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Abstract

This paper argues that AI planning is a technology ripe for use on
world problems as shown by a number of current applications.
introduction is given to AI planning, and then followed by a conside
ation in detail of the successful application of this technology to ge
erating operating procedures for chemical plants. A description
given of the methodology for developing planning domains a
finally the results of its application to operating procedure synthe
discussed.

1.0  Introduction
Historically there has been something of a gulf between the Knowledge Based
tems community and workers in Artificial Intelligence (AI) planning. The forme
have demonstrated notable success in solving real-world problems, often u
fairly general-purpose Knowledge Representations (KRs) - e.g. rules, frames, p
cate calculus - and general purpose inferencing techniques on those KRs - e.g.
driven reasoning and goal-driven reasoning. Planning was seen as just an
application area for techniques such as rules or constraint propagation [Stefik
81b; Hayes 90].

Meanwhile workers in AI planning investigated KRs based on the plannin
specific concepts of actions, pre-conditions and post-conditions together with a
rithms specifically intended for sequencing actions and dealing with interacti
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between them. Indeed, given that a general-purpose planning system provides
determined problem-solving method and a set of generic actions and data-s
tures, it is closer to an automated knowledge acquisition tool like KNACK [Klink
88] or OPAL [Musen et al 87] than it is to an expert system shell.

However the AI planning community was often seen as preoccupied with t
ory and unsuccessful in applying that theory to real-world problems. In this pa
we argue that AI planning has now reached a significant maturity in which the s
cialised techniques it offers are being successfully applied to real-world proble
We support this argument by discussing our own work in applying AI planning
the generation of operating procedures for chemical process plant, and we
some general lessons for others applying this technology.

The maturity of AI planning technology can be seen in the ARPA/Rome La
Planning Initiative (ARPI), which was launched in the US from 1990, and is c
rently at phase IV, with total funding to date of $70 million. Early in this pro
gramme, a number of integrated feasibility demonstrations showed, in operati
environments, the relevance of generative planning in the domain of military
campaign planning. A 1994 US department of commerce report stated tha
deployment of a single logistics support aid called DART (the first of a series
demonstrators within ARPI) during the Desert Storm campaign paid back all
government investment in AI/KBS research over a 30 year period.

One may also cite a number of very successful Space systems. For exam
the Optimum-AIV system [Aarup et al 92] is now used operationally by the Eu
pean Space Agency for planning the integration of equipment into the loading b
of the Ariane rocket. NASA routinely uses the planning system DPLAN [Chien e
97] for operations planning of its Deep Space Communications Network, and M
mission VICAR [Chien 94] to organise vision-processing modules for scient
extracting data from space probes or satellites.

On May 17th, 1999, NASA activated the Remote Agent experiment (RAX)
board the Deep Space 1 (DS1) spacecraft. RAX is an autonomous agent archite
that comprises of three modules: a constraint-based Planning and Scheduling
tem that generates plans from first principles using a temporal domain mod
Smart Executive for executing the plans, and a model-based Mode Identifica
and Recovery system which carries out fault diagnosis and suggests mode rec
urations to the Smart Executive. Experiments carried out during May have sh
that the planning system is capable of successfully controlling the spacecraft g
very high-level commands from the ground, and of coping with both equipment
sensor failures.

The domains of these systems are all rather different: what they have in c
mon is that they solve difficult and potentially combinatorial sequencing proble
We will show that generating operating procedures for chemical process plant
these same characteristics, and we argue that AI planning is a good solutio
problems involving difficult and potentially combinatorial sequencing problems.
This success forms part of the impetus behind an increasing number of internat
planning-centred events: the biennial international AI Planning and Schedu
Conference, the transformation of the European Planning and Scheduling Work
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series into a full conference from 1998 and the recent (October 98) setting up o
EU funded network of excellence for planning, PLANET.

2.0  AI Planning
Planning is the task of choosing and ordering the sequence of actions (steps) n
to achieve a set of objectives [Weld 94]. We distinguish it from scheduling, in wh
the main issue is resource allocation for the steps found in a plan. A planning p
lem is usually defined by a domain model and by two states of that model: the in
state and the goal state. The domain model describes the objects in a domain a
as the actions, these actions are normally described by operators, that can b
formed with the objects and the constraints on these actions.The initial s
describes the state of the domain immediately before any actions have been c
out, with the goal state describing the facts which must be true after the plan
been completed.

The planning task can be split into two closely related subtasks. The first s
task involves finding the steps needed to solve each objective of the procedure
example, consider three blocks A, B, and C all on a table, the planner has an a
which allows it to move a block from the table to on top of another block if bo
blocks are clear. Now possible actions are move A onto C or move B onto C, th
fore if the goal is to get A on B on C, then moving A onto C will mean the plann
will have to back track and choose action move B onto C.

The second subtask involves detecting and resolving conflicts between
steps needed to achieve different objectives. This can be carried out by reord
conflicting actions, inserting actions to resolve the conflict, or by replanning, as
cussed in [Chapman 87].

During planning, the search space can become enormous if no technique
used to limit its size. Least-commitment planning [Penberthy & Weld 92] is
approach to reducing search spaces. It encompasses non-linear planning, in
only essential ordering constraints between actions are introduced, leaving all o
unordered (in pseudo-parallel), allowing a whole set of plans to be represente
once. It also includes constraining the possible instantiations of an object used i
plan rather than committing to a particular instantiation. Hierarchical Task Netw
(HTN) planning also reduces the search space by representing a problem as a h
chy of tasks that need to be achieved, allowing a plan or part of a plan to be re
sented by a high level of abstraction, with the lower levels, and more detailed pa
the plan, left for later expansion.

In this paper we will look at how AI planning has been successfully applied
a real word problem of generating operating procedures for chemical plants.

3.0  Operating Procedure Synthesis
Operating Procedure Synthesis (OPS) is the task of automatically generating op
ing procedures for chemical process plants through the use of computer algorit
During the last twenty years, OPS research has been carried out by the che
engineering community into the automatic planning of OPS [Rivas & Rudd
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Ivanov et al 80; Foulkes et al 88; Fusillo & Powers 88; Aelion & Powers 9
Crookes & Macchietto 92], rather than by AI researchers. Yet there is an intuitiv
obvious relationship between an operating procedure and the output of an AI P
ning system.

The steps in a procedure are actions to be carried out; the procedure is des
to take a plant from a start state to an end state; each step in the procedure m
carried out in the appropriate state and will result in a new state. Only [Aelion
Powers 91] of the works referenced above have seriously considered AI Plan
technology (in this case a linear STRIPS type engine) and modern hierarchica
least-commitment techniques have not been applied. This has limited the sco
the systems developed to 'toy' plant domains.

3.1  Chemical Engineering Planner (CEP)
The Chemical Engineering Planner (CEP), has been developed over the las
years, initially as a PhD project [Soutter 97] and in the last three years as part o

EPSRC-funded INTergrating OPerability (INT-OP) project*,** . CEP has been
developed incrementally through case studies of increasing scope and compl
and as we show is now more capable than any of the systems referenced earlie
will only summarise the structure of CEP in this paper.

CEP divides the tasks involved in OPS into three areas: planning using op
tors, the handling of safety considerations and valve sequencing. The first tw
these three areas are handled by a state-of-the-art least-commitment planner
berthy & Weld 92], which uses the concept of ‘goals of prevention’ [Soutter
Chung 96] to prevent actions being incorporated into the operating procedure
will take a plant through any unsafe states. Safety is clearly a particular concern
chemical plant domain: a plan which moves the plant to a desired end-state is u
ceptable if - for example - along the way explosive gases have been mixed toge
‘Goals of prevention’ are defined as safety restrictions as part of the overall des
tion of the plant.

CEP deals with valve sequencing as a special case. A characteristic o
opening and closing of valves in a chemical plant - actions required in order to
duce flows of chemicals to specified vessels or other components - is that the e
of the action at a particular valve is dependent on associated actions at other va
However an assumption of the standard AI planner representation of actions is
the effect of an action should be represented through its post-conditions -
should therefore always be the same. Valve operations violate this assum
[Aylett et al 98].

Therefore, valve sequencing is handled by a specialist module in CEP that
an approach that we call ‘action synergy’ and is based on work by [O’Shima
Foulkes et al 88]. A maze searching algorithm is used to find a route for a fl
between given start and end points. All the valves around this route are then cl
and finally those actually on the route are opened. Thus CEP can be seen as a
eral-purpose AI planner with domain-related specialist additions.
* Academic Partners: Loughborough University and Salford University.
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** Industrial Partners: BG Plc, BP, Cogsys Ltd, ICI, Science Systems Ltd, a
TCCL.

3.2  OPS Domains
An incremental approach has been taken to our case studies. Initially we looke
‘toy’ problems discussed in operating procedure synthesis literature. The next
of case study was a test rig in the Chemical Engineering department at Lough
ough University, a Double Effect Evaporator (DEE). Finally, the successful comp
tion of the DEE case study led to another move up in domain complexity to ac
chemical plant case studies, an ICI ammonia plant and a BP acetic acid plant.
In this paper we will describe the results from the DEE, with the chemical plant c
studies discussed in less detail due to industrial secrecy. A brief outline of the p
ess for the DEE test rig is shown in Figure 1.

The DEE is a complex domain and is much nearer to a real-world chem
plant than the domains used in previous work. Not only does the DEE set-up con
a larger number of components (67) than in most previous domains, but the nu
of different types of equipment is also large (15), with valves, controllers, pum
heaters, coolers, evaporators, feed tank, mixing tank and a barometric conden

4.0  Planning Methodology
Two closely-coupled steps are involved in applying a planner to a new dom
knowledge acquisition and domain modelling. In the DEE case-study, knowle
was acquired by reading the documentation on the test rig, visiting the double e
evaporator installation, and by interviewing a Loughborough University colleag
with an understanding of the working of the test rig. While there are import
issues here we will not touch on them in this paper.

We will however discuss domain modelling in more detail, as the amount
time and effort required to construct a particular domain model is a major obst

FIGURE 1. Basic Process for Double Effect Evaporator Test Rig
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to the use of AI planning in the solution of real-world problems [Chien et al 96].
CEP is to be used by design engineers for real industrial plant, it must be stra
forward to construct the domain model. We therefore report the lessons lea
from our case studies.

After knowledge acquisition, the information acquired must be transform
into a form that the planner CEP can understand and use. All planners requir
first four parts listed below in their domain model, and CEP introduces a new
ment called pairs:
● Domain description (plant model)
● Planning operators (actions that can be carried out)
● Safety restrictions (constraints on states)
● Pairs (knowledge association)
● Domain problem (the plant operations to be carried out)

4.1 Domain Description - A planner will require a description of what is in the
domain. For example, CEP uses an implementation of a hierarchical frame-b
description developed during earlier work at Loughborough [Chung 93] to mo
individual components in a particular plant. The manual entry of these descript
for every component in a particular plant using CEP’s syntax is non-trivial: it is b
very time-consuming and prone to error. An automatic system was therefore de
oped for producing the domain description. A popular drawing package, AutoCA
has been adapted to provide the standard chemical engineering equipment sy
for the user. When a new piece of equipment is added to the plant diagram, a
box appears prompting the user to add the name and connections for it. Thu
completion of the drawing, the necessary information has been collected to a
the automatic creation of a domain description file.

4.2 Planning Operators- The next stage is to develop the planning operators th
describe the actions that can be used to produce a plan. Where the domain de
tion gives the static content and layout of a plant, planning operators define
behaviour. A CEP operator consists of a goal(s) that can be achieved when the
condition(s) for the operator are true - essentially the STRIPS [Fikes & Nilsson
representation still widely used in AI planning systems in spite of all the oth
changes in the field since then. An example operator is shown in Figure 2. Howe
the primitive operator was supplemented with macro operators, which allow in
mation about the order in which the pre-conditions must be satisfied to be ent
[Aylett et al 98].

Operator development is a time-consuming and difficult part of domain dev
opment and one on which there is minimal guidance in the available literature.
the correctness and efficiency of the planning process in a domain depends
heavily on operator definition.

The more generic the operators, the fewer required, and, even more impor
the greater the scope for re-use. Therefore, a consequence of producing ge
planning operators is the opportunity to create a library of operators for obje
commonly found in a particular domain. For example, in OPS domains, opera
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can be organised around a class hierarchy of equipment found in chemical pl
such as valves, pumps, heat exchangers etc. [Petley et al 98]. A suitably compr
sive library standardises the design of operators by reducing the task to one of s
tion, with possibly some scope for specialisation, and this is the route taken in
work. Indeed, without such a library it is hard to see how CEP could be applie
new plants in an industrial context since one could not expect a plant design e
neer to design the planning operators from scratch. The DEE case study disc
here provided the first generic operators for the library which was extended by
two later case studies, the ICI and BP plants, as new components were encoun
When creating generic operators around a component class hierarchy, one mus
make operators specific enough in relation to the domain description to prevent
amounts of search when instantiating pre and post-conditions [Aylett & Jones
and to capture appropriate differences in functionality. For example, in the DEE
operator at the level of vessel would be too general since there are significant d
ences in functionality between, say, an evaporator and mixing tank, and at insta
tion the planner would have to consider every vessel in a plant.

A hierarchical structure is required for operators in this domain - we fou
there to be a substantial difference in granularity between the task requirement
(e.g. start-up plant in single-evaporator mode) and the primitive action level (
open valve HV5) in OPS domains. This shows [Aylett & Jones 96] a clear need f
hierarchical structure in all the operators in the model. The task of starting up
plant in double-evaporator mode is represented as a high level operator wit
effect which expands into a set of goals satisfied by operators at the next lev
expansion. These in turn may expand the effects further to a new level of opera
The result is a goal-hierarchy which represents the declarative structure of plan
in the domain [Aylett et al 97].

 operator OperateControlValve
 {

aperture ?state1;
aperture ?state2;
controller ?c;

?state1 != ?state2;

achieve
             * aperture of ?c is ?state2;

using
             aperture of ?c is ?state1;

end

print (?n) ‘Set controller ‘ ?c ‘ and turn ‘
                                  [name of ?state2 is ?n;];
 }

FIGURE 2. Operator - Control Valve
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4.3 Safety Restrictions- most planners will require these, for example, in CEP th
constraints prevent unsafe situations from occurring during planning through
specification of incompatible states. An example of a safety restriction for the D
specifies that glass preheater GP1 is not allowed to be started if the state of the
cooler GC1 is stopped, see Figure 3. The reason for this restriction is to pre
energy from entering the plant - a heater on - before there is a mechanism for ener
to leave the plant - a cooler on. Safety restrictions allow issues of safety to be d
with separately from the design of planning operators.

4.4 Domain Problems- Finally, a definition of a problem in the domain for the
planner to solve is required. The problem definition requires two domain states,
at the start and the other at the end of the problem. In general a domain sta
defined by setting the state of each component in the plant, though in practice th
not necessary for end-states in which only the high-level goals to be achieved
specified. From this a planner, such as CEP, will produce a plan consisting
sequence of actions that bring about the specified change in the plant, if one e
for the given operators and restrictions. The AutoCAD tool used to provide
domain description also provides a method for defining the state of the equipm
for a domain state, allowing the domain problem descriptions to be develope
parallel with the domain description.

4.5 Pairs- A chemical plant is a large and complex configuration of numerous co
ponents, producing enormous search spaces when planning. Engineering
Drawings (ELDs) contain extra information associating elements of plant spec
knowledge which CEP can use to narrow down the search space. For example,
the DEE domain state that heat exchanger HE1’s source of heat is from Input4
this input is supplying steam.

5.0  Results
CEP successfully produced operating procedures for the DEE domain. A si
model of the domain allowed procedures to be created for the start-up, shutd
and the isolation of pieces of equipment for maintenance.

 restrictions
 {

prevent
state of GP1 is started;
state of GC1 is stopped;

end
 }

Figure 3. Example Safety Restriction
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The start-up procedure generated by CEP for the DEE contained 52 steps,
19 the total number of operators used in planning. The time taken to generat
operating procedure was under 5 seconds on a Sparc 5. An example section
operating procedure generated by CEP can be seen in Appendix A. Moreover
proved capable of finding alternative procedures via backtracking at the u
request.

5.1  Comparison with Previous Systems
The planner CEP has been used to produce operating procedures using AI pla
for a domain more complex than any other previously attempted. The work of
early 80s [Ivanov et al 80, Kinoshita et al 81] using state-graphs limited sam
problems to plants containing a handful of valves because of the number of s
they generated: 20 valves each with 2 states produces 1,048,576 nodes in a
graph. This demonstrates that OPS is indeed a difficult and combinatorial sequ
ing problem.

Other workers used larger plant [Rivas & Rudd 74] but only considered val
and not vessels. A real-world nuclear fuel processing plant was used in [Crook
Macchietto 92], but this work concentrated on optimising a hand-generated p
CEP has successfully solved every sample problem reported in the OPS liter
except for those requiring numerical calculations. We therefore argue that C
success in our case studies demonstrates a big step in the state-of-the-art for 

5.2  Quality of Results
The procedures produced were evaluated by the domain experts who had been
for the knowledge acquisition. The expert for the DEE found the generated pr
dures adequate - in the sense that the start-up procedure would successfully st
the plant. This is an important result for a domain of this complexity and valida
the overall approach of using AI planning technology on this problem. However
also found the generated procedures in some ways naive - in the sense tha
were not always identical to the ones an expert would produce.

A major example of this concerned the use of the glass preheater (GP1 in
top-left of Figure 3). It is possible to start up the plant without using this prehea
and accordingly CEP originally generated a procedure that did not use it. The
sons for using the preheater during start-up are: the temperature of the brine c
increased in stages, protecting the glass lined vessels, and the control of the te
ature of the brine entering the first evaporator is easier with two heaters. An ex
in operability, seeing that the design contained a glass preheater, would infer th
was there for the purpose of start-up and accordingly use it. This operability kno
edge does not appear to be representable within the confines of planning ope
and we are currently examining the issue in more detail.

5.3  Linking and Ordering Actions
The output of a partial-order planner such as CEP is a plan-network in which o
those actions which must follow each other are ordered with respect to each o
Actions which may be taken in any order appear in parallel in such a representa
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It is usual for the last step in an AI planner to be the transformation of the p
net into a linear sequence, since usually only one-step-at-a-time executio
planned for. This process is known as linearization. The plan net supports user i
action in the linearization process since it shows what actions can be moved
particular linearization and which cannot. The re-ordering of actions may be de
ble for two reasons. Firstly, grouping actions together for operating a certain p
of equipment makes the plan clearer. Secondly, a ‘better’ plan may be produce
taking the actions in a certain order. For example, if two valves have to be ope
manually, then these actions should be together if they are geographically ne
each other in the plant. CEP cannot currently take geographical proximity
account, since the ELD from which it works contains only the topological relatio
ship of equipment.

Linearization of the CEP’s output is now grouped into sequences of acti
where each sequence is linked to a high level goal. This results in the output ap
ing in chunks related to the operation of certain parts of the plant and allows
human operator to understand it more easily. An extension would allow the use
reorder actions manually, subject to the constraints of the plan net, seen as h
desirable by prospective users.

5.4  Generic Operators
In the DEE case study, every component is now operated by a generic operato
of which are found in a component operator library. Moreover, thirteen of th
operators were reused for a subsequent case-study using the back-end loop s
of the ICI ammonia plant, and six for the corrosion metal removal system of the
acetic acid plant, demonstrating the value of a library of planning operators.

A more important issue concerns the extent to which real-world componen
process plant are generic. For example, of the two heat exchangers in the d
effect evaporator test rig, one has an extra out port for the steam used to hea
material passing through the exchanger. In real plants, components are sourced
a variety of manufacturers and so there may be differences in the way each is
structed and operated. If this variation is empirically shown to be very large
generic library of operators might be impossible. An obvious approach to this p
lem is to consider attaching the library of operators more firmly to the compon
hierarchy, with the use of object-oriented inheritance and specialisation mechan
to control variation.

6.0  Conclusions
A number of conclusions can be drawn from our research, some specific to
domain of Process Plant Operating Procedure Synthesis, and others of more g
relevance to industrial applications of AI planning.

A positive conclusion is that the case studies validate the use of state-of-th
AI planning techniques in OPS. As discussed above, this has made it possib
deal successfully with a large and complex domain where conventional KBS te
nology might well have struggled with the combinatorial sequencing.
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During the case studies, it became clear that a number of improvements
needed: in the linearization process, in the valve sequencing component and i
incorporation of general operability knowledge: all of these improvements h
now been made. We argue that this indicates that though general-purpose hier
cal least-commitment planning algorithms are powerful, real domains also req
domain-specific problem-solving along with a great deal of domain-specific kno
edge. Hopefully, in the same way as work in knowledge-engineering methodolo
have identified specific approaches to different types of diagnosis, work in a w
range of real-world planning domains will begin to establish abstract categorie
such domains which will support a more principled approach to the choice of p
ning technologies for particular problems [Valente 95, Aylett & Jones 96].

A number of knowledge engineering issues arose from the DEE case st
Firstly, the time and effort required to develop the domain was substantial, w
about 20 person-days of effort involved in developing the operators without
tools (though a proportion of this was due to a learning curve which would
climbed quicker next time as a result of this experience). Development of tool
assist in domain development is, we believe, vital to the use of AI planning to so
real-world problems. Planning attacks problems more complex than the ave
KBS and therefore tools are much more important. The automatic generation o
domain description for CEP from AutoCAD was one tool developed, and the libr
of generic operators derived from the case study is another even more impo
one. Not discussed here were other tools to help the user in running CEP, co
tively called CEP-Run. Finally, CEP-Tool was created to give further user suppo
the development of operators, providing operator templates, an operator editor
interface for interacting with the operator library. Validation and verification too
such as those described in [Chien 96] are also important.

The production of a library of generic operators in the DEE case study illum
nated a particular problem. It is often possible to solve problems in a particular p
ning domain by ad hoc fixes, frequently in the planning operators. As CE
capabilities were increased, so it became possible to solve each problem in a
general and principled way. Thus the ability to produce a library of generic ope
tors is not only an indispensable tool for domain development in the future, i
also, we argue, indirectly a measure of the adequacy of a planner.

We argue that AI planning technology has now reached a level of matu
where it can be successfully applied to difficult real-world problems. Just as K
technology in general has made a powerful contribution to the management of m
ufacturing systems, so AI planning has the potential to solve problems in this
previously seen as too complex to be tackled successfully.

In particular, Operating Procedure Synthesis is a new applications area fo
planning, but we suggest one of considerable promise. The INT-OP project de
oped a system that can be used in a real-industrial environment to produce ope
procedures and with further development could be used to produce operating p
dures earlier in the plant life-cycle with real savings in time and effort. We note t
plant operating procedures are only one example of the need for accurate, effi
and safe procedures in manufacturing industries and see many possibilitie
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extending the AI planning approach to the generation of other types of operati
procedure.
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33.   Appendix A
34. Set controller LRC_5 and turn on.(46)
35. Set controller FRC_6 and turn on.(45)
36. Set controller LRC_7 and turn on.(44)
37. Set controller FRC_8 and turn on.(43)
38. Set controller TRC_9 and turn on.(42)
39. Open valve HV7.(185)
40. Open valve HV25.(232)
41. Achieved: Flow route from Input2 to MT1 for processWater.(228)
42. Open valve HV6.(211)
43. Turn on pump P3.(210)
44. Achieved: Flow route from MT1 to MT1 for brine.(206)
45.   Mixing in MT1.(194)
46. Open valve HV32.(202)
47. Achieved: Flow route from Input8 to MT1 for salt.(198)
48. Close valve HV32.(203)
49. Achieved: Stopped flow of salt to MT1.(197)
50.   Warning: Make sure that all the salt needed has entered system before stopping-

flow.(192)
51.   Mixing brine in MT1.(190)
52. Open valve HV16.(59)
53.  Open valve HV20.(60)
54. Achieved: Flow route from E1 to Output10 for steam.(55)
55. Open valve HV4.(183)
56. Open valve HV5.(182)
57. Turn on pump P3.(180)
58. Turn on pump P1.(181)
59. Achieved: Flow route from MT1 to E1 for brine.(176)
60. Open valve HV11.(187)
61. Open valve HV2.(189)
62.  Open valve HV10.(188)
63. Turn on pump P2.(186)
64. Achieved: Flow route from E1 to MT1 for brine.(172)
65. Open valve HV26.(104)
66. Achieved: Flow route from GP1 to Output100 for steam.(100)
67. Open valve HV31.(111)
68. Open valve HV24.(112)
69. Achieved: Flow route from Input3 to Output4 for coolingWa-

ter.(107)
70. Open valve HV22.(90)
71. Achieved: Flow route from Input5 to GP1 for steam.(86)
72. Open valve HV28.(97)
73. Achieved: Flow route from Input5 to TD1 for steam.(93)
74. Wait until air flushed out of GP1.(77)
75. Close valve HV26.(146)
76. Achieved: Flow route for steam (heat source) through GP1 estab
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lished.(76)
77. Achieved: Flow route from TD2 to Output8 for steam.(161)
78. Open valve HV27.(130)
79. Achieved: Flow route from HE1 to Output800 for steam.(126)
80. Open valve HV23.(82)
81. Achieved: Flow route from Input4 to HE1 for steam.(67)
82. Open valve HV29.(123)
83. Achieved: Flow route from Input4 to TD2 for steam.(119)
84. Wait until air flushed out of HE1.(30)
85. Close valve HV27.(148)
86. Achieved: Stopped flow of steam through Output800.(147)
87. Achieved: Flow route for steam (heat source) through HE1 estab

lished.(29)
88.   E1 is at operational temperature.(8)
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