
Planning for an AI based virtual agents game∗

Susana Fernández, Roberto Adarve, Miguel Pérez, Mart́ın Rybarczyk and Daniel Borrajo
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain†

Abstract

Computer games have become a big software industry.
From the early days of the use of AI to solve classical
games, such as chess or checkers, we are now seeing an
intensive use of graphics to attract gamers. Currently,
AI in games, normally refers to either the designing
the behaviour of stock AI agents, like Bots (automated
player characters), or refers to custom AI agents such
as Non-Player Characters (NPCs). We present here our
on-going work on building a game, AI-live, that is ori-
ented towards the intensive use of AI controlled Bots.
The game borrows the idea from the popular The sims,
but with a strong focus on building characters based on
different AI techniques. More particularly, we present
the work on applying planning techniques for building
one such agent.

Introduction
Games has always been a challenging domain for test-
ing AI techniques. In the beginning of AI the focus was
on classical games, such as chess (Newell, Simon, &
Shaw 1972) or checkers (Samuel 1963). The type of AI-
based techniques that were used for solving these games
were mainly search and, sometimes, machine learning.
Then, in the 80’s and 90’s the work on these classi-
cal games continued by intensive use of faster machines
with more memory, such as the work on Deep Blue (Hsu
et al. 1990) or chinook (Schaeffer et al. 1996). Re-
cently, video games have produced a renewed inter-
est from the AI community on applying its techniques
into games. They normally refer to automated play-
ers (Bots), either opponents or teammates, and NPCs.
Bots are agents that act as if controlled by a human

∗This work has been partially supported by the Spanish
MCyT under project TIC2002-04146-C05-05, MEC project
TIN2005-08945-C06-05, and CAM-UC3M project UC3M-
INF-05-016.

†The use of planning for this domain appeared in the dis-
cussions carried out within the Artificial Intelligence Stan-
dards Committee of the International Game Developers As-
sociation, Working Group on Goal Oriented Planning. We
would like to thank its members.
Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

player. They are stock AI characters that will follow
designed behaviours. Non-Player Characters are any
artificial agent that is not a player, like Monsters that
act only as an enemy to all players. A notable exam-
ple of AI in games is the project called FEAR, which
stands for Flexible Embodied Animat aRchitecture.1
This is a framework for creating AI controlled systems
for synthetic characters. The project includes reusable
AI components, a portable framework, and interfaces
to realtime 3D games. A similar system is Arianne, al-
though it is not designed specifically for AI.2 Arianne
is a multiplayer online engine to develop turn based
and real time games providing a simple way of creat-
ing the game server rules and game clients. There have
also been several tasks in games that have been solved
using a variety of AI techniques. Examples are produc-
tion systems for quake (van Lent et al. 1999), planning
for bridge (Smith, Nau, & Throop 1998) or Real Time
Strategy games (Chung, Buro, & Shaeffer 2005) and
in Full Spectrum Command,3 or genetic approaches in
Blondie24 (Fogel 2001) (see (Rabin 2002) for some re-
ported work). Perhaps, the most used technique has
been different versions of the A∗ algorithm for path-
planning purposes.

The idea inspiring AI-live has been the commercial
game The sims4 and how it could be generalised and
modularised so that AI clients could be designed to play
a game together with humans. Our goal is to build an
architecture similar to the one proposed in (Buro & Fur-
tak 2004) for Real Time Strategy games. Each AI client
is developed as an architecture using one AI technique.
So far, we have built a rule-based AI client and a plan-
ner one in AI-live. However, it could be augmented to
incorporate any other planner or AI technique. Further-
more, all agents can interact, leading to a more complex
system that integrates social and psychological models
in order to obtain believable emergent behaviours, as
the work by Silverman (Pelechano et al. 2005).

1http://sourceforge.net/projects/fear
2https://sourceforge.net/projects/arianne
3http://www.ict.usc.edu/content/view/56/108
4http://en.wikipedia.org/wiki/The Sims

AI-live architecture
AI-live is a client/server application running over
TCP/IP. It works similarly to modern online games
such as Ragnarok Online,5 World of Warcraft6 or Guild
Wars7, where various users connect to a central server
to play in a shared world , with a key difference: in
our case, human clients share the game with AI con-
trolled characters using a variety of AI-oriented tech-
niques, playing in the same world. At this point in
development, a basic universe has been implemented
consisting of a simple room with objects to pick up,
together with two different AI clients and a graphics
renderer. Figure 1 shows a high level view of the archi-
tecture.

Figure 1: High level view of AI-live architecture.

The server holds the state of the universe, which is
divided in separate stages or realms where clients play.
Each stage is made of objects in a cell-based 3D space.
These objects are instances of classes from an ontology
that is shared among all clients. In the future, clients
will be able to travel from one stage to another, as play-
ers do in online games.

AI clients connect to the server to control an actor
object in a specific stage each, while GUI clients connect
to the server to open a window and display a graphi-
cal representation of a particular stage. In the future,
GUI-based clients will allow human players to play and
interact with AI clients.

The greyed application modules in Figure 1 are re-
sponsible for communication between both ends. All
these modules are written in C. The server intelligence
is done using the clips tool for building knowledge-
based systems.

After the server is initialised, it listens for incoming
connections and runs a round-robin loop over the list
of connected clients (we will define in the future asyn-
chronous behaviour):

• Each AI client receives the clips state corresponding
to its stage from the AI server and gets a turn with
unlimited time to decide on what to do. All other
5http://en.wikipedia.org/wiki/Ragnarok Online
6http://www.worldofwarcraft.com
7http://www.guildwars.com/

AI clients are paused as this happens. When the AI
client is done, the server receives an action, which is
passed to the AI engine and executed.

• Clients get all their turns during the game in strict
order of connection.

• All GUI clients receive the clips state corresponding
to their stages from the AI servers in every turn the
server executes, together with each AI client.

Clients connect to the server using a simple bi-
nary network protocol with little overhead, and at
this stage of the project, they synchronise with the
server simply by waiting for incoming data. Currently,
there are two AI clients implemented, using clips and
ipss (Rodŕıguez-Moreno et al. 2004) (an integrated
planner and scheduler based on prodigy (Veloso et al.
1995)) respectively, as well as a 2D GUI client.

Given that we would like AI-live to grow in the fu-
ture and in order to be flexible, we have defined an on-
tology that is shared by all modules, that is described in
the next subsection. Next subsections describe in more
detail the ontology, the server and the clips clients,
while next section describes the ipss clients.

The ontology
Figure 2 shows AI-live class model. All objects in AI-
live universe are instances of one of these classes. A
set of basic physical properties define all entities, and
actors add personality properties and relationships with
other entities (actors or not).

The main classes in the ontology are:

• Stage : it represents the different stages where the
game can take place.

• Entity : abstract class to represent any possible en-
tity in the stage. An stage is a collection of entities.
There are four entity subclasses:

– Actor : it represents game actors together with
their personality and emotions. Now, we are not
reasoning about this type of knowledge, but we
would like to focus on it in the next future.

– Wall : it represents walls that cannot be traversed.
– Object : it represents any general object.
– ContentCapability : it represents objects with

capacity properties as a Container or an Actor .

• Cell : it represents the atomic space portions inside
a stage.

• Relationship : it represents relationships among
actors and objects.

• ClientAction : each action supported in the
game has an associated class. So far, they are
MoveAction , PickUpAction , PutDownAction
and AddClient .

Figure 2: AI-live ontology.

The server
The server is the central part of the game. It holds the
state of the game with all of its defined stages and ob-
jects. It is in charge of maintaining a list of connected
clients to serve states to and receive actions from in a
round-robin basis. These actions are verified and exe-
cuted against the state, producing a new state for the
next client. The server is written in C language embed-
ding the clips production system to control the state,
verify and execute rules.

When a client of any kind connects to the server
(which is listening for incoming connections), both
parts will identify. On success, the server will add the
client to the loop. In this loop, all AI clients get one
turn in strict order of connection, while GUI clients re-
ceive a copy of the state in every turn, but they do not
send an action.

The actions currently supported by AI-live are:

• Move an actor from one position to another

• Pick up an object as requested by an actor

• Put down an object as requested by an actor

To execute these actions, the clips code in the server
has a series of rules, that check for validity of the re-
quested operations and alter the state. As the state
changes, clients actions change.

The clips client
The clips client is an AI-live client implemented using
the clips tool for building knowledge-based systems.
We have integrated clips with the rest of client code
that handles, as in the case of the ipss client, all net-
working operations. At this stage of the project, each
clips client playing the game will have to pick up as
many objects as possible, considering its actor maxi-
mum capacity. As in the case of the ipss clients, set-
ting up the goals of the AI characters is, perhaps, one of
the most interesting parts of the project that we would
like to work on. Given that ipss is a backward chaining
planner and clips works in forward mode, there will be
differences in how goals will be defined and pursued in
both types of clients. In the case of clips clients, they
can afford having a more reactive behaviour, while ipss
clients will have to be goal oriented (in its simplest con-
figuration). We are also considering adding other plan-
ners that might have a different behaviour, introducing
new ways of looking at this problem.

To decide on which action to run, the clips client will
use the stage received from the server as state, matching
every object and property (such as class, position, size,
angle, weight, bulk...) with conditions of rules.

The gui client
The first graphical client for AI-live is a conventional
2D sprite-based renderer named CREND. It is modelled
after successful 2D engines still in use by some of today

video-games, and is written from scratch in pure C,
using the portable SDL low-level multimedia framework
for graphics.

CREND connects to an AI-live server and obtains
the state for a stage as an AI client would, but it does
not send any action. Instead, it draws a graphical rep-
resentation of the stage in a window where users can see
what is happening in the server. Objects are drawn in a
particular parallel perspective derived from traditional
2D scrolling, and used by most 2D role-playing games
such as Tales of Phantasia.

The ipss client
The ipss client is the one that uses planning technology
for deciding at each step which action is best to execute.
It uses the ipss system that integrates planning and
scheduling (Rodŕıguez-Moreno et al. 2004). One can
use any other planner for implementing this planning
step, though there some features of ipss that have been
useful for building these clients (some of them will be
described later). The client is divided in two modules:

• Main module: its tasks are to connect to the server,
deal with the network, and invoke the AI module.
This module is in charge of the low-level network-
ing, receiving each state and interacting with the AI
module to obtain an action, which is then forwarded
to the server. It is written in C. The client can be
configured with the following parameters: the server
address and port; the stage the client is to play in;
and the controlled actor profile.

• AI module: its main task is to decide the actor ac-
tions. The planning tool chosen for this task is the
domain-independent planner ipss. It is used to find
a plan for the AI-live domain and problem supplied
by the main module. The main module receives the
state with all the objects for the current stage from
the server and parses it, translating it into ipss de-
scription language (quite similar to pddl2.1 (Fox &
Long 2002)). The parsed state and goals form the
input problem to the planner. The client domain is
defined as a set of operators designed to be counter-
parts of the set of implemented actions the server can
execute. At this stage of the project, the AI-live ac-
tions are supported as operators: move, pick-up and
put-down. These two last operators use the individ-
ual capacity constrains of characters. Then, ipss pro-
vides a potential plan to achieve the goals from the
current state, and outputs only the first operator in
the plan. This operator is translated back to AI-live
actions scheme, and returned to the server.

Now, we will comment on two specific issues that
have to be considered for applying planning to game
playing in general and how we have solved them within
AI-live: how goals are generated, and how to solve
efficiently the problem of selecting paths to go from one
place to another in a given map, how to integrate path
planning with task planning.

The first issue concerns selecting a goal to work on.
Currently, AI-live selects to maximize the number of
objects taken by the actor, so goals consist on having
the actor the objects that are in the room. Traditional
approaches to planning assume that goals are given as
input to the planners. However, we believe that, from
a planning perspective, setting up the goal of an actor
in this type of domains is precisely one of the key chal-
lenges of using AI planning here. Therefore, we want
to study different types of goals generation schemes for
this type of games. A related problem is the over-
subscription in planning that occurs when agents do
not have enough resources to achieve all of their goals.
This requires finding plans that satisfy only a subset of
them (van den Briel, Sánchez, & Kambhampati 2004).

The second issue relates to the use of grids/maps in
planning domains (that appear in most games), as it
is the case of AI-live. For many planners, reasoning
about how to go from one place to another can easily
make planning intractable, as it is the case of ipss. This
is specially true if we want to optimize the cost of the
path to go from one place to another according to a
quality measure. There are many articles in AI games
about applying heuristics to path planning. However,
planning domains pose the added problem of path plan-
ning integration with the operator definitions. For ex-
ample, to define an action for moving a synthetic char-
acter is necessary to know how the character can move
in the world. We have used two approaches. The first
approach, which is based on a careful manual knowl-
edge engineering of the domain, exploits one of ipss
main features: the support for user-defined heuristics,
to efficiently guide the search. These domain-dependent
heuristics are defined as control rules (if-then struc-
tures), that help the planner taking directions, check-
ing adjacency, and deciding on a position for an ac-
tor to pick up an object from the stage. Figure 3
shows an example of one of these rules for selecting
bindings for the move operator. Suppose that the cur-
rent planner goal is to have an actor on a goal-cell
(the one that has an object which the actor wants to
pick up, with coordinates (x,y)). If the actor is cur-
rently at another cell, this rule selects the best adjacent
cell to the goal-cell , origin-cell (coordinates
(x1,y1)), to which the actor should move first. This
decision is needed given that ipss is a backward chain-
ing planner. The meta-predicate (adjacent-p x y
x1 y1) is true if position (x,y) is adjacent to position
(x1,y1) . The meta-predicate (best-cell-p x y
x1 y1 x2 y2) is true if (x1,y1) is the best adjacent
position for reaching (x,y) starting from (x2,y2)
(where the actor is). Repeated use of this control rule
guides the actor within the map directly from its initial
position to the goal cell.

This approach for solving the path-planning problem
within the task planning requires to define by hand the
appropriate control rules. Obviously, this depends on
the user that defines the right knowledge. The sec-
ond approach integrates the task planner (ipss) and a

(control-rule select-cell-for-MOVE
(if (and (current-goal (cell-inCell <goal-cell> <actor_id>))

(current-operator move)
(true-in-state (cell-x <goal-cell> <x>))
(true-in-state (cell-y <goal-cell> <y>))
(true-in-state (cell-x <origin-cell> <x1>))
(true-in-state (cell-y <origin-cell> <y1>))
(adjacent-p <x> <y> <x1> <y1>)
(true-in-state (cell-inCell <actor-cell> <actor_id>))
(true-in-state (cell-x <actor-cell> <x2>))
(true-in-state (cell-y <actor-cell> <y2>))
(best-cell-p <x> <y> <x1> <y1> <x2> <y2>)
(or (true-in-state (cell-occupied <origin-cell> false))

(true-in-state (cell-inCell <origin-cell> <actor_id>)))))
(then select bindings ((<cell_id> . <origin-cell>))))

Figure 3: Example of a hand crafted control rule for selecting bindings for the move operator.

path planner (a standard implementation of the A∗ al-
gorithm), by interleaving their execution following the
ideas in (Fox & Long 2001). When ipss needs to find a
path during the search for the task planning solution,
it calls the path planner. If there is a path between the
current position of the actor and the goal position, the
path planner returns a solution (together with all its as-
sociated quality metrics), that can use that information
while solving the problem.

In relation to the integration of task and path plan-
ning, ipss has two useful features:

• Functions can be called within the definition of vari-
ables on operators. If we want to know whether there
is a solution and its quality between two nodes of
a path-planning problem, we can define a variable
distance in the preconditions of the move operator
whose value is the result of calling the path planner
function.

• Different cost metrics can be defined at each opera-
tor. In this paper, we are mainly interested in the
distance quality metric, but both planners (task and
path planners) can also use other quality metrics, and
obtain good solutions according to them.

For describing the overall planning problem we need
two separate files. A problem file for the task plan-
ner, in which we have abstracted the information on
the map/path graph, and a problem file for the path
planner with information about the map/path graph.
Nodes of the path graph will also appear in the task
planner problem file so that there is a connection be-
tween these two processes. In the next subsections we
describe this process in more detail.

Path planner
The input to the path planner is a path-planning prob-
lem composed of an initial node, a final node, a quality
metric, and a graph. In order to automatically specify

the graph for each problem given to the ipss client, we
extract it from the problem definition. Given that we
wanted the approach to be as domain independent as
possible, for each domain we only need to specify the
problem predicates from which the system will create
the graph nodes and the predicates from which the sys-
tem will create the graph arcs. Each arc can have a
set of quality metrics defined. In our experiments, we
have only used one: distance. But in other applica-
tions, such as planning tourist visits in the samap ar-
chitecture (Arias, Sebastiá, & Borrajo 2005), we have
used others such as price (cost of the transportation
method), utility (a subjective value that can represent
user/agent preferences such as I prefer to use the bus
when possible), distance, and time. Then, when call-
ing the path planner we can specify the cost metric to
be minimized.8 The output of the path planner is a
list of move actions in the form of: initial node, final
node, and the values of the cost metrics for that arc
(distance).

Given that the task planner can call the path-planner
for solving the same path planning problem many times
during the search (due to symmetries in the task plan-
ning search tree), the path-planner provides a caching
mechanism. Every solution for the path planning prob-
lems is stored the first time. Then, in case of solving the
same path planning problem is needed, it retrieves the
previous solution. This assumes that the graph does
not change between two calls to the path-planner. In
case it can change, such as domains in which agents
can act on the arcs, the nodes, or their quality metric
features, then the caching mechanism will not be use-
ful. For instance, if the actor leaves objects in the floor
when building a plan, it creates obstacles in the graph.
Therefore, a previous solution to go from one place to
another in a previous call of the path planner can be

8In the case of maximizing cost metrics, such as utility,
we can always convert them to minimization problems.

made invalid.
This approach can be applied to many other domains,

such as driverlog, sokoban, The driverlog
domain, for instance, has a graph for drivers and a
graph for trucks. So, our implementation of the path
planner admits a set of graphs to be defined. Then, for
each domain operator, the appropriate path-planning
problem file will be selected.

Task planner
ipss uses a backward search to solve planning problems.
The types of decisions that it makes during search are:
goal to work on, operator name that can achieve the
selected goal, bindings for that operator, and decide
whether to continue subgoaling or execute an applicable
operator. In order to integrate it with the path planner,
we redefined the move operator as specified in Figure 4.

Variables appear between brackets. The preconds
section defines first the variables that are used in the
operator, as well as the operator preconditions. The ef-
fects section defines other variables that are used only
in the effects, as well as the postconditions. Finally,
the cost section defines new variables only used for the
costs computation, and the operator costs depending on
the quality metric used by the task planner when solv-
ing a specific problem. In this case, we have defined one
quality metric: steps (distance). The gen-from-pred
function accesses the current state to provide values for
variables. For instance, the room (stage) where the ac-
tor currently is, or the position it is on.

The connection with the path planner is done
through the path-planning-distance function
whose input parameters are the initial node and end
node, that will also appear in the path-planner graph
description. It returns false in case of no solution, or
a numeric value with the total distance to go from the
initial node to the final node. This value is assigned to
the <steps> variable.

Conclusions

We have presented the first steps of building AI-live, a
game inspired in the popular game The sims. We have
defined and built an architecture based on a server and
three types of clients: a rule-based one, a planning-
based one, and a gui. From a planning perspective, we
have defined and provided initial solutions to two plan-
ning problems related to this type of domains: goal se-
lection and integration with path-planning. Both prob-
lems are common to the application of planning tech-
nology to many games.

Currently, we are dealing with a simplified domain
in terms of actions covered, though we have defined the
architecture to be easily augmented with many more ac-
tions. So, we are using an ontology that can cope with
the knowledge needed for many of the potential new
actions. For instance, in the next future, AI-live is ex-
pected to shift towards the social relationships among
actors and the reasoning about psychological aspects,

that have already been considered in the ontology. We
also want to change our 2D cell-based world represen-
tation to a full 3D with dynamic physical objects.

References
Arias, J.D.; Sebastiá, L.; and Borrajo, D. 2005. Us-
ing ontologies for planning tourist visits. In Working
notes of the ICAPS’05 Workshop on Role of Ontolo-
gies in Planning and Scheduling, 52–59. Monterey, CA
(EEUU): AAAI.
Buro, M., and Furtak, T. 2004. RTS games and
real-time AI research. In Proceedings of the Behav-
ior Representation in Modeling and Simulation Con-
ference (BRIMS), 51–58.
Chung, M.; Buro, M.; and Shaeffer, J. 2005. Monte
carlo planning in RTS games. In Kendall, G., and
Lucas, S., eds., Proceedings of the IEEE Symposium
on Computational Intelligence and Games (CIG’05),
117–124. Essex (UK): IEEE.
Fogel, D.B. 2001. Blondie24: Playing at the Edge of
AI. Morgan Kaufmann.
Fox, M., and Long, D. 2001. Hybrid stan: Identi-
fying and managing combinatorial optimisation sub-
problems in planning. In Proceedings of IJCAI’01.
Fox, M., and Long, D. 2002. PDDL2.1: An Extension
to PDDL for Expressing Temporal Planning Domains.
University of Durham, Durham (UK).
Hsu, F.; Anantharaman, T.; Campbell, M.; and
Nowatzyk, A. 1990. Computers, Chess, and Cogni-
tion. Springer. chapter Deep Thought, 55–78.
Newell, A.; Simon, H.A.; and Shaw, J. 1972. Human
Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.
Rabin, S., ed. 2002. AI Game Programming Wisdom.
Charles River Media.
Rodŕıguez-Moreno, M.D.; Oddi, A.; Borrajo, D.;
Cesta, A.; and Meziat, D. 2004. IPSS: A hybrid rea-
soner for planning and scheduling. In de Mántaras,
R.L., and Saitta, L., eds., Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI
2004), 1065–1066. Valencia (Spain): IOS Press.
Samuel, A. 1963. Some studies in machine learning
using the game of checkers. In Feigenbaum, E., and
Feldman, J., eds., Computers and Thought. New York,
NY: McGraw-Hill.
Schaeffer, J.; Lake, R.; Lu, P.; and Bryant, M. 1996.
Chinook, the world man-machine checkers champion.
AI Magazine 17(1):21–29.
Smith, S. J.; Nau, D.S.; and Throop, T.A. 1998. Com-
puter bridge - a big win for AI planning. AI Magazine
19(2):93–106.
van Lent, M.; Laird, J.E.; Buckman, J.; Hartford, J.;
Houchard, S.; Steinkraus, K.; and Tedrake, R. 1999.
Intelligent agents in computer games. In AAAI/IAAI,
929–930.

(OPERATOR move
(params <actor_id> <cell_id> <destination_cell_id>)
(preconds

((<actor_id> ACTOR)
(<stage_id> (and STAGE (gen-from-pred (stage-entities <stage_id> <actor_id>))))
(<cell_id> (and CELL (gen-from-pred (cell-inCell <cell_id> <actor_id>))))
(<destination_cell_id> (and CELL (diff <cell_id> <destination_cell_id>)))
(<steps> (and STEPS (path-planning-distance <cell_id> <destination_cell_id> <steps>)))
(<xx> (and COORDINATE (gen-from-pred (cell-x <destination_cell_id> <xx>))))
(<yy> (and COORDINATE (gen-from-pred (cell-y <destination_cell_id> <yy>))))
(<x> (and COORDINATE (gen-from-pred (cell-x <cell_id> <x>))))
(<y> (and COORDINATE (gen-from-pred (cell-y <cell_id> <y>)))))

(and (cell-inCell <cell_id> <actor_id>)
(cell-occupied <destination_cell_id> false)))

(effects ()
((del (cell-inCell <cell_id> <actor_id>))

(del (cell-occupied <destination_cell_id> false))
(del (cell-occupied <cell_id> true))
(del (actor-x <actor_id> <x>))
(del (actor-y <actor_id> <y>))
(add (cell-inCell <destination_cell_id> <actor_id>))
(add (cell-occupied <destination_cell_id> true))
(add (cell-occupied <cell_id> false))
(add (actor-x <actor_id> <xx>))
(add (actor-y <actor_id> <yy>))))

(costs ()
((steps <steps>))))

Figure 4: Example of the move operator for the AI-live domain in the ipss language.

Veloso, M.; Carbonell, J.; Pérez, A.; Borrajo, D.; Fink,
E.; and Blythe, J. 1995. Integrating planning and
learning: The prodigy architecture. Journal of Ex-
perimental and Theoretical AI 7:81–120.

Champandard, A.J. 2003. Synthetic Creatures with
Learning and Reactive Behaviors. New Riders Games.

Pelechano, N.; O’Brien, K.; Silverman, B.; and Badler,
N. 2005. Crowd simulation incorporating agent
psychological models, roles and communication. In
First International Workshop on Crowd Simulation
(V-CROWDS ’05).

van den Briel, M.; Sánchez, R.; and Kambhampati, S.
2004. Over-Subcription in Planning: A Partial Satis-
faction Problem. In ICAPS Workshop on Integrating
Planning into Scheduling.

