
Planning for ORTS, an open-source real time strategy game

Stewart Armstrong and Liam Kelly and Derek Long and Alex Coddington and John Levine
Department of Computer and Information Sciences

University of Strathclyde
Derek.Long, Alex.Coddington, John.Levine@cis.strath.ac.uk

Abstract

We describe an exploratory project in which a planner was
used within a real-time strategy game to create plans for be-
haviours which were then executed under the control of a
computer player. We describe the problems we encountered,
the solutions we adopted and the questions that remain unan-
swered in this investigation. One of our key objectives was
to explore the viability of integrating existing generic plan-
ning technology into the control management of a computer-
controlled player and we report on the extent to which we
were able to achieve this.

1 Introduction
A team of researchers at the University of Alberta have de-
veloped an open source real-time strategy (RTS) game (Buro
2002), called ORTS (open RTS). The game follows the pat-
tern of other RTS games in offering players the challenge
of starting from a very limited initial position and building
up resources, infrastructure, military power and, ultimately,
of defeating all opponents to achieve complete domination
of the game world. In this game the setting is a futuristic
world in which robotic drones collect resources and support
the construction of barracks in which space marines can be
trained, factories in which tanks can be constructed and, ul-
timately, wars waged against threatening opponents.

The game has been designed specifically to support the
easy integration of AI controllers for computer players, us-
ing a server-client architecture, with the intention of com-
paring different approaches to the construction of artificial
players. The challenge has been codified in a series of spe-
cific game scenarios, ranging from the relatively simple task
of collecting as much resource as possible within a fixed
time period, through waging battles against intelligent oppo-
nent forces to the ultimate challenge of constructing an en-
tire infrastructure and achieving complete game world dom-
ination. Open competitions to meet these challenges have
been held since 2006 (Buro 2003).

This paper describes work carried out by two undergrad-
uate computer science students over a 10-week period in
the summer of 2008, sponsored by the EPSRC and Nuffield
Foundation through their student vacation-bursary schemes.
The objective of the work was to investigate the problems in
integrating a planner into the control of an artificial player
for ORTS. We describe the problems that were faced, the

Figure 1: The ORTS world view in a simple 2D viewer,
showing the hills and various agents

solutions that were implemented, the strengths and weak-
nesses of those solutions and the questions that remain open
now that the project is complete.

2 The ORTS Game
The game is played by one or more players who share a
limited terrain. The terrain is constructed from square tiles,
each of which contain a small 16-by-16 grid of internal lo-
cations. This means that objects in the world can partially
occupy grid cells and the effective discretisation of the ter-
rain is very fine-grained with respect to the world agents.
Some terrain is blocking (representing impassable hills) and
this terrain fills entire tiles or half tiles split diagonally (see
figure 1). An attractive rendering of one version of the world
can be seen in figure 2.

The game engine is designed to make integration of com-
puter players easy: the architecture is a classic client-server
structure, in which the server manages the game world sim-
ulation and clients, each responsible for the resources of a



Figure 2: The ORTS world view rendered for human view-
ers, showing agents, buildings and terrain

single player, interact with the server by sending instructions
for their agents and receiving information about the state of
the world as far as they can perceive it. In the more advanced
scenarios the fog-of-war effect typical in RTS games is in ef-
fect: the terrain is known to each player only as far as it is
observed by the player’s forces. This means that scouting,
reconnaissance and, potentially, the management of uncer-
tainty, are all part of the challenge the players must face.

The architecture is rather impractical for a commercial
RTS, since it introduces overhead into the time-critical
frame generation cycle, but it is a very significant design
achievement that different player controllers can easily be
plugged into the game engine and compared. This supports,
in particular, a direct competitive comparison of players and
there has been a series of competitions since 2006, with
the most recent taking place in August 2008. The competi-
tion involves four specific game scenarios, offering different
challenges:

• Game 1is a resource-gathering game where the objec-
tive of the game is to gather as many resources as pos-
sible within 10 minutes. It is a single player game with
perfect information that involves one control center and
20 nearby workers. The terrain contains a number of ir-
regular static obstacles and several resource patches. A
maximum of four workers are allowed to work on a sin-
gle resource patch. There are a small number of randomly
moving small obstacles (or “sheep”). The challenges in-
clude cooperative pathfinding and both static and mobile
obstacle avoidance. The key to success in this game is to
achieve clever traffic management so that workers do not
waste time competing for entry into the same space (col-
lisions are resolved randomly in favour of one or other
agent and the loser does not move).

• Game 2is a two-player game, with perfect information,
where the objective for each player is to destroy as many
of the opponent’s buildings as possible within 15 min-
utes. Each player has five randomly located control cen-
tres with ten tanks each nearby. The environment con-

tains irregular static obstacles as well as a number of
randomly-moving small mobile obstacles. The challenges
involve being able to engage in small-scale combat, man-
aging units and groups, and adversarial and cooperative
pathfinding. This game offers different routes to victory,
including direct confrontation with the enemy troops in
order to deprive the opponent of the means to inflict dam-
age, direct assault on the enemy buildings to attempt to in-
flict more damage than the opponent by efficient manage-
ment of forces, or some combination of the use of screen-
ing or diversionary forces and assault forces.

• Game 3is a two-player real RTS game. In this game the
information is imperfect (there are simultaneous actions
and fog of war) and the objective of the game is to destroy
all opponent buildings within 20 minutes. Each player has
a randomly chosen starting location with one control cen-
tre and a resource cluster with six workers nearby. There
are four further resource locations placed randomly in the
terrain which contains a number of small, irregular static
obstacles as well as mobile, randomly moving “sheep”.
The workers may be used to build control centres, bar-
racks and factories. Building actions tie up one worker
which will become immobile and located out of bounds.
Workers can be “trained” (produced) in a control centre,
marines are trained in barracks and tanks are built in fac-
tories. A control centre is required in order to build a
barracks, whereas building a factory requires a control
centre as well as a barracks. This game has a number of
challenges which include, pathfinding, combat, grouping
forces, scouting and resource allocation. The hierarchy
of buildings is typical of RTS games, although this ver-
sion uses a very small hierarchy (yet still presents a very
difficult challenge to the players who have entered in the
competitions so far).

• Game 4is a two-player game with perfect information
(apart from simultaneous actions). The terrain in unob-
structed and contains a number of small randomly mov-
ing “sheep”. Each player has 20 siege tanks and 50 ran-
domly positioned marines occupying the left or rightmost
quarter of the map. Units are diagonally symmetric to
the opposing player. The objective of the game is to de-
stroy as many opponent units as possible within 5 min-
utes. Challenges involve small-scale combat, unit group
management, handling heterogeneous groups and adver-
sarial/cooperative pathfinding.

In this project we concentrated on a simplified version of
scenario 3, in which we did not have opponents, but were
concerned with the construction of a hierarchy of buildings
and managing the infrastructure and resources required to
achieve that.

2.1 Computer Players in ORTS
The role of a computer player in ORTS is to generate in-
structions for game agents under the player’s control in real
time. Game time advances in real time, but is discretised into
small simulation steps corresponding to successive frame
updates. When instructions take multiple frames to execute
the agents enacting the instructions do not need to be given



new instructions, but can be left to continue in their tasks.
Thus, the computer player must issue instructions to agents
at appropriate times, observing the agents executing their
tasks and responding as the tasks are completed. If no in-
structions are issued then the server will not wait, but simply
instruct the agents to perform default activities, which will
usually be to stay still and await further instructions.

To make the design of computer players easier, the Uni-
versity of Alberta team have supplied a rich hierarchy of ba-
sic structures for the command of agents. The structures
form a hierarchy of commanders, with a supreme comman-
der taking control of all the resources and acting as the
player’s proxy in the game. Subsidiary commanders are al-
located resources by the supreme commander and take re-
sponsibility for specific subtasks. There are commanders
implemented for such things as basic resource gathering us-
ing workers, defence and simple attack. There are also sim-
ple tools implemented to aid in path planning and navigation
of agents.

3 The Role of Planning
When playing an RTS game, human players certainly have
the intuition that they are planning. There is a strategic
framework for their actions and they construct sequences of
basic actions that lead to very specific planned outcomes.
It is clear, however, that there are many aspects of playing
these games that conflict with the assumptions made in clas-
sical planners: there is significant uncertainty both in the
initial state, caused by the fog of war, and in the subsequent
execution of actions due to the interaction with other players
and randomly mobile obstacles; there are opponents who are
deliberately attempting to subvert the player’s plans; there
are events that occur without the intervention of the player.
These qualities have been observed in many other domains
in which planning appears to play an important role and
there are various approaches to attempting to manage them.
One is to simply ignore the problems and treat the situation
as though it were fully observable, with no opponents and
entirely controllable. This approach must be supplemented
with a recovery or repair strategy when plans fail due to a
conflict between the assumptions and reality. This approach
is very much the one adopted in FF-replan (Yoon, Fern, &
Givan 2007) which performed surprisingly well in recent
competitions for probabilistic planners. A more recent re-
finement of this approach (Yoonet al. 2008) shows that the
idea can be extended to deal with more subtle probabilistic
domains than those used in the original competitions.

Despite the uncertainty involved in the problem space, a
significant part of the activity involved in building infras-
tructure and managing resources must be conducted without
close interleaving with interactions with opponents or han-
dling uncertain aspects of the environment. In fact, a good
way to manage game play is to decompose the problems of
handling enemies from those of managing one’s own devel-
opment, seeing the latter as a tool to construct resources for
the second, but otherwise treating them independently. This
makes it possible to plan the resource and infrastructure en-
terprises and to identify the flow of resources into the mili-

tary campaign in order to plan the strategic and tactical ele-
ments of combat appropriately.

At a suitable level of abstraction, the actions in a plan will
be relatively robust to the uncertainties of execution, with
those uncertainties being handled by execution monitoring
and reactive control at a lower level of detail. Finding this
level of abstraction is a challenge, as we discuss below. Fur-
thermore, the process of supervising execution and identify-
ing plan failure is sensitive to this uncertainty and the choice
of level of abstraction in planning. This is also discussed
further below.

Other researchers have also observed the potential role of
planning in guiding computer-controlled players. Kellyet
al. (Kelly, Botea, & Koenig 2007) consider the role of a hi-
erarchical task network planner, in order to reduce the search
problem involved in plan construction, while Fayard (Fayard
2007) considers the use of simulated annealing local search
for plan construction. In practice, the winners of previous
competitions (for example (Hagelback & Johansson 2008))
have not used general planners, but have focussed on lower
level, purpose-built, control architectures.

4 Harnessing Planning in ORTS
The ORTS system includes some infrastructure for creat-
ing computer players. This is organised as a hierarchy of
commanders, with resources being passed down though the
chain of command. The obvious way to harness this struc-
ture is to use lower level commanders to implement con-
trollers for specific tasks, such as the collection of resources,
construction of particular buildings, management of com-
bat with a specific enemy force, scouting and so on. We
explored the instantiation of the architecture shown in fig-
ure 3. This architecture is based on our earlier work on
the MADbot motivated planning, execution and recovery ar-
chitecture (Coddingtonet al. 2005), although we reimple-
mented the architecture within the ORTS framework. As
can be seen, the planning element of the player is imple-
mented by making external calls to a planning system (we
used Metric-FF (Hoffmann 2003), although we also exper-
imented with LPG (Gerevini & Serina 2002)). To interact
with the planner, a component of our ORTS player generates
PDDL problem files that can be coupled with a predefined
domain file. The plan is captured and then dispatched by a
high level commander, through interaction with lower level
commanders. The whole process of execution is monitored
by a supervisory process. We discuss recognition of plan
failure and response to it below.

A key design challenge was to identify an appropriate
level of abstraction at which to encapsulate the controllers.
The reason this is difficult is that it seems natural to work
hard at building strongly encapsulated commanders respon-
sible for relatively high level tasks, such as using the worker
force to gather as much resource as possible, but this makes
it hard to see what role a planner can play in the exploita-
tion of these commanders. If we have a commander for the
military force, another for construction units and a third for
resource gathering, then a planner is hardly necessary to see
that the plan to win the game is “collect resources, build in-



Overall Commander

Resource Collection Marine Training Barracks Construction Control Construction

Squad Movement

Unit Movement

World Map
Capture

PDDL Problem 
Generator

Planner

Server

Allocation of tasks

Plan

Execution Monitoring and Supervision

Commander Hierarchy

Client

Unit commands

Motivations
Goals

"Sensed" state

Figure 3: The Architecture of an ORTS Computer Player with Integrated Planning



frastructure and then defeat the enemy in a mighty military
conquest”. There is no real scope for subtlety in the planning
in combining such coarse-grained high-level actions. In or-
der to make a planner a useful tool it is apparent that it must
have access to more primitive building blocks — actions that
are more primitive than these. We found that as the level of
actions is made more fine grained, the planner must confront
more and more of the details of the precise spatial organ-
isation of resources and the metric quantities of resources
located at specific locations. This reasoning is both harder
to model and harder for a planner to reason about well, but
it is apparent that shielding a planner from this level of de-
scription also makes it impossible for the planner to produce
plans that are sensitive to the efficient management of re-
sources and their positioning.

We adopted a level of description in which individual
workers and marines are identified, with their locations, al-
lowing us to specify plans to construct, move and employ
these units individually. Modelling at this level makes it hard
to plan to manage forces of more than a score of units —
the existence of large numbers of very similar units makes
for a very large branching factor at most choice points and
the search space becomes too large for domain-independent
planners to explore. We also experimented with team struc-
tures, allowing individual units to be absorbed into teams to
allow a more efficient reasoning. Actions exist to allow units
to enter and exit teams, so that commanders can be used to
move entire team structures from place to place or carry out
larger tasks such as resource gathering.

4.1 Defining Game Actions
Within the framework of the ORTS system, we constructed
a hierarchy of commanders to act as controllers of various
game actions (see examples in figure 3). These comman-
ders are responsible for managing limited collections of re-
sources (such as a few workers) to achieve various local
and constrained goals (such as the collection of a specific
amount of building material). When executing the plan, a
general (or commander in control) is responsible for organ-
ising the other commanders lower in the hierarchy to carry
out their designated tasks. For example, one of the comman-
ders lower in the hierarchy is responsible for constructing
buildings. Commanders are responsible for activating the
following tasks.

• A Commander is capable of creating a new squad.

• A worker is able to join and leave a squad.

• A commander is able to move a squad - this involves mov-
ing each member of the squad to the same destination.

• Agents are able to move from one location to another.

• It is possible to train workers, train marines and build
tanks.

• There are a number of “building” actions — it is possible
to build barracks, control centres, factories and mechani-
sation bays.

An agent is defined as being either a worker, a marine or
a tank. Once an agent is a member of a squad, that agent can

no longer be independently controlled unless it leaves the
squad (when it is a member of a squad, the agent’s location
is determined by the location of the squad).

An important part of the function of commanders is to
manage the lower level path planning for the agents for
which they are responsible. Although the ORTS system
contains some limited path planning machinery, it is not
effective at managing path planning for complex obstacle-
ridden paths across large parts of the terrain. Furthermore,
as mentioned previously, the problem of managing agents
in the planning process can only be usefully exposed to the
planner if it is given spatial information. We solved both
the problem of large-scale path planning and the problem
of exposing spatial structure to the planner by the use of
a graph-based abstraction of the physical terrain structure,
giving waypoints and accessibility relations between them.
The process by which the abstraction is constructed is dis-
cussed in more detail below.

4.2 Building a PDDL Problem Description and
Plan Execution

Once the set of game actions had been developed, a
PDDL2.1 domain description was developed containing a
one-to-one mapping between each game action and each
PDDL2.1 action description. Two PDDL2.1 domain de-
scriptions were developed, a non-metric as well as a metric
version. The metric version was more useful as it enabled
specific quantities of resources to be modelled. The domain
description contains the following action models.

Create squad creates a new squad at a pre-determined lo-
cation.

Join squad allows an agent to join a squad at a pre-
determined location – once the agent has joined the squad
it has the same location as that of the squad.

Leave squad allows an agent to leave a squad at a pre-
determined location – leaving a squad means the agent
is now free.

Move squad and Move agent move a squad/agent from
one location to another provided the two locations are
connected (or joined).

Train marine and Train worker create a new ma-
rine/worker using a barracks/control centre at a pre-
determined location and increases the total number of
marines/workers by 1.

Train toaster creates a new toaster (which requires both a
barracks and an academy) at a pre-determined location
and increases the number of toasters by 1.

Build barracks andBuild control centre use a worker at a
pre-determined location to build barracks/control centre –
this action increases the total number of barracks/control
centres by 1.

Build mechanisation bay and Build academy use a
worker to build a mechanisation bay/academy at a pre-
determined location. These actions can only be executed
if a barracks has already been built and increase the total
number of mechanisation bays/academies by 1.



(:action TRAIN_TOASTER
:parameters (?head - toaster

?barracksx - barracks
?academyx - academy
?locationx - location)

:precondition (and (potentially_exists ?head)
(next_exists ?head ?newHead)
(currently_exists ?barracksx)
(currently_exists ?academyx)
(at ?barracksx ?locationx)

)
:effect (and (not (potentially_exists ?head))

(currently_exists ?head)
(potentially_exists ?newHead)
(at ?head ?locationx)
(free_agent ?head)
(increase (number_of_toaster) 1)

))

Figure 4: The PDDL2.1 model ofTrain Toaster.

One difficulty we encountered when modelling the ORTS
game actions is that each game requires buildings (such as
barracks, academies and control centres) or agents (such
as workers or marines) to be built or generated dynami-
cally. This means that it is impossible to know the total
number of buildings or agents which are required prior to
playing the game. PDDL2.1 domain and problem descrip-
tions must include a definition of all of the objects that are
required (it is not possible to dynamically create new ob-
jects) so the modelling approach we used was to pre-define
lists containing objects of various types (such as barracks,
academies, control centres, marines) and model them as
“potentially existing” using the predicates(potentiallyexists
?head), (nextexists ?head ?newHead), and(currently exists
?head). If a new object is required as part of the planning
process, it no longer “potentially exists”, but now “currently
exists” and the next object in the list becomes the “new
head” of that list. Actions which require new objects have
the requirement that such objects “currently exist” as a pre-
condition. Figure 4 shows the approach we used to model
the creation of toasters.

Having developed a PDDL model of the actions capable
of being executed within the ORTS game, one of the major
focusses of the work was to generate a PDDL2.1 problem
description to model the dynamically changing ORTS envi-
ronment. The idea was to construct a simple, abstract repre-
sentation of the 2D spatial properties of the game field to en-
able path planning to occur between various locations. Two
algorithms were used: the Graham Scan algorithm (Gra-
ham 1972) and a customised version of the Voronoi Tes-
sellation algorithm (Watson 1981). The Graham Scan al-
gorithm was used to identify and map the obstacles which
exist in the ORTS environment. Any immovable obstacle is
a point with a size and shape – the Graham Scan algorithm
is used to find the convex hull (the convex boundary of a set
of points) of each obstacle – the convex hulls of each ob-
stacle are grown until they collide with the convex hull of
other obstacles. The border between two obstacles becomes
an edge in the Voronoi tessellation. Parts of the hull which
have not collided will continue to expand until all edges have
been formed. Any point within one of the newly grown
hulls is closer to its obstacle than any other, and, more im-
portantly, the edges are the paths with “greatest clearance”

from the obstacle. The Voronoi Tesselation algorithm (Wat-
son 1981) was used to find paths around the obstacles and
to define paths connecting various locations within the envi-
ronment. A node is defined as any intersection of three or
more voronoi edges and every location in the ORTS game is
a node. Applying the Voronoi Tesselation algorithm initially
resulted in a graph representation of a very large number of
connected locations. A number of techniques were used to
prune the number of nodes to more manageable levels, for
example, nodes which were positioned very close to each
other were grouped together as a single node, although this
sometimes causes problems by over-simplifying the paths
between closely-positioned obstacles.

Once the PDDL problem description was generated, the
general is able to invoke the Planner (Metric-FF) in order
to generate a plan. The resulting plan is then passed by the
general to the relevant commanders lower which are then
able to ensure the plans are executed. One issue that arose
with Metric-FF was that when it was given a “metric goal”
(such as a goal to create 9 marines which is specified as
(= (total marines) 9)) it sometimes produced poor quality
plans with a large number of redundant actions. In order
to create 9 marines it is first necessary to construct a sin-
gle barracks in order to train each of the marines. Metric-
FF produced a plan which involved a number of redundant
actions — it moved a worker from its current location to
some other location for no reason, it then constructed two
barracks, trained some of the marines in each of those bar-
racks, then constructed more barracks and trained the re-
maining marines. The reason for the poor quality plan is
that the relaxed plan heuristic over-estimates the amount of
work required to achieve the metric goal. The consequence
is that Metric-FF can construct very poor quality plans as
the overestimated distances give significant slack for redun-
dant steps to be included in the plan. Further examination
of alternative models is ongoing and relevant related work
includes (Alczar, Borrajo, & Lpez 2008) where models of
the ORTS domain in PDDL are also considered.

5 Supervision of Plan Execution and Dealing
with Plan Failure

In our current implementation, the plan is constructed by
Metric-FF. This means that it is not temporally structured.
Therefore, the dispatch of the plan is faced with a further
challenge, which is to decide how to interpret the instruc-
tions that the plan conveys. There are two extreme choices:
one is to simply execute the actions in sequence, as they are
recorded in the plan. The other is to use a scheduler to find
an organisation of the plan that minimises its makespan. We
use a solution that falls between these extremes: we execute
steps as their preconditions become satisfied. This is easy
to achieve, by initiating the actions in the plan and requiring
each commander that is invoked by this process to wait un-
til its preconditions are satisfied before it begins any actions.
This approach assumes that causal dependencies are the only
important reason for the timing of actions, while there might
be other interactions that are present in the plan that are re-
solved by the plan step ordering and are not correctly han-



dled by simple causal dependency analysis. Nevertheless,
this solution is a cheap and effective way to schedule the
plan and fails very rarely.

Whenever a planner is used to direct execution in an un-
certain environment, there is a risk that the plan will fail.
This is particularly likely when the environment contains
opponents that are actively attempting to cause plan failure.
Although we chose to ignore the problem of opponents in
the current implementation, we did consider the structure of
the necessary architecture to manage the problems of plan
failure. The problems are, firstly, to identify that a plan has
failed and, secondly, to construct an appropriate response.

It might seem obvious that plan failure can be recognised
when a commander (or whatever execution control compo-
nent is responsible for executing an action) determines that
it is in a state from which it cannot fulfil its responsibil-
ity. However, we do not want a commander to give up too
quickly — the management of uncertainty in the domain re-
quires that commanders are robust to some local challenges
in discharging their responsibilities. This makes the problem
of identifying plan failure more subtle: a plan fails when a
commander cannot fulfil its local task within the constraints
of the resources supplied to it, but a commander should not
continue to reactively strive to achieve its goal when it is
consuming resources needlessly.

Consider this example: a plan is constructed in which a
worker team is required to visit a resource site on the other
side of a hill from its current location. The planner arbitrar-
ily chooses to route the team to the right of the hill. During
execution, the team encounters an enemy force. The team
commander could attempt to control its team to achieve the
task of navigating the assigned path, perhaps by sending off
decoy workers to distract the enemy, perhaps by rushing the
enemy force or perhaps by retreating and waiting for the en-
emy to move on. However, all of these attempts fail to ex-
ploit the fact that the planner selected the route arbitrarily
and would have been equally satisfied with the team being
routed by the alternative path. This example illustrates that
devolving responsibility for execution of an action can lead
to poor behaviour because the local execution control does
not consider the broader context (the planning dimension of
the problem).

Our current implementation contains the infrastructure to
support a supervisory level that monitors the execution of the
plan above the individual commanders, in order to recognise
failures that threaten the plan integrity. This machinery is
incomplete and remains an important area of future work.

6 Motivation and the Creation of Goals
One of the limitations with AI planning algorithms is that
they require the goals to be specified by some external agent.
Such goals are then presented (along with a description of
the initial state and set of domain actions) to the AI Plan-
ner which generates a plan to achieve those goals. We have
already described how a PDDL2.1 domain was constructed
which contains a one-to-one mapping of the PDDL2.1 ac-
tions to each of the ORTS game actions. Currently, our goals
are hard-coded (e.g. a goal to build 9 marines) but the final

aim of this work is to explore how we might be able to gener-
ate goals both in response to the dynamically changing game
state, and to further the aims of the game player.

To do this we have been exploring how modelling the
motivations or low-level drives of the agent might enable
goals to be generated. Motivations have been defined by
Kunda (Kunda 1990) as “any wish, desire, or preference that
concerns the outcome of a given reasoning task”. The role of
a motivational system is to direct an agent towards carrying
out a particular activity. We have a partially implemented
motivation system which contains a series of numeric values
representing the strength of various “desires” (e.g. the desire
to expand, the desire to defend, the desire to build, etc.) as
well as the current circumstances. The idea is that these nu-
meric values will change in response to changes that occur
within the game environment, and that once these values ex-
ceed or fall below some threshold value, a goal will be trig-
gered to enable the player to further their aims. For example,
if the numeric value representing the desire to build exceeds
some threshold, a goal to build a barracks (or control-centre,
etc.) will be generated and passed (along with a PDDL2.1
representation of the current game state and domain actions)
to the AI Planner. When fully implemented, the idea is that
this system will generated high-level goals for the AI plan-
ner. The motivation system is also intended to deal with plan
failure — for example, the motivation system could make a
commander request extra resources (e.g. a military com-
mander may require more units) to enable the plan to suc-
ceed. Desires are related to, but not the same as, rewards
associated with goals in an oversubscription problem. The
difference is that desires change over time, partly as a con-
sequence of the passage of time itself and partly as a con-
sequence of observed state changes. As a result, the goals
themselves change over time and the planner will be invoked
to solve quite different problems during the evolving game
play.

7 Conclusions and Further Work
The work we have described represents the first stages in
exploring the exploitation of planning in a real time strategy
game. There are clearly many issues that remain unresolved,
but the key findings so far lie in the identification of several
parameters that govern the framework of the exploitation.
The most important of these is the degree of abstraction in
the planning model: what actions should be exposed to the
planner and how much responsibility should be devolved to
the elements of the executive responsible for realising the
actions? A second question is the planning horizon: what
goals are appropriate to pose for a planner? The answer to
this is partly linked to the performance characteristics of the
planner and the speed of events in the game. A third question
concerns the recognition of plan failure: when has an action
failed to complete and can that recognition be devolved to
the executive elements or must it be managed centrally? Fi-
nally, where do the goals come from and how do they reflect
the overall motivation of the player to win the game?

Our work shows that it is possible to link a simple plan-
ner to a RTS effectively, producing plans that can be use-



fully interpreted for execution. However, much more work
is needed to find fuller and more focussed answers to the
questions outlined above.

References
Alczar, V.; Borrajo, D.; and Lpez, C. L. 2008. Modelling
a rts planning domain with cost conversion and rewards.
In Proceedings of Workshop on Artificial Intelligence in
Games, at 18th European Conference on Artificial Intel-
ligence.
Buro, M. 2002. ORTS: A hack-free RTS game environ-
ment. InProceedings of the International Computer and
Games Conference.
Buro, M. 2003. Real-Time Strategy Games: A new AI
Research Challenge. InProceedings of the International
Joint Conference on AI.
Coddington, A.; Fox, M.; Gough, J.; Long, D.; and Serina,
I. 2005. MADbot: A Motivated And Goal Directed robot.
In Proceedings of AAAI-05: Twentieth National Confer-
ence on Artificial Intelligence.
Fayard, T. 2007. The use of planner to balance real time
strategy video game. InProceedings of ICAPS’07 Work-
shop on Planning in Games.
Gerevini, A., and Serina, I. 2002. LPG: A planner based on
local search for planning graphs. InProc. of 6th Int. Conf.
on AI Planning Systems (AIPS’02). AAAI Press.
Graham, R. L. 1972. An efficient algorithm for deter-
mining the convex hull of a finite planar set.Information
Processing Letters 1132–133.
Hagelback, J., and Johansson, S. J. 2008. Using multi-
agent potential fields in real-time strategy games. InPro-
ceedings of the Seventh International Conference on Au-
tonomous Agents and Multi-agent Systems (AAMAS).
Hoffmann, J. 2003. The metric-ff planning system: Trans-
lating ”ignoring delete lists” to numerical state variables.
Journal of Artificial Intelligence Research, Special Issue on
the 3rd International Planning Competition20:291–341.
Kelly, J.-P.; Botea, A.; and Koenig, S. 2007. Planning with
hierarchical task networks in video games. InProceedings
of ICAPS’07 Workshop on Planning in Games.
Kunda, Z. 1990. The case for motivated reasoning.Psy-
chological Bulletin108(3):480–498.
Watson, D. F. 1981. Computing the n-dimensional tessella-
tion with application to voronoi polytopes.The Computer
Journal2(24):167–172.
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In
Proceedings of the Twenty-Third AAAI Conference on Arti-
ficial Intelligence, AAAI 2008, Chicago, Illinois, USA, July
13-17, 2008, 1010–1016.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan: A
baseline for probabilistic planning. In Boddy, M. S.; Fox,
M.; and Thibaux, S., eds.,Proceeding of ICAPS, 352–360.
AAAI.


