}A | (M)s
¢t s H i
HEDULES%)HZDI'LE@B I (mlgrate)
Il
CAEERR0) i{diM)ig,cyta | (M)c
ACK i 10 A ! ACK i 10 (track)
A 7 ACK i rO:
(MY gcyta | (M)c

19

Is the scheduling algorithm robust?

= Non-determinism in faulty systems

= Causal ordering not consistent with wall clock times
= Communication delays

= node availabilty info could be outdated
= asynchronous scheduling messages complicates tracking

Model checking increases confidence in scheduling algorithm.

20

Model checking the scheduler

Abstracting HdpH-RS scheduler to a Promela model

1 spark, 1 supervisor.

= 3 workers, they can all die with (dead) transition rule.

= A worker holding a task copy can send result to supervisor.
= Messages to a dead node are lost.

= Supervisor will eventually receive DEADNODE messages.

= Buffered channels model asynchronous message passing.

= Tasks replicated by supervisor with (recover_spark) rule.

21

Modelling communication

active proctype Supervisor() {
int thiefID, victimID, deadNodeID, seq, authorizedSeq, deniedSeq;

SUPERVISOR_RECEIVE:

/* evaluate task once spark age exceeds 100 */
if :: (supervisor.sparkpool.spark_count > O && spark.age > maxLife) —
supervisor ! RESULT(null,null,null);

:: else —
if :: (supervisor.sparkpool.spark_count > 0) —
supervisor ! RESULT(null,null,null);
supervisor ? FISH(thiefID, null,null) —
supervisor ? REQ(victimID, thiefID, seq) — C
supervisor ? AUTH(thiefID, authorizedSeq, null) — ...
supervisor ? ACK(thiefID, seq, null) —
supervisor ? DENIED(thiefID, deniedSeq,null) —
supervisor 7 DEADNODE(deadNodeID, null, null) —
supervisor ? RESULT(null, null, null) —
supervisor.ivar = 1;
goto EVALUATION_COMPLETE;
fi;

fi;
goto SUPERVISOR_RECEIVE;

22

Modelling the scheduling algorithm

Example: worker response to a FISH message:

workers[me] ? FISH(thiefID, null, null) —
if /* worker has spark and not waiting for scheduling authorisation */
(worker [me] . sparkpool.spark_count > O
&% ! worker[me].waitingSchedAuth) —
worker [me] .waitingSchedAuth = true;
supervisor ! REQ(me, thiefID, worker[me].sparkpool.spark);

/% worker doesn’t have the spark */
:: else — workers[thiefID] ! NOWORK(me, null, null) ;

23

Two intended properties

1. The IVar is empty until a result is sent

2. IVar eventually gets filled

#define ivar_full (supervisor.ivar =— 1)
#define ivar_empty (supervisor.ivar — 0)
#define any_result_sent

(supervisor.resultSent || worker[0].resultSent
|| worker[1].resultSent || worker[2].resultSent)

No counter examples, exhaustively checked with SPIN:

LTL Formula Depth States Transitions ~ Memory
O (ivar_empty U any_result_sent) 124 3.7m 7.4m 83.8Mb
< O ivar_full 124 8.2m 22.4m 84.7Mb

24

HdpH-RS implementation

HdpH-RS architecture

10 threads Haskell heaps 10 threads

N

I i i || msg handler , _{ msg handler | | i |

thread pools thread pools
task pool TCP/MPI task pool
registry IVars Network | registry [Vars

= Threads may migrate within node

= Sparks may migrate between nodes
Shares TCP transport backend with CloudHaskell
= rely on failure detection of TCP protocol

Haskell message handling matches verified Promela model

25

Evaluation

HdpH-RS fault-free overheads

Commodity cluster running Summatory Liouville

Input=200m, Threshold=500k Input=200m, Threshold=500k
500
—— parMapsliced 4
= 4 - parMapSliced (RS)
=& - pushMapSliced
—4— pushMapSliced (RS)

100

Speedup

504

Runtime (Seconds)

« ~ - parMapSliced
—A~ parMapSliced (RS)
—&— pushMapsSliced
—4— pushMapSliced (RS)

50 100 150 200
Cores

26

HdpH-RS fault-free overheads

HPC cluster running Summatory Liouville

Runtime (Seconds)

Input=500m, Threshold=250k

—— parMapSliced

= 4 - parMapSliced (RS)
=& - pushMapSliced
—4— pushMapSliced (RS)

6004

2004

Input=500m, Threshold=250k

=1
L "',x-—"""\';/
—

« ~ - parMapSliced
—A~ parMapSliced (RS)
—&— pushMapsSliced
—4— pushMapSliced (RS)

1000
Cores

27

HdpH-RS recovery

Seconds)

Runtime

Input=140m, Threshold=2m

120- i
k Variant
PERRN = parMapSliced (RS)
- R = = pushMapSliced (RS)
> -~
LY
100- .
80-
60-
pushMapSliced
40-

. 20 a0 60
Time of Simultanous 5 Node Failure (Seconds)

Summatory Liouville

Input=4096x4096, Depth=4000

2004

[
@
S

Runtime (Seconds)

100

504

Variant

= parMapReduceRangeThresh (RS)

= = pushMapReduceRangeThresh (RS) .
4

. 20 40 60
Time of Simultanous 5 Node Failure (Seconds)

Mandelbrot

28

Surviving chaos monkey

Failed Nodes Recovery Runtime .

Benchmark Skeleton (seconds) Sparks Threads (seconds) Unit Test
parMapSliced - 56.6 pass
[32,37,44,46,48,50,52,57] 16 85.1 pass
SRRy [18,27,41] 6 61.6 pass
Liouville parMapSliced (RS) [19,30,39,41,54,59,59] 14 76.2 pass
X\ — 50000000 [8,11] 4 62.8 pass
chunk—100000 [8,9,24,28,32,34,40,57] 16 132.7 pass
tasks=500 pushMapSliced - 58.3 pass

X=-7608

[3.8,8,12,22,26,26,29,55] 268 287.1 pass
[1] 53 63.3 pass
pushMapSliced (RS) [10,59] 41 68.5 pass
[13,15,18,51] 106 125.0 pass
[13,24,42,51] 80 105.9 pass

4 other Chaos Monkey benchmarks in:

Transparent Fault Tolerance for Scalable Functional Computation. R Stewart, P
Maier and P Trinder, Journal of Functional Programming, 2015, Cambridge Press.

29

Comparison with other approaches

HdpH-RS applicability

Fault tolerance versus memory use trade off:

= HdpH-RS retains duplicate closures
= Performance predicated on small closure footprint

= few closures
= small in size
= terminate quickly

= Many applications areas with these characteristics, e.g.

High-performance computer algebra: A Hecke algebra case study. P Maier et al.
Euro-Par 2014 parallel processing - 20th international conference, Porto, Portugal,
August 25-29, 2014. proceedings. LNCS, vol. 8632. Springer.

30

HdpH-RS applicability

Not suitable for:

= Traditional HPC workloads with regular parallelism

= little need for dynamic load balancing
= need highly optimised floating point capabalities

= Task execution time must outweigh communication
= Closures with big memory footprint not well suited

= je. HdpH-RS not for Big Data applications

31

Compared with Hadoop

= Applicability
= Hadoop big data
= HdpH-RS big computation

= Failure detection
= Hadoop centralised, takes minutes
= HdpH-RS decentralised, takes seconds

= Re-execution
= Hadoop:
= map task outputs stored locally, redundant re-execution
= HdpH-RS:

= results are immediately transmitted once computed

32

Compared with Erlang

Load balancing Fault tolerance Distributed memory

Erlang X v) v
CloudHaskell X (v) v
HdpH v X v
HdpH-RS v v v

= Erlang processes cannot migrate
= less suitable for irregular parallelism
= Erlang is dynamically typed
= programming errors only detected at runtime
= Fault tolerance
= Erlang
= fault tolerance explicit with 1ink and monitor
= programmatic recovery
= automatic with supervision behaviours
= HdpH-RS

= fault tolerance automatic

33

Divide and conquer fault tolerance

Node A Node B
(@R o PUSH ©)
T e D) Thread Replicated
(@ e R I s Once
O T 0
& . O
AN EON & © @
AR Tl P Thread Replicated
Q’ b o Cb Q\ More Than Once
A AN I
£ ©
O

34

Divide and conquer fault tolerance

Node A Node B
Q SCHEDULE
// = R~ ===~ R
Q @\ o Supervised Spark
SN RY *Q Replicated Once
3 n é Q oy
56 o d \ O e
OV ”’, ()Vl, \‘:\\\\ /Q V’ VC%O\ \O
LIRS
(v) 5 b OO0 O
d b

Lazy scheduling + divide and conquer parallelism

means less needless replication

85

Conclusion

The challenge:

= Failure rates as HPC architectures grow.
= Load balancing for irregular parallelism.
= Need to support fault tolerant load balancing

Intricate details of asynchronous non-determinism.
The HdpH-RS approach:

= lLanguage semantics + exhaustive model checking.
= Increases confidence in the design.

HdpH-RS evaluation:

= Low supervision overheads.
= Survives random fault injection.

36

II%EHHHEiEIII

= HdpH-RS

https://github.com/robstewart57/hdph-rs

= Promela model

https://github.com/robstewart57/phd-thesis/blob/master/
spin_model/hdph_scheduler.pml

= HdpH
https://github.com/PatrickMaier/HdpH

37

References

Presentation based on:

Transparent Fault Tolerance for Scalable Functional Computation. R Stewart, P
Maier and P Trinder, Journal of Functional Programming, 2015, Cambridge Press.

HdpH DSLs overview (including topology aware scheduling):

The HdpH DSLs for Scalable Reliable Computation. P Maier, R Stewart and P
Trinder, ACM SIGPLAN Haskell Symposium, 2014. Géteborg, Sweden.

Full HdpH-RS description:

Reliable Massively Parallel Symbolic Computing: Fault Tolerance for a Distributed
Haskell. R Stewart, PhD thesis, Heriot-Watt University, 2013.

38

	Motivation
	Language approaches
	HdpH-RS: a fault tolerant distributed parallel DSL
	HdpH-RS fault tolerance semantics
	Fault tolerant load balancing
	Model checking the scheduler
	HdpH-RS implementation
	Evaluation
	Comparison with other approaches
	Conclusion

