
Applying a Plan-Recognition / Plan-Generation Paradigm
to Interactive Storytelling

Börje Karlsson, Angelo E. M. Ciarlini1, Bruno Feijó, Antonio L. Furtado

PUC-Rio – Departamento de Informática, R. Marquês de São Vicente, 225, Rio de Janeiro, Brazil, 22453-900
1UniRio – Departamento de Informática Aplicada, Av Pasteur, 458 – Térreo, Rio de Janeiro, Brazil, 22290-240

borje@inf.puc-rio.br, angelo.ciarlini@uniriotec.br, bruno@inf.puc-rio.br, furtado@inf.puc-rio.br

Abstract
A key issue in interactive storytelling is how to generate
stories which are, at the same time, interesting and coherent.
On the one hand, it is desirable to provide means for the
user to intervene in the story. But, on the other hand, it is
necessary to guarantee that user intervention will not
introduce events that violate the rules of the intended genre.
This paper describes the usage of a plan recognition / plan
generation paradigm in LOGTELL, a logic-based tool for
the interactive generation and dramatization of stories. We
focus on the specification of a formal logic model for events
and characters' behaviour and on how the tool helps the
interactive composition of plots through the adaptation of
fully or partially generated plots. Based on the model, the
user can interact with the tool at various levels, obtaining a
variety of stories agreeable to individual tastes, within the
imposed coherence requirements. The system alternates
stages of goal inference, planning, plan recognition, user
intervention and 3D visualization. Our experiments have
shown that the system can be used not only for
entertainment purposes but also, more generally, to help in
the creation and adaptation of stories in conformity with a
specified genre.

Introduction
In recent years, the convergence of games and filmmaking
has been seen as an opportunity to create storytelling
systems in which authors, audience, and virtual agents
engage in a collaborative experience. The resulting systems
can be useful for many different purposes, such as story
board production, education and training, and, of course,
entertainment. Different approaches have been proposed,
using techniques and concepts from many areas such as
Computer Graphics, Artificial Intelligence, Cognitive
Science, Literature and Psychology. The suitability of each
approach depends on the goal of each application.
 A first decision to be made before implementing a
storytelling system is whether it should be able to actually
create stories or only enable the user to tell different stories
based on previously computed sequences of actions. In the
former case, the opportunities of interaction and the variety
of different stories tend to be greater, but a coherent
chaining of actions is more difficult to attain.

 A second important point corresponds to the focus of the
story models. The focus can be either on characters or on
plots. In a character-based approach, the storyline usually
results from the real-time interaction among virtual
autonomous agents. The main advantage of a character-
based model is the ability of anytime user intervention,
which means that the user may interfere with the ongoing
action of any character in the story, thereby altering the
plot as it unfolds. Although powerful in terms of
interaction, such an extreme interference level may lead
the plot to unexpected situations or miss essential
predefined events. Additionally, there is no guarantee that
narratives emerging from the interaction of autonomous
agents will be complex enough to create an interesting
drama. By contrast, in plot-based models, characters
should follow more rigid rules, specifying the intended plot
structures. A fundamental inspiration for plot-based
approaches has been the seminal work of Vladimir Propp
in the field of literary theory (Propp 1968). Propp observed
that significant events within a narrative of a given genre
(in his case, Fairy Tales) can be associated with a fixed
repertoire of functions, and that these occur in certain
typical sequences. In a pure plot-based approach, user
intervention might be more limited, but it is usually easier
to guarantee coherence and a measure of dramatic power.
 A third decision is whether stories should be told using a
first- or a third-person viewpoint - cf. the notion of
focalization in narratology studies (Bal 2002). First-person
tends to be particularly suitable for applications closer to
digital games, whereas third-person is more appropriate for
those involving filmmaking.
 Finally, it is necessary to choose between a reactive and
a deliberative behaviour for the characters. In the first
option efficiency is the main advantage, but modeling an
intelligent behaviour is more complicated and the
alternatives for the agents are somewhat limited. In the
second, planning and reasoning techniques are usually
applied to simulate an intelligent behaviour, but
performance is often affected, especially if the story
generation occurs at real-time.
 LOGTELL is based on modeling and simulation. The
idea behind LOGTELL is to try to express the basic
structure of a genre through a temporal logic model, and
then verify what kind of stories can be generated by

simulation, combined with user intervention. In this way,
we focus not simply on different ways of telling
preexisting stories, but on the dynamic creation of plots.
The model includes typical events and goal-inference
rules. Plots are generated by successive cycles of goal-
inference, planning, plan recognition and user intervention.
 Specifically, we try to conciliate both plot-based and
character-based modeling. On the one hand, we borrowed
from Propp's ideas, but tried to extend his rather informal
notion of function. In our treatment, typical events are
described by parameterized operations with pre-conditions
and post-conditions, so that planning algorithms can be
used for plot generation. On the other hand, the goal-
inference rules model the behaviour of the various actors,
thus providing some character-based features. The rules
declaratively specify how situations can bring about new
goals for each character.
 Our objective is not to create an immersive experience
in which the user takes part in the story as one of the
characters. We endeavour, instead, to explore the
possibilities of generating a large variety of coherent
stories by means of a plan-recognition/plan-generation
paradigm. For this reason, our stories are told with a third-
person viewpoint. User intervention is always indirect.
During the simulation, the user can intervene either
passively, just letting the partially-generated plots that
seem interesting to be continued, or, in a more active way,
trying to force the occurrence of situations and events.
These are rejected by the system whenever it finds no valid
way to change the story to accommodate the intervention.
 Plot dramatization can be activated for exhibiting the
final as also the partially generated plots. For
dramatization, characters are represented by actors in a 3D-
world. During the performance of an event, low-level
planning is used to detail the tasks involved in each event.
We decided to implement our own graphical engine, so
that we could better guarantee the compatibility between
the logical model of our plots and the corresponding
graphical dramatization.
 The next section describes related work in the area of
storytelling. Section 3 presents LOGTELL's overall
architecture. Section 4 describes the main features of the
Interactive Plot Generator (IPG), which is the kernel of the
system. Section 5 illustrates how the user can interact with
LOGTELL to generate stories. Section 6 shows how the
generated plots are dramatized. Section 7 illustrates the use
of the tool with an example. Section 8 contains concluding
remarks.

Related Work
The approach adopted in the DEFACTO project (Sgouros
1999) uses successive evaluations of rules to control the
generation of an interactive story where the user is the
protagonist. The interaction among characters’ goals is
explicitly represented and an Aristotelian conception of
plot is used to lead the story to a climax and then resolve it.
The chaining of events, however, is not explained by pre-

and post-conditions, making the control of what can and
what cannot occur rather complex. Additionally, it does not
allow the use of planning algorithms to develop sequences
of events for the achievement of goals. The need of user
intervention seems to be high if one wishes to generate a
complete plot. Goals are inferred by means of rules
analyzing the current situation, but the choice of actions to
achieve goals appears to be more reactive than
deliberative.
 The approach described in (Cavazza, Charles, and Mead
2002) adopts a character-based model to make user
interventions at any possible time. Characters are
autonomous agents, executing plans to achieve their goals,
and, from their interactions, it is expected that a narrative
will eventually emerge. Users are spectators but can
“physically” interact with the context and even advise
characters, affecting their decisions and the resulting
stories. In order to decide, at real-time, the actions to be
performed, characters consult a Hierarchical Task Network
(HTN), corresponding to pre-compiled plans. In this way,
the system does not have to pay the price of using
problem-solving planners while presenting a 3D animation.
It might demand more effort to model the behaviour of the
characters, but it makes sense if one does not consider
maximizing the alternatives as a requirement. The main
doubt about pure character-based approaches is to what
extent dramatic and engaging narratives may actually
result. The task seems to be easier with genres like sitcoms,
wherein the climax of a story is not so clearly
distinguishable.
 The use of Propp’s ideas in pure plot-based approaches
leads to systems more concerned with the guidance of
interactive stories than with their generation (Spierling et
al. 2002). For each “Proppian” function within a story of a
certain genre, such systems present alternatives to be
chosen by the users. Still, we claim that to obtain an
effective method to generate stories, it is necessary to
extend Propp’s ideas, adding semantics to the functions
(and to their specializations), so that preconditions, effects
and goals can be fully expressed.
 Reference (Paiva, Machado, and Prada 2001) presents
the Teatrix environment, where Propp’s functions are used
to model synthetic characters that interact with other
characters, directed by children, in a virtual world. Each
child directs one character and the synthetic characters are
autonomous. All characters have a role in the story,
specifying the functions in which they can take part.
Synthetic characters have goals that change according to
the situation. They plan and try to execute actions (i.e.
functions) according to their roles. The approach seems
interesting for education, but the control of the consistency
of actions and goals and the generation of dramatic
situations are not guaranteed. Additionally, the use of pre-
defined plans in the planning process can enhance the
performance, but might limit the amount of different
stories that can be generated.
 The interactive drama FAÇADE (Mateas and Stern
2000) is an effort to build an interactive system that

integrates characteristics of both plot-based and character-
based approaches. A drama manager is responsible for
maintaining the story state. Characters have autonomy
most of the time, but their goals and their behaviour can be
changed by the drama manager, in order to move the plot
forward. The interactive story has the user as the
protagonist. The drama manager automatically selects
scenes to be played. Scenes are composed of beats, which
define the granularity of the interaction between characters
and plots. The user can directly interfere in the execution
of a beat, determining how the rest of the scene will be
played. The approach clearly separates higher-level goals,
important for the story, from lower-level goals, more
specific of the autonomous behaviour of the characters.
Such separation can also be found in LOGTELL. The
generation phase deals only with higher-level goals, which
are essential for the creation of plots. Lower-level goals are
assigned to actors when they have to dramatize an event.
The main differences between LOGTELL and FAÇADE
result from the objectives of each system. In FAÇADE, the
focus is on letting the user experience a story from a first-
person perspective. As a consequence, the interaction
occurs at real-time, at the level of the beats. In LOGTELL,
we focus on the generation of a maximum of different and
coherent stories with a third-person viewpoint. The
interaction basically occurs during the generation phase.
The user is not allowed to interfere in the dramatization
phase.
 The Erasmatron system (Crawford 1999) is intended to
support the authoring process of interactive stories. It tries
to balance plot-based and character-based approaches by
using the notions of verbs and sentences. Actions are
represented by verbs with roles assigned to characters to
form sentences. Such a proposal is close to the way we
extended Propp’s functions in LOGTELL. Functions are
implemented as logical operations, with parameters, pre-
and post-conditions.
 The use of planning in (Riedl and Young 2004) to create
plots has many similarities with the decisions made while
implementing LOGTELL. In both approaches, a non-
linear, least-commitment planner is used to create plots,
conciliating actions of many different characters. The main
difference is that LOGTELL does not assume the existence
of one goal for the story as a whole. Instead, at the
beginning of the story and after each planning phase, we
use goal-inference rules (defined in a temporal modal
logic) to consider new goals induced, for the various
characters, by situations arising from the part of the plot so
far generated. On the other hand, plans generated
according to (Riedl and Young 2004) incorporate
information explaining the intention of the actions, which
can be useful to help in the dramatization of a plot, in
particular to choose a convincing order of events. In
LOGTELL, it is up to the user to choose a compatible total
order of events to be dramatized.

The LOGTELL Architecture
LOGTELL comprises a number of distinct modules to
provide support for generation, editing and visualization of
interactive plots, as shown in Figure 1. The arrows
represent the dataflow. The general architecture can be
seen as a pipeline, where data is transformed from
morphological functions into real-time 3D animations
dramatized by virtual actors and handled by a graphical
engine. Consequently, each module has specific input and
output data.

Figure 1: LOGTELL Architecture
 The user interfaces with the system through the Plot
Manager. The generation of plots by the Interactive Plot
Generator (IPG) is started by the Plot Manager, which
receives the partial plots generated so far and allows the
user to intervene in the generation process. In order to
visualize the dramatization of a plot (final or partial), the
user chooses a total order of events, compatible with the
partially ordered sequence generated by IPG, and asks the
Plot Manager to activate the Drama Manager.
 The Drama Manager is responsible for controlling the
dramatization of the plot. In order to do that, it controls
actors for each character in a 3D environment running on
our game engine. During the dramatization, the Drama
Manager consults IPG to keep the coherence between
logical and graphical representations of the plot.
 For the time being, the context of the stories to be
generated and told is directly accessed by the modules and
there is a certain replication of data. IPG uses files directly
specifying the logical context in Prolog and the Drama
Manager uses its own graphical and logical data. In order
to eliminate compatibility problems, we are currently
implementing the Context Control Module (CCM) to store
all data in a single database. CCM will control the access
to the data and format the data items to be used by the
other modules. We are also extending our interface to help
the user specify the context via the Plot Manager.

Plot Generation
IPG (Ciarlini 1999) semi-automatically generates plots of
narratives of a specific genre. Narratives could be both of
literary genres and of more mundane ones, such as the
context of a business information system. In its use for
entertainment, the focus is on checking the logical
coherence of a genre and its characters and exploring the
variety of stories that can be generated.
 The context for the creation of stories comprises the
following items:
• a set of facts (state), introducing the characters and their

initial situation, as well as the description of the
scenarios and other static features needed for the
generation of stories;

• a set of logical rules, to infer goals to be pursued by each
character, as certain situations arise in the course of
plots; and

• a limited repertoire of pre-defined operations (typical of
the chosen genre) in which characters can take part.

 Examples of possible facts in a simple swords-and-
dragons context, using a Prolog notation, are listed below:
• dragon('Draco').
• strength('Draco',45).
• affection('Brian','Marian',100).
 The facts at a current state change as a consequence of
the occurrence of events, which result from the execution
of operations by the various characters. For each operation,
the following data is supplied:
• a list of arguments, indicating the characters involved in

the event, locations, etc.;
• a list of pre-conditions, specifying facts that should or

should not hold prior to the execution of the operation;
• a list of post-conditions (effects), specifying facts that

hold or cease to hold immediately after the execution
of the operation;

• its representation, specifying details about the exhibition
of an event caused by the operation.

 An example of an operation in the fairy tale context is
“kidnap”, having a "villain" as agent and a "victim" as
patient. Usual pre-conditions are that “the victim should
presently be fragile” and that “both the victim and the
villain should be present at the victim’s current location”.
Post-conditions are that “the victim will be a captive of the
villain” and “both the villain and the victim will be at the
villain’s home”. The representation of events based on this
operation would involve the specification of smaller-grain
actions, such as: the villain getting closer to the victim,
grasping the victim and taking him/her to the villain’s
home.
 During the generation phase, plots are represented by
partially-ordered sets of events. Partial rather than total
ordering is a consequence of the use of non-linear planning
during the simulation, establishing temporal constraints
only when necessary, which makes the conciliation of
goals easier. As a consequence, the truth of a fact at a
certain time might depend on the final total order that will
be chosen later. For instance, suppose there are two events
without a predefined order between them: “the knight gets

stronger” and “the knight fights the dragon”. Depending on
the order, the knight has different strength levels at the
time he fights the dragon.
 For each class of characters, there are goal-inference
rules, specifying, in a temporal modal logic formalism
(Ciarlini, Veloso, and Furtado 2000), the goals that the
characters of the class will have when certain situations
occur during a narrative. The rules use the following meta-
predicates to speak about the occurrence of an event or the
truth value of a literal (a fact or a negation of a fact) at
certain times:
• h(T,LITERAL): LITERAL is necessarily true at time T;
• p(T,LITERAL): LITERAL is possibly true at time T;
• e(T,LITERAL): LITERAL is established at time T; and
• o(T,EVENT): EVENT occurred at time T.
 In order to express constraints relating variables, there
are two additional meta-predicates:
• h(CONSTRAINT): CONSTRAINT is necessarily true;

and
• p(CONSTRAINT): CONSTRAINT is possibly true.
 An example of goal-inference rule appropriate to the
present context is: “when the victim becomes fragile, the
villain will regard that as an opportunity and will have the
goal of kidnapping the victim”. Another possible rule is
that “when the victim is kidnapped, the hero will feel
motivated to free the victim”. This last rule, is represented
in our logic as follows:

(VIC,T1,VIL) (T1,kidnapped(VIC,VIL) �

T2 h(T2,not(kidnapped(VIC,VIL))) h(T2>T1)

 It is important to notice that the rules do not determine
the specific reaction of a character. They only indicate
goals to be pursued somehow. The events that will
eventually achieve the goals are determined by the
planning algorithm.
 The generation of a plot starts by inferring goals of
characters from the initial configuration. Given this initial
input, the system uses a planner that inserts events in the
plot in order to allow the characters to try to fulfill their
goals. When the planner detects that all goals have been
either achieved or abandoned, the first stage of the process
is finished. The partial plot then generated is presented to
the user by means of the Plot Manager and can optionally
be dramatized. If the user does not like the partial plot, IPG
can be asked to generate another alternative. If the user
accepts the plot generated so far, the process continues by
inferring new goals from the situations generated in the
first stage. If new goals are inferred, the planner is
activated again to fulfill them. The process alternates goal-
inference, plan generation/recognition and user
interference until the moment the user decides to stop or no
new goal is inferred.
 Notice that, in this process, we mix forward and
backward reasoning. In the goal-inference phase, we adopt
forward reasoning, so that situations in the past generate
goals to be fulfilled in the future. In the planning phase, an
event inserted in the plot for the achievement of a goal
might have unsatisfied pre-conditions, to be handled

through backward reasoning. Also, to establish them
before the event, the planner might insert previous events
with further unfulfilled pre-conditions, and so on,
recursively.
 The user can also force the occurrence of events at
certain times. For instance, the user could well insert “the
wedding of the knight with the princess”. It is also possible
to specify that some situations should be true at certain
times along the narrative, leaving to the system the job of
planning the events that bring about such situations. It
should be possible to say, for instance, that “the knight will
be weaker than the dragon at a certain time”. This kind of
intervention is allowed both at the beginning of the process
and at the pauses occurring between two simulation cycles.
The planner tries to conciliate both inferred goals and user
specified events and situations.
 Our planning tool is a non-linear planner implemented in
Prolog, adapted from (Yang, Tenenberg, and Woods 1996)
with extensions. The use of a non-linear planner, as
suggested before, seems more suitable because it uses a
least-commitment strategy. Constraints (including the
order of events) are established only when necessary,
making easier the conciliation of various goals. Features to
permit the abandonment of goals were included, and also
constraint programming techniques for dealing with
numerical pre-conditions.
 Our plots are not restricted to incorporating only
successful plans. In trying to provide adequate means for
handling negative interactions happening along a plot, we
realized that the solution of conflicts and competitions
sometimes requires the presence of totally or partially
failed plans, which conventional plan generators reject.
When a goal is abandoned, events occurring prior to the
moment of abandonment must be kept as part of the
narrative, and thus influence its continuation.
 We use two main mechanisms to handle goal
abandonment and competitive plan execution: conditional
goals and limited goals. A conditional goal has attached to
it a survival condition, which the planner must check to
determine whether the goal should still be pursued.
Limited goals are those that are tried once only, and have
an associated limit (expressed as a natural number). The
limit restricts the number of new events that can be
inserted to achieve the goal.

Composing by plan recognition
An alternative way to derive plans for goals is to take, from
a conveniently structured library, a pre-existing typical
plan, adapting it if necessary to specific circumstances. We
have been using a structure for such libraries of typical
plans that also allows plan-recognition by a method
proposed by Kautz (Kautz 1991), and which has been
implemented as a complementary feature of IPG. The
method consists of matching observed events against the
plan definitions (also called complex operations) stored in
the library, trying to find one or more plans of which these
events may be part.

 A structured library with these typical plans (complex
operations) is shown in Figure 2. Single arrows denote
composition (part-of link) and double arrows denote
generalization (is-a link).

Figure 2: Typical plan hierarchy
 These complex operations have the same syntax shown
for (basic) operations, if the complex operation results
from a composition of other possibly complex and/or basic
operations, there will be two more parameters,
respectively, a list of the component operations, and a list
declaring any order requirements holding between them.
 Complex operations formed by generalization are also
represented, branching down to specialized operations
corresponding to alternative ways to reach the same main
effects; clauses is_a(<more-specialized-operation>,<more-
general-operation>) declare this structural link.
 The first step of the plan recognition algorithm is the
generation of explanation graphs for the observed (or
selected) events. An explanation graph for an event
describes in which way this event can be used as part of
some end-plan. After the graphs for all observed events are
created, they are unified. The final graph will contain all
the end-plans where the observed events fit.
 Using this approach in LOGTELL, the user can select a
group of events and request the possible complex
operations that contain them. The system will then insert
the complex operations components (if any) in the original
plan. More details about this mode of interaction will be
provided in the next section.

User Interaction
People who have no special talent for literary composition,
like ourselves, find it difficult to invent interesting plots.
Storytelling researchers (Glassner 2004) repeatedly point
out that there may be problems when users participating in
a game are prompted to function as "authors". But we
usually do not feel so uncomfortable if asked to adapt an
existing plot, by introducing small modifications in a
gradual fashion.
 The underlying philosophy of the system consists of
providing the user with efficient means for exploring
coherent alternatives that the story may allow at a given

state, and for guiding the plot at the level of events and
characters’ goals.
 In the LOGTELL tool, the user has direct control only
over the Plot Manager. This module, in turn,
communicates with IPG to execute plot generation and
enforce coherence, and with the Drama Manager to control
plot visualization. The Plot Manager comprises the user
graphical interface (implemented in Java), whereby the
user can participate in the choice of the events that will
figure in the plot and decide on their final sequence (Figure
3). Each event is represented by a rectangular box that may
assume a specific color according to its current status.

Figure 3: Plot Manager Interface

 The user neither has direct control over the scene, nor
over the characters themselves. Moreover, user
intervention is always indirect, in the sense that any user
intervention must be validated by IPG before being
incorporated to the current plan.
 Plot generation and dramatization are two separate
processes, in contrast to pure character-based approaches,
where user interaction affects plot structuring at real-time.
This means that only during the simulation process the user
has an opportunity to intervene in the creation of the plot.
 As explained in the previous section, plots are created in
an attempt to fulfill goals that the characters aim to
achieve. At each simulation step, new goals may be
inferred and automatically added to the plot, which causes
the insertion of a new set of events. The events inserted in
the plot so far are sent to the graphical interface for user
intervention via the Plot Manager, which offers two
commands for automatic plot generation: another and
continue. The command another, requests from IPG an
alternative solution to achieve the same goals of the step
just finished. The command continue asks IPG to try to
infer new goals and continue the simulation process.

These two commands provide a form of weak user
intervention. The user merely selects partially-generated
plots that seem interesting from his/her perspective to
proceed with the simulation. This weak form of
intervention usually leads the plot to situations that the
author of the story has devised beforehand.

The Plot Manager offers, in addition, two
complementary means for strong user intervention in the
creation of more personalized stories. Firstly, the command
insert situation allows users to specify situations that

should occur at specific times along the plot by inserting
some additional goal to be reached. The specific details of
how the goal will be accomplished are left to IPG, which is
charged to find a solution, if one exists, using the planning
algorithm. It must be noted that, in view of performance
considerations, a valid computable plan may fail to be
obtained if the search limits currently configured in IPG
are exceeded. As in the purely automatic generation, the
user may confirm the solution (by indicating continue) or
request an alternative (another), which (as said before), is
a case of weak intervention. Secondly, at a lower
interaction level, the user is allowed to explicitly insert
events into the plot with the command insert event. To
validate the insertions, the user must invoke IPG through
the continue command. At this moment, all user defined
operations are submitted to IPG, which runs the planning
algorithm to check whether or not they are consistent with
the ongoing plot. If not, IPG tries to fulfill possible
unsatisfied constraints by inserting further new operations
in a specific order. The user may also remove user defined
operations that were not yet incorporated to (or were
rejected by) the planner.
 Besides these interaction modes, the user can also use
two other commands, tree and recognize. The tree
command displays the available hierarchy of typical plans
and can be used, by itself, as a clue to be taken into
consideration when inserting new events in the story.
Figure 4 shows the hierarchy for our swords-and-dragons
example; blue edges denote composition (part-of link) and
red edges denote generalization (is-a link).

Figure 4: Plan Hierarchy Interface

 When using the recognize command (which is
supported by the plan-recognition feature of IPG) the user
needs to mark one or more events already inserted and/or
being considered for insertion in the Plot Manager
interface and the system will try to match these events, as
observations, against the library in an attempt to identify
one or more typical plans subsuming them.
 The system will then show the typical Plan Hierarchy
representing the story genre in use with the complex
operation found (if any) marked in red and its components
marked in orange. The user can then choose if the complex
operation found is an interesting one or try to change it into
another one that fits the intended story. For example, the

list of observations [attack('Brian', 'Red_Castle'),
kill('Brian', 'Draco')] fits in both rescue and avenge plans
and thus suggests two alternative ways to structure the
narrative from which the user may draw his preferences.
Upon selecting the desired partial plan, its component
events will be inserted in the Plot Manger interface.
 The usage of plan hierarchies can be much enriched if
literary indices are made available. For folktales, for
example, there is the monumental index compiled by
Aarne and Thompson (Aarne 1964). Their identified
themes and motifs have always been an inexhaustible
source of inspiration for novice and even experienced
authors. Treated as fragments of typical plans, they could
then be retrieved, to become part of user-composed plots.
 Before dramatization, there must be − as said before −
one additional user interaction that is actually mandatory,
namely the conversion of the partially-ordered generated
plan into a strict sequence, thereby completing the
composition of a proper plot. Notice that, if the simulation
is resumed afterwards, this addition of new temporal
constraints is also an intervention, because it can affect the
inference of new goals. To determine the sequence, the
user connects the events in a sequential order of his/her
choice, respecting the temporal constraints supplied by
IPG. The plot’s configuration emerges as the user moves
the cursor to draw edges linking the operation boxes,
starting from the root. To help the user in this process, we
utilize colors to distinguish operations that are already
connected (yellow), operations that − in view of the
temporal constraints − can be immediately connected
(green), or cannot yet be connected (red). The starting root
is blue and the current operation being rendered is cyan. To
connect two operation boxes, the user must click with the
mouse over the source box and drag over the destination
box (the same process is used to remove a link between
two operations). Once the current plot (or part of it) is thus
connected into a linear sequence, it can be dramatized by
invoking the Drama Manager with the render command.
 The tool also offers a facility for querying the IPG
module about the state of any element of the narrative at a
specific time Ti, using our temporal modal logic. This
feature allows advanced users to find out, for instance, why
an operation or goal is not being allowed, and helps
authors to revise and tune the story requirements.

Dramatization
We have developed our own engine to support the
graphical representation of the plots. It is implemented in
C++ and uses the OpenGL graphical API to support real-
time rendering of the 3D elements. Characters in a
generated plot are regarded as actors for the dramatization.
 The graphical engine does not have to perform any
intelligent processing. It is merely responsible for
rendering, at each frame, the scene and the current actors’
aspect and movements, resulting from real-time
interactions with the scene and, occasionally, with other
actors. In doing that, it follows the ordered sequence of

events generated at the previous stages of simulation. The
Drama Manager is the module that synchronizes
characters’ actions and the overall graphical representation.
 The Drama Manager's job is not limited to assigning the
actions that specific characters must perform. It translates
symbolic operations into fully realized 3D visual graphical
animations. And it must guarantee the synchronism and
logical coherence between the intended world and its
graphical representation. Figures 5 and 6 show some
snapshots of the dramatization of the generated plots.
 As received from IPG, the plot is organized as a
sequence of events, each one associated with a discrete
time instant. The simulation occurs in continuous real-time
and the duration of an operation rendering is not previously
known. Variable attributes change as the event is
dramatized. In order to make logical and graphical
representations compatible, the values of the variables
before the dramatization of each event must agree with the
pre-conditions of the event and the values at the end with
its post-conditions.

Figure 5: Draco attacking Marian’s castle.

Figure 6: Hoel meeting Marian before getting married.

 The dramatization starts by the selection of a specific
event and the execution of the command render in the Plot
Manager. All subsequent chained events from this point to
the end are visualized, unless the user interrupts the
process. When an event is activated for rendering, the
engine uses the current values of the pertinent attributes as
a starting point for the representation.
 The user can alternate between plot generation and
dramatization. In this case, after a dramatization, new
events and time constraints can be added either by the user
or by IPG. If dramatization is activated again, it can start
only at events that occur before the modifications.
 The Drama Manager converts all events into actions,
which are delegated to specific actors, at specific times,
according to the plot order of events. Whenever an event
finishes, the Drama Manager asks the Plot Manager to give
it the next event. If none exists, the dramatization stops.
 The dramatization of an event ends when the involved
actors(s) finish enacting the associated graphical
representation. In our experiments, this may take from a
few seconds to about one minute, depending on the kind of
operation and on the scenario features.

Scene and Actors
For the graphical representation of the plots, according to
the genre of the story being represented, the engine loads a
specific scenario. The scenario is represented by a 3D
environment that is suitable for the events and characters
that the story is supposed to contain, taking into
consideration the conventions of the genre (e.g. the
presence of castles).
 Because most events have an association with the place
where they are performed, actors should be constrained,
while moving through the scene, to maintain graphical
coherence with respect to how they follow the plot
directions. Buildings, such as castles and other genre-
related objects, serve, more than as an ornament, as a
conditioning factor to orient the displacements of the
characters, the absolute and relative position where an
action is to be executed, and the form to treat collisions.
We make use of terrain reasoning and path-planning based
on waypoints (Pozzer et al. 2004).
 Actors have a geometric structure amenable to graphical
representation, and are provided with a minimum of
planning capabilities, at a low level of detail. Since actors
are expected to play the assigned roles achieving an
adequate performance, some rudimentary planning
resources are indispensable, so that, in real-time, an actor
be able to make decisions and to schedule the necessary
micro-actions. In general, simple path-finding algorithms
and direct inter-agent communication schemes are
sufficient. Each actor must also incorporate behaviours for
interacting with the physical environment and with the
other actors. Contrary to the generality of the IPG planner,
the local planning of each actor must be simplified to
ensure short response times.
 During graphical representation of the plot, all control of
the actions each actor is supposed to perform is made by

the Drama Manager. It acts as a director that coordinates
sequences of actions performed by the whole cast. It
continuously monitors the representation process,
activating new tasks whenever the previous ones have been
finished. As a director, it also controls the positioning of
the (virtual) camera, which an option of LOGTELL
permits to be transferred to the user. The manual option
provides zooming, rotation, and vertical and horizontal
shifting; some users have found particularly entertaining to
look at the scene from a bird's eye perspective, watching
the plot unfold with all locations in view.
 For IPG, as the number of characters increase, the
computational effort required to control such characters
and their interactions may become prohibitive. However,
the use of fewer characters − a small number of actors,
consequently − may lead to poor graphical representations.
The test scenario used as an example in this paper, based
on swords-and-dragons tales, features two heroes, one
villain, one victim and a magician. To enhance the
diversity and liveliness of plots, but also to turn the
representation more realistic, we introduced a supporting
cast, consisting of groups of soldiers (guardians) in charge
of the protection of locations where the leading actors live,
and where events take place. As opposed to the leading
actors, whose actions are predetermined by the plot, these
extras are endowed with a higher although still limited
level of behavioural autonomy.
 For the purposes of our example IPG totally ignores and
not even distinguishes individual extras, since only as
groups they have some influence over the plot conduction.
For instance, when the plot is being represented, the
graphical engine queries IPG about the current protection
level of each location. At this moment, a proportional
number of guardians is inserted into the scenario, together
with the leading characters. We feel that, either as partially
or fully autonomous graphical entities, supporting actors
positively contribute plot visualization.
 The degree of autonomy conceded to the extras leaves
them free to perform certain actions randomly, such as
walking in different directions; this feature is being
improved with the integration of an AI middleware
(Karlsson and Feijó 2005) into the Drama Manager.
 When the actors are required to participate in some plot
event, which has always a higher priority, the Drama
Manager makes them interrupt momentarily whatever they
were doing. So, the autonomous actions are not allowed to
interfere with the execution of the plot; for instance, the
guardians cannot inadvertently kill a leading actor.

Test Scenario
The test scenario currently in use for LOGTELL
corresponds to a small sub-class of the popular swords-
and-dragons genre. The possible events were modeled by
just a few parameterized operations, which can
nevertheless generate a considerable variety of different
plots. The specified operations were the following:
• go(CH,PL): character CH goes to place PL;

• reduce_protection(VIC,PL): the protection of place PL
(represented by the number of guardians) is
spontaneously reduced by the prospective victim VIC;

• kidnap(VIL,VIC): the villainous character VIL kidnaps
VIC;

• attack(CH,PL): character CH attacks place PL (fighting
the guardians);

• fight(CH1,CH2): character CH1 fights character CH2;
• kill(CH1,CH2): character CH1 kills character CH2;
• free(HERO,VIC): character HERO frees character VIC,

raising the degree of affection of VIC for HERO;
• marry(CH1,CH2): the two characters get married;
• donate(CH1, CH2): strength level of character CH2 is

raised by the magical powers of CH1; and
• bewitch(CH1,CH2): the double effect of this operation is

to instill an evil nature into CH2 and, at the same time,
make him or her much stronger.

 Besides these basic operations, a hierarchy of complex
operations (structured by is-a or part-of links) was added:
• rescue, avenge - these are the two species of adventure.

The rescue variety has components: abduct, liberate,
marry, accompany, donate. The other variety, avenge,
has components: murder, execute, accompany, donate.

• do villainy, retaliate, accompany - do villainy specializes
into: abduct or murder; retaliate specializes into:
liberate or execute; accompany specializes into: help
or false help.

• abduct, murder, execute, liberate, help, false help.
Abduct has components: reduce protection, attack,
kidnap; murder has components: reduce protection,
attack, fight, kill; liberate has components: attack,
fight, kill, free; execute has components: attack, fight,
kill; help has components: attack, fight, free; false help
has components: free, marry.

 We left out two basic operations from this hierarchy. As
operation go is in fact a component of practically all
others, it is therefore assumed to be always present. And
bewitch was deliberately excluded, since any plot
including it should not be considered typical in the context
of our genre (a sort of tolerated transgression of the
conventions).
 The model of the genre was completed by the following
goal-inference rules, presented here in English for
simplicity:
• If a character plays the role of a victim, this character

will spontaneously do something that puts her/him in a
less protected situation.

• If the strongest character playing an heroic role is still
weaker than the villain, this character will want to get
stronger.

• If the protection level of a victim is reduced, the villain
will want to kidnap the victim.

• If a victim is kidnapped, a hero will want to free her.
• If the affection levels of two characters vis-à-vis each

other exceeds a threshold, they will want to marry.
• If a victim is killed, a hero will want to avenge her
 As one of the possible starting configurations, we
defined an initial state including the following information:

• Marian is a princess, living in a palace (the victim).
• Brian and Hoel are knights (the heroes).
• Turjan is a forest-dwelling magician (a donor, in Propp's

sense).
• Draco is a dragon whose lair is in a red castle (the

villain).
• The princess, the dragon, and the magician have

protecting guardians around their homes.
• Each character is endowed with a certain strength level

for fighting.
• The two heroes have a high affection for the princess,

which is not reciprocated by her.
• Turjan is neutral with respect to all the others.

Examples of interactive step-wise plot composition
 Using the tool, it is possible to generate many different
plots. An example plot tells the classical happy-ending
story: “The protection of Marian’s castle is reduced. Draco
regards that as an opportunity to kidnap her. Draco then
goes to Marian’s Castle, attacks the castle and kidnaps
Marian. As a noble knight, Brian feels compelled to save
her. But, before that, he needs to ask for Turjan’s magic to
raise his strength. He then goes to Draco’s Castle, attacks
the castle and fights Draco. He kills Draco and frees
Marian, who starts loving her saviour. Motivated by their
mutual affection, Brian and Marian go to the church and
marry each other.”

Figure 7: An example of a generated plot.

 The plot in Figure 7 follows the same course until the
point where Marian is kidnapped, but, after that, it can be
summarized as follows: “The two knights, Brian and Hoel,
propose to save the princess. They both go to Draco’s
castle and attack the guardians. But Brian alone fights
Draco, and finally defeats and kills it. Hoel then is seen to
free Marian, causing her to fall in love with him and
become his wife. In spite of doing most of the effort to
save Marian, Brian is not able to marry the princess.”

Concluding Remarks
Having implemented and extended an initial version of
LOGTELL, we have been running a number of
experiments, which seem to demonstrate that combining
goal inference, plan generation/recognition and user
participation constitutes a promising strategy towards the
production of plots which are both entertaining and
coherent. Moreover, our modeling method, based on
temporal logic, has proved adequate to capture the
conventions of genres encompassing stories with a high
degree of regularity, such as fairy tales (as one could
foresee, on the basis of Propp's pioneering work) and,
consequently, simple swords-and-dragons narratives.
 On the negative side, we must admit that modern and
post-modern genres, with their emphasis on a more radical
transgression of any conventions should not be so easy to
formalize in a systematic way.
 Also, plan generation is unfortunately limited by
computational complexity considerations. There is
however a continuing research effort to improve its
efficiency, and we intend to look into that, to try to
upgrade the performance of the IPG planning algorithms.
What we have already verified is that an interactive
regime, with the intervention of the user at various stages
and at different levels, as our methods and implemented
tools favour, does much to expand such bounds. A
particularly effective help to this interaction is provided by
using plan-recognition over libraries of typical plans,
which offer expert advice to all kinds of users.
 A specific topic for our future research is how to alter
the LOGTELL approach in order to offer more advanced
dramatization resources, such as investing more on
affective computing (Izard 1991, Velázquez 1997) and
improving automatic camera control.
 To explore the range of applications of LOGTELL is yet
another objective of our project. The system could be used,
for example, to generate side quests in MMORPGs. Our
efforts are now mainly concentrated on the continuing
development of our tool, so as to cope with genres
involving more sophisticated forms of communication
among the characters and a deeper treatment of drives and
emotions (Gratch and Marsella 2004).

Acknowledgments
This work has been partly sponsored by CNPq, CAPES
and FINEP.

References
Aarne, A. 1964. The Types of the Folktale: A Classification
and Bibliography. Translated and enlarged by Thompson,
S., FF Communications.
Bal, M. 2002. Narratology - Introduction to the Theory of
Narrative. University of Toronto Press.

Cavazza, M., Charles, F., and Mead, S. 2002. Character-
based interactive storytelling. IEEE Intelligent Systems, sp.
issue on AI in Interactive Entertainment, 17(4):17-24.
Ciarlini, A. 1999. Geração interativa de enredos. PhD
thesis, Depto. de Informática, PUC-Rio, Brazil.
Ciarlini, A., Veloso, P., and Furtado, A. 2000. A Formal
Framework for Modelling at the Behavioural Level. In
Proc. of the Tenth European-Japanese Conference on
Information Modelling and Knowledge Bases, Saariselkä,
Finland.
Crawford, C. 1999. Assumptions underlying the
Erasmatron storytelling system. In Working Notes of the
1999 AAAI Spring Symposium on Narrative Intelligence.
Glassner, A. 2004. Interactive Storytelling. A K Peters.
Gratch, J. and Marsella, S. 2004. A domain independent
framework for modelling emotion. In Journal of Cognitive
Systems Research, 5(4):269-306.
Karlsson, B. and Feijó, B. 2005. AI Middleware as Means
for Improving Gameplay. In Proceedings of the ACM
SIGCHI International Conference on Advances in
Computer Entertainment Technology, Valencia, Spain.
Kautz, H. 1991. A Formal Theory of Plan Recognition and
its Implementation. In Reasoning about Plans. J. F. Allen
et al. (eds.). Morgan Kaufmann, San Mateo, EUA.
Izard, C. E. 1991. The psychology of emotions. New York:
Plenum Press, New York.
Mateas, M., and Stern, A. 2000. Towards integrating plot
and character for interactive drama. In Socially Intelligent
Agents: the Human in the Loop, AAAI Fall Symposium,
technical report, p. 113-118, Menlo Park, USA.
Paiva, A., Machado, I., and Prada, R. 2001. Heroes,
villians, magicians, ...: Dramatis personae in a virtual story
creation environment. In Proc. Intelligent User Interfaces
2001: 129-136, Santa Fe, USA.
Pozzer, C. T., Feijo, B., Ciarlini, A. et al. 2004. Managing
Actions and Movements of Non-Player Characters in
Computer Games. In Proc. of the Brazilian Symposium on
Computer Games and Digital Entertainment.
Propp, V. 1968. Morphology of the Folktale, Laurence
Scott (trans.), Austin: University of Texas Press.
Riedl, M.; Young, M. 2004. An intent-driven planner for
multi-agent story generation. In Proceedings of the 3rd
International Conference on Autonomous Agents and Multi
Agent Systems, New York, USA.
Spierling, U., Braun, N., Iurgel, I., and Grasbon, D. 2002.
Setting the scene: playing digital director in interactive
storytelling and creation. Computers&Graphics, 26:31-44.
Sgouros, N. M. 1999. Dynamic generation, management
and resolution of interactive plots. Artificial Intelligence,
107(1):29-62.
Velázquez, J. D. 1997. Modeling emotions and other
motivations in synthetic agents. In AAAI-97: Proceedings
of The Fourteenth National Conference on Artificial
Intelligence, p. 10-15, Menlo Park, USA. AAAI Press.
Yang, Q., Tenenberg, J. and Woods, S. 1996. On the
Implementation and Evaluation of Abtweak. In
Computational Intelligence Journal, 12(2):295-318.

