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Abstract. The paper investigates the role of an affective system as part of an
ethologically-inspired action-selection mechanism for virtual animals in a 3D
interactive graphics environment. It discusses the integration of emotion with
flocking and grazing behaviour and a mechanism for communicating emotion
between animals; develops a metric for analyzing the collective behaviour of
the animals and its complexity and shows that emotion reduces the complexity
of behaviour and thus mediates between individual and collective behaviour.

1. Introduction

Minsky [13] was one of the first to emphasise the importance of emotion for Artificial
Intelligence. Since then, research in affective systems for embodied autonomous
agents, robotic and graphical, has expanded. Approaches divide into low-level, neuro-
physiologically inspired accounts, focusing on sub-symbolic behavioural architectures
[5,21], and high-level cognitive science-inspired accounts, focusing on symbolic
appraisal-driven architectures [9, 16]. This work concentrates on a low-level account,
applied to flocking mammals (sheep, deer), and demonstrates the role of fear as a
social regulator between individual and group behaviour. We take the ‘primitive
emotions’ namely: anger, fear, disgust, surprise, happiness and sadness, [8] as a
plausible set for other mammals than humans, and examine how they can be
integrated into an ethologically-based action-selection mechanism.

For affective systems to have developed and remain under the pressure of
evolutionary selection, they must play a functional role within the overall architecture
of animals. A number of such functions can be identified. One is to modify behaviour:
a sheep that experiences an anxiety-inducing stimulus may carry on grazing but bunch
up more tightly with the rest of the flock. A second is to switch behaviours: a sheep
experiencing a threatening stimulus inside its flight zone will flee. A third is to avoid
dithering between competing behaviours by adding weight to one of them [3], and a
fourth and related function is to sustain a selected behaviour for an appropriate
interval – a fleeing animal can typically no longer perceive the threatening predator,
but fear keeps it running, acting like a cheap short-term memory.

Many mammals do not behave merely as individuals, they engage in the collective
behaviour known as flocking. Reynolds [17] showed that flocking does not require a
complex internal architecture but can be produced by a set of simple rules. In his
model of boids, every individual (boid) tries to fulfil three conditions: cohesion or
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flock centring (attempt to stay close to nearby flockmates), alignment or velocity
matching (attempt to match velocity with nearby flockmates), and separation or
collision avoidance (avoid collisions with nearby flockmates). This approach has
produced sufficiently believable behaviour to be used for stampedes in a number of
animated films. However, mammals do have a complex internal architecture, unlike
social insects, and a wide range of individual behaviours: a motivation for this work
was to reconcile the generation of collective behaviour by a small set of rules with the
more complex agent architecture required for a mammalian behaviour repertoire.

For ungulates, grazing is a significant behaviour, requiring spatial orientation
behaviours. Two are of particular relevance. The first, kinesis, can be representeded
by a reactive rule of slowing down when encountering favourable conditions and
speeding up for unfavourable ones: this can also be related to escape behaviour.
However most organisms do not move in an absolutely straight line; when orienting
to favourable localities: the effect of kinesis can be improved by increasing the angle
of the random deviations from the straight line, in any case inherent to locomotion.
By these means, the organism is kept in the desirable environment longer and is made
to exploit an increased part of its area, especially relevant to grazing. This second
enhanced mechanism is termed klinokinesis and it is found in grazing mammals, as
well as in swimming protozoa and higher crustacea. This represents an important
example of individually-oriented behaviour which conflicts with the rule-set for
flocking.

2 An ethologically inspired action-selection mechanism

The work discussed here has been implemented with graphically-embodied flocking
animals (sheep, deer) in a 3D interactive virtual environment. In order to test the
hypothesis that an affective system can act as a regulating mechanism between
individual and social behaviour, an ethologically-motivated architecture was
developed for the virtual animals.

The basic task of a virtual animal brain has often been split into the three sub-tasks
of perception (sensing the environment and interpreting the sensory signals to provide
a high-level description of the environment), action selection (using the perceptual
and emotional inputs to decide which of the animal's repertoire of actions is most
suitable at that moment) and motor control (transforming the chosen action into a
pattern of "physical" actions to produce the animation of the animal). To this we add a
fourth subtask: generating emotions (affecting the behaviour of the animals,
exemplified by the conspecifics flight-flocking), Figure 1 shows a detailed diagram of
the designed architecture developed as a result, and the next sections describe its
components.

While not claiming neurophysiological accuracy, the architecture splits its overall
functionality across biologically-plausible subsystems. Thus the module
hypothalamus is used to store the drives (for example, hunger), the sensorial cortex
stores sensor data, the amygdala contains the emotional systems such as Fear, Joy and
Anger, and Basal Ganglia contains the hierarchical mechanism for selecting actions,
similar to those described by ethologists. Each of the listed modules is defined in
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XML giving the name of each of the system/variables, the inputs associated to them, a
weight, and a function (acting as a filter, in most cases a sigmoid) which in turn
generated a feed-forward hierarchy like the one described by Tyrrell [20].

Taking the position that emotion partly functions as a communication
mechanism, a novel feature of this work is that the perceptual component has been
designed to support the communication of emotion among conspecifics. In the real
world, emotional transmission is almost certainly multi-modal, with certain modes
such as the perception of motion being particularly difficult to model. Thus we have
limited ourselves for now to a single mode, and the one we have chosen is
pheromones, perceived by a virtual olfaction sensor.
Recent experiments [10] have shown that mammals, including humans, emit
pheromones through apocrine glands as an emotional response, and as means to
communicate that state to conspecifics, who can adapt their behaviour accordingly;
research has found that odours produce a range of emotion responses in animals,
including humans [12]. This is adaptively advantageous because olfaction is part of
the old smell-brain which can generate fast emotional responses, that is without the
need of cognitive processes. Grammer [10] argues that every living creature has a
distinctive molecular signature that can be carried in the wind, variously showing it to
be nutritious, poisonous, sexual partner, predator or prey. Neary [15] points out that
sheep, particularly range sheep, will usually move more readily into the wind than
with the wind, allowing them to utilise their sense of smell.

Our architecture models the exteroceptors used by real animals to detect the
presence of chemicals in the external environment as a virtual nose. An environmental
simulator has been developed: its tasks include changing the temperature and other
environmental variables depending on the time of day and on the season, using
statistical historical data. An alarmed animal sends virtual pheromones to the

Fig. 1.  The complete architecture
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environmental simulator and they are simulated using the free expansion gas formula
in which the volume depends on the temperature and altitude (both simulated
environmental variables). The expansion of the pheromone cloud at timestep=9 can
be seen in a graphical environment in Figure 5 below. To compute the distribution of
the pheromones a set of particles has been simulated using the Boltzmann distribution
formula:

Here m is the pheromone mass;  g is the gravity; y is the altitude; kb is the Boltzmann
number; T is the temperature; n0 is N/V where N is the number of molecules exuded
from the apocrine gland (related to the intensity of the emotion) and V is the volume.
The virtual nose detects pheromones from a threshold of 200.10-16 reflecting values
taken from the relevant literature.

The problem of action selection is that of choosing at each moment in time the
most appropriate action out of a repertoire of possible actions. The process of making
this decision takes into account many stimuli, including in this case the animal's
emotional state. Action selection algorithms have been proposed by both ethologists
and computer scientists. Models suggested by the former are usually at a conceptual
level, while those of the latter (with some exceptions – as [3,20]) generally do not
take into account classical ethological theories. Dawkins [6] suggests that a
hierarchical structure represents an essential organising principle of complex
behaviours: a view shared by many ethologists [2,19]].

Recent research has found that the Basal Ganglia plays an important role in
mammalian action selection [14] and our mechanism is implemented in the Basal
Ganglia module in Figure 1 as a three-level tree. To avoid sensory congestion, each
of Top, Intermediate and Bottom nodes receives sensor data directly as well as data
from a higher-level node. Actions are selected by Bottom nodes, dispatching them via
a UDP socket to the Animation engine located in the Body module of Figure 1.

This mechanism is based on [20] who in turn developed Rosenblatt and Payton's
original idea [18] of a connectionist, hierarchical, feed-forward network, to which
temporal and uncertainty penalties were added, and for which a more specific rule for
combination of preferences was produced. Note that among other stimuli, our action
selection mechanism takes the emotional states (outputs of the emotional devices) of
the virtual animal. Klinokinesis was modelled as a Finite State Acceptor [1],
augmented with transitions based on probability, as seen in Table 1.

Table 1. Finite State Acceptor for klinokinesis
State Input Resulting

state
State Input Resulting

state
start go-default stand-still walking P(0.7) walking
stand-still P(0.3) walking rotating-left P(0.9) stand-still
stand-still P(0.3) starting-to-eat rotating-left P(0.1) rotating-left
stand-still P(0.2) rotating-left rotating-right P(0.9) stand-still
stand-still P(0.2) rotating-right rotating-right P(0.1) rotating-right
stand-still in-fear end starting-to-eat head-down eating
stand-still do-nothing stand-still eating P(0.6) eating
walking P(0.3) stand-still eating P(0.4) finishing-eating

finishing-eating head-up stand-still
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The basic Reynolds rules of cohesion, alignment and separation have been extended
with an additional rule (escape) in which the virtual animal moves away from
potential danger (essentially, predators) in its vicinity. More importantly, the flocking
behaviour itself is parameterised by the emotional devices output, that is, by the
values of the emotions the virtual animals feel. Therefore, in our model each virtual
animal moves itself along a vector, which is the resultant of four component vectors,
one for each of the behavioural rules.

The calculation of the resultant vector, V(elocity), for a virtual animal A is as
follows:

VA=(Cf · Cef · Cv)+(Af · Aef · Av)+(Sf · Sef · Sv) +(Ef · Eef · Ev)   (2)
VelocityA=limit(VA, (MVef · MaxVelocity))  (3)

where Cv, Av, Sv and Ev are the component vectors corresponding to the cohesion,
alignment, separation and escape rules respectively. Cf , Af, S f and Ef are factors
representing the importance of the component vectors Cv, Av, Sv and Ev and allow
weighting of each component vector independently. In our current implementation
they can be varied, in real time, from a user interface. Cef, Aef, Sef and Eef are factors
representing the importance of the respective component vectors given the current
emotional state of the virtual animal. Each of these factors is a function that takes the
current values of the animal’s emotions and generates a weight for its related
component vector. MaxVelocity is the maximum velocity allowed to the animal. In the
current implementation it can be varied from a user interface. MVef is a factor whose
value is calculated as a function of the current values of the animal’s emotions. It
allows the increase and decrease the animal's MaxVelocity depending on its emotional
state as shown in Figure 2. limit is a function whose value is equal to the greater of its
two parameters.

Fig. 2. Influence of Fear on Flocking

The emotional factors (Cef, Aef, Sef, Eef, and MVef) reflect ethological heuristic rules.
For example, the greater the fear an animal feels, the greater the weight of both its
cohesion vector (it tries to stay closer to nearby flockmates) and its escape vector (it
tries to stay farther from the potential danger). The resultant vector obtained by
adding the four basic vectors is then scaled so as not to exceed the maximum speed.
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Note that maximum velocity is also parameterised by fear: the greater the fear an
animal feels, the greater the speed it is able to reach.

3. Evaluating the emergent behaviour

Our hypothesis that fear can serve as a regulator between individual and social
behaviour was evaluated through an experiment in which 5,10, 15 and 20 animals
were plotted over 600 timesteps for the following six conditions:
1. Rigid Flocking. The herd of animals was tightly packed (maximum10 centimetres
distance between each) and animals were all facing the same direction at all times.
This is the baseline condition for optimum coordination.
2. No Flocking No Escape. Each animal moved on its own with no knowledge
(perception) of other animals or predators. This is the baseline condition for
individual behaviour.
3. Escape. Similar to the previous scenario except that animals perceive predators and
individually move to avoid them.
4. Standard flocking. Animals perceive each other, try to avoid collisions between
each other and try to stay close to the herd.
5. Standard flocking with Escape. As the previous case but  animals perceive
predators, and move to avoid them.

6. Escape with emotion. Emotion (fear) is elicited and communicated amongst
animals via artificial pheromones when  predators are perceived.
Figure 3 shows the trajectories plotted for the 20 animals case, and it is intuitively
clear to the eye even at this very low resolution that very different patterns of
behaviour are being produced. What is required is a way of assessing the complexity
of the emergent behaviour in each case. We follow the approach of [22] who
presented a method for characterising the pattern of emergent behaviour and its

Plots of 1.Rigid Flocking;       2.No Flocking/No Escape;        3.Escape

Plots of 4.Standard Flocking;    5.Standard Flocking/Escape;     6.Emotion/Escape

Fig. 3. Plots of 6 cases, 600 timesteps, 20 animals
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complexity using singular values and entropy. In the matrix A  below, M  = 600
(number of samples) and N = 4 (degrees of freedom: position x,y and velocity x,y):

To compute the singular values, the following equation from linear algebra is used:

The singular values σi = Si are all non-negative and generally are presented in a
decreasing sequence σ1 >= σ2 >= …>= σΝ >= 0;  singular values can be used as an
approximation of the matrix. We do not have space to display the singular values for
5,10,15,20 animals for all six cases here, but if they are represented in bar chart form
they show that each flocking case has its own distinctive shape.

The next step is to compute the entropy from the N singular values which are
normalised, because by definition Σi Pi = 1 [4]: in our case Pi is σi. The following
equation is used to calculate entropy:

where σ’
i. is the normalised singular value. And since entropy can be seen as a log2

count of the number of states in a system [4], the effective number of states and thus
the complexity is given by the expression:

Fig. 4 Plot of complexity (Ω) against animal numbers for 6 cases

Figure 4 shows a plot of the complexities for different types of flocking with different
number of animals. It can be seen that rigid flocking (bottom line) shows the least
complexity, intuitively supported by looking at Figure 3, top left. Flocking; flocking
with escape; no flocking, no escape; and escape behaviours (top four lines) are more

Ω
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complex than rigid flocking, but they are also almost always more complex than
flocking with emotion (second line up). The exception is the 5-animal case where
flocking with emotion, is more complex than flocking with escape. This can be
explained by a further set of experiments carried out in which it is shown that at least
nine animals are needed to maintain flocking behaviour. With fewer than this, when
the animals escape from a predator, some separate from the flock and do not regroup
at all during the 600 time-steps.

Thus we conclude that the introduction of an emotional system into action-
selection, where emotion can be transmitted between animals, mediates between the
complexity of individual behaviour and the rigidity of collective behaviour. It allows
a dynamic trade-off between spreading widely, advantageous in seeking new grass to
graze - inherent in klinokinesis - and staying together, advantageous in the case of
attack by predators. Emotion in this case acts as a social regulator for flocking
animals, demonstrating that it has an important social function in addition to its
already-understood role in regulating individual behaviour.

In addition to the 2D-tracking of trajectory just described, the virtual animals have
also been implemented in a real-time 3D graphical world, which can be run in a 4-
sided immersive display system (or CAVE). The implementation consists of nearly
28,000 lines of C++ code of which 10,949 implement the brain. Figure 5 shows a
screen-shot of a sheep in a graphical world illustrating the spread of the pheromone
cloud at timestep = 9. A further  objective of the work discussed elsewhere [7] is to
examine how far the presence of emotionally-driven autonomous animals can
increase the feeling of immersion experienced by a human user in such environments.

4. Conclusions and further work

We have presented an ethologically-inspired virtual animal architecture in which
primitive emotions have been incorporated into action-selection and a method for
communicating emotion between animals using virtual pheromones has been
included, allowing the extension of the classic approach to flocking to incorporate
emotion. We have shown that the effect of adding the emotional input to flocking
together with the communication mechanism is to reduce the complexity of individual
behaviour without requiring rigid lock-stepping. This substantiates the hypothesis that
emotion mediates social behaviour, underlining the functional role of affect in action-
selection.

Extensions to this work might include individual variation in animals, both across
characteristics like fearfulness, and across gender: there is evidence that ewes spend
more time grazing and rams significantly longer lying. The presence of lambs would
also introduce an interesting element of social heterogeneity, while animals with other
behavioural responses to predators – musk ox for example form an outward facing
ring – could be explored.

The use of 3D space in this implementation is limited to the pheromone
propagation algorithm: both perception and locomotion were implemented as 2D
mechanisms. Given mammals have significantly less mobility in 3D than the classic
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examples of fish or birds, a more realistic application of manoeuvrability constraints
would not only look more natural but might also have practical implementations for
flock fragmentation in the face of predators. A classic predator strategy is to peel off
an individual flock member, and including one or more intelligent predators would
allow predator-prey interaction to be investigated.

Finally, although the architecture developed targetted animals such as sheep and
deer rather than humans, the extension of the approach into emotionally-driven
human crowds would open up a much larger field of investigation.
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