
KA Tool and domain construction for AI planning
applications

Ruth Aylett, Christophe Doniat
Centre for Virtual Environments

University of Salford, Salford, UK

Abstract

KA Tool embodies work aimed at allowing domain experts
to generate a domain model for an AI planning system,
carried out as part of a larger project to build an integrated
set of tools for supporting AI planning. The paper outlines
the overall methodology and describes how KA Tool
supports it. A Domain model is generated in which can be
represented by cluster of constraints shaping an Ontology
of each studied case. Progress has been made towards
automatic conversion into the modelling language OCL and
integration with the OCL tool GIPO. We illustrate the
methodology by applying it in two examples of planning

1. Introduction and motivation
The effort required to construct a domain model for an AI planning system has long
been recognised as a major barrier to the take-up of this technology outside the AI
planning community. Researchers at the Universities of Huddersfield, Salford and
Durham [7] have been tackling this problem in the EPSRC-funded project
PLANFORM. Its aim is to research, develop and evaluate a method and supporting
high level research platform for the systematic construction of planner domain
models and abstract specifications of planning algorithms, and their automated
synthesis into sound, efficient programs that generate and execute plans. Figure 1
shows the high-level architecture of the PLANFORM system.

Within this project, the domain model is represented in the object-oriented sorted
first-order logic language OCL [22] which supports validation and checking tools as
well as translation to other formalisms such as PDDL, the standard domain
representation language used in the international Planning Competition. The toolset
GIPO [23] is used to support the iterative construction and validation of an OCL
model: however this still requires too much specialist knowledge of OCCL and AI
planning to be a suitable interface for a domain expert – one who understands the
domain in which planning is to take place but lacks any specific expertise in AI
planning. The KA-Tool discussed here is aimed at such domain experts.

The problem of supporting knowledge acquisition directly from the domain expert,
without the intervention of a knowledge engineer, has been discussed in the field of
Knowledge-Based Systems (KBS) for many years [1,3]. A consensus has been
reached that this may be feasible where a skeletal domain model can be provided to
guide the knowledge acquisition process and both the skeleton model and the
process itself can be defined through a methodology embodied in the knowledge
acquisition tool [1]. The key components of the skeleton model are seen as domain

ontologies combined with domain-independent problem-solving methods which
have often been thought of as generic tasks. The best-known – but far from only –
example of such a methodology is Common KADS [14], offering libraries of
configurable problem-solving components together with stereotypical configurations
which can be thought of as corresponding to types of abstract problem-solving tasks
such as diagnosis by heuristic classification or interpretation.

It is noticeable that AI Planning has rarely been considered as part of this research
(see Valente [3] for a rare exception). While in theory planning could be considered
as one or more generic tasks, in practice the Knowledge Engineering community has
concentrated on other generic tasks – diagnosis in particular – while AI Planning
researchers have hardly been involved at all, tending to concentrate on the
development of planning algorithms.

The approach discussed here draws on this work in the KBS community, seeing the
combination of ontologies, logics and generic problem-solving methods as a way of
addressing knowledge acquisition for planning [1]. It supports the capture and
structuring of relevant knowledge about a domain and its intelligent behaviours [2]
because they play an important role in the choice of an appropriate problem-solving
method, possibly configured from complex components held in a library [3].

1.1. Knowledge Acquisition Process
The knowledge acquisition process embodied in the KA-Tool can be seen in Figure
2. A question-driven process works on protocols and on a skeleton theory derived
from an ontologies library. By protocol we mean raw domain knowledge -
transcripts, documents, interviews, observations1, created by a problem-solving
episode in which experts are provided with a real-AI Planning problem, of the kind
that they normally deal with, and are asked to solve it. As they do so, they are
required to describe each step, and their reasons for doing what they do. The
transcript of their verbal and/or text account is, in this case, called a protocol .

1 We will used the term ‘transcript’ in the next paragraphs to mean a combination of
transcripts, documents, interviews, observations as a whole.

Figure 1: Planform architecture

By problem specification we
mean a definition or
description of an application
domain represented as a set
of choices at a particular
level of abstraction in an
ontological hierarchy. Thus
'Entertaining a foreign
visitor' and ‘Drumstore’, the
domains used for the
experiments reported later,
are problem specifications.

The second stage in the
process incorporates a theory
revision process which
produces a conceptual model
using a hierarchical frame

system which allows easy representation of inheritance between sorts (the
relationship kind-of) and/or aggregation between sorts (the relationship part-of) for
instance. Translation into a sorted first-order logic such as that used by OCL is
straightforward. Frames have an advantage over a first-order logic in that both
structure and behaviour can be embodied in one generic entity.

 An ontology is defined [6] as a rigorous specification of a set of specialised
vocabulary terms sufficient to describe and reason about the range of situations of
interest in a particular domain - a conceptual representation of the domain entities,
events, and relationships. Two primary relationships of interest are abstraction
(kind-of) and composition (part-of). Thus an ontology provides a grounding of the
key concepts within a domain. In principle we need both an ontology of planning
problem domains and of planning software to carry out knowledge acquisition since
the premise is that the conceptual framework of the problem domain is not the same
as that of the planning software – otherwise there would be little problem for the
domain expert.

The question-driven process is also used to construct a Domain dictionary , in effect
a partial ontology - using the experimental approach, it is hard to make an
exhaustive analysis of all domain objects. Nevertheless, the problem specification
can be used to define relevant objects and relationships, using macroscopic
properties that support appropriate choices. The Domain Dictionary is associated
with (i) a particular domain, (ii) specification of a problem or problems that we want
to solve, (iii) the reasoning that belongs to the studied domain and allows the
specified problem to be solved.

1.2. Overview of PLANFORM-KA Tool architecture
Figure 3 shows the main architecture of the PLANFORM-KA tool – an intelligent
system that contains the KA process. The user applies the module of domain model
building to a particular problem specification . The building of a new conceptual
model might be carried out with or without an existing problem specification from
the Domain model library. The result is recorded in this library. On the right-hand
side, the overall knowledge base consists of the conceptual model of the knowledge

Figure 2. Knowledge acquisition process1.

acquisition process itself, called PLANFORM-KA and the KA-Expertise belonging
to the particular conceptual model being constructed.

2. Case studies and methodology
In this section, we present two case studies using our methodology, based on the
problem specifications: (i) ‘EVentus: Entertaining a foreign visitor to your lab at the
weekend’ and (ii) ‘Drumstore: a logistics problem in a nuclear waste factory’. We
conducted these experiments, respectively with ten people and six people who
verbalised their knowledge about how they would solve this problem during
interviews. We chose EVentus because it was a planning problem drawing on
general rather than specialised knowledge that was not difficult to collect. Drumstore
was chosen because it had already been implemented as an AI planning domain
within the group. The interviews contained the unstructured knowledge (discourse)
and sometimes some notes such as graphics, plans and other material describing
knowledge and activity (explicitly/implicitly) both about the case studies and the
KA process itself.

It is important to understand the level of abstraction at which such a sample
problem must work. The PLANFORM toolkit as a whole will be used to create a
domain model within which a number of specific tasks can be planned. Thus the
experiment does not start with a specific task, but with the generic problem
specification. Subjects were asked to explore the generic domain model that would
be needed to plan within the domain of the problem specification and to support the
solving of a number of specific tasks. Note that a more abstract version of this
problem would be to replace ‘your lab’ with ‘a lab’ where this might be anywhere in
the world potentially. An instance of a specific task would be something like

‘Professor Stein from DFKI Germany is to be entertained on Saturday May 9
th

’.

2.1. Building of a domain dictionary
The first phase gives us a domain dictionary (Table 1) that puts together a set of
terms according to the problem specification.

Figure 3: Architecture of the KA-Tool

Next, we built a set of scenarios with
the shared knowledge of these domain
experts to find out how each expert
defines reasoning strategies to solve the
problem specification. We used a part of
the KOD (Knowledge Oriented Design)
[8] method to obtain an accurate process
for knowledge acquisition and to build
the conceptual model through the set of
examples and scenarios (see section 2.2).

Table 2 and 3 show the number of instances of each term in each scenario. We will
call these outcomes instance coverage.

This shows that
knowledge about this
particular specification
varies between domain
experts giving different
number of examples of

each term. This coverage
gives us an idea of the

experts’ practice so as to
build the interface of the
future intelligent system.

2.2. Building of conceptual/epistemological model
The second extraction gives us first a conceptual model containing semantic
relationships, objects and actions. We then add an epistemological model - the
definition of concepts, hierarchy and structuring relationships (behaviours). A
domain model is thus defined by these representations in our methodology by using
a frame system as in Figure 4.

Drumstore relies on the nine
following generic concepts: Thing
is a root of the domain model and
describes two mobile things:
Robot and Object. Robot depicts
a real robot, which can navigate
and has equipment – Gripper – to
bring and carry some Object

according to a
Relation/Reference address pair

(e.g. (Object,at,beacon1)). Primitives depict a set of generic concepts like
Drum (Object), At, Near (Relation) and Beacon (Reference). Substate and

2 Each Drumstore scenario is designed through the six terms as follows: Robot (R),
Thing (T), Gripper (G), Object (O), Relation (Rel) and Reference (Ref).
3 Each EVentus scenario is designed through the four terms as follows: Thing (T),
Activities (A), Context (C), Visitor (V) and Capability (Ca).

Drumstore EVentus

 Robot
 Thing
 Gripper
 Object
 Relation
 Reference

 Thing
 Activity
 Context
 Visitor
 Capability

Drumstore Terms
2

R T G O Rel Ref
1
2
3
4
5
6
7
8

5
10
20
10
5
6
8
7

1
2
5
3
1
1
1
1

3
2
5
3
4
3
5
4

7
5
12
5
7
13
7
11

2
2
1
1
2
2
2
2

3
3
3
3
2
2
3
2

Table 2.Instance coverage of Drumstore.

EVentus Terms
3

T A C V Ca
1
2
3
4
5

9
5
8
5
13

4
6
7
5
7

1
1
2
3
1

1
1
2
1
2

3
2
2
4
6

Table 3.Instance coverage of EVentus.

Table 1. Domain dictionary

Transition depict respectively the conditions in which Robot does some tasks and
the state of each task when it has taken place.

EVentus contains the nine following generic concepts: Visitor is a locus of the
domain model and describes a real visitor according to her/his real capacities, which
are depicted by Capacity. Activity and Context describe behaviours of a visitor,
Plan describes a set of alternative plans used by a visitor. Thing describes Places
and Events used during the activity. Finally, Primitives depicts a set of generic
concepts like a restaurant, a town (place) or an exhibition (event).

2.3. Summary
A KA process has been carried out to capture knowledge and build two domain
models for particular problem specifications through two case studies: Drumstore
and EVentus. The generic concept Thing is defined in both domain models with
different semantics. In Drumstore, this concept represents an abstraction of mobiles
but in EVentus, it represents an abstraction of locations.

Table 4 shows the
similarity between
Drumstore and EVentus

concepts using three main
categories: Agent, Object

and Task as a skeleton
ontology for planning
domains [9]. Note that the
Task category is divided
into two semantic sub-
categories: (i) the

Drumstore task is state-based and the EVentus task is action-based . This represents
a first step towards an epistemological model.

3. An Intelligent system: PLANFORM-KA
In this section we discuss the Planform-KA tool in more detail – see Figure 5 for its
conceptual model. As outlined above, the process component of the tool can be
decomposed into a set of refinement processes – called phases – carried out by the
domain expert according to an expertise . We envisage supporting it with a generic
ontology like the Upper Cyc Ontology [10] (though in this work we have

Figure 4. Frame systems of Drumstore and EVentus

Categories Drumstore EVentus

Agent

Object

Task

Thing

Position

Substate
Transition

Visitor

Thing

Context
Activity

Plan

Table 4. Abstraction similarity between Drumstore
and EVentus.

constructed a small ontology ourselves) to start instance collection . This Ontology
provides a sufficient common grounding for applications. Some concepts such as
Actor or Plan are supplied in it as generic definitions, which should help the
domain expert . It also includes definitions of Object and Agent categories (as in
section 2.3) and a fragmentary definition of the Task category. That is the case for
Drumstore for instance where there are State and Transition generic concepts as
parts of OCL.
3.1 Conceptual model of PLANFORM-KA
The conceptual model of Planform-KA (Figure 5) relies on several interrelated
generic concepts. The domain expert generic concept depicts the subject acquiring
the knowledge model, the KA-expertise generic concept features the knowledge
required to build the knowledge, the KA-Process generic concept describes the
behaviour carried out by the domain expert with the tool. The KOD method was
again used to elaborate a frame system to be implemented inside the KA Tool.

3.2. Frame representations
For reasons of space we discuss only a subset of the frame representations for these
concepts – those for Domain expert, KA-Expertise and KA-Process.
3.2.1 Domain expert
We consider the domain expert (DE) as the cognitive agent carrying out the process
of knowledge acquisition. DE has a mental model of the real world expressed in
concepts. The domain expert generic concept represents the properties of this agent
in relation to the carrying out of the KA-Process and is central to the overall
conceptual model since there are composition relationships with concepts KA-
Process and KA-expertise .

3.2.2 KA-Expertise
The KA-Expertise generic concept represents the memory of our domain expert .
This holds three knowledge categories: transcripts from a case study, and the related
domain dictionary and domain model. The Transcript generic concept represents
the properties of documents such as free-text or graphics collected in a case study.
The Domain dictionary generic concept represents the properties of a domain

Figure 5. The PLANFORM-KA conceptual model.

specification expressed as a set of choices – terms – themselves organised into a set
of scenarios (figure 6).

The Domain model generic concept represents the properties of a conceptualisation
as a set of conceptual/epistemological and logical representations .

3.2.3 KA-Process
The KA-Process generic concept represents the process which drives knowledge
acquisition and its refinement phases. The KA process starts with an instance
collection phase, i.e. the explaining of each term by providing examples of it. For
example, Robot, a term of the terms in Drumstore, contain the following instances:

Robot R3 navigates from location S3 towards beacon B14
Robot R3 docks at beacon B14
Robot R2 grabs from beacon B15 drum D12

This phase continues until the expert has provided instances for each newly defined
term. The process continues with a scenario creation phase: the description of several
scenarios – particular problems to be solved – within the scope of the given global
goal (for example: entertaining a foreign visitor; a logistics problem in a nuclear
waste factory) using the previously defined instances. Finally, a scenario can be seen
as a set of facts (predicates), which will be used to define some properties,
constraints, plan and goal states samples at the conceptual level. The outcome is a
terminology, i.e. a set of terms and a set of scenarios. The built-in ontology is used
to prompt the expert during this phase.

This bottom-up approach has also been supplemented by a top-down approach in
which the ontological categories agent, object and action, are used to drive a
question cycle in which new terms are extracted from the expert. Questions move
between the categories, so that if the expert provides an agent term (for example
robot), they are then prompted for actions carried out by that agent and objects
involved in the action. At the conceptual/epistemological level, first of all, the
process automatically carries out a translation phase into the frame-based
representation, so that each defined term becomes a frame. Next, the domain expert
defines by hand, or through the agent-object-action question cycle, the properties of
each frame. Thus, the term Robot becomes the Robot frame and belongs to the
Concept

4 superframe.

In the same way, a Visitor frame – from EVentus – can be defined, though space
does not permit us to show it. This references a CAPABILITY frame holding the
properties of natural abilities and skills that make the visitor able to do some
activities. A visitor could have either at least seven {Status, gender, age, budget,
type, quality, nationality} or several further capabilities such as {like to try new
things, accompanying other people, swim, has a budget, other}.

The conceptualisation finishes with a second translation phase from the frame-based
representation into sorted first-order logic, using the language OCL. In OCL,
substate and transition substate concepts describe respectively, the conditions before
the transformation of each task and the transition when an object changes from one
substate to another substate. This translation is automatic: each frame ‡5 sort, each

4 SuperFrame CONCEPT is the generic frame, which is the root/father of all frames
in the frame system.
5 ‡ means ‘is translated into the type of…’

instance of frame ‡ object, each attribute ‡ predicate and each part-of relationship
with its related arity ‡ a defined predicate called ‘belongs_to’. For example, table 5
shows the Robot frame and its translation into OCL where gripper – equipment –
of the robot. The arity of this slot (column Arity, bottom) is defined by (1), i.e.
this slot takes one frame gripper in the relationship at the same time and (1,1),
i.e. this slot allows the obligatory instantiating of one gripper’s instance. As a
result, the relationship and its arity of this slot translates into invariant predicates
(bottom) the constraint that one robot has to have one gripper only.

Epistemological level Logical level

ROBOT Frame and its slots Arity OCL

Kind-of value THING

Name domain String = {r1,r2,r3,r4}

If-add
 <GRIPPER,
 create-instance(),($equipment)>
Sense_on
 domain Boolean = {true,false}

Can_sense domain

tuple(ROBOT,OBJECT,RELATION,REFERE
NCE)
Equipment domain GRIPPER

(1)
(1,1)
(1)

(1,1)

(1)
(1,1)
(3)

(1,1)
(1)

(1,1)

sorts(thing,[robot])
sorts(primitive_sorts,[robot])
objects(robot,[r1,r2,r3,r4])

sense_on(robot)

can_sense(robot,object,relati
on, reference)
belongs_to(gripper,robot)
belongs_to(r1,g1)
belongs_to(r2,g2)
belongs_to(r3,g3)
belongs_to(r4,g4)

Table 5. Translation from epistemological level to logical level.

3.3 Evaluation and results
A first demonstrator has been implemented to validate the approach of
PLANFORM-KA.
Figure 6 shows the main graphical user interface during the creation of the Robot
generic concept in the Drumstore domain model.

We have also generated the logical model seen in Appendix 1 with OCL semantics
and syntax through a first version of a translator:

Generalising over the different phases of the KA process, we have formulated the
notion of Constraint. Thus the Term generic concept – in the instance collection
phase – is a kind of constraint which allows the domain expert to make a set of
choices to justify the domain specification.

Next, the Scenario generic concept is also a kind of constraint, allowing choices in
the design of task representations. Thus the task could be state-based, action-based
and so forth.

In the same way, the Relationship generic concept – in the conceptualisation
phase – is a kind of constraint (Figure 7), which structures each concept. In
addition, the Arity and Daemon generic concepts – from the epistemological phase
– are also kinds of constraints (Figure 8) on the problem-solving methods (PSM)
and heuristics

Finally the
Proposition

generic concept –
from the logical
phase – is also a
kind of constraint,
representing the
chosen logical
language. The
Constraint is then
described as
something that
must be true.

Thus in the KA-
process we define a
cluster of
constraints (Figure
9) across the several
representation
levels.

3.4 Capturing actions
The creation of a strong methodological framework for the Planform-KA tool was
seen as a priority, and this has been accomplished. What is required now is to
incorporate the planning-specific conceptual framework of agent, object and task in a
more direct fashion. Work has begun on the generation planning operators and
translation into OCL, through the question-driven agent-action-object
dialogue.Given that Planform-KA sits within the overall Planform architecture, even
the generation of skeletal operators would allow use of GIPO’s refinement
mechanisms to fill them
out into a complete form.
This would require an AI
planning expert to
supplement the role of the
domain expert but would
at least automate the basic
knowledge acquisition
process from the expert.

4. Related work
Many specific approaches
propose a set of solutions
for the acquisition, the
representation and the
sharing/reusing of
knowledge using libraries
and/or strategies, since
this topic has been studied
extensively in the KBS
community since the

Figure 6 Creating the yerm ROBOT

Figure 7. Constraints-cluster on conceptual model

Figure 8. Constraints-cluster on epistemological model

1980s. Some of them are more
specialised in the first extraction of
knowledge proposing a generic
surrogate to capture knowledge.
Protégé [10] includes a suite of tools
for editing ontologies, which can
automatically generate customised
editors that are accessible to domain
experts. The Protégé library includes
the problem-solving strategies
(diagnosis) and also methods
ontologies that describe the kinds of
domain-independent knowledge used
in strategies.

Recently, researchers have investigated
this topic through theory revision [25].
As Poole mentioned in [26] belief
states of robots are uncertain when it
adopts conditional plans. Fox and
Long [27] propose the categorisation of
domains into domain classes (e.g. transportation domain) is a kind of ontology (i.e.
a complex sort) deduced during the planning process to generate Generic Types.
McCluskey [28] suggests as well a inductive process with OpMaker.

The Protégé planning system is supported by a tool that captures new ontologies,
and offers a library of problem-solving methods. EXPECT [11,12] used explicit
representations of problem-solving strategies (propose-and-revise strategy for the
configuration design task, for example) to support flexible approaches to knowledge
acquisition. Blythe [24] uses expectation theory (task, critique) to capture data,
object classes and preferences. Williams [29] proposes an intelligent system called
SATEN to deal with theory extraction and revision from inconsistent ranking.
KRAKEN is a toolset [30], which addresses several problems from domain experts
who are non-logicians. PLANET [13] is an ontology for the representation of plans
in the AI Planning field and is very relevant to the more extended framework
discussed here. In other approaches, the answer for a given problem is built through
a combined set of different techniques (AI methodologies, for example KOD, KADS
[14]) according the major aim (diagnosis for example [15][16]).

5. Conclusion and further work
Surprisingly, given the amount of work in the KBS community in general,
knowledge acquisition has not been widely studied in AI planning. Yet applying
planning systems to real-world problems requires a systematic approach to
knowledge acquisition and a methodology supporting reuse rather than ad-hoc
adaptations of specific planning systems by particular individuals whose expertise
remains private and invisible. The work discussed here represents some steps in this
direction.

5.1. Conclusion
Our work consisted in demonstrating the value of the methodology called
PLANFORM-KA in supporting a knowledge acquisition process.

Figure 9. Clustered constraints define the KA
model and process

First of all, we have presented the basic steps of a methodology to build a
representation of AI Planning case studies according to a given problem
specifications . We have described how a cluster of constraints could help domain
experts during the knowledge acquisition process and how the configuration of a
cluster at any representation level can formalise the knowledge of a domain expert.

Second, we have validated our KA process through the building of the case studies
such as Drumstore and EVentus and shown some results as follows:
• Instance coverage . This allows us to study the interaction with the domain

expert,
• Two frame system . These introduce different abstraction levels of knowledge.
• Three AI Planning categories : Agent, which is a mobile thing like Robot or

Visitor, Object, for example location (Position, Place, Event) and
Task, which is specialised into action-based and state-based representations.

• The Constraint generic concept. It features an abstraction of several constraints
defined at different representation levels.

Finally, we are building on the question-driven interface and expect soon to generate
at least outline planning operators.

Putting this in the context of the overall PLANFORM project, different processes
from GIPO/Opmaker, STAN/TIM and KA-TOOL offer a multistrategy toolset
meant to deal with the acquisition challenge, with theory revision as a backbone
making it possible to build a neat underlying logical model.

5.2. Further work
So far, we have built a framework for an intelligent system to solve a set of issues
concerning the knowledge acquisition in AI Planning. We will make a systematic
survey – at the epistemological level – of other approaches like PROTÉGÉ,
EXPECT or PLANET, for instance, which focus on a similar approach with respect
to reuse of ontology. A particular direction is to explore the use of generic types,
[18] formulated by Planform co-researchers Fox and Long, within the question-
driven acquisition module. Currently, generic types are extracted from PDDL
domain models, but the FSM definitions used for this might be moved towards the
domain expert through incorporation into Planform-KA. Thus once an expert
identifies a mobile agent for example, the system could actively prompt for the
possibility of route-following. Further case-study examples will be explored in order
to assess the coverage Planform-KA is able to provide for domains where a domain
model has already been created by hand. Finally, supporting the expert with a much
larger ontology – possibly a specialised version of the CYC Upper ontology – will
also be explored. This would then enable much more widespread trials of the system

References
1. M. Musen. Modern Architectures for Intelligent Systems: Reusable Ontologies and

Problem-Solving Methods. In Chute (Eds), AMIA Annual Symposium, 46-52. 1998.
2. B. Hayes-Roth and F. Hayes-Roth. A Cognitive Model of Planning. Representation and

Reasoning. Readings in Planning. Morgan Kaufman Publishers. 1990.
3. A. Valente. Planning models for the CommonKADS librairy. ESPRIT Project KADS-II.

1993. Available at http://www.swi.psy.uva.nl/usr/andre/publications.html .
4. J.F. Sowa. Knowledge representation: logical, philosophical and computational

foundations. Brooks/Cole (eds). 2000.
5. T.L. McCluskey and Porteous J. M. Engineering and compiling planning domain

models to promote validity and efficiency, Artificial Intelligence, pp.1-65. 1997.

http://www.swi.psy.uva.nl/usr/andre/publications.html

6. T.R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 2(5), 1993.

7. Planform. An Open environment for building planners.
Available at http://helios.hud.ac.uk/planform . 1999.
8. R.S. Aylett, S. Jones. Planner and Domain: Domain Configuration for a Task Planner.

Int. Journal of Expert Systems, 9(2), 279-318, 1996.
9. C. Vogel. Le genie cognitif. Masson (Eds). 1988.
10. The Upper Cyc Ontology, available at http://www.cyc.com/cyc-2-1/cover.html .
11.N. Fridman-Noy et al. The knowledge model of Protégé-2000: combining

interoperability and flexibility. 2th Int. Conf. on Knowledge Engineering and
Knowledge Management (EKAW). Juan-les-Pins (France) 2000.

12. Y. Gil and J. Blythe. How Can a Structured Representation of Capabilities Help in
Planning? Proceedings of the AAAI – Workshop on Representational Issues for Real-
world Planning Systems. 2000.

13. Y. Gil and J. Blythe. PLANET: A Shareable and Reusable Ontology for Representing
Plan. Proceedings of the AAAI – Workshop on Representational Issues for Real-world
Planning Systems. 2000.

14. Schreiber, G., Wielinga, B., de Hoog, R., Akkermans, H. and Van de Velde, W. (1994).
CommonKADS: A Comprehensive Methodology for KBS Development. IEEE Expert,
9 (6), pp. 28-37..

15. J.M. Mercantini et al. Safety previsional analysis method of an urban industrial site.
Scientific Journal of the Finnish Institute of Occupational Health, serie: People and
Work, safety in modern society, pp. 105-109, 33. 2000.

16. N. Mercantini et al. Etude d’un systeme d’aide au diagnostic des accidents de la
securite routiere. IC’99. Palaiseau (France). 1999.

17. J. L. Cybulski. Application of Software Reuse Methods to Requirements Elicitation
from Informal Requirements Texts. PhD Thesis.
http://www.dis.unimelb.edu.au/staff/jacob/publications/home.htm#Theses. 2001.

18. M. Fox, and D. Long. Automatic Synthesis and use of Generic Types in Planning.
AIPS 2000 - Workshop on Analysis and Exploiting Domain Knowledge for Efficient
Planning.

19. D. McDermott, et al. PDDL --- The Planning Domain Definition Language. In Machine
Intelligence 4. D. Michie, ed., Ellis Horwood, Chichester (UK). 1998.

20. Breuker, J. and Wielinga, B. (1989). Models of Expertise in Knowledge Acquisition.
G. Guida and C. Tasso (eds). Topics in Expert Systems Design: methodologies and
tools. North Holland Publishing Company, Amsterdam, The Netherlands.

21. Benjamins, V. R. (1993). Problem Solving Methods for Diagnosis. PhD thesis,
University of Amsterdam, Amsterdam, The Netherlands.

22. D. Liu and T. L. McCluskey, The Object Centred Language Manual - OCLh - Version
1.2. Technical report, School of Computing and Mathematics, University of
Huddersfield, 1999.

23. R. M. Simpson, T. L. McCluskey, W. Zhao, R. S. Aylett and C. Doniat 2001 An
Integrated Graphical Tool to support Knowledge Engineering in AI Planning.
Proceedings, 2001 European Conference on Planning, Toledo, Spain.

24. Blythe, J. 2001: Integrating expectations for different sources to help end users
acquire procedural knowledge. IJCAI.

25. Grenier, R. 1998: The complexity of theory revision. Available at
http://www.cs.ualberta.ca/~grenier .

26. Poole, D. 1998: Decision theory, the situation calculus and conditional plans in
computer and information science. Vol. 3, nr 8.

27. Clark, M. 2001: Construction domains: a generic type solved. PLANSIG’01.
Workshop of UK Planning and Scheduling. Edinburgh.

28. McCluskey L. & Richardson B. 2001: The Induction Operator Descriptions from
Examples and Structural Domain Knowledge. Edinburgh.

http://helios.hud.ac.uk/planform
http://www.cyc.com/cyc-2-1/cover.html
http://www.dis.unimelb.edu.au/staff/jacob/publications/home.htm#Theses
http://www.cs.ualberta.ca/~grenier

29. Williams, M.A.: 1997: Implementing Belief Revision in G. Antoniou, Nonmonotonic
reasoning. MIT Press.

30. CycCorp. 1999: more details about the KRAKEN project are available at
http://reliant.teknowledge.com/RKF/proposals/Cycorp.html .

Appendix 1 – OCL model
domain_name(drumstore).

% Sorts
sorts(non_primitive_sorts,[thing,position]).
sorts(primitive_sorts,[robot,gripper,object,relation,reference]).
Sorts(thing,[robot,object]).

% Objects
objects(robot,[r1,r2,r3,r4]).
objects(gripper,[g1,g2,g3,g4]).
objects(object,[d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12]).
objects(relation,[near,at]).
objects(reference,[s1,s2,s3,s4,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b1
2,b13,b14,b15,b16]).

% Predicates
predicates([
 can_sense(robot,object,relation,reference),
 sense_on(robot),
 position(thing,relation,reference),
 full(gripper),
 empty(gripper),
 belongs_to(robot,gripper),
 in(object,gripper),
 released(object),
 in_range(reference,reference)]).

% Atomic Invariants
atomic_invariants([
 position(r1,at,d12),position(d9,at,d4),position(r2,near,s2),

belongs_to(r1,g1),belongs_to(r2,g2),belongs_to(r3,g3),belongs_to(r4,
g4),
 in_range(s1,b12),in_range(b12,s1),
 in_range(s2,b15),in_range(b15,s2),
 in_range(s3,b14),in_range(b14,s3),
 in_range(s4,b13),in_range(b13,s4),
 in_range(b13,b1),in_range(b1,b13),
 in_range(b15,b13),in_range(b13,b15),
 in_range(b12,b14),in_range(b14,b12),
 in_range(b14,b16),in_range(b16,b14)])

http://reliant.teknowledge.com/RKF/proposals/Cycorp.html

