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Abstract

When multiple agents act concurrently towards achiev-
ing their goals in a shared environment, interactions
between their actions may arise, affecting the out-
come of their plans. We propose an approach to plan-
ning in such environments, termed interference ro-
bustness optimization planning that builds upon the
HTN planning paradigm and extends it with explicit
consideration and optimization of plan robustness.
Plan robustness is calculated from the domain model
and probabilistic models of other agents in the do-
main. A method is presented for automatic conversion
of standard HTN planning tasks into planning tasks
whose output maximizes plan success probability. The
method is evaluated on a test domain based on a real-
istic multi-agent disaster relief scenario. The empirical
results indicate that the effectiveness of the method
depends strongly on the predictability of other agents’
behaviour and the ratio of interaction action pairs. For
any values of these control parameters, the proposed
method significantly outperforms standard HTN plan-
ning.

Introduction
When autonomous agents operate in a shared environ-
ment, situations arise in which the actions and strate-
gies of individual agents interact. Examples of such
scenarios include auctions, traffic control, military op-
erations, disaster recovery etc. Situations, in which the
outcome of an agent’s actions depends on the actions
chosen by others, are often termed games1 and have
been long studied from different, though recently con-
verging perspectives. AI research has traditionally fo-
cused on devising concrete decision-making algorithms
that agents could employ to pursue their objectives in
game-like situations; research on game theory has fo-
cused on the analysis and descriptions of the properties
of games as such.

At the same time, planning has been successfully
applied to enable autonomous agents to construct se-
quences of actions leading towards achieving their ob-
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1Agents participating in a game-like situation are then
often termed players.

jectives. For real-world applications, hierarchical task
network (HTN) planning has proved particularly effec-
tive thanks to its ability to reduce the computational
complexity of planning by allowing the incorporation of
expert knowledge in the planning problem (Erol 1996;
Nau et al. 2005). Although very successful in scenar-
ios where the planning agent has (nearly) total control
over the environment, HTN planning has provided little
means to model and plan in multi-agent settings.

The Challenge of Planning in Games
The fundamental challenge presented by planning in
game-like domains is the non-stationarity of the envi-
ronment brought about by the concurrent activity of
other agents present. In many such situations, the other
agents are not willing to coordinate or even just disclose
their future actions to the planning agent. Under these
circumstances, it is impossible to accurately project the
future evolution of the world state, an essential require-
ments of most planning methods, as this is no longer
under the control of the sole planning agent. This prob-
lem can be alleviated if the planning agent can antici-
pate the impact that the other agents can have on its
plans.

Depending on the detail and accuracy of such antic-
ipation, planning algorithms with different optimality
and complexity properties can be constructed. On one
end of the spectrum, there are game-tree search algo-
rithms which perform an exhaustive search through all
future world state evolution trees generated by explic-
itly considering actions carried by all agents in the envi-
ronment. A major disadvantage of such an approach is
the exponential complexity of the search (resulting from
the branching of the world state evolution tree), and
also the inability to utilize sophisticated search heuris-
tics known from planning. On the other end of the spec-
trum are the classical single-agent planning approaches,
which do not consider other agents at all.

In this paper, we try to strike the middle ground
by extending HTN with the ability to anticipate other
players’ actions. In doing so, we hope to gain (1) more
robust plans than if other players are not considered,
and (2) lower computational complexity compared to
full game tree search. Specifically, we propose interfer-



ence robustness optimization planning (IROP) which
maximizes plan success probability, i.e. the probability
that the plan will succeed even in the presence of possi-
ble interference of other players. In our approach, plan
robustness is automatically derived from (1) the model
of the planning domain and (2) models of other play-
ers’ behavior (termed player models) which can either
be designed by a domain expert or created automati-
cally.

Organization of the Paper
We begin our exposition in Section 2 where we define in-
dividual components of the approach. In Section 3, we
show how the interference robustness optimization can
be implemented using the well-known JSHOP2 HTN
planner. Section 4 provides the results of method’s em-
pirical evaluation. Section 5 lists alternative approaches
and discusses the main differences. Section 6 summa-
rizes the contribution of the article.

Approach
Our approach aims to extend planning with the ability
to anticipate the impact of other players on the plan
executed by the planning agent. In contrast to game
tree search algorithms, which model such impact in de-
tail, our approach models the impact on an aggregate
level by considering an overall probability that a plan
will not fail due to interference by another player.

We divide the discussion of the approach into several
steps. First, we introduce a simple description frame-
work for the problem of planning in game-like scenarios.
This will allow us to define the concept of action inter-
ference robustness and how such robustness can be de-
rived from the domain model and player models. After-
wards, we show how interference robustness of a whole
plan can be derived from the interference robustness of
its constituent actions. Finally, we outline how the ro-
bustness information can be used by the planning agent
in deciding its course of action. The overall structure
of the plan interference robustness aggregation process
is depicted in Figure 1.

Description Framework
Domain model is a pair (W,A) where W is the set
of all possible world states and A= {a1, . . . , an} is the
set of all ground actions executable by agents in the
domain. On a given domain, we can define a game as a
triple (W,A,P) where P = {P0, P1, . . . , Pn} is the set
of players in the game; P0 denotes the planning player –
the rest of the players are termed non-planning players
to emphasize that their decision-making process is not
the focus of the investigation.

We say an action ai ∈ A interferes with action aj ∈ A
if the execution of ai causes aj to fail when performed
simultaneously. Formally, we define the action interfer-
ence indicator as a predicate{

I(ai, aj) = false if ai does not affect aj

I(ai, aj) = true if ai affects aj
(1)

Further, we define the player model of player P ∈ P
as a probability distribution

πP (a|w) (2)

specifying the probability that player P performs the
action a in the world state w ∈ W.

Action Interference Robustness
We can now define mutual action interference robust-
ness

r(a, a′|w) (3)
as the probability that action a ∈ A will not be inter-
fered with by action a′ ∈ A when performed simultane-
ously in the world state w ∈ W.

Further, we define the action interference robustness

r(a|w) (4)

as the probability that action a ∈ A will not be inter-
fered with by any action when performed in the world
state w ∈ W.

We can derive the action interference robustness from
the domain and player models as follows

r(a|w) =
∏

a′∈A
r(a, a′|w) =

=
∏

a′∈A,I(a,a′)

r(a, a′|w)
∏

a′∈A,¬I(a,a′)

r(a, a′|w) (5)

Here the second product represents the probability that
none of the non-interfering actions will interfere, which
is equal to one. Continuing with the first product yields

r(a|w) =
∏

a′∈A,I(a,a′)

r(a, a′|w) =

=
∏

a′∈A,I(a,a′)

∏
P∈P\P0

(1− πP (a′|w)) (6)

In the above, we assume that an action fails if at least
one action which affects it is performed by at least one
player.

Plan Robustness Aggregation
In the interference robustness optimizing planning
(IROP), we are interested in evaluating the robust-
ness of whole plans, denotes as R(a1, a2, ..., an|w) where
a1, . . . , an are the plan’s constituent actions and w ∈ W
is that state of the world from which the plan is exe-
cuted.

The way the probability of successful plan execution
is aggregated from the robustness of its constituent ac-
tions depends strongly on the structure of the plan. In
the case of a totally ordered plan, where each action has
to be successfully performed before the next action can
start, we can calculate the overall plan success proba-
bility as

R(a1, ..., an|w0) =
= r(a1|w0)r(a2|w1) . . . r(an|wn−1) (7)
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Figure 1: Interference robustness aggregation process.
Solid line boxes are the input information; dashed line
boxes are the derived information

where w0 is the initial state of the world and wi are the
states of the world at the time action ai+1 is performed.
Note that this aggregation scheme fits also partially or-
dered plans and plans that are intended to be executed
in parallel, as long as the independence of robustness
r(ai|wj) and r(ak|wl) is maintained. This holds because
no matter how the plan is executed, all the actions have
to be performed successfully. However, it holds only for
the case where there are no redundancies in the plan.
If the planner purposefully inserts redundant actions
to increase the robustness of the plan, the aggregation
scheme becomes more complex.

Interference Robustness Handling
We have shown how the robustness of a plan can be de-
rived from the domain model and other players’ models.
The ability to calculate plan robustness gives the plan-
ning agent extra information it can utilize in selecting
its course of action. Such information can be used in
several ways:
• robustness thresholding – the planning agent

searches for a plan whose robustness exceeds a spe-
cific threshold

• robustness maximization – the planning agent
searches for a plan with maximum robustness

• robustness optimization – the planning agent does
not optimizes the robustness alone but considers it in
combination with plan utility (less robust plans can
be preferable if their potential pay-off is high)

Although there is a very close connection between ro-
bustness thresholding and robustness maximization,
the former may be easier to implement with exist-
ing planning algorithms, in particular if the robustness
threshold is not stated too tightly. Robustness opti-
mization requires that a plan utility function is defined.
In the rest of the paper, we focus on robustness thresh-
olding.

Implementation
We have implemented the IROP approach using the
HTN planner JSHOP22.

JSHOP2
JSHOP2 is a widely-used HTN planner which has been
successfully applied to numerous planning domains.
The core of JSHOP2’s search algorithm is the ordered
task decomposition search-control strategy that reduces
the uncertainty about the world state during the search.
The reduction enables the use of highly expressive lan-
guage features including external function calls (Nau
et al. 2005). The external function calls are used
to retrieve data from sources outside the planner and
to perform operations on the world state using algo-
rithms implemented in arbitrary languages. The inputs
of the planner are the task-network describing the do-
main with the added background knowledge, and the
problem definition describing the initial state and the
tasks to be solved.

Extending JSHOP2 with Robustness
Handling
We have developed a JSHOP2-based implementation
of IROP, specifically interference robustness threshold-
ing. The approach does not require any modification
of the planner. It reuses the task network of the plan-
ning problem and extends it with interference robust-
ness handling logic. The modification of the task net-
work is straightforward and can be done automatically.

Specifically, the following steps are performed:

• Operator effects are extended with robustness ag-
gregation commands. Robustness aggregation re-
lies on the values of action interference robustness
which are obtained through a call to an external
model; the model evaluates the robustness r(a|w)
for the current state according to equation (6).

(
<delete-list>
(success-prob ?sp)

)
(

 <add-list>
(success-prob (call * ?sp ?risk))

)

• Preconditions are added to all operators in the
task-network to ensure that when the operator
is applied, the overall robustness of the plan
does not drop under the specified limit threshold.

(:operator (![name] <?parameters>)
(

<preconditions>
(assign ?risk (call [RiskProcedure] <?parameters>))
(success-prob ?sp)
(success-prob-threshold ?threshold)
(call < (call * ?sp ?risk) ?threshold)

)

2http://sourceforge.net/projects/shop



Experimental Evaluation
IROP has been empirically evaluated on an experimen-
tal domain based on a realistic multi-agent disaster re-
lief scenario. The experiments have been implemented
in a simulation testbed based on the A-globe multi-
agent platform3.

Experimental Domain
The experimental domain involves multiple players with
different objectives operating on a small island affected
by a tsunami. The government player PGOV uses its
units to rebuild the infrastructure and restore order in
the northern tsunami-affected regions of the island. The
separatist player PSEP tries to disrupt the government’s
recovery operation and to increase its control over the
affected regions. Finally, the humanitarian organisation
player PNGO is neutral, trying to organize transport of
humanitarian supplies to the affected region regardless
of the political situation. A key component of the op-
erations of all players on the island are logistic supply
chains through which resources required for perform-
ing actions are delivered to the required locations. The
supply chains can be disrupted by actions of other play-
ers, giving rise to a number of ways in which the plans
of individual players can interfere. See Figure 2 for a
graphical overview of the domain.

Figure 2: Overview of the Tsunami recovery experimen-
tal domain. Units, actions and plans are depicted for
each player (blue = government PGOV , red = separatist
PSEP , green = humanitarian organisation PNGO)

Domain states The state of the game is given by
propositional and numerical variables. The set of all
states W constitutes all the valid assignments to these
variables, in particular locations of units, load of units,

3http://agents.felk.cvut.cz/aglobe/

Object Associated state variables
City farm presence, quarry presence,

explosives factory presence,
amount of food, amount of
explosives, amount of stones,
infrastructure level, government
HQ presence, separatist camp
presence

Unit position, food load, explosives
load, stones load (depends on
unit type)

Table 1: Types of state variables in the Tsunami re-
covery game. State variables associated with cities and
units are distinguished.

characteristics of cities and the amount of commodi-
ties they hold. More specifically, each player has a set
of resources. These are commodities (given in integer
amounts), and units that can either carry commodities
or serve as security forces. There are a number of loca-
tions connected by roads; the units can move between
the locations. In some locations there are cities in which
commodities are stored and where some commodities
can be transformed into other commodities. The cities
have characteristics which can change over time which
influence what actions can be performed in cities and
whether the commodities are transformed into other
commodities. An overview of game state variables is
given in Table 1.

Actions Actions are defined using a set of action
schemata, which can have symbolic and numerical pa-
rameters. All valid assignments of parameters in the
action schemata constitute the set of all ground actions
A. The list of action schemata is given in Table 2.

Interference Indicator Most of the interference in
the domain takes place between the transport and steal
actions. Specifically, action transportX(C1, C2) inter-
feres with action stealX(C3, C4, S) if there is an overlap
between the transport route C1 ↔ C2 and the route
between C3 ↔ C4 along which the separatists try to
steal the transported commodity. Furthermore, ac-
tion transportXInConvoy(C1, C2, S1) interferes with
action stealX(C3, C4, S2) if the previously mentioned
condition on segment overlap holds and S2 > S1 (i.e.
the number of robbing units is greater than the size of
the accompanying security force). No other actions can
directly interfere in the Tsunami recovery domain.

Players As already mentioned, there are three play-
ers in the domain, each having a number of units at
their disposal. The players use a decision-making mech-
anism to construct actions and action sequences for
their units in order bring the world to a (more) de-
sirable state. The government player uses HTN-based
decision making, both in the standard version and the
IROP version. The other two players employ rule-based
decision making.



Schemata
loadFood(C,N)
loadStones(C,N)
loadExplosives(C,N)
unloadFood(C,N)
unloadStones(C,N)
unloadExplosives(C,N)
buildGovernmentHQ(C)
destroyGovernmentHQ(C)
buildSeparatistCamp(C)
destroySeparatistCamp(C)
createSuicideBomber(C)
repairInfrastructure(C,N)
stealFood(C1, C2, S)
stealStones(C1, C2, S)
stealExplosives(C1, C2, S)
transportStones(C1, C2, N, S)
transportFood(C1, C2, N, S)
transportExplosives(C1, C2, N, S)
transportExplosivesInConvoy(C1, C2, N, S)
transportStonesInConvoy(C1, C2, N, S)

Table 2: Action schemata in the Tsunami recovery do-
main. C/Ci means city, N amount of commodity, and
S number of security forces. Some actions can only
be performed by units belonging to a particular player
(e.g. createSuicideBomber(C) is only available to the
Separatist player)

Experiment Configuration
To test the developed approach, we have created a rep-
resentative scenario in the experimental domain that
provides enough possible plans to the planning player
to choose from and enough actions to the other players
to interfere with the plan. In all experiments, we fo-
cus on the performance of the government player PGOV

which uses the IROP method; the other two players are
controlled by a set of action selection rules.

For each experiment configuration, we define the fol-
lowing two properties:

• player non-determinism captures how well a be-
haviour of a player P can be anticipated. It is defined
as

HP = − 1
|W|

∑
w∈W

∑
a∈A

πP (a|w) log2 πP (a|w) (8)

i.e. as an average entropy of actions selection distri-
butions in the respective player model. The higher
the entropy, the more difficult it is to predict which
actions the player will carry out in a given state4.
We define the overall average player non-determinism
H as a sum of average non-determinism values for

4This does not mean that the player chooses its actions
randomly. There might be a deeper order in its behaviour
which is not representable by the action selection player
model.

Parameter Values
Player non-determinism 0.00, 0.29, 0.47, 0.61, 0.72,

0.81, 0.88, 0.93, 0.99
Interaction density 0.26, 0.30, 0.35, 0.50

Table 3: Values for experiment control parameters. A
total 32 different configurations, one for each combina-
tion of the two control parameters, have been experi-
mentally evaluated. Ten runs has been performed for
each configuration.

all players other than the planning player (Sepa-
ratist and Humanitarian organisation player in our
domain).

• interference density Interference density measure
the ratio of potential intereferencing action pairs, i.e.,

dI =
‖{(a1, a2) ∈ A2|I(a1, a2)}‖

‖A2‖
(9)

where a1 and a2 are ground actions.

Evaluation Criteria
At the beginning of each experimental run, the plan-
ning player is given the initial state of the world and
the models of the other players in the form of πi(a|w)5
and produces a plan that is executed in the simulator.
The plan is not changed during the experimental run.
If any of the actions in the plan fails, the goals are
not reached and the plan is considered unsuccessful.
Note that the outcome of an experiment run can dif-
fer even for the same configuration because of inherent
noise in the decision making of rule-based players in the
domain. For each experiment configuration, we there-
fore perform multiple (ten) experimental runs. We then
calculate the plan success rate as the ratio between the
number successful plan executions and the total num-
ber of runs for the given configuration; the plan success
rate is the empirical measure of plan robustness defined
in the ’Approach’ section.

Results
We have evaluated the plan robustness for a total of 32
configurations, eight and four different settings for over-
all player non-determinism H and interference density
dI , respectively. See the values of the control param-
eters in Table 3. Note that due to the way decision-
making algorithms of the Separatist and Humanitarian
organisation players are designed, it is not possible to
directly control the entropy of their action selection dis-
tributions. Therefore, the distribution of the values of
the non-determinism parameter across configurations is
not even. The same applies to the interference density

5In all of the experiments, we use player models which
accurately reflect the probability with which the rule-based
government and humanitarian organisation players choose
their actions.



which could be varied only indirectly and within a lim-
ited range allowed by the constraints of the experimen-
tal domain.

We have performed three groups of experiments. The
first group of experiments compares the performance of
IROP with standard HTN planning. The second group
of experiments evaluates the impact of player non-
determinism on IROP performance; the third group of
experiments evaluates the effect of interference density.

Comparison with Standard HTN Planning
First, we compare the robustness of plans produced by
the Government player using the standard HTN plan-
ning and the enhanced IROP planning. When aver-
aged over all scenario configurations, the plan success
rate values are 0.34 for HTN and 0.71 for IROP, clearly
demonstrating the benefit of explicitly considering ro-
bustness in the planning.

Effect of Player Non-Determinism We further
studied the dependency of player non-determinism on
the plan robustness of both the HTN and IROP-based
Government player. The results given in Figure 3 show
clearly that the performance of both algorithms de-
creases with the rising non-determinism. For the IROP-
based player, this can be explained as due to the fact
that increased non-determinism in other players’ strate-
gies makes it more difficult for the planning player to
avoid actions that can be disrupted. Decrease in the
case of the HTN-based player is for a different reason.
It is due to the fact that the player’s task network has
been designed to cope well with the deterministic ver-
sions of other players. The more the players deviate
from their deterministic versions, the worse the task
network’s performance.
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Figure 3: Dependency of plan success rate on the overall
non-determinism of players.

Effect of Interference Density Finally, we evalu-
ate the effect of action interference density. The re-
sults given in Figure 4 partially confirm our hypothe-
sis that increasing density of interactions between the

players’ actions renders the approach less effective, as
it makes it more difficult for the Government player to
avoid disruptive actions of the other players, in partic-
ular the Separatist. The dependency as displayed by
the experiments, however, is not monotonous. A possi-
ble explanation is divergence between the potential of
interference as modelled by the interference indicator
(from which the density is derived) and the frequency
of interferences that actually arise in the simulation.
This is an important topic for further exploration.
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Discussion
The experiments indicate that both the player non-
determinism and action interference density have a
strong impact on the performance of the HTN-based
interference robustness thresholding planning. This is
actually not surprising and can be explained by a closer
examination of the method. The IROP method works
best if the probability of action’s successful performance
can be accurately determined, because it allows the
planner to either rely on the action or to avoid it. This is
the case if action interference robustness is either close
to zero (the action is very likely to fail) or to one (the
action is very likely to succeed). Inspection of equa-
tion (6) reveals that this is more likely the case when
the number of interfering action pairs is low or when
the players select their actions deterministically (in a
given world state). High interference densities act as
an “amplifier” for player non-determinism, making the
determination of successful action execution less cer-
tain. We can conclude that the mechanism proposed is
suitable for domains where interactions between actions
are sparse or where players behave deterministically.

Related Work
We discuss relevant prior work in two steps. First
we overview general approaches to dealing with uncer-
tainty in planning problems, both arising from the prop-
erty of the environment itself and/or from the activity



of other agents; second we focus specifically on utilizing
HTN planning in uncertain domains.

Planning Under Uncertainty

Decision making in game-like scenarios has been tradi-
tionally solved using game tree search algorithms such
as minimax (Korf 1990) and its many variants. The
main advantage of this approach is that all relevant
game evolutions can be inspected and thus the strategy
provided is optimal. This advantage, however, comes at
the price of large computational complexity; the num-
ber of possibilities that have to be searched increases
exponentially with the length of the game, the possible
moves and possible states. For this reason, the applica-
bility of game tree search to larger-scale domains, such
as the Tsunami recovery domain presented in this pa-
per, is greatly limited.

Probabilistic planning has been studied as another
approach explicitly considering uncertainty in the plan-
ning problem (Majercik & Littman 1998; Kuter & Nau
2005; Bryce 2006). The uncertainty can be in impre-
cise knowledge about the initial state and/or in uncer-
tain outcomes of actions. In contrast to our approach,
probabilistic planning considers single-agent domains in
which the uncertainty is included in the domain model
rather than being modelled as an outcome of simulta-
neous activity of other agents in the domain. Based
on desired planning goals, probabilistic planning forms
action-selection policies through the use of reinforce-
ment learning algorithms such as value iteration and
policy iteration. Attributing all non-determinism to the
environment makes the probabilistic planning concep-
tually simpler; at the same time, however, it makes the
planning computationally more expensive than in our
approach, which, by explicitly modeling players and the
interference they generate, allows searching through the
space of all possible plans in a more selective manner.

HTN Planning in Uncertain Environments

HTN planning has also been adapted to solve a variety
of non-standard problems. One prominent example is
the Bridge Baron computer bridge player that utilized
an adapted HTN planner to search effectively the vast
game-tree of the game (Smith, Nau, & Throop 1998).

In recent years there has been an interest in using
HTN planners for computer games. Preliminary work
on this subject is described in (Kelly 2007; Muñoz-Avila
& Fisher 2004).

Conclusion

We have presented an approach for increasing the ro-
bustness of plans in multi-agent domains, in which in-
teractions between agents’ actions and plans may arise
due to simultaneous activity of the agents in a shared
environment. We have shown how, in such environ-
ments, plan robustness can be calculated from the
model of the domain and action selection models of

other agents. We then proposed a method termed in-
terference robustness optimization planning which ex-
plicitly considers plan robustness in order to produce
plans less prone to failure due to other player’s interfer-
ence. We have described a particular implementation
of the method based on the well-known HTN planner
JSHOP2. The implementation works by augmenting
standard task networks with additional robustness cal-
culation and handling logic. The augmentation can be
made in an automatic way and does not require modi-
fication of the planner.

We have evaluated the approach on a test domain
based on a realistic multi-agent disaster recovery sce-
nario. Experimental results have shown that if other
agents in the environment behave deterministically or
if the number of interfering actions is small, the method
significantly improves the robustness of plans com-
pared to standard HTN planning. With increasing non-
determinism of the other agents or increasing number
of interfering action pairs, the advantage of the method
diminishes.
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