
UNCORRECTED P
ROOF

Engineering Applications of Artificial Intelligence 0 (2000) 1–16

Planning plant operating procedures for chemical plant

R.S. Ayletta,*, J. Soutterb, G.J. Petleya, P.W.H. Chungc, D. Edwardsd

aCentre for Virtual Environments, University of Salford, Salford M5 4WT, UK
bBG Technology Centre, Loughborough, UK

cDepartment of Computer Science, Loughborough University, UK
dDepartment of Chemical Engineering, Loughborough University, UK

Received 17 May 2000; received in revised form 8 December 2000; accepted 20 December 2000

Abstract

All industrial plants require an extensive set of operating procedures. This paper discusses the use of hierarchical nonlinear least-

commitment AI planning technology to generate plant operating procedures for chemical process plant. It considers the handling of
flow through the interfacing of a valve sequencing subplanner, the handling of safety through the mechanism of goals of prevention,
and the use of pairs as a way of mutually constraining planning variables and increasing planning efficiency. It concludes with some
results and discussion of the advantages of the approach. # 2001 Published by Elsevier Science Ltd.

Keywords: Plant operating procedures; AI planning; Chemical process plant

1. Introduction

All industrial plants require an extensive set of
operating procedures which define the steps required}
for example}to start the plant up, to shut the plant
down, to isolate pieces of equipment for maintenance or
to deal with emergency situations. Steps may be carried
out manually by human operators, or some of them may
be embodied in the plant control system, depending on
the level of automation. It is clearly vital for reasons
both of safety and efficiency that procedures are of a
high quality.
In the chemical process industry, a multi-disciplinary

commissioning team containing skilled engineers is
normally responsible for defining sets of procedures,
taking of the order of two man-years of effort. If
operability problems are uncovered during this work,
late changes to the design of the plant may result,
sometimes while the plant is actually being constructed.
These are the motivations for the development of
computer-based tools to aid in the authoring of

operating procedures. In the INT-OP project,1 which
ran between 1996 and 1999, state-of-the-art hierarchical
non-linear partial-order AI Planning technology (Weld,
1994) was applied to the task of operating procedure
synthesis (OPS) (Soutter, 1997), as far as we are aware,
for the first time. The project produced the chemical
engineering planner (CEP) as part of an overall system
described below in Section 2.
Because of the importance of creating high-quality

operating procedures, and the amount of manual effort
currently required to do this, the problem has been
studied by a number of workers in the field of chemical
engineering. However, none of them were able to
produce a general purpose system since the algorithms
used were either oriented towards solving the problem of
flow in a plant by organising the opening or shutting of
valves, or were aimed at reasoning about the operation
of reaction vessels such as filling a tank or starting a
heater. The work of the early 1980s (Ivanov et al., 1980;
Kinoshita et al., 1981) using state-graphs limited sample
problems to plants containing a handful of valves
because of the number of states they generated: 20
valves each with 2 states produces 1,048,576 nodes in a
state graph. Other workers used larger plant (Rivas and
Rudd, 1974) but only considered valves and not vessels.
A real-world nuclear fuel processing plant was used in
(Crooks and Macchietto, 1992), but this work concen-
trated on optimising a hand-generated plan. Only

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

EAAI: 537 - PROD.TYPE: COM ED: C.MAMATHA
PAGN: SANDHYA HU SCAN: VENKI

pp.1^16 (col.¢g.: NIL)

*Corresponding author. Tel.: +44-161-295-2912; fax: +44-161-295-

2925.

E-mail address: r.s.aylett@salford.ac.uk (R.S. Aylett).
1Funded by the UK Engineering and Physical Sciences Research

Council: Academic Partners, University of Salford & Loughborough

University; Industrial partners BG Plc, BP, ICI, Cogsys Ltd., TCCL.

0952-1976/01/$ - see front matter # 2001 Published by Elsevier Science Ltd.

PII: S 0 9 5 2 - 1 9 7 6 (0 1) 0 0 0 1 2 - 4

UNCORRECTED P
ROOF

Aelion and Powers (Aelion and Powers, 1991) have
seriously considered AI planning technology, and in this
case a linear STRIPS type engine was used, dating back
to the 1970s (Fikes et al., 1972), which was therefore
unable to deal with unfavourable interactions between
actions in the plan.
AI planning is a technology that has developed

representations and algorithms specifically to handle
combinatorial sequencing problems. Its approach
matches the requirements of OPS very closely. A
planning problem is usually defined by a domain model
and by two states of that model: the initial state and the
goal state. The domain model describes the objects in a
domain, the actions that can be performed with the
objects and the constraints on these actions. Actions are
normally defined by planning operators. The initial state
describes the state of the domain immediately before any
actions have been carried out, with the goal state
describing the facts which must be true after the plan has
been completed. The output is a set of ordered steps
(instantiated planning operators) which, if executed,
take the domain model from its initial to its desired final
state.
The task of producing a plan can be split into two

closely related and intertwining subtasks. The first
subtask involves correctly selecting and instantiating
the planning operators needed to solve each goal in the
final state. For example, consider three blocks A, B, and
C all on a table; a single planning operator which allows
a robot to move any block from the table onto another
block if both blocks are clear; and a final goal of a tower
with A on B on C. Of all the steps possible as the first in
the plan, only that of moving B from the table onto C
will meet the final goal state. All other planning
operator instantiations, if chosen, require the planner
to backtrack and undo them
The second subtask involves detecting and resolving

conflicts between the steps needed to achieve different
objectives. For example, in the above problem, if A is
first put onto B in order to solve one of the end-goals,
then it will not be possible to move B onto C to solve the
other goal. Resolving conflicts can be carried out by
reordering the conflicting actions, inserting new actions,
or by replanning, as discussed in Chapman, (1987).
During planning, the search space can become

enormous if no techniques are used to limit its size,
and it is here that modern AI planning techniques have
made substantial advances. Least-commitment planning
(Penberthy and Weld, 1992) is an approach to reducing
search spaces. It encompasses non-linear planning, in
which only essential ordering constraints between
actions are introduced, leaving all others unordered (in
pseudo-parallel), allowing a whole set of plans to be
represented at once. It also includes constraining the
possible instantiations of an object used in the plan
rather than committing to a particular instantiation.

Hierarchical planning (Sacerdoti, 1974) also reduces the
search space by representing a problem as a hierarchy of
tasks that need to be achieved, allowing a plan or part of
a plan to be represented by a high level of abstraction,
with the lower levels, and more detailed part of the plan,
left for later expansion.
AI planning, in its modern and relatively mature

form, is thus a set of representations and algorithms
specifically intended to deal with exactly the type of
combinatorial sequencing problems that arise in OPS.
Yet as the discussion above shows, it is a technology
that has rarely been applied outside its own research
community, though this is beginning to change with a
number of successful real-world applications especially
in Space (Aarup et al., 1992; Chien, 1994; Chien et al.,
1997; Bernard et al., 1998). This paper discusses in detail
what was required in order to apply AI planning
technology to OPS in the hope that this will encourage
other workers to apply it to similar industrial problems.

2. Planning characteristics of process plant and OPS

Fig. 1 shows an engineering line diagram (ELD) of
the type that would be used by commissioning engineers
generating operating procedures manually. The ELD
presented is that for a real piece of plant}the double
effect evaporator (DEE)}located in Loughborough
University and used there for teaching purposes and
also as a case-study in the INT-OP project. Though it is
not therefore a real-world industrial plant, it is of
equivalent complexity to a ‘chunk’ of real-world
plant}that is a functional sub-division of a plant often
considered by engineers in the field. Two such
‘chunks’}the backend loop of an ammonia plant, and
the metals extraction subsystem of an acetic acid
plant}were also made available to the project as case
studies by its industrial collaborators (ICI and BP,
respectively) but industrial confidentiality prevents a
detailed consideration of their topology and procedures.
One basic characteristic of the domain is revealed by

the ELD. This is the high degree of interconnection
(Aylett and Jones, 1996), obvious even if the particular
symbols used are not familiar to the reader. This is not
merely a static topological consideration. In a robot
blocks world such as that discussed above, removing
one block normally has no effect on the other blocks in
the domain (as long as blocks are only taken from the
top of piles). In a process plant, the significant effect of
opening or shutting a valve is not that the state of the
valve changes, but that, depending on the state of the
rest of the plant at the time, one or more chemical flows
may be started or stopped. The interconnectedness of
the domain is reflected dynamically in the particular
properties of flow.

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–162

EAAI: 537 -

UNCORRECTED P
ROOF

Flow plays as fundamental a role in a chemical plant
domain as movement does in a robotic domain. Just as a
robot delivering a letter to an office can be decomposed
into a sequence of MOVE operations, so could the
Haber process for making ammonia be decomposed into
FLOW of chemicals. Does this mean that FLOW
should be handled in much the same way as robot
route planning?
In fact FLOW differs from robot route planning in

significant ways. While a MOVE action can be thought
of as directly moving the robot along a portion of its
route, FLOW is produced entirely as a side-effect of
valve (and pump) operations. While a robot moves only
along the route planned for it, flow will occur at all
junctions off the chosen route not specifically blocked.
Thirdly, a flow continues once started until explicitly
stopped. Fourthly, more than one chemical may pass
down the same route simultaneously: in the Haber
process hydrogen and nitrogen are merged into one
flow. Finally, a flow route is contaminated with chemical
even after the flow has stopped. These differences are
expressions of interconnectedness and must be handled
if planning is to be successful. While STRIPS operators

are capable of handling side-effects, the approach taken
in this project was to interface the planning mechanism
to a specific subsystem for valve sequencing, using a
specialised algorithm (Soutter and Chung, 1997; Aylett
et al., 1998). This will be discussed and justified in
Section 3.
A second characteristic of the process plant domain is

the importance of safety. A plan which moves the plant
to a desired end-state is unacceptable if}for exam-
ple}along the way explosive gases have been mixed
together, poisonous gases have been vented to the
atmosphere or corrosive liquids have been flushed down
a drain. In planning terms, intermediate states are
important as well as end-states. The approach taken
here was the introduction of ‘Goals of prevention’
(Soutter and Chung, 1996) defining safety restrictions as
part of the overall description of the plant. These will be
discussed in Section 4.
A third characteristic which is important from a

planning point of view is the fact that flow delivers
chemicals to components of the plant quite distant from
where they originate as inputs. For example, in Fig. 1, at
the top right corner the symbol PW shows process water

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

Fig. 1. The double-effect evaporator.

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–16 3

EAAI: 537 -

UNCORRECTED P
ROOF

entering the system which will eventually flow through
the two heat exchangers, HE1 and HE2, in the centre
portion of the ELD. It is important if the problem is to
remain tractable that the planning operators used in
operating these heat exchangers should not have to try
every possible path in the plant in order to establish the
source of this flow. At the same time, as we discuss
below, it is also important that the specific topology of
this plant is not encoded into the generic behaviour of a
heat exchanger (Petley et al., 1998) described by these
planning operators. Section 5 shows how this problem
was tackled with an extension to the representation used
known as pairs, with an associated modification of the
planning algorithm (Aylett et al., 1999).
This paper therefore demonstrates that by taking into

account the specific characteristics of the domain, very
general mechanisms can be applied to OPS. Like all
knowledge-based approaches, there are vital issues
concerning the acquisition, validation and maintenance
of the knowledge required. These issues are not
discussed here (see Aylett et al., 1997), but lie behind
the overall architecture of the whole system shown in
Fig. 2. CEP-Tool is an intelligent front-end which
handles knowledge acquisition for a particular plant,
and delivers a domain model to CEP-Run, the core of
which is CEP itself, the chemical engineering planner
discussed in this paper.
CEP-Run encompasses a number of other functions

not discussed in this paper. In particular, it includes
some facilities allowing a user to interact with the
planning process if they so require. It also includes a
process known as linearisation, which turns the partially
ordered plan net produced by the planner itself into a
sequence of instructions forming an operating proce-
dure. These have been discussed elsewhere (Aylett et al.,
1997). At the heart of CEP-Run is the system shown

in Fig. 3, forming CEP, the chemical engineering
planner, itself. It can be visualised, as in this figure, as
a state-of-the-art hierarchical non-linear least commit-
ment planner with specific facilities for handling flow
and safety.
CEP works with planning operators of the basic form

of the example shown in Fig. 4, the planning operator
for toggling the state of a control valve. Here, all
quantities prefixed with ‘?’ represent variables, which
can be instantiated with specific names in a particular
plant. The achieve section shows what the effect of this
action is when executed}to change the aperture of a
valve to ?state 2. The using section gives the pre-
conditions for applying this action}in this case that the
initial aperture is in ?state1. Setting ?state1 !=

?state2 constrains these states to be instantiated with
different values. We have used this planning operator as
an example because it is valve operations which produce
flow}yet as we see in Fig. 4, the only direct result of
operating a valve is to change its state from open to shut
or vice-versa. How CEP can reason about flow and
decide which valve operations to include in its plan is the
subject of the next section.

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111
Fig. 2. The CEP architecture.

Fig. 3. CEP components.

Fig. 4. CEP planning operator for operating a valve.

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–164

EAAI: 537 -

UNCORRECTED P
ROOF

3. Planning flow

It was argued above that flow}achieved by sequen-
cing opening and closing valves}is fundamental to all
continuous process plant domains. Previous OPS work
in chemical engineering either dealt with valve sequen-
cing alone (Foulkes et al., 1988), or planned the
operation of reaction vessels to the exclusion of valve
sequencing (Fusillo and Powers, 1987). CEP is the first
OPS system to combine both.
Several approaches are possible. Flow may be

handled as a post-processing step to the allocation of
reaction vessels. Alternatively, it may be dealt with like
other aspects of planning through planner operators.
Thirdly, flow may be handled via a sub-planner
integrated into the planner. CEP has adopted this third
solution.

3.1. Flow as post-processing

This approach was adopted in Crooks and Macchiet-
to (1992), who viewed OPS as a resource allocation
rather than a planning problem. The objective was to
produce given quantities of given products by choosing
a process route (sequence of reactions) to produce each
of the required products and then allocating resources in
the form of reaction vessels to each. In a second phase,
steps were added to the procedure to create the
necessary flow paths between the reaction vessels used.
The problem from a planning perspective is that the

pipes which carry a flow are themselves resources. If
flow paths are chosen independently of each other then
two flow paths may end up sharing the same pipes,
mixing chemicals in dangerous or undesirable ways.
Such flows need not overlap temporally: a flow can
contaminate a pipe with a chemical which may have to
be removed before a second flow can be created with
another chemical. Removal of a chemical often involves
washing a pipe out with some neutral substance like
water and in order to get this to the required location in
the plant, sometimes the substance will have to flow
through a vessel. This causes problems because the
system is designed to allocate vessels to tasks only in the
first phase of procedure creation. Thus flow cannot be
treated as a post-processing step.

3.2. Flow using operators

While flow could be modelled using planner opera-
tors, because of the characteristics discussed above this
turns out to be clumsy and inefficient. While a MOVE

operator with pre-conditions at (?Robot, ?X), next-

to (?X, ?Y) and effect at (?Robot, ?Y) can be used to
find a route for a robot between two locations, an
operator FLOW cannot take this form since not only
must valves along the chosen flow-route be opened,

valves off the flow-route must also be closed to stop flow
into other parts of the plant. With no explicit
representation of the valves in the flow-route, it is hard
to close the correct valves.
However, modelling flow through planning operators

OPEN and CLOSE for valves is also problematic. While
in principle such operators can deal with side-effects,
flow is a side-effect which depends on the configuration of
the plant, so that the standard assumption that all effects
of an action are declared in the planning operator is very
hard to meet. The alternatives are: first, a separate
planning operator to describe the operation of each
valve in each interesting plant state. Second, enhance the
planning operator representation to allow the effects of
opening a valve to be a function of the state of the plant,
for example using conditional effects. Third, use
planning operators to represent the opening of each
interesting flow route rather than representing each
individual valve operation.
Each of these three strategies produces planning

operators specific to a particular plant which then
cannot be used in a different plant, a fundamental
objection in a project trying to produce a system that
can be configured to a new plant by a non-expert. They
differ only in the trade-off between complexity and
brevity. In the first and third cases each operator is
simple but a huge number is required to describe a
complex plant. In the second case, each operator is very
complex but only one is required for each valve in a
plant. In all cases, the valve sequencing problem must be
solved anew for each new plant.
The same objection can be raised against a planning

operator which handles all the flows in a section of
plant. This operator would only work on that section of
that plant}and due to its complexity and size would be
extremely difficult to formulate and test. Nor is it clear
that flow patterns would support such sectioning on any
but the largest scale of granularity, with shared flows,
circular flows and reversing flows giving particular
problems.
In conclusion, it does not appear possible to create a

planning operator model of opening a valve that is
independent of the specific valve to be opened. Similarly,
it does not appear possible to create a planning operator
model to start a chemical flowing through a plant
independent of the process plant that the chemical will
flow though.

3.3. Flow with a subplanner

Noticeably all three of the AI planning systems
currently used for real-world problems}OPLAN (Tate
et al., 1994), SIPE (Wilkins, 1988), and PRODIGY
(Veloso et al., 1995)}provide support for subplanners,
suggesting that domain dependent algorithms of this
type are not unusual. This section proposes a domain

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–16 5

EAAI: 537 -

UNCORRECTED P
ROOF

dependent but plant independent mechanism for creat-
ing a flow using a specific flow reasoning algorithm. The
implication of this work is that some difficult problems
are best solved through the development of domain
dependent modules that live within otherwise domain
independent planners.
The algorithm used by the OPS community to create a

flow of chemical is based on Foulkes et al. (1988). It
applies a maze searching algorithm; the valves around
this route are closed and then the valves along the route
are opened. Thus each flow of chemical has an easily
determined effect}the contamination of all the units
along the flow route by the chemical being transported.
Clearly the subplanner should be called when the
planner has a goal to create a flow between two points.
It will find a flow route which must be communicated
back to the planner in terms of valves to be opened and
closed.
All of OPLAN, SIPE and PRODIGY approach

subplanning as a mechanism for performing mathema-
tical reasoning during planning. Hence it is not
surprising that their subplanners are constrained to
behave as mathematical functions, taking a fixed length
sequence of arguments as input and producing a result
completely determined by these input parameters. The
input parameters are planning objects, that are variables
or constants. A planning variable is used to hold the
return value. But these interfaces cannot be adopted for
a flow subplanner which differs in significant ways from
a straightforward mathematical function:

1. Flow subplanners are non-deterministic. There may
be many flow routes for a particular chemical and
any suitable one may be chosen arbitrarily. All
possible routes should be considered during back-
tracking to ensure completeness.

2. Flow subplanners may implement partial functions.
There may be no feasible flow paths between two
points or all feasible paths may be blocked by other
flows of chemical. Hence it may not be possible to
find a route for a particular flow of chemical at a
particular point in a plan.

3. Unbound input parameters can be important. For
example, if the destination point for a flow is
unbound but constrained to the set of possible drains
for a particular chemical, then the subplanner could
opportunistically choose a suitable drain when
looking for a flow route.

4. Flow subplanners return partial plans, not a single
variable. The interface must support their incorpora-
tion into planning.

A principled way of creating fragments of plan can be
created through the use of a macro}a piece of code
which itself creates a piece of code when it runs. CEP
had already included macro planning operators as a
facility since this allows a user to specify sequencing

information about the order in which goals should be
met and is very useful where at some higher level of
abstraction, ‘chunks’ of plant are to be started up one
after the other.
Thus a specific CEP macro operator, flow, seen in

Fig. 5 was used to implement the interface between the
valve sequencer and CEP’s general planning mechanism.
One should note that this mechanism is general enough
to support other subplanners of like complexity (for
example, a computational geometry subplanner in the
case of component assembly planning) and is therefore
more powerful than the interfaces of SIPE, OPLAN and
PRODIGY.
The call section of this macro specifies flow as the

subplanner to be called from the CEP table relating
names to available subplanners. The arguments in round
brackets are input parameters: question marks show
that they are variables rather than constraints. The
arguments in square brackets are return parameters: the
star in front of them indicates they represent a set of
objects rather than a single object. One should
remember here that the planning process is proceeding
‘backwards’, that is, from a goal requiring a flow to the
actions needed to produce the flow.
The call above will find a route between ?source

and ?destination and then constrain the variables
*?opened, *?closed and *?contaminated with the
details of the flow route found. For example, *?opened
will be constrained to the set of valves that are to be
opened. The call may as a side effect bind some of the
input parameters}a particular flow must start from a
particular source and end up at a particular destination.
The rest of the macro describes the handling of the

variables constrained by the call. For example, at the
start of the plan fragment being produced by the
subplanner, and shown in Fig. 6, the valves around the
flow path must be closed. This ‘‘close point’’ (Fig. 6) is
referred to in the macro as node1. These valves must

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

Fig. 5. The flow macro planning operator.

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–166

EAAI: 537 -

UNCORRECTED P
ROOF

remain closed until the point in the CEP plan which
produced the flow goal in the first place, which is given
the special symbol @. CEP can say then that the flow
operator has the precondition shown, amounting to ‘‘all
the *?closed valves must be closed at node1 and remain
closed until @’’. Thus the macro now performs the
translation of the subplanner output into a plan
fragment.
The following steps are required within CEP in order

to apply this macro:

(1) A new set of variables are created according to the
type definitions at the macro head.

(2) These variables are constrained so the solve

section matches the goal to be solved.
(3) The flow subplanner is called, further constraining

the opened, closed and contaminated variables.
(4) The domain of all starred variables is fixed.
(5) New nodes are added as described in nodes and

their order is constrained as in order.
(6) Preconditions, effects and causal links are added as

described in achieve and require.
(7) On backtracking, steps 6, 5 and 4 are undone and

the subplanner is asked for an alternative solution.

The use of this macro interface gives CEP a neat and
generic interface for allowing a specialised subplanner to
solve problems for which a standard AI planning
algorithm is not the best solution and has successfully
allowed CEP to cope correctly with all the problems
posed by flows outlined above.

4. Dealing with safety through goals of prevention

CEP applies a method for generating safe plans by
actively monitoring and protecting the safety of a plan
during planning. Its approach may be described as an
explicit strategy for planning with goals of prevention.
The strategy is ‘explicit’ because the responsibility for

plan safety is taken from the planner and given to a
separate algorithm explicitly designed to maintain it.
A goal of prevention describes a set of states that must

not occur during a plan. Expressed in predicate calculus,
a goal of prevention has the general form shown in
statement (1).

8ð?u1 2 R1; . . . ; ?un 2 Rn; ½var constraints�:

:ðp1 ^ p2 ^ � � � ^ pnÞ: ð1Þ

In statement (1), ?u1 . . . ?un represent planning variables;
R1 . . .Rn represent the sets of possible values for each of
the variables; and p1 . . . pn represent literals. The only
variables in p1 . . . pn are ?u1 . . . ?un.
For example, the goal of prevention shown in

statement (2) represents the blocks world constraint
‘‘each block can have no more than one other block
stacked on top of it’’. Note that ?b1 6¼ ?b2 should be read
as ‘‘?b1 does not codesignate (that is, become instan-
tiated to the same value) with ?b2’’.

8ð?b1; ?b2; ?b3 2 Blocks; ?b1 6¼ ?b2Þ::ðonð?b1; ?b3Þ

^ onð?b2; ?b3ÞÞ: ð2Þ

We will say that a goal of prevention is violated if it
becomes false during a plan. A plan is considered safe if
every goal of prevention in the domain remains
unviolated at every point in the plan.

4.1. Implicit and explicit strategies

The concept of goals of prevention is not new in the
planning literature. Similar concepts include: ‘hazardous
conditions’ in Rivas and Rudd (1974), ‘preservation
goals’ in Schank and Abelson (1977), ‘goals of main-
tenance’ and ‘goals of prevention’ in Georgeff (1987),
‘local constraints’ and ‘global constraints’ in Fusillo and
Powers (1987), and ‘don’t-disturb’ goals in Weld and
Etzioni (1994). However only two papers were found
that discussed planning with such goals. On the one
hand, Weld and Etzioni (1994) look at encoding goals of
prevention into the planning operators of a domain so
that the safety of the plan is maintained implicitly by the
planner. On the other, the paper of Fusillo and Powers
(1987) examines the explicit maintenance of goals of
prevention during planning though only in the context
of very simple state space planners much less powerful
than CEP.
The implicit strategy used by Weld and Etzioni (1994)

encodes the goals of prevention into the planning
operator set of the domain. In a basic implementation
of this strategy, whenever each new action is added to
the plan, the action is made safe against all the goals of
prevention by adding new preconditions and by
constraining the variables within it. The planner must
consider all possible ways of making each action safe.
This can be done through backtracking or through the
use of disjunctive preconditions.This is efficient and easy

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

Fig. 6. Creating a plan fragment for CEP from the valve sequencer.

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–16 7

EAAI: 537 -

UNCORRECTED P
ROOF

to implement but suffers from inflexibility. In this
approach, the way that goals of prevention are handled
is defined by the way that the planner works.
An explicit strategy is based on a safety maintenance

algorithm that is run at regular intervals during
planning. The method the safety maintenance algorithm
uses to resolve a violation is similar to the algorithm
used in the implicit strategy to make an action safe but
has two major advantages which have led to its adoption
in CEP.
Firstly, the planner is better able to explain a plan if

the explicit strategy is used since the planner knows
which possible violation each modification is added to
protect against. The ability to explain a plan is
important if a person and a computer are to cooperate
to create a plan. It is of particular significance in a
domain such as chemical process plant where the
engineer using the software must always be able to
justify the choices made, for example in the formal
hazard assessment procedure known as HAZ-OP.
Secondly, the explicit strategy is flexible and can

support a more sophisticated handling of goals of
prevention. For some plant, goals of prevention must be
constrained to a region of time and the planner must
allow new goals of prevention to be added during
planning. For example, consider a plant in which a
chemical h needs to be continuously added to a reaction
vessel during a reaction lasting 10 h. There are six routes
that h can flow along from its supply tank to the
reaction vessel. At all times during the reaction at least
one route must be open to the flow of h. However, the
route that is used during the first 5 h may be different
from the route that is used in the last 5 h. This may
happen if one of the pipes in the original flow route is
needed in the achievement of some other objective of the
planner. Protecting the flow of h during the reaction is
the same as maintaining a goal of prevention which
guards against closing all six flow routes during the
reaction.
The explicit strategy provides access to the algorithm

which detects a goal of prevention violation. It is
possible to change this algorithm so that some goals of
prevention are only noticed in certain periods of time
during a plan. It is also possible to have the algorithm
look for all the violations of a new goal of prevention
rather than just the violations resulting from the newest
action. CEP follows the approach taken by Fusillo and
Powers (1987) but extends it to least commitment
planning.
An explicit strategy for planning with goals of

prevention has two parts: an algorithm to monitor the
safety of a plan and detect violations of goals of
prevention, and an algorithm to restore the safety of a
plan after a goal of prevention violation is found. In
CEP these two algorithms are run at the end of each
planning cycle.

4.2. Detecting violations and repairing them

The safety of a plan can be evaluated incrementally by
examining each action as it is added to the plan. This
strategy was first suggested by Rivas and Rudd (1974).
This evaluation is based on the idea of an action causing
a goal of prevention violation. In CEP, a new action is
said to necessarily cause the violation of a goal of
prevention :ðp1 ^ p2 ^ � � � ^ pnÞ if the new action
necessarily achieves pj 2 p1 . . . pn at some point s and
the goal of prevention is violated at s. This is not quite
the intuitive idea of causation because, by the definition,
an action can cause a violation that already existed
before that action was added to the plan.
A new action is said to possibly cause a goal of

prevention violation if there is some completion of the
plan in which the action necessarily causes a goal of
prevention violation. This definition is sufficient for our
needs. If the initial state of a plan is safe and each action
does not possibly cause a goal of prevention violation
then the plan as a whole is safe for two reasons. Firstly,
if no action causes a violation then the plan cannot
contain a violation to which any action contributes.
Secondly, part of the STRIPS assumption is that the
world state will not change except as the result of an
action. If a goal of prevention is violated by a plan then
at least one of the actions must contribute to this
violation.
DetectViolation () (Fig. 7) is the procedure in CEP

to find whether a new action possibly causes a goal of
prevention violation. The heart of this procedure is a
routine to examine a point s in a partial plan and decide
whether a goal of prevention is violated at that point.
This routine can be implemented using a simplified
planner which cannot add new actions to the plan. The
simplified planner is given the task of achieving all the
terms in the goal of prevention at the point s. Each term
is treated as an end goal. We reason that the simplified
planner can achieve its end goals if and only if the goal
of prevention is violated at s in some completion of the
plan.
At worst the simplified planner will have to consider

every completion of a partial plan in order to achieve the
goals that it has. In CEP each partial plan has a finite
number of completions because all planning variables
are constrained to sets of possible values and because a
plan can be ordered only in a finite number of ways.
Hence the simplified planner has a finite search space.
The search space does not contain loops, mainly because
solving a goal does not create new subgoals, and so
planning is deterministic.
For this implementation a set of sensible values for s

was needed. The possible values were limited to the set
of actions achieving literals in the goal of prevention.
The reasoning is that one of these achievers must come
last, or at least no latter than any other achiever. At this

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–168

EAAI: 537 -

UNCORRECTED P
ROOF

latest point, all terms in the goal of prevention must be
true and so this point is a candidate value for s. It is not
clear how to predict which achievers will come last and
so each achiever must be tried as a possible value of s.
The implementation also required a strategy for

handling the variables in the goal of prevention. Any
such variables will be implicitly universally quantified (a
goal of prevention holds for any binding of its
variables). CEP represents the variables in a goal of
prevention by creating a set of plan variables to
associate with the goal of prevention variables. The
simplified planner is allowed to constrain these new
variables as normal. In effect, the simplified planner is
directed to find the violation of any instance of a goal of
prevention.
When a goal of prevention violation is found in a

plan, the planner must either resolve the violation or
backtrack. The plan cannot ignore the violation and
produce an unsafe plan. For completeness, all non-
redundant methods of resolving each violation must be
considered. A goal of prevention violation occurs if for
each term in the goal of prevention there is some action
which asserts that term (the achiever of the term) and no
action which possibly denies (or clobbers) the term
between the point at which it is achieved and the point s

where the goal of prevention is violated. A goal of
prevention violation is said to have been resolved if the
DetectViolation() algorithm will not signal the same
violation again. Intuitively, two violations are the same
if they involve the same achievers and the same goal of
prevention.
There are exactly two ways that a goal of prevention

violation may be resolved. First, one of the literals in the
goal of prevention can be denied between the point it is
achieved and s. This will prevent the success of step 11
or step 12e in the DetectViolation() algorithm.
Second, variables can be constrained to prevent some
achiever from matching the proper term in the goal of
prevention, and thus prevent the success of step 3 or step
7 or step 12b in the algorithm. No other steps in the
algorithm can be prevented from succeeding without
erasing part of the current plan structure.

5. Using pairs to reduce planner search space

Having looked at how flow and valve sequencing is
handled in Section 3, and the use of goals of prevention
to deal with safety in Section 4, we finally consider how
CEP can represent knowledge about where flows

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

Fig. 7. The algorithm DetectViolation ().

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–16 9

EAAI: 537 -

UNCORRECTED P
ROOF

originate without tying its domain representation too
tightly to the topology of individual plants. First pairs
are defined in terms of how CEP functions, and then
their use as a knowledge representation in process pant
is considered.

5.1. What pairs are

Pairs can be seen as a straightforward but useful
extension to the expressiveness of the STRIPS formal-
ism still widely used in planning. Recent work (Long
and Fox, 1998) distinguishes between three types of
extensions to STRIPS: purely syntactic extensions,
which make domain description easier but do not
change its scope; extensions which allow new domain
properties to be represented (Erol, 1995); and extensions
which allow extra domain-specific knowledge to be
represented so as to reduce the search problem for the
planner in some way. Pairs are an example of this third
type of extension, which, like the second type, requires
associated changes to the planning algorithms used.
The earliest planners, including STRIPS, represent

planning variables as a receptacle that can hold a value
or another variable or nothing. A useful aspect of
STRIPS variables is that they support co-designation. A
goal on(?x-5,table) can be solved by a goal achieving
on(?z-6,table) without binding ?x-5 or ?z-6 to
particular values. This is important if the solving action
has preconditions which also involve ?z-6 because the
planner is still free to solve the precondition for any
value of ?z-6.
Later planners also allowed non-codesignation con-

straints between variables and values. Examples are
Chapman’s TWEAK (Chapman, 1987) and Weld’s POP
(Weld, 1994). Non-codesignation constraints occur
when the planner seeks to prevent an action from
clobbering (that is, negating) the achievement of a goal.
For example, to prevent an action with the effect on(?x-
3,blue-block) from clobbering the achiever of on(?z-
6,table) the planner must ensure that ?z-6 and ?x-3
are separate objects by applying a non-codesignation
constraint. This is the second method referred to above
for handling the violation of a goal of prevention.
As an extension of this idea, some planners allow

variables to be constrained to a set of possible values.
Inconsistencies can then be discovered more quickly
because the planner can watch for variables that have
exhausted their set of possible values. In a finite domain,
associating a variable with a set of possible values is the
same as giving that variable a type. For example,
associating ?p with the type ‘‘person’’ is the same as
restricting ?p to the finite set of people that are known to
the planner.
However variables may also be constrained by their

relationship with other variables. For example, if a
person ?p is to perform a job ?j then we could require ?p

to be qualified to perform ?j. Often these relationships
are represented using predicates, for example quali-

ed for(Mary,Java). A relationship between a set of
variables may be static or dynamic in a given domain.
Dynamic relationships can change over the length of a
plan}it might be possible for John to qualify for
software testing}while static relationships are not
affected by any of the operators in the domain and so
cannot change over the plan. For example, it may be the
case that none of the operators in the domain cause a
person to become qualified or disqualified. In this case
we can describe them as invariants (McLuskey and
Porteous, 1997).
Planning theory has been developed with dynamic

predicates in mind. Most planners use a complex modal
truth criterion just so they can reason about the state of
dynamic relationships in a changing plan. Such a
criterion is not needed to reason about static relation-
ships, which can be handled as a special case, yet most
planners treat static relationships in the same way that
they treat dynamic relationships in spite of the
inefficiency this introduces. An exception is the use of
typing just mentioned, as a type can be seen as a static
relationship with an arity of one. Pairs represent a
generalisation of typing so that all static relationships
are treated as variable constraints, with a resulting gain
in efficiency that turns out to be very important in a
heavily interconnected domain such as a process plant.
CEP’s implementation is a simple one. It assumes that

all the variables in a relationship are unbounded. If
Mary is the only Java programmer then it is possible to
reason that non-codesignating ?p with Mary also non-
codesignates ?j with Java. However it is more common
to reason that binding ?p to John, or any other value
except Mary, non-codesignates ?j with Java.
Thus pairs represent the possible values that related

variables can take. For example, the pair 5Mary,Java>

represents that Mary is one of the people that can
program in Java. One can also represent negative
knowledge}for example, in a negative relationship,
5John,Drive> would represent that John is one of the
few people who cannot drive. For simplicity, CEP
assumes that most relationships between variables are
binary}hence the term pairs. So, while CEP can reason
about a person being qualified for a job it cannot
directly reason about the safety of storing a chemical at
a particular temperature in a particular container.
However, separate pairs linking the storage of the
chemical and the temperature and the temperature and
the container can be set up.
In the data structure for a variable, a record is kept of

the pairing constraints which apply to that variable. The
record includes the list of pairs in the relationship,
whether this relationship is positive or negative and
which side of the pair should match the variable. Pairing
constraints, like typing constraints, are applied when a

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–1610

EAAI: 537 -

UNCORRECTED P
ROOF

variable is created. When a variable is bound to a value,
the pairs on that variable are simply translated into non-
codesignation constraints. In the negative relationship
above, if ?p binds to John then ?j is non-codesignated
with Drive and all other jobs mentioned against John.
In the positive relationship above, if ?p binds to Mary

then ?j is non-codesignated with all jobs except Java and
the other jobs mentioned against Mary. When two
variables co-designate, the list of pairing constraints is
simply unified. Pairing constraints are simply ignored
when non-codesignation constraints are applied.

5.2. Using pairs to represent plant knowledge

From a declarative perspective, a chemical plant
consists of a (usually very large) set of components and
connections. Each component can be represented as a
frame in an equipment hierarchy, while the topology is
represented by specifying for each component to which
other components it is immediately connected. It should
be noted that components are instances of generic pieces
of equipment such as valves, pumps or vessels, but
topology is specific to a particular plant. Knowledge of
both components and topology is easy to acquire
through the same CAD system which is used to design
the plant (Aylett et al., 1997).
It is much more difficult to acquire the procedural

knowledge for the domain, the behaviour of the plant,
which is embodied in planning operators such as that
seen in Fig. 4. Planning operators not only have to
accurately model the behaviour of plant components,
but also take into account the way in which the planning
system itself functions. This dual role can make them
hard to define successfully even for experts in a
particular planning system. In the INT-OP project the
assumption was made that the majority of the planning
operators required for a particular plant related to
generic components found as instances in the plant.
Thus all valves or pumps of a particular type in the
equipment hierarchy can be modelled in the same way.
This may be summarised as the position ‘function is
independent of structure’.
It then becomes possible to develop a library of

generic planning operators attached to the equipment
hierarchy. The appropriate planning operators can
simply be loaded for a domain containing the compo-
nents with which they are associated without the
constructor of the domain needing to understand their
internal structure, thus making the system accessible to
chemical engineers rather than to AI experts. The library
currently contains 36 such generic operators (Petley
et al., 1998).
However in AI planning, there is always a risk that

making planning operators more general will multiply
the search effort required to instantiate them for a
particular domain. In particular, every use of a planning

operator which is concerned with a flow of chemicals,
and therefore invokes the valve-sequencing component
discussed above, must instantiate variables for the start
and end points of the required flow. For example, the
vessels known as formers in an ammonia plant require a
supply of natural gas, which comes into the plant from
an external source and flows through a number of pipes
and valves to reach these vessels. A planning operator to
start up a former in an ammonia plant must establish
this flow of natural gas.
Back-tracking across chosen start or end-points for a

flow is particularly expensive because each time the
valve-sequencer must be called to establish the new
route. The interconnectedness of the plant means that
there are always, in the absence of knowledge of the
specific topology of the plant, many such choices. On
the other hand, if knowledge of the specific topology of
the plant is incorporated into planning operators, they
cease to be generic. Thus a mechanism is required which
allows knowledge dependent on topology to be repre-
sented in generic planning operators. Pairs offer just
such a mechanism.
In order to represent topological knowledge inside

planning operators, generic pairs are declared. These are
then matched to plant-specific pairs declared in a
domain file as a part of the description of a particular
plant. Fig. 8 gives an example of the use of generic pairs
(in bold) in a CEP planning operator. The first pair in
Fig. 8 means that when the operator instantiates the
variables ?pilot and ?source the only possibilities will be
the values used in the definitions for the plant-specific
pair unitSource, an example of which is given in Fig. 9.
In the operator of Fig. 8, a flow of fuel is required from
a source into the pilot, and without the pair feature CEP
would have to try all the possible sources during
planning until one was found that was suitable.
However, by using pairs, only the sources defined in a
unitSource pair would be tried, and for the operator in
Fig. 8 only unitSource pairs whose first part was a piece
of equipment of type pilot.
In order to demonstrate the efficiency gains of the

pairs mechanism, a small experiment was conducted
using the DEE domain shown in Fig. 1. In summary, the
plant takes an input of brine and extracts the salt by
means of evaporation, with steam generated in the first
evaporation process used to drive a second. The top-
level operator for this domain, a macro operator which
generates the procedure to start the whole plant, was
implemented in three versions: firstly as an operator
including specific plant knowledge (Fig. 10); secondly as
a generic operator without the use of pairs (Fig. 11); and
finally as a generic operator with pairs (Fig. 12).
Note the differences between these three versions: in

the first, specific plant components are referenced}thus
HE1 is the particular heat exchanger in this plant. In the
second version, specific references to actual plant

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–16 11

EAAI: 537 -

UNCORRECTED P
ROOF

components have been replaced by generic variables for
the classes of components found in a plant of this type.
These are now declared using types in the macro header
(differences and additions in bold). In the third version,
the first two pairs establish, together with the inequal-
ities above them, that two different heaters are required,
one for each evaporator. Pair 2 then identifies a catchpot
as linked to the first heater and a condenser as linked to
the second heater.
In order to even out variations on the Sun Sparc5

being used to run this domain, the problem was run 10
times for each version of the planning operator. The
results can be seen in Table 1. It can be seen that a
high penalty of an over 35% increase in planning time
is paid for the generic operator without pairs. This
is striking given that 20 planning operators are needed
in all for this problem and the final plan contains
236 steps. However, once the four generic pairs are
included in the operator, the increase in planning time is
cut to less than 1%. The use of pairs is thus shown to
make a substantial contribution to planning efficiency.
In other plant domains, the use of pairs has allowed the
planning system to find a solution where previously it
failed.

6. Results and conclusions

Table 2 shows some comparative times for the
generation of operating procedures in some of the case
studies carried out. It can be seen that these times are
quite acceptable for interactive use. The metals extrac-

tion system is the one case study in which planning was
relatively slow}this reflected a temporal complexity of
flow in which a particular route supported a flow in one
direction followed by a later flow in the opposite
direction. The flow interface had not been designed
with this in mind and it is likely that further work to
extend it would reduce the planning effort required.
Appendix A gives an example of the output of the

system}the plant operating procedure for starting up

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

Fig. 8. Generic pairs in a planning operator.

Fig. 9. Pairs declared for a specific plant.

Fig. 10. A plant specific planning operator.

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–1612

EAAI: 537 -

UNCORRECTED P
ROOF

the DEE plant. This procedure was checked by an
expert in the operation of the plant and found to be
correct, though initially not quite the same as the one a
human would have produced (Aylett et al., 1997). The
aim of the project was to produce correct procedures in
a reasonable time, and this has been met}however
issues of clarity, justifying each step and spatial
influences on the ordering of steps}all of which are
important to end-users}would require further work.
This paper has argued that AI planning technology is

an appropriate choice for the combinatorial sequencing
problems involved in generating plant operating proce-
dures because of its specialist algorithms and represen-
tations. AI planning provides generic mechanisms which
allow it to be applied to this problem in a variety of
process plant}for example the DEE shown in Fig. 2, as
well as the back-end loop of an ammonia plant and the
metals extraction unit of an acetic acid plant. By
providing the appropriate domain knowledge, CEP
could be applied to any other continuous process plant
(for example, the making of cottage cheese). With
suitable extension it could also be applied to batch
plant.

The system does not aim at optimisation of the
resulting plant operating procedures, but this could be
carried out as a back-end operation of the type discussed
in Crooks and Macchietto (1992). It is not designed to
perform calculations nor to reason explicitly about
time}sequencing handles time implicitly (in terms of
before, after and unordered) but does not allocate time to
processes. This has not been found to be a problem in
the plant considered and may be more properly seen as a
process design consideration than one that is central to
operability.
While CEP is based on an entirely generic approach

to planning (essentially the STRIPS formalism men-
tioned in a number of places above) it has nevertheless
incorporated mechanisms specifically aimed at dealing
with process plant, though in each case it has done this
in a very general way. Thus the valve sequencing
component discussed in Section 3 is specific to the
routing of chemical flows, but the macro interface used
to implement it could be used to incorporate any other
subplanner that returned a fragment of plan. The
handling of safety is a major preoccupation of this
particular domain, but the goals of prevention discussed

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

Fig. 11. A generic planning operator without pairsI.

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–16 13

EAAI: 537 -

UNCORRECTED P
ROOF

in Section 4 are also a very general mechanism which
can be used in any domain for which there are forbidden
intermediate states. Finally, the pairs mechanism of
Section 5 is of particular use in allowing generic
planning operators to take account of the topology of
particular plants, but is a general facility for mutual
constraints between variables which could be applied to
quite different domains.

In 1996, when the work reported here began, the
most current techniques in use in those AI planning
systems which were being applied to real-world pro-
blems were used as a starting point. In the following
years, new algorithms have been developed by AI
planning theoreticians looking for ways of producing
more efficient planners. The GraphPlan algorithm
(Blum and Fust, 1997) is the best known of these

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

Fig. 12. A generic planning operator with pairs.

Table 1

Results of using pairs

Operator Planning time (s)

Specific 20.2

Generic, no pairs 27.4

Generic plus pairs 20.35

Table 2

Generated procedures

Plant Proc. steps Time taken (s)

Cottage cheese 20 51

Pulsed column rig 17 51

Double-effect evaporator 238 4

Ammonia back-end loop 168 3

Acetic acid metals extraction 351 348

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–1614

EAAI: 537 -

UNCORRECTED P
ROOF

developments and has resulted in a great deal of
subsequent work, for example Kambhampati et al.
(1997), Weld et al. (1998), Cayrol et al. (2000) to
name only a few. If one were to start in the year 2000,
would this approach be better as a way of generating
plant operating procedures than the ones discussed
above?
One can only answer such a question provisionally,

since future work might meet some of the objections, but
as things stand the answer is a definite no. The first
reason for saying so is that it is clear that this approach
as of now does not scale up to a problem the size of a
real chemical plant. GraphPlan in its pure form builds a
propositional version of the domain before planning,
only feasible if the number of schemas and constants is
small. Currently, although some initial work has been
carried out, there is no hierarchical version of Graph-
Plan, while hierarchy is fundamental to the way plant
operating procedures are constructed in the real world
as well as to the way designers conceive of process
plants.
Indeed, at this point, nobody to our knowledge has

applied a GraphPlan planner to a real-world problem,
while in 1996 the existence of substantial applications of
planners like OPLAN, SIPE and PRODIGY was an
existence proof that these technologies could cope with
the necessary scale.
A second set of problems is associated with how a

user would interact with a GraphPlan planner. The use
of planning operators in CEP allows the user to
understand what subtask the planner is working on as
well as the causal links involved. The propositional
decomposition needed for the GraphPlan algorithm is
much harder to interact with. Thus the technology lacks
the necessary maturity at this point to be a suitable
candidate for the domain so successfully tackled by
CEP.
In conclusion, it appears that the combination of

mature AI planning mechanisms with appropriate
extensions has allowed the INT-OP project to solve
the OPS problem for real-world plant in a way that
was not possible for previous systems. It is hoped
that this will pave the way for further applications
of the technology}as for example recent work in
developing control sequences at a lower level (Castillo
et al., 1999). If this paper causes other groups working in
engineering applications of AI to consider AI planning
as a possible approach, then it will have met its
objective.

Appendix A Operating procedure generated by CEP to

start-up the DEE (part)

1. Set controller LRC 5 and turn on.(46)
2. Set controller FRC 6 and turn on.(45)

3. Set controller LRC 7 and turn on.(44)
4. Set controller FRC 8 and turn on.(43)
5. Set controller TRC 9 and turn on.(42)
6. Open valve HV7.(185)
7. Open valve HV25.(232)
8. Achieved: Flow route from Input2 to MT1 for

processWater.(228)
9. Open valve HV6.(211)
10. Turn on pump P3.(210)
11. Achieved: Flow route from MT1 to MT1 for

brine.(206)
12. Mixing in MT1.(194)
13. Open valve HV32.(202)
14. Achieved: Flow route from Input8 to MT1 for

salt.(198)
15. Close valve HV32.(203)
16. Achieved: Stopped flow of salt to MT1.(197)
17. Warning: Make sure that all the salt needed has

entered system before stoppingflow.(192)
18. Mixing brine in MT1.(190)
19. Open valve HV16.(59)
20. Open valve HV20.(60)
21. Achieved: Flow route from E1 to Output10 for

steam.(55)
22. Open valve HV4.(183)
23. Open valve HV5.(182)
24. Turn on pump P3.(180)
25. Turn on pump P1.(181)
26. Achieved: Flow route from MT1 to E1 for

brine.(176)
27. Open valve HV11.(187)
28. Open valve HV2.(189)
29. Open valve HV10.(188)
30. Turn on pump P2.(186)
31. Achieved: Flow route from E1 to MT1 for

brine.(172)
32. Open valve HV26.(104)
33. Achieved: Flow route from GP1 to Output100 for

steam.(100)
34. Open valve HV31.(111)
35. Open valve HV24.(112)
36. Achieved: Flow route from Input3 to Output4 for

coolingWater.(107)
37. Open valve HV22.(90)
38. Achieved: Flow route from Input5 to GP1 for

steam.(86)
39. Open valve HV28.(97)
40. Achieved: Flow route from Input5 to TD1 for

steam.(93)
41. Wait until air flushed out of GP1.(77)
42. Close valve HV26.(146)
43. Achieved: Flow route for steam (heat source)

through GP1 established.(76)
44. Achieved: Flow route from TD2 to Output8 for

steam.(161)

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–16 15

EAAI: 537 -

UNCORRECTED P
ROOF

References

Aarup, M., Arentoft, M.M., Parrod, Y., Stokes, I., Vadon, H., Stader,

J., 1992. Optimum-AIV: A knowledge-based planning and

scheduling system for spacecraft AI. In: Zweben, M., Fox, M.S.

(Eds.), Intelligent Scheduling. Morgan Kaufmann, Altos, CA, pp.

451–470.

Aelion, V., Powers, G.J., 1991. A unified strategy for the retrofit

synthesis of flowsheet structures for attaining or improving

operating procedures. Computers and Chemical Engineering 15

(5), 349–360.

Aylett, R.S., Jones, S.D., 1996. Planner and domain: domain

configuration for a task planner. International Journal of Expert

Systems 9 (2), 279–318.

Aylett, R.S., Petley, G.J., Chung, P.W.H., Soutter, J., Rushton, A.,

1997. Planning and chemical plant operating procedure synthesis: a

case study. In: Steel, S., Alami, R. (Eds.), Recent Advances in AI

Planning Planning. Springer, Berlin, pp. 39–51.

Aylett, R.S., Soutter, J., Petley, G.J., Chung, P.W.H., Rushton, A.,

1998. AI planning in a chemical plant domain. Proceedings, ECAI

‘98, pp. 622–626.

Aylett, R.S., Soutter, J., Petley, G.J., Chung, P.W.H., Edwards, D.W.,

1999. Increasing planning efficiency and modelling expressiveness

through the use of Pairs. Proceedings, 18th Workshop of the UK

Planning and Scheduling SIG, University of Salford, Dec. 1999.

Bernard, D., Dorais, G., Fry, C., Gamble, E., Kanefsky, B., Kurien, J.,

Millar, W., Muscettola, N., Nayak, P., Pell, B., Rajan, K.,

Rouquette, N., Smith, B., Williams, B., 1998. Design of the remote

agent experiment for spacecraft autonomy. Proceedings of the 1998

IEEE Aerospace Conference, Aspen, CO.

Blum, A., Fust, M., 1997. Fast planning through planning graph

analysis. Artificial Intelligence 90, 282–300.

Castillo, L., Fdez-Olivares, J., Gonzalez, A., 1999. Automatic

generation of control sequences for manufacturing systems based

on nonlinear planning techniques. Artificial Intelligence in En-

gineering, 1999.

Cayrol, M., Regnier, P., Vidal, V., 2000. New results about LCGP a

least-commitment GraphPlan. Proceedings, AIPS 2000 (Eds.),

Chien, S., Kambhampati, S., pp. 273–282.

Chapman, D., 1987. Planning for conjunctive goals. Artificial

Intelligence 29, 1987.

Chien, S.A., Govindjee, A., Estin, T., Wang, X., Griesel, A., Hill Jr.,

R., 1997. Automated Generation of Tracking Plans for a Network

of Communication Antennas. Proceedings 1997 IEEE AeroSpace

Conference, Aspen, CO, Feb. 1997.

Chien, S., 1994. Using AI techniques to automatically generate image

processing procedures: a preliminary report proceedings, AIPS 94,

Chicago IL, pp. 219–224.

Crooks, C.A., Macchietto, S., 1992. A combined MILP and logic-

based approach to the synthesis of operating procedures for batch

plants. Chemical Engineering Communications 114, 117–144.

Erol, K. 1995. Hierarchical task-network planning systems: formaliza-

tion, analysis and implementation. Ph.D Thesis, Computer Science,

University of Maryland.

Fikes, R.E., Hart, P.E., Nilsson, N., 1972. Learning and executing

generalised robot plans. Artificial Intelligence 3, 251–288.

Foulkes, N.R., Walton, M.J., Andow, P.K., Galluzo, M., 1988.

Computer aided synthesis of complex pump and valve operations.

Computers and Chemical Engineering 12, 1035–1044.

Fusillo, R.H., Powers, G.J., 1987. A synthesis method for chemical

plant operating procedures. Computers in Chemical Engineering

11 (4), 369–382.

Georgeff, M.P., 1987. Planning. Annual Review of Computer Science

2, 359–400.

Ivanov, V.A., Kafarov, V.V., Perov, V.L., Reznichenko, A.A., 1980.

On algorithmization of the start-up of chemical productions.

Engineering Cybernetics 18, 104–110.

Kambhampati, S., Lambrecht, E., Parker, E., 1997. Understanding

and extending graphplan. In: Steel, S., Alami, R. (Eds.), Recent

Advances in AI Planning, 4th European Conference on AI Planning,

ECP97. Springer, Berlin, pp. 260–272.

Kinoshita, A., Umeda, T., O’Shima, E., 1981. An algorithm for

synthesis of operational sequences of chemical plants. 14th

Symposium on Computerized Control and Operation of Chemical

Plants, Vienna, Austria, 1981.

Long, D., Fox, M., 1998. Type analysis of planning domain

descriptions. Proceedings, 17th Workshop of the UK Planning

and Scheduling SIG, University of Huddersfield, ISSN 1368-5708,

pp. 123–132.

McLuskey, L., Porteous, J., 1997. Engineering and compiling domain

models to promote validity and efficiency. Artificial Intelligence

95 (1), 1–65.

Penberthy, J.S., Weld, D.S., 1992. UCPOP: a sound, complete, partial

order planner for ADL. Proceedings of the Third International

Conference on Knowledge Representation and Reasoning.

Petley, G., Aylett, R.S., Chung, P.W.H., Rushton, A., 1998.

Development of a reusable operator library for chemical plant

domains. Proceedings of the 17th Workshop of the UK Planning

and Scheduling Special Interest Group Huddersfield University.

Rivas, J.R., Rudd, D.F., 1974. Synthesis of failure-safe operations.

A.I.Ch.E. Journal 20 (2), 320–325.

Sacerdoti, E.D., 1974. Planning in a hierarchy of abstraction spaces.

Artificial Intelligence 5, 115–135.

Schank, R.C., Abelson, R.P., 1977. Scripts, plans, goals and under-

standing}an inquiry into human knowledge structures. The

Artificial Intelligence Series. Lawerence Erlbaum Associates, Hills-

dale, New Jersey.

Soutter, J., 1997. An integrated architecture for operating procedure

synthesis. Ph.D. Thesis, Loughborough University, Loughborough

LE11 3TU, UK.

Soutter, J., Chung, P.W.H., 1996. Partial order planning with goals of

prevention. Proceedings, 15th Workshop of the UK Planning and

Scheduling SIG, Vol. 2. John Moores University, Liverpool, UK,

pp. 300–311.

Soutter, J., Chung, P.W.H., 1997. Utilising hybrid problem solving to

solve operating procedure synthesis problems. I.Chem.E. Research

Event 97, vol.2. Nottingham, UK, pp. 793–796.

Tate, A., Drabble, B., Kirby, R., 1994. O-Plan2: an open archi-

tecture for command planning and control. In: Zweben, M., Fox,

M.S. (Eds.), Intelligent Scheduling. Morgan Kaufmann, Los Altos,

CA.

Veloso, M., Carbonell, J., Perez, M.A., Borrajo, D., Fink, E., Blythe,

J., 1995. Integrated planning and learning: The PRODIGY

architecture. Journal of Experimental and Theoretical AI 7(1).

Weld, D., 1994. An introduction to least-committment planning. AI

Magazine 15, 27-6.

Weld, D., Etzioni, O., 1994. The first law of robotics (a call to arms).

In Proceedings 12th National Conference of A.I. AAAI Press, 1994.

Weld, D., Anderson, A., Smith, D., 1998. Extending graphplan to

handle uncertainty and sensing actions. 15th National Conference

on AI, AAAI98, AAAI Press, pp. 897–904.

Wilkins, D.E., 1988. Practical planning: Extending the Classical AI

Planning Paradigm. Morgan Kaufmann, Los Altos, CA.

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

R.S. Aylett et al. / Engineering Applications of Artificial Intelligence 0 (2001) 1–1616

EAAI: 537 -

