
1 of 26

Multi-level parallelism for

high performance combinatorics

Florent Hivert

LRI / Université Paris Sud 11 / CNRS

SPLS / June 2018

2 of 26

Goal

Present some experiments, experience return, and challenges
around parallel (algebraic) combinatorics computations.

What I learned:

Following the these optimization steps
Micro data-structures optimization
Work stealing parallelization
Careful memory management

we can achieve surprisingly (at least for me) large speedups.

Background: Enumerative and Algebraic Combinatorics 3 of 26

Some classical algebraic/combinatorics objects

Multivariate polynomials:

x3
1 x4x6 + 5 x3

2 x
4
5 x

2
8 − 12 x8

4

Number of monomials v variables, degree d :

M(v , d) =
(
v + d − 1

v

)

M(5, 5) = 126, M(5, 10) = 252

M(10, 10) = 92378, M(10, 20) = 2 · 107

M(16, 16) = 300 540 195, M(16, 32) = 1.5 · 1012

Background: Enumerative and Algebraic Combinatorics 4 of 26

Some classical algebraic/combinatorics objects

(Fully) Symmetric polynomials:

m(2,1) =x2
0 x1 + x0x2

1 + x2
0 x2 + x2

1 x2 + x0x2
2 + x1x2

2 + x2
0 x3

+ x2
1 x3 + x2

2 x3 + x0x2
3 + x1x2

3 + x2x2
3

m(2,2,1) =x2
0 x

2
1 x2 + x2

0 x1x2
2 + x0x2

1 x
2
2 + x2

0 x
2
1 x3 + x2

0 x
2
2 x3 + x2

1 x
2
2 x3

+ x2
0 x1x2

3 + x0x2
1 x

2
3 + x2

0 x2x2
3 + x2

1 x2x2
3 + x0x2

2 x
2
3 + x1x2

2 x
2
3

Index: integer partitions:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)

n 1 2 4 8 10 16 20 50 100 256
p(n) 1 2 5 22 42 231 627 204226 2 · 108 3.7 · 1014

Background: Enumerative and Algebraic Combinatorics 5 of 26

Group algebra

Linear combination of permutations:

[1, 2, 3, 4, 5] + 2 [1, 2, 3, 5, 4] + 3 [1, 2, 4, 3, 5] + [5, 1, 2, 3, 4]

Product: composition of permutations.

The number of permutation grows very fast:

16! = 1 307 674 368 000 = 1.3 1012

Background: Enumerative and Algebraic Combinatorics 6 of 26

Nested higher order directional derivative

Directional derivative, first and higher order:

∇Ξ1A ∇3
(Ξ1,Ξ2,Ξ3)A = ∇3

Ξ1⊗Ξ2⊗Ξ3
A

Chain rule for directional derivative

∇ξ∇k
Ξ1⊗···⊗Ξk

A = ∇k+1
ξ⊗Ξ1⊗···⊗Ξk

A+
k∑

j=1

∇k
Ξ1⊗···⊗∇ξΞj⊗···⊗Ξk

A

∇ξ1

 3 6

2

A

 = 1 3 6

2

A + 3

1

6

2

A + 3 6

1 2

A + 3 6

2

1

A

Background: Enumerative and Algebraic Combinatorics 6 of 26

Nested higher order directional derivative

Directional derivative, first and higher order:

∇Ξ1A ∇3
(Ξ1,Ξ2,Ξ3)A = ∇3

Ξ1⊗Ξ2⊗Ξ3
A

Chain rule for directional derivative

∇ξ∇k
Ξ1⊗···⊗Ξk

A = ∇k+1
ξ⊗Ξ1⊗···⊗Ξk

A+
k∑

j=1

∇k
Ξ1⊗···⊗∇ξΞj⊗···⊗Ξk

A

∇ξ1

 3 6

2

A

 = 1 3 6

2

A + 3

1

6

2

A + 3 6

1 2

A + 3 6

2

1

A

Background: Enumerative and Algebraic Combinatorics 7 of 26

Algebraic combinatorics: Summary

Note

Dealing with (formal) linear combinations of
objects whose set cardinality grows exponentially fast;

Corollary

sparse Linear algebra;
small objects are usually sufficient !

Background: Enumerative and Algebraic Combinatorics 7 of 26

Algebraic combinatorics: Summary

Note

Dealing with (formal) linear combinations of
objects whose set cardinality grows exponentially fast;

Corollary

sparse Linear algebra;
small objects are usually sufficient !

Small combinatorial objects 8 of 26

Small combinatorial objects (i.e. monomials)

Very often, small combinatorial objects can be
encoded into small sequences of small integers !

Permutations:(
1 2 3 4 5 6 7 8 9
1 6 9 4 8 2 7 3 5

)
= [1, 6, 9, 4, 8, 2, 7, 3, 6]

Integer partitions: 10 = 5+ 2+ 2+ 1 = 4+ 3+ 1+ 1+ 1
Set partitions: {{1, 4, 8}, {2, 3}, {5, 6, 7}}

Young tableaux:
5
2 6 9
1 3 4 7 8

Dyck (well bracketed) word: 1101101001100011010

Small combinatorial objects 9 of 26

Integer Vector Instruction

Register: epi8,epu8: 128 bits = 16 bytes

Even more: AVX, AVX2, AVX512

Arithmetic/logic operations: and, or, add, sub, min,
max, abs, cmp

Bit finding, scanning: popcount, bfsd

But more crucial for me:
Array manipulation: blend, broadcast, shuffle

String comparision: cmpistr (lex, find).

Very efficient manipulations !

Small combinatorial objects 9 of 26

Integer Vector Instruction

Register: epi8,epu8: 128 bits = 16 bytes

Even more: AVX, AVX2, AVX512

Arithmetic/logic operations: and, or, add, sub, min,
max, abs, cmp

Bit finding, scanning: popcount, bfsd

But more crucial for me:
Array manipulation: blend, broadcast, shuffle

String comparision: cmpistr (lex, find).

Very efficient manipulations !

Small combinatorial objects 10 of 26

Example: Sorting network

Knuth AoCP3 Fig. 51 p. 229:

Small combinatorial objects 11 of 26

// Sorting network Knuth AoCP3 Fig. 51 p 229.
static const array<Perm16, 9> rounds = {{

{ 1, 0, 3, 2, 5, 4, 7, 6, 9, 8,11,10,13,12,15,14},
{ 2, 3, 0, 1, 6, 7, 4, 5,10,11, 8, 9,14,15,12,13},
...

}};

perm sort(perm a) {
for (perm round : rounds) {

perm minab, maxab, mask;
perm b = _mm_shuffle_epi8(a, round);
mask = _mm_cmplt_epi8(round, permid);
minab = _mm_min_epi8(a, b);
maxab = _mm_max_epi8(a, b);
a = _mm_blendv_epi8(minab, maxab, mask);

}
return a;

}

Small combinatorial objects 11 of 26

// Sorting network Knuth AoCP3 Fig. 51 p 229.
static const array<Perm16, 9> rounds = {{

{ 1, 0, 3, 2, 5, 4, 7, 6, 9, 8,11,10,13,12,15,14},
{ 2, 3, 0, 1, 6, 7, 4, 5,10,11, 8, 9,14,15,12,13},
...

}};

perm sort(perm a) {
for (perm round : rounds) {

perm minab, maxab, mask;
perm b = _mm_shuffle_epi8(a, round);
mask = _mm_cmplt_epi8(round, permid);
minab = _mm_min_epi8(a, b);
maxab = _mm_max_epi8(a, b);
a = _mm_blendv_epi8(minab, maxab, mask);

}
return a;

}

Compared to std::sort, speedup = 22.3

Small combinatorial objects 12 of 26

Disjoint-set (Union-Find) of data-structure

SetPartition of {1, 2 . . . , 9}:

P = {{6}, {1, 5}, {7, 2, 3, 8}, {9, 4}}
= {{1, 5}, {2, 3, 7, 8}, {4, 9}, {6}}

Note
Union-Find data structure: Choose a canonical representative for
each classes (e.g. the smallest element).

Find the canonical representative of some element
Union combines two parts

Union(P, 5, 3) = {{1, 2, 3, 5, 7, 8}, {4, 9}, {6}}

Small combinatorial objects 13 of 26

Disjoint-set (Union-Find) of two set-partitions

P = {{1, 5}, {2, 3, 7, 8}, {4, 9}, {6}}
Q = {{1}, {3}, {2, 4}, {5, 6}, {7, 8}, {9}}

Then

P ∪ Q = {{1, 5, 6}, {2, 3, 4, 7, 8, 9}}

Small combinatorial objects 14 of 26

Disjoint-set (Union-Find) of two set-partitions

Store a partition P as a function CanP :

i 1 2 3 4 5 6 7 8 9
CanP 1 2 2 4 1 6 2 2 4

Lemma

CanP∪Q = (CanP ◦CanQ)
◦n/2

setpart16 union(setpart16 p, setpart16 p) {
setpart16 res = _mm_shuffle_epi8(p, q);
res = _mm_shuffle_epi8(res, res);
res = _mm_shuffle_epi8(res, res);
return = _mm_shuffle_epi8(res, res);

}

Small combinatorial objects 15 of 26

Some more examples and speedup

Operation Speedup
Sorting a list of bytes 21.3
Number of cycles of a permutation 41.5
Cycle type of a permutation 8.94
Number of inversions of a permutation 9.39
Inverting a permutation 2.02

Problems:
missing primitive (eg: inverting a permutation)
AVX2 and AVX512 deals in parallel on 2 or 4 registers of size
128 bits. Shuffle instruction doesn’t cross 128 bits barriers.
no support for the compiler
need to rethink all the algorithms !

Small combinatorial objects 15 of 26

Some more examples and speedup

Operation Speedup
Sorting a list of bytes 21.3
Number of cycles of a permutation 41.5
Cycle type of a permutation 8.94
Number of inversions of a permutation 9.39
Inverting a permutation 2.02

Problems:
missing primitive (eg: inverting a permutation)
AVX2 and AVX512 deals in parallel on 2 or 4 registers of size
128 bits. Shuffle instruction doesn’t cross 128 bits barriers.
no support for the compiler
need to rethink all the algorithms !

Large set enumeration: the challenging example of numerical monoids 16 of 26

Examples of recursively enumerated sets

Binary words: generation tree

[]

[0]

[0, 0]

[0, 0, 0] [0, 0, 1]

[0, 1]

[0, 1, 0] [0, 1, 1]

[1]

[1, 0]

[1, 0, 0] [1, 0, 1]

[1, 1]

[1, 1, 0] [1, 1, 1]

Large set enumeration: the challenging example of numerical monoids 17 of 26

Now that we know how to deals with each small objects,

How to generate them ?

Generation trees !

Large set enumeration: the challenging example of numerical monoids 17 of 26

Now that we know how to deals with each small objects,

How to generate them ?

Generation trees !

Large set enumeration: the challenging example of numerical monoids 18 of 26

Examples of recursively enumerated sets

Binary words: generation tree

[]

[0]

[0, 0]

[0, 0, 0] [0, 0, 1]

[0, 1]

[0, 1, 0] [0, 1, 1]

[1]

[1, 0]

[1, 0, 0] [1, 0, 1]

[1, 1]

[1, 1, 0] [1, 1, 1]

Large set enumeration: the challenging example of numerical monoids 19 of 26

Examples of recursively enumerated sets (RESets)

Permutations: generation tree

[]

[1]

[1, 2]

[1, 2, 3]

[1, 2, 3, 4] [1, 2, 4, 3] [1, 4, 2, 3] [4, 1, 2, 3]

[1, 3, 2] [3, 1, 2]

[2, 1]

[2, 1, 3] [2, 3, 1]

[2, 3, 1, 4] [2, 3, 4, 1] [2, 4, 3, 1] [4, 2, 3, 1]

[3, 2, 1]

Large set enumeration: the challenging example of numerical monoids 20 of 26

Examples of recursively enumerated sets

The tree of numerical semigroups

〈1〉

〈2, 3〉

〈3, 4, 5〉

〈4, 5, 6, 7〉

〈5, 6, 7, 8, 9〉

〈6, 7, 8, 9, 10, 11〉

5

〈5, 7, 8, 9, 11〉

6

〈5, 6, 8, 9〉

7

〈5, 6, 7, 9〉

8

〈5, 6, 7, 8〉

9

4

〈4, 6, 7, 9〉

〈4, 7, 9, 10〉

6

〈4, 6, 9, 11〉

7

〈4, 6, 7〉

9

5

〈4, 5, 7〉

〈4, 5, 11〉

7

6

〈4, 5, 6〉

7

3

〈3, 5, 7〉

〈3, 7, 8〉

〈3, 8, 10〉

7

〈3, 7, 11〉

8

5

〈3, 5〉

7

4

〈3, 4〉

5

2

〈2, 5〉

〈2, 7〉

〈2, 9〉

〈2, 11〉

9

7

5

3

1

Large set enumeration: the challenging example of numerical monoids 21 of 26

Frobenius Coin Problem

Problem
What is the largest amount that cannot be obtained using only
coins of specified denominations ?

Example: coins of 5 and 7:

12 = 5+ 7
24 = 2 ∗ 5+ 2 ∗ 7
25 = 5 ∗ 5
26 = 5+ 3 ∗ 7

27 = 4 ∗ 5+ 7
28 = 4 ∗ 7
29 = 24+ 5 = 3 ∗ 5+ 2 ∗ 7
. . .

But you cannot make 23 . . .

Large set enumeration: the challenging example of numerical monoids 22 of 26

Numerical semigroup of a given genus

Problem

Given an integer g (called the genus).
Compute the number of minimal set of denominations such
that they are exactly g non-obtainable amount (called holes).

Example g = 3:

{4, 5, 6, 7} 7→ {−,−,−, 4, 5, 6, 7, 8, 9, 10, 11, . . . }
{3, 5, 7} 7→ {−,−, 3,−, 5, 6, 7, 8, 9, 10, 11, . . . }
{3, 4} 7→ {−,−, 3, 4,−, 6, 7, 8, 9, 10, 11, . . . }
{2, 7} 7→ {−, 2,−, 4,−, 6, 7, 8, 9, 10, 11, . . . }

Large set enumeration: the challenging example of numerical monoids 23 of 26

Problem to parallelize: A very unbalanced tree

Depth Number of Semigroups
30 5 646 773
45 8 888 486 816

The first node has 42% of the descendants;
The second one node has 7.5% of the descendants;
The 10 first node have 73% of the descendants;
The 100 first node have 93% of the descendants;
The 1000 first node have 99.4% of the descendants;
Only 27 321 nodes have descendants at depth 45;
Only 5 487 nodes have more than 103 descendants;
Only 257 nodes have more than 106 descendants;

Large set enumeration: the challenging example of numerical monoids 24 of 26

Cilk parallelization

Vectorization (MMX, SSE instructions sets) and careful memory
alignment;
Aggressive loop unrolling: the main loop is unrolled by hand
using some kind of Duff’s device;
Shared memory multi-core computing using Cilk++ for low
level enumerating tree branching;

Partially derecursived algorithm using a stack;
Avoiding all dynamic allocation during the computation:
everything is computed “in place”;
Avoiding all unnecessary copy: Indirection in the stack.

Large set enumeration: the challenging example of numerical monoids 24 of 26

Cilk parallelization

Vectorization (MMX, SSE instructions sets) and careful memory
alignment;
Aggressive loop unrolling: the main loop is unrolled by hand
using some kind of Duff’s device;
Shared memory multi-core computing using Cilk++ for low
level enumerating tree branching;

Partially derecursived algorithm using a stack;
Avoiding all dynamic allocation during the computation:
everything is computed “in place”;
Avoiding all unnecessary copy: Indirection in the stack.

Large set enumeration: the challenging example of numerical monoids 25 of 26

The results!
29 days 6 hours, on 32 Haswell core 2.3GHz .
• 2.59 · 1015 monoids • 1.02 · 109 monoids/s
• 6.22 · 1017 bytes • 2.46 · 1011 bytes/s

g ng g ng g ng
0 1 24 282 828 48 38 260 496 374
1 1 25 467 224 49 62 200 036 752
2 2 26 770 832 50 101 090 300 128
3 4 27 1 270 267 51 164 253 200 784
4 7 28 2 091 030 52 266 815 155 103
5 12 29 3 437 839 53 433 317 458 741
6 23 30 5 646 773 54 703 569 992 121
7 39 31 9 266 788 55 1 142 140 736 859
8 67 32 15 195 070 56 1 853 737 832 107
9 118 33 24 896 206 57 3 008 140 981 820

10 204 34 40 761 087 58 4 880 606 790 010
11 343 35 66 687 201 59 7 917 344 087 695
12 592 36 109 032 500 60 12 841 603 251 351
13 1 001 37 178 158 289 61 20 825 558 002 053
14 1 693 38 290 939 807 62 33 768 763 536 686
15 2 857 39 474 851 445 63 54 749 244 915 730
16 4 806 40 774 614 284 64 88 754 191 073 328
17 8 045 41 1 262 992 840 65 143 863 484 925 550
18 13 467 42 2 058 356 522 66 233 166 577 125 714
19 22 464 43 3 353 191 846 67 377 866 907 506 273
20 37 396 44 5 460 401 576 68 612 309 308 257 800
21 62 194 45 8 888 486 816 69 992 121 118 414 851
22 103 246 46 14 463 633 648 70 1 607 394 814 170 158
23 170 963 47 23 527 845 502 Σ 4 198 294 061 955 752

Final comments 26 of 26

Some conclusions

Need to have good libraries for small object level optimizations.
Cilk is very efficient to handle the balancing, but

GCC / ICC support for Cilk dropped in next release
Only shared memory, need for distributed (YewPar Blair
Archibald)

Memory management is very important; reusable code ?

	Background: Enumerative and Algebraic Combinatorics
	Small combinatorial objects
	Large set enumeration: the challenging example of numerical monoids
	Final comments

