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1. Introduction

This paper presents an ethologically inspired action-
selection mechanism, part of a larger architecture for self-
animated artificial animals (agents) that communicate emo-
tions to each other, influencing each other’s behaviour. The
problem of action selection is that of choosing at each mo-
ment in time the most appropriate action out of a repertoire
of possible actions.

Action selection algorithms have been proposed by both
ethologists and computer scientists. Models suggested by
ethologists are usually at a conceptual level, while those
of computer scientists (with some exceptions [3] ) gener-
ally do not take into account classical ethology theories.
According several ethologists [2], a hierarchical structure
represents an essential organising principle of complex be-
haviours. We have chosen to add emotion to a hierarchical
action selection mechanism so that behaviour shows persis-
tence (emotion acting as a short term memory [2]) and to
avoid dithering between competing behaviours, namely the
herding group behaviour, and the individual behaviour of
grazing.

2. Architecture

The four sub-tasks in our system are: 1. Perception (sens-
ing and interpretation to provide a high-level description of
the environment) 2. Emotions (which affect the behaviour
of the animals, e.g. the conspecifics flight-flocking). 3. Ac-
tion selection (using the perceptual and emotional inputs to
decide which of the animal’s repertoire of actions is most
suitable at that moment) 4. Motor control (transforming the
chosen action into a pattern of ”physical” actions to pro-
duce the animation of the animal).

Figure 1 shows a more detailed diagram of the design.
Note that our action selection mechanism adds the emo-
tional states (outputs of the emotional devices) of the vir-
tual animal to incoming stimuli.

Grazing mammals spend most of their time grazing: an
experiment showed that gazing and ruminating made up
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Figure 1. Detailed architecture

80% of the animals day-time activity. To model this, klinoki-
nesis is simulated through a Finite State Acceptor [2] and
has been augmented with transitions based on probability.
The architecture described in the previous section has been
implemented and it has been tested in a virtual environment
[2]. The architecture described is three layered. Namely the
creatures’ brain, the world model and the virtual environ-
ment. As seen in figure 1 the agent’s brain is composed of
processes that run independently (on a Linux workstation)
and each of the agents’ brains receives the sensor data via
network sockets; similarly they send the selected action to
the world model which contains agents’ bodies and the en-
vironmental simulation.

On the one hand, it is evolutionarily advantageous for
animals in a herd to flock close to each other to have
more chance of surviving the threat posed by predators.
On the other hand, grazing mammals spend most of the
time grazing so it would be expected that scattering widely
into grassy areas would be beneficial. Somehow a compro-
mise must be reached between collective and individual be-
haviour.
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(a) Rigid Flocking
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(b) Emotion

Figure 2. Flocking with 20 animals plots

3. Results

Some plots of the trajectories followed by the animals,
over 600 time steps were produced, like those shown in fig-
ures 2(a)–2(b). It is intuitively clear that different flocking
choices produce different plots. For example:

• Rigid Flocking. The herd was tightly (maximum 10
centimetres distance between members of the herd)
packed and the animals were all facing at the same di-
rection at all times. Baseline condition for optimum
coordination.

• No Flocking No Escape. Each animal moves on its
own with no knowledge (perception) of other ani-
mals or predators. Baseline condition for individual
behaviour.

• Emotion. In this scenario emotion (fear) is elicited
in the animals and communicated amongst them. To
achieve this artificial pheromones are exuded when
fear is ’felt’ as they perceive the danger presented by
the predators[2], this ’feeling’ affects the behaviour of
the animals as they try to stay close as a herd and their
velocity is affected as well.

A matrix was composed out of 600 samples taken for the
animals’ movements, so for 20 boids as seen in figure 2,
and with N degrees of freedom that is 20 (4) (20 animals
times position x,y and velocity x,y.

Out of the singular values an entropy can be computed
from N values. The singular values are normalised, because
by definition

∑
i Pi = 1 [1], in our case Pi is σi. The for-

mula for entropy is:

Es = −
N∑

i=1

σi
′
log2 σi

′
(1)

To compute complexity a tool was developed, firstly to re-
ceive data from the virtual environment, secondly to pro-
duce plots of different types of flocking (shown in this sec-
tion), thirdly to compute complexity (Ω = 2Es )and lastly to
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Figure 3. Complexity plot

produce a plot out of the complexities with different types
of flocking and with different number of creatures. In fig-
ure 3 it can be seen that the plot of the rigid flocking is the
one that shows the least complexity, intuitively supported
by looking at figure 2(a). Flocking, flocking with escape,
and no flocking, no escape, and the escape behaviour are
more complex than rigid flocking, and they are almost al-
ways more complex than flocking with emotion. The ex-
ception is the five boids case where flocking with emotion,
according to the result obtained and shown in the plot, is
more complex than flocking with escape. This can be ex-
plained as follows: a separate test has shown that in order
to show flocking behaviour at least 9 animals should be in
a herd. With fewer animals escaping from a predator, they
separate from the flock and they do not regroup at all dur-
ing the duration of the test [2].

4. Conclusions

The results have shown that emotion can be used to me-
diate between group behaviour (flocking) and individual be-
haviour (grazing). 1
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