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Abstract

Reasoning with domains containing continuous numeric
change remains an open challenge in planning. In this paper,
we discuss how an established temporal planner, CRIKEY3,
can be adapted to plan in domains containing linear contin-
uous numeric change. In particular, we discuss how an LP
can be used to scheudule action choices, and how the LPRPG
heuristic (hitherto for non-temporal planning) can be adapted
for use in a temporal and linear-continuous setting.

1 Introduction
In this paper we consider the problem of planning in do-
mains with continuous linear numeric change across the exe-
cution of actions. Such change cannot always be adequately
modelled under the assumption that change is instantaneous,
and is a key facet of many interesting problems. For exam-
ple, the battery charge in a Martian rover is constantly fluctu-
ating, and activity needs to be planned in the context of this.
Similarly, customer demand in electricity substation mod-
elling varies throughout the day, and the discrete switching
actions needed to satisfy supply constraints depend on this.

In this paper, we present an approach whereby a forward
chaining temporal planner can be extended to reason with
actions with continuous linear numeric change. The work
we present is currently being implemented, so our focus in
this paper is on how existing components can be adapted
to suit our purposes. We make three contributions. First,
we consider a recent heuristic for planning with numbers
in non-temporal domains, and extend this to temporal do-
mains. Second, we propose how a Linear Programme (LP)
can be used to support reasoning with time and numbers
during search within continuous numeric domains. Third,
and finally, we discuss how the temporal-numeric heuristic
we present can then be used within the continuous numeric
search structure we propose, providing the search guidance
necessary to underpin planning.

2 The Problem
Conventional STRIPS planning problems can be thought of
as a tuple <A,I,G>, where A is the set of actions that can
be applied, I is a propositional representation of the initial
state, and G is a propositional representation of the goal
state. Each action A, has preconditions, propositions that

must be true in order for the action to be applied, and ef-
fects, facts that become true, or false, on the application of
that action. The task is to find a plan a sequence of actions
that transformes the initial state I into the goal state G.

The introduction of PDDL2.1 in 2001 (Fox & Long 2003)
saw the extension of the language to deal with numeric flu-
ents and temporal actions. PDDL2.1 is split into several lev-
els. Level 1 is restricted to propositional models. Level 2
introduces numeric fluents, to capture reasoning about nu-
meric values in the world. The use of numeric fluents is
restricted to basic numeric operations. Fluents can either be
assigned a specific value (either in the initial state or by an
action); increased or decreased by a value; or modified ac-
cording to an arithmetic expression making use of the basic
operators +,−, ∗and÷. The important thing to note, at level
2, is that all numeric change is instantaneous, happening at
the time an action is applied: it cannot occur gradually over
time. This limitation means that many important interesting
features of real world problems cannot be modelled.

Level 3 of PDDL2.1 defines temporal planning problems,
with the concept of durative actions. Durative actions are
a development of the non-temporal actions of levels 1 and
2, defined to accommodate a model of time where the start
and end of actions are of interest. Problems here can still
be thought of as a tuple <A,I,G>, but each a ∈ A is now
defined differently. Rather than preconditions, durative ac-
tions have conditions; these can be specified to hold either at
the start, the end, or across the action’s execution (referred
to as invariants). Effects are similarly modified, and can fall
either at the start of the execution of an action, or upon its
completion. Finally, durative actions have a duration con-
straint specified: a upper and lower bound on the action’s
duration, equal in the case of fixed-duration actions. The
language to define these bounds is similar to that of numeric
preconditions: each is dictated by a basic arithmetic expres-
sion.

Level 3 of PDDL2.1 also retains support for the numeric
capabilities of level 2, giving rise to some interesting new
challenges in planning: how do time and numbers interact?
As a starting point, in level 3, numeric effects and conditions
can occur wherever propositional effects and conditions oc-
cur, with numeric change being instantaneous. This is the
level of PDDL2.1 that state-of-the-art planners, such as LPG
(Gerevini & Serina 2002) and Sapa (Do & Kambhampati



2001) can reason with; some include support for other or-
thogonal features such as timed initial literals (Hoffmann &
Edelkamp 2005), but the basic numeric temporal reasoning
is of this form.

Level 4 of PDDL2.1 introduces a richer interaction be-
tween time and numbers: continuous numeric change. That
is, rather than numeric change being discrete, values can
change continuously over time, throughout the execution
of an action, according to some specified numeric function.
Such effects are specified through use of a differential equa-
tion, with an effect on a variable v given as dv

dt = f(V ) + c,
where V is the vector of state numeric variables, f(V ) is a
mathematical function over these, and c is a constant. Solv-
ing problems with this level of expressivity remains an open
challenge to the planning community.

In this paper, we present ideas to solve a subset of such
problems. We restrict our attention to the case where f(V )
refers only to static numeric state variables; i.e. those un-
changed by any action. In this case, f(V ) is a constant
state-independent value, and hence the continuous numeric
change dv

dt is linear. Let us now take a look at an example
of such an action, in a domain similar to the Generator do-
main (Howey & Long 2003) (the important simplification is
that numeric change is linear). In this domain, a generator
must run for a fixed length of time (in our case 100 sec-
onds), and as it powers a safety critical system it is essential
that there are no breaks in its running. Running the genera-
tor consumes fuel from a tank; it is possible to refill the tank
whilst running the generator, but the total capacity of the fuel
tank on the generator, 90 units, must not be exceeded. The
action to refill the tank increases the level of fuel in the tank
at a rate of 2 units per second for a duration of 10 seconds.

The action to run the generator, in PDDL2.1 level 4, is
given in Figure 1. The condition on executing this action is
the safety criterion: the fuel level in the generator must never
fall to zero. The continuous numeric effect, the first on the
effects list, is the interesting feature of this action. In PDDL,
continous numeric change is specified as the rate of change
of a fluent, in this case fuel-level, with respect to time:
the #t is a special keyword denoting the time elapsed so far.
Thus this effect states that the amount of fuel consumed t
time units after the action has been executed is t ∗ 1, or t.
This represents a linear decrease in fuel level over time.

Clearly reasoning with continuous resources requires
proper reasoning about numeric resources and about time.
We will explore approaches to reasoning with each of these,
at PDDL2.1 levels 2 and 3 respectively, before going on to
present a combination of the two approaches that allows the
management of continuous numeric effects where change
with respect to time is linear.

3 Related Work
There is a growing body of work in the area of planning
with continuous systems, also referred to as hybrid or mixed
discrete-continuous systems. Within the planning commu-
nity, there are several researchers who have worked in this
area. Work includes the exploration of control in hybrid
systems by Brian Williams and his colleagues (Léauté &

Williams 2005; Li & Williams 2008). This work has fo-
cussed on model-based control of hybrid systems and uses
techniques based on constraint reasoning. The continuous
dynamics of systems are modelled as flow tubes that capture
the envelopes of the continuous behaviours. The dimensions
of these tubes are a function of time (typically expanding as
they are allowed to extend) so that fitting together succes-
sive continuous behaviours involves connecting the start of
one tube (the precondition surface) to the cross-section of
the preceding tube at a time when there is a non-empty in-
tersection between the spaces.

A different, although related, approach to reasoning
with linear continuous dynamics is the work of Shin and
Davis (Shin & Davis 2005) in TM-LPSAT, which uses a SAT
model of a problem, in which linear constraints on the con-
tinuous dynamics are captured as logical variables. Once
a satisfying assignment for the discrete combinatorial prob-
lem has been found, the active variables corresponding to
linear constraints are harvested and the constraints assem-
bled into a linear programme which is solved separately. If
it cannot be solved, the system backtracks over the satisfy-
ing assignments. A problem with this approach is to gain
adequate information from the linear programme to sup-
port useful backtracking in the SAT problem. A similar ap-
proach was explored in (Audemard et al. 2002), though this
was not concerned with continuous change. An approach
based on heuristic search is presented by McDermott in his
OPTOP system (McDermott 2003). Earlier work on con-
tinuous planning was conducted by Penberthy and Weld in
Zeno (Penberthy & Weld 1994), a planner that reasoned di-
rectly with the analytic forms of the differential equations
describing continuous dynamics. Representation of hybrid
systems in a standard planning formalism is considered in
the work of Fox and Long (Fox & Long 2006), while earlier
work such as (Sandewall 1994) considers the broader issues
of representation of hybrid systems for inference systems.

Planning in domains with continuous processes is often
coupled with management of uncertainty, since the dynam-
ics of systems are typically hard to specify with precision.
This area of research has been investigated by several re-
searchers (Younes & Simmons 2004; Benazera et al. 2005).

Of course, considerable work on reasoning with hybrid
systems has been carried out in other fields, including veri-
fication and real-time systems. Although much of this work
is relevant, there is far too much to give a representative
overview in this paper. Instead, we point the reader to the
work on timed automata theory (Lynch & Vaandrager 1992)
as a good starting point.

4 The LPRPG Heuristic
Since the introduction of level 2 of PDDL2.1 in 2001, the
use of numeric values in planning has recieved compara-
tively little attention. Many planners can reason with do-
mains including such values, but few can optimise with re-
spect to these values, or indeed solve problems where there
numeric resources are key in finding solutions to the prob-
lems. Most state-of-the-art numeric planners still use the
metric relaxed planning graph (metric RPG) heuristic intro-
duced with Metric-FF (Hoffmann 2003). The metric RPG



(:durative-action generate
:parameters (?g)
:duration (= ?duration 100)
:condition (over all (> (fuel-level ?g) 0))
:effect (and (decrease (fuel-level ?g) (* #t 1))

(at end (generator-ran))))

Figure 1: Generate Action from the Generator Domain

heuristic extends the ‘ignore delete lists’ relaxation to num-
bers, by ignoring ‘delete’ numeric effects. To achieve this,
each fact layer is extended to record the lower and upper
bounds on the value of each numeric variables. Initially,
these correspond to the values of the variables in the state
being evaluated, and as the graph is expanded, numeric ef-
fects which increase a variable are used to increase its upper
bound, and effects which decrease a variable decrease its
lower bound.

The metric RPG heuristic, whilst capable of providing
some search guidance in numeric planning problems, does
however have a number of weaknesses. One in particular is
particularly detrimental to heuristic guidance: the ability to
cyclically transfer numeric resources. In this case, the up-
per bound on a variable v can be increased by executing a
pair of actions in sequence: one which increases the value
of v′ at the expense of v, and one which increases v at the
expense of v′. As the unwanted effects are ignored, the pres-
ence of this pair of actions within the planning graph allows
the upper bound on v to increase through what would be a
fruitless action sequence were all the effects of the actions
considered.

Recent work has addressed this issue through combining
the metric RPG with a linear programme (LP), producing
what is known as the LPRPG heuristic. For full details, we
refer the reader to (Coles et al. 2008b), but we shall dis-
cuss it briefly here. The heuristic is designed for producer–
consumer problems, where resource variables have a lower
bound of zero, and actions increase or decrease one or more
resource levels by prescribed amounts. In such a setting,
an LP can be made with three classes of variables. First,
those denoting the numeric variable values in the first fact
layer (fixed to correspond to the state being evaluated), one
for each variable v. Second, variables denoting how many
times each of the n actions present in the planning graph has
been applied, each denoted ai. Third, variables denoting the
values in the current fact layer, denoted v′. Constraints are
used to dictate the values of this third class of variables from
the first two. If change(ai, v) gives the effect of an action
ai upon a variable v (0 if no change, positive if a production
action, and negative if consumption) then the value of each
v′ is given by:

v′ = v +
∑

i=[1..n]

change(ai, v)

The LP can then be used to find numeric variable bounds
for the current fact layer, setting the objective function to
first maximise and then minimise each variable v′. As be-
fore, these then determine which actions are applicable in

the next action layer. As the constraints giving the values of
each v′ consider both the decreasing and increasing effects,
and resource variables are bounded to be non-negative, the
heuristic is able to avoid cyclical resource transfer and pro-
vide better heuristic guidance in strongly numeric domains.

5 CRIKEY3
In handling continuous numeric effects it is crucial to rea-
son properly with time. Three aspects govern the model of
temporal actions according to PDDL. The first is the notion
of start and end points: conditions and effects can be speci-
fied to hold and, respectively, occur at both the start and end
of each action. Second, an invariant condition can be spec-
ified to hold between these, written as propositional and/or
numeric ‘over all’ conditions. Third, and finally, a dura-
tion inequality for the action is specified: upper and lower
bounds on the duration of the action, expressed as formulæ
over numeric constants and state variables.

From this model of temporal actions, many state-of-the-
art planners reduce the problem to non-temporal planning
through compiling each temporal action into a single instan-
taneous action representing the net effect of the execution of
the whole action (Cushing et al. 2007). The resulting se-
mantics are close to those of Temporal Graph Plan (TGP)
(Smith & Weld 1999) . Such a compilation works for some
simple problems without interesting temporal features; but
when more complex problems are specified, using the full
power of PDDL2.1, this approach is both unsound and in-
complete (Coles et al. 2008a). Proper reasoning becomes
even more important when numeric fluents may also change
continuously throughout the duration of an action.

Let us return to our running example, considering the sim-
plified generator problem. It is clear that in a solution to this
problem the refill action must occur during the execution
of the generate action. The constraint that the tank must
not overflow prevents the refill action from being applied
before the generate action starts. If the refill action is
not applied until the execution of the generate action is
complete then the generator will run out of fuel before com-
pleting generation. It is possible to envisage this situation
happening in the TGP propositional case also, where a re-
source is modelled propositionally as being present-or-not.
For example, consider a use torch action with the start ef-
fect that there is light, and an end effect to delete this propo-
sition. Such an action models the presence of a resource,
in this case light, and any action requiring this resource to
be present must be executed concurrently with the resource
providing action (assuming no other action adds the propo-
sition).



In problems such as the generator problem, or the propo-
sitional torch problem, the compilation approach is not an
effective means of solving the problem. In the generator
case the two actions will necessarily have to be sequenced:
each is instantaneous and mutex with the complied version
of the other. In the torch domain, again, if the use torch ac-
tion is instantaneous it is not possible for any other actions
making use of the light to run in parallel with it, thus if any
activity requiring light is necessary in order to reach the goal
the compiled problem will be unsolveable. This clearly mo-
tivates the need for a different approach taking proper note
of the temporal structure of actions: the points between the
starts and ends of actions are important, and cannot be com-
piled away.

CRIKEY3 (Coles et al. 2008c) is a forward chaining tem-
poral planner that is able to reason with problems where
such coordination between actions is necessary in order to
find a solution. It can handle richly temporally expressive
domains specified in PDDL2.1 and is the temporal planner
upon which we will build the continuous planning frame-
work. Let us explore, then, how CRIKEY3 works. The first
point to observe is that CRIKEY3 does not use the TGP ac-
tion compliation; instead it uses a compilation first intro-
duced in LPGP (Long & Fox 2003). This compilation is
lossless, and instead of compiling a temporal action into a
single non-temporal action, it is compiled into two sepa-
rate instantaneous actions: one representing the start of the
action, and another then end. To ensure a one-to-one cor-
respondance between starts and ends of actions, additional
dummy facts are used. Using this compilation the starts
and ends of actions can be interleaved by the planner during
search. This does make search to find a plan less efficient
than if the TGP compilation is used, in cases where such a
compilation is sufficient, but it remains sound and complete.
If we now consider the generator domain again, it is possible
to see that a solution plan does conceivably exist:
0: generate start
1: fill start
2: fill end
3: generate end
To ensure search with these start and end actions remains

sound, two other considerations must be made. First, start-
ing an action establishes invariants which must hold until the
action is ended. To capture these, the invariants of any ac-
tions which have started but not yet finished are recorded in
the state definition. Then, when considering which actions
are logically applicable (i.e. their preconditions are satis-
fied), no action can be applied which violates any of these
active invariants.

Second, when searching for a solution plan, we must also
consider the temporal structure of the domain; i.e the dura-
tion constraints between the start and end points of actions.
Temporal constraints arise from two sources: adjacent steps
in the plan are sequenced one after the other; and the du-
ration constraint of an action must hold between its start
and its end. To capture these constraints, CRIKEY3 uses a
Simple Temporal Network (STN). To encode the steps 1..i
within the plan, one vertex is added to the plan for each,
denoted step1..stepi. Each of the two sources of temporal

constraints are then appropriately encoded. First:

ε ≤ stepi+1 − stepi

That is, each step must occur a small amount of time (ε)
after the previous one. Separation by ε is necessary as if the
action at i + 1 requires an effect of i as a precondition, the
two steps cannot occur strictly concurrently: they must be
nominally separated. Second, to capture action durations,
for each pair of start and end actions 〈Astart, Aend〉 at steps
i and j a duration constraint is added:

min ≤ stepj − stepi ≤ max

With this STN, it is then possible to ensure that a valid
schedule exists for the action steps chosen: if the STN is in-
consistent (i.e. negative cost cycles exist within the induced
directed graph) the plan is invalid. Hence, by constructing
an STN at each state in the search space, CRIKEY3 ensures
the action choices are both logically and temporally sound.

Through using the LPGP action compilation, performing
the necessary housekeeping to maintain invariants, and us-
ing an STN to check temporal feasibility, we have discussed
how forward chaining planning can be used by CRIKEY3 to
search for solutions to temporal planning problems. Such
search requires appropriate heuristic guidance, and to this
end CRIKEY3 employs a temporal relaxed planning graph
(TRPG) heuristic. Unlike the planning graph heuristic used
in Sapa (Do & Kambhampati 2001), the TRPG constructed
in this manner is able to maintain the PDDL start–end se-
mantics: Sapa’s planning graph with compiled actions re-
sults in false dead-ends. The first fact layer in the TRPG
corresponds to the state being evaluated. Following this, are
timestamped action and fact layers, with action layers con-
taining start and end actions, and fact layers their (positive)
effects. To capture the temporal relationships between the
starts and ends of actions, the durations are used to offset
start and end points between fact layers. For a start action
Astart in the planning graph, appearing at layer t, its end is
delayed until layer t + durmin(A); i.e. the earliest point at
which the end could be applied, given it has to follow the
start. For actions that have started but not yet finished in
the current state, their ends are delayed until the layer times-
tamped with the minimum duration of the action, minus an
upper bound on the time since the start of the action. In this
manner, both logical and temporal constraints are encoded
within the heuristic, and as discussed in (Coles et al. 2008c)
the search guidance is effective in domains with action co-
ordination and deadlines.

6 A Temporal LPRPG Heuristic
In the non-temporal LPRPG heuristic, discussed in Sec-
tion 4 the LP is updated and calls made to determine vari-
able bounds at each fact layer, and then used again during
solution extraction. In non-temporal planning, consulting
the LP during graph construction is practical as all action
durations are equal (i.e. nominal) and hence the number of
layers is comparatively small. In temporal planning, how-
ever, the number of layers in the planning graph tends to be



considerably larger: action durations are not necessarily tidy
multiples of each other.

To trade-off heuristic cost against heuristic quality, a tem-
poral variant of the LPRPG heuristic can be constructed by
changing the circumstances in which the LP is used. We can
exploit the fact that the bounds computed by the technique
used in Metric-FF are generous estimates of those computed
by the LP, and delay the use of the LP until the point at
which these bounds indicate the numeric goals can be sat-
isfied. At this point, we construct an LP containing all the
actions in the final action layer (each being applicable arbi-
trarily many times), with the additional constraint that the
number of times the end of an action is applied is equal to
the sum of the number of unfinished instances of that action
executing in the current state and the number of times its
start has been chosen in the planning graph. With this LP,
we then calculate the variable bounds on v′ and determine
whether the numeric goals are satisfied according to these.
If not, a loop is entered:

1. The LP numeric variable bounds are compared to the nu-
meric goals to identify the variables for which insufficient
consumption/production is present in the planning graph.

2. Planning graph expansion then continues until at least one
new action appears in the planning graph which has the
necessary effect (consumption/production) on each goal
variable; at this point, the LP is updated to find new
bounds, and the loop returns to 1. Alternatively, if no new
actions appear before returning to 1, the state can be said
to be a dead-end.

In this manner, we lose the improved information on when
numeric variables are able to hold given values, as pro-
vided by the non-temporal LPRPG heuristic, but have re-
duced considerably the number of calls to the LP. Solution
extraction proceeds as in the non-temporal case, using the
LP to find action choices to satisfy numeric preconditions
and goals. One of two scenarii arises when using the LP to
satisfy a numeric precondition:

1. The LP indicates which actions to use, in which case,
these are added to the relaxed plan as in the non-temporal
case.

2. The LP is unsolvable — we have only ensured that nu-
meric top-level goals can be satisfied before beginning
solution extraction. In this case, we add the actions that
would be chosen by the original metric RPG heuristic.

7 Planning with Linear Continuous Change
In this section, we shall now describe how we extend the
architecture of CRIKEY3 to reason with continuous linear
numeric change. We will begin, first, by setting out how
plans are scheduled using an LP. This will be followed by
details of how the LP can be used to give a state definition for
use during search, and finally how the LPRPG heuristic can
be used in conjunction with this extended state definition.

7.1 LP Action Scheduling
Of the continuous numeric change formulæ that can be spec-
ified in PDDL, the subset supported is that where the rate of

change of a variable is a constant (either a domain-specified
numeric constant, or a static numeric state variable). Con-
ceptually, we augment the definition of temporal actions
given in Section 5 by allowing the specification of the gra-
dient of the continuous numeric change effected across the
execution of the action. Whilst in CRIKEY3 an STN was ad-
equate to schedule the chosen sequence of start and end ac-
tions, with the presence of continuous numeric change this
is no longer adequate. As preconditions can be specified
over numeric variables subject to continuous change, resolv-
ing temporal interaction cannot be separated from reasoning
about numeric values. By way of example, let us return to
our generator example. Intuitively, the solution is simple:
run the generator for 100 seconds; within this time, refill the
tank. Disregarding the interaction between time and numeric
values, the fill action can come arbitrarily soon after starting
the generator. Clearly, this is infeasible, as sufficient time
has to have elapsed to allow the tank to be refilled without
overflowing.

To allow plans for such problems to be scheduled, the
plan is formulated as a linear program (LP), containing both
the temporal constraints previously encoded in the STN as
well as details of the action choices’ numeric behaviour.
The variables in the STN in CRIKEY3 represent the times-
tamps of each start or end action in the plan, and are re-
stricted through sequence and duration constraints. In our
LP representation, as well as having a timestamp variable
for each start or end action (stepi), with associated tem-
poral constraints, we have variables denoting the values of
the numeric state variables at each of these points (Vi =
{vi for each v}), and immediately following their execution
(V ′i ). This allows numeric preconditions and effects to be
encoded within the LP. First, considering instantaneous nu-
meric change:

• Start and end preconditions are written as constraints over
Vi — they must hold at the point the action is applied.

• An action A starting at step i and ending at step j has its
invariants added as constraints over each of V ′i ..V

′
j−1 and

Vi+1..Vj .

• Start and end instantaneous effects on a variable v are
written as constraints to determine v′i from Vi; for in-
stance, (increase v (+ w x)) becomes:

v′i = vi + wi + xi

What remains is to detail how numeric change occuring in
the temporal gap between actions steps is encoded; i.e. the
constraints dictating the relationship between V ′i and Vi+1.
The LP is constructed by iterating through the steps of the
plan, tracking the active continuous change on each variable
at each step:

• Initially, for each variable v, δv0: no continuous change
is active.

• If step i is the start of an action changes v with rate m,
δvi+1 = δvi +m.

• If step i is the end of an action which changed v with rate
m, δvi+1 = δvi −m.



Variable Constraints
step0 N/A
v0 =90
v′0 = v0, ≥ 0

step1 ≥ step0 + ε
v1 = v′0 − 1.(step1 − step0), ≥ 0
v′1 = v1, ≥ 0, ≤ 90

step2 = step1 + 10
v2 = v′1 + 1.(step2 − step1), ≥ 0, ≤ 90
v′2 = v2, ≥ 0

step3 ≥ step2 + ε, and = step0 + 100
v3 = v′2 − 1.(step3 − step2), ≥ 0
v′3 = v3

Table 1: Variables and Constraints for the Linear Generator
Problem

• Otherwise, δvi+1 = δvi.

The values of each vi+1 ∈ Vi+1 can then be written as:

vi+1 = v′i + δvi+1.(stepi+1 − stepi) (1)

The resulting LP then encodes the changes occuring to
numeric values during plan execution, along with the con-
ditions specified over them both at time points and as in-
variants. By setting the objective function to minimise the
timestamp variable of the final step, attempting to solve the
LP will yield one of two results: either a solution, and hence
a schedule for the plan, or no solution, and thus the fact that
the plan is invalid.

Returning to our example, the plan consists of four steps:
0: generate start
1: fill start
2: fill end
3: generate end
The LP representing this plan contains the variables and

constraints shown in Table 1. The constraint that v ≥ 0
is added to all relevant points during generate and forces
fill to occur sufficiently early; and the constraint of v ≤ 90
forces fill to occur sufficiently late. The solution as-
signments to step0 and step1 then give the timestamps of
generate and fill and hence a schedule for the plan.

7.2 Extended State Definition
Discussion of the extensions to CRIKEY3 has thus far con-
sidered the scheduling of a plan containing actions with
linear continuous effects. Searching for such a plan in a
forward-chaining manner poses an interesting challenge: in
a state reached after the execution of some actions, the val-
ues of numeric state variables depends on how much time
elapses before the next action is applied. For instance, once
the generator is running, there is no fixed value for the level
of fuel in the tank; in effect, unlike the non-continuous
case, the numeric state variables no longer hold fixed val-
ues. The significance of this becomes clear when consider-
ing the decision of which actions to apply when expanding
a state. In CRIKEY3, numeric and propositional facts are
known, and this information is used to determine whether

actions are logically applicable based on state information
— their preconditions are satisfied, and no invariants are vi-
olated by their effects. Whether the action is actually also
temporally applicable is then determined by attempting to
schedule the actions through the use of an STN. With the
scheduling now being performed using an LP, considering
both time and numbers, aspects of numeric applicability are
not fully know until attempting to schedule the plan: we can
safely assume propositional applicability, but the scheduler
now determines numeric–temporal applicability.

One possible solution to this issue is to consider only
propositional facts when considering which actions are ap-
plicable in a state, and when calculating its heuristic value.
In this case, handling numeric values and preconditions is
entirely delegated to the LP. Doing so, however, has two key
weaknesses. First, many actions will be considered poten-
tially applicable — any whose propositional preconditions
are satisfied. As such, the cost of state expansion will be in-
creased due to attempting to schedule each of these using an
LP to find the subset of the reachable states which appears to
be feasible. Second, any purely propositional heuristic used
is consequently restricted to considering only propositional
facts, effectively reducing attempts to find a successful chain
of interacting numeric actions to blind search.

As a compromise, we extend the state definition used
in CRIKEY3 such that rather than recording a fixed value
for each numeric variable, we maintain an upper and lower
bound. To determine these, we make an extension to the for-
mulation of the LP: following a sequence of actions 1..i, we
add a further dummy action to denote ‘now’, with timestamp
variable stepnow and numeric value variables Vnow. As be-
fore, Vnow is determined from V ′i according to Equation 1
and stepnow ≥ stepi + ε. Additionally, for each action
that has started but have not yet finished, a maximum dura-
tion constraint is added between the start of the action and
stepnow: the time elapsed between the start of the action
and now necessarily cannot exceed the duration of the ac-
tion. The rationale behind this is as follows: for each unfin-
ished action Astart, now either represents the end of A (i.e.
Aend), or it does not. Supposing now = Aend, then we need
appropriate maximum and/or minimum duration constraints
between Astart and now. Supposing now 6= Aend, then we
know that Aend must come after now — at the earliest, at
time stepnow + ε. In this case, the time elapsed between
Astart and now cannot exceed the maximum duration of
A, as necessarily the maximum duration constraint between
Astart and Aend would then be broken. As in both of these
cases the maximum duration constraint between Astart and
now must be respected, it can be added to the LP.

Having extended the LP to contain the necessary dummy
action to represent the state reached by the specified plan, it
can now be used to find the upper and lower bounds on each
numeric variable in the state by changing the objective func-
tion of the LP. Specifically, whereas previously the objective
function was to minimise the timestamp of the last action,
changing it to maximise and minimise each of Vnow in turn
will find the respective upper and lower bounds. For reasons
of efficiency, if the value of a variable can be shown to be
time-independent in the plan so far, its value can be estab-



lished as before; i.e. through applying the actions’ numeric
effects forwards from the initial state.

7.3 Improving LP Efficiency
In general, tightening the variable bounds within an LP re-
duces the time taken to find a solution. As the LP scheduler
will be used once per node in the search space, any variable
bounding we can make will help to reduce the overheads
this incurs. One possibility is to extend the state definition
further to store information for use as variable bounds when
constructing the LPs to evaluate successor states. The trade-
off, however, is that storing bounds requires additional mem-
ory. Hence, we shall discuss two means of improving LP
bounds, one with minimal memory overheads and the other
with none.

The first method we consider is to store, in each state, a
lower bound on the timestamp of each action in the plan.
When a state S is expanded to reach a state S′ through ap-
plying an action a, the LP scheduler is used, first with the
objective function to minimise the timestamp of a. Assum-
ing the plan can indeed be scheduled, then the value of the
objective function is a lower bound on the timestamp of a in
S′ and in all states reachable forwards from S′: there is no
way in which applying further actions to S′ can force this
action to occur any earlier than this proven lower bound.
By storing these objective function values in a state, along-
side their respective planned actions, the bounds can then be
used within the scheduler when evaluating successor states;
i.e. the timestamp lower bounds from S can be used in the
LP scheduler for S′.

The second method for adding further bounds to the LP
exploits the fact that when expanding a state S to lead to S′
we know the upper and lower bounds on the state variables
in S. For a state S′ reached by a plan of actions 1..i, the
state S corresponds to that immediately before action i. In
effect, the dummy action for ‘now’ discussed in Section 7.2
is action i — that following the actions 1..(i − 1) that lead
to S. As the variables Vi correspond to those immediately
before action i, the upper and lower bounds on the variables
in S can then be applied to the respective variables in Vi.
In this manner, we can add further bounds without having
to expand the state definition further: we exploit the fact
that we have both the previous state S and the new state S′
available when evaluating S′.

7.4 Using the Temporal LPRPG Heuristic
Finally, we consider how the temporal LPRPG heuristic can
be extended to provide guidance in problems with continu-
ous numeric effects. Modifications are made in three places.
First, as we no longer have a state with fixed values assigned
to numeric variables, the upper and lower bounds from the
state are taken to be the upper and lower bound of the first
fact layer numeric variables. As such, whereas previously
the values for the LP variables denoting the current state nu-
meric variable levels were fixed, they are now free to take
any value within the appropriate range. In doing so, the plan-
ning graph structure can be built as before, with no changes
to the algorithm.

The second modification concerns how the linear contin-
uous effects are encoded: change previously was instanta-
neous, either at the start or the end. To achieve this, we
make the optimistic assumption that the continuous effects
of an action are available as soon as it has started. For in-
stance, the net effect of the refill action is to increase the
fuel level by 20, so in the heuristic we assume this increase
occurs as a start effect of the action. If the start of the action
appears in the planning graph, it has this start effect added to
it. If an action has already started, its amortised effects are
applied to update the upper and lower bounds in the first ac-
tion layer, giving a representation of the state that one would
have if the earlier start of the action had this effect.

Third, and finally, we recognise implicit conditions intro-
duced by continuous resource consumption, and attach these
to the end points of such actions. Consider the case where
an action A consumes resource v across its execution, and
hence requires v to be non-zero at all times. If its dura-
tion is d and the rate of consumption of v is m, then by the
end of the action the amount of v produced must be at least
d.m − ub(v), where ub(v) is the initial upper bound on the
level of v. This can be added as an end precondition of A,
i.e. that before A can finish, production of v must be at least
what is needed by A. As a special case, for actions which
have already started but not yet finished, when constructing
the TRPG we know the upper bound on how much time has
elapsed since the start of each of these. With exec(A) de-
noting the maximum time since the start of A, the additional
condition is then that v ≥ (d − exec(A)).m − ub(v); i.e.
we assume as much consumption as possible falls before the
start of the planning graph.

8 Conclusions
In this paper, we have discussed how a temporal planner,
CRIKEY3, can be adapted to plan in problems where ac-
tions have continuous linear numeric effects. Key to the
success of the approach is the use of a Linear Programme
(LP) to schedule the action choices, in the context of inter-
acting temporal and numeric constraints. The LP cannot be
used to entirely decouple the continuous and non-continuous
parts of planning, but minimises the changes required to the
rest of the planner: storing upper- and lower-bounds on vari-
ables; and updating the heuristic with an approximation of
the continuous behaviour.

In future work, our current aim is to complete the imple-
mentation of the planner and gather empirical data on the
performance of the planner, along with a collection of ap-
propriate domains.
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