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Abstract

This paper reviews the applications and challenges of robotic
systems in the underwater domain. It focuses on the chal-
lenges for achieving embedded situation awareness, adaptive
trajectory planning and adaptive mission planning. These are
required elements for providing true autonomy for delegation
of tasks to unmanned underwater vehicles. The paper analy-
ses current approaches to tackling these challenges and how
planning plays a vital role in overcoming them. It includes a
description of some key applications and future concepts of
operations.

Introduction
In the last few decades, increasing interest in oceans has re-
sulted in unprecedented attention being focussed on them.
Although they cover 71% of the Earth’s surface, humankind
has sent more astronauts to the Moon than scientists to the
deepest parts of our seas. It was almost 10 years after reach-
ing the surface of the Moon, that the deepest parts of the
oceans were finally reached. Since then, goverments and
industry have become more and more interested in under-
standing and managing our planet and they have realised
how important the underwater regions, two thirds of the to-
tal Earth’s surface, are. Nowadays, it is not only the need
to discover, but also to observe, map and protect our oceans
that motivates further exploration of underwater regions.

Unfortunately, access to these regions is not straightfor-
ward. The underwater environment is a hostile environment
for humans and human technology. It can challenge some of
the capabilities that are now taken for granted in other do-
mains such as the Earth’s surface, the atmosphere or outer
space. Some of the most representative and specific chal-
lenges underwater are high pressure, corrosion and signal
processing issues related to data transmission and sensing.

Even though the underwater domain presents such chal-
lenges, several maritime disciplines still require access to
this environment. The most relevant ones are:
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• Oceanography: Scientists are faced with the need of
gaining access to the most remote parts of the oceans,
from deep trenches to fresh water lakes under the polar ice
caps. They have to collect information in order to be able
to understand issues such as climate change, the melting
of the polar ice caps and to forecast weather conditions,
hurricanes and tsunamis.

• Energy industry: In current offshore oil fields the tasks
of Inspection, Repair and Maintenance (IRM) comprise
up to 90% of the related field activity. This inspection is
dictated by the vessels availability and the weather con-
ditions. Additionally, the deep sea is still un-exploited.
Gaining access to these deeper levels can provide access
to new sources of minerals and energy.

• Military: A priority to current Navy operations is to
maintain clear access to ship passages and to protect ves-
sels, harbours and coastal waters. Achieving these capa-
bilities without compromising personnel safety due to foe
actions is still unsolved.

For all these disciplines, robotic platforms are proven to
be very useful in de-risking human activity in the hostile
underwater environment. The main challenges that robotic
systems have to deal with underwater are:

• Power : Robots are highly dependant on their battery life
in a domain without possibility of extending it from other
external sources.

• Communication : Sound is the media use for sensing and
communicating underwater. Low bandwidth, long delays
and high-power requirements impose many restrictions.

• Perception : Visual methods are poor while acoustic
methods come with many false positives. They are af-
fected by temperature, pressure and salinity making them
very noisy. Range is inversely related to the frequency
and normally quite reduced (see Fig. 1). Additionally, raw
sensor data has to be ultimately processed into conceptual
knowledge in order to build the awareness of the environ-
ment.

• Navigation : The underwater environment is a GPS-
denied area. Existing underwater maps are still quite in-
nacurate. Together, these make localization and orienteer-
ing for navigation a very hard problem.



Figure 1: Acoustic image of 50m range of a WWI U-boat
sunk in Hoxa Sound, Scapa Flow (courtesy of SeeByte Ltd.).

• Delegation: Autonomous adaptation of different tasks
to changes in the environment has not yet been fully
achieved. Without it, it is necessary that the operator re-
mains in the loop, observing and taking decisions. Au-
tonomous adaptation to sensed changes is necessary to
gain the operator’s trust and acceptance and for them to
delegate tasks to the robotic platform (Johnson, Patrón,
and Lane 2007).

Although new solutions are already being developed to
extend power autonomy and communication requirements,
the other three issues (perception, navigation and delega-
tion) are still a real challenge for achieving true autonomy
in robotics in the underwater environment. This paper de-
scribes each of these challenges and provides an overview on
how reasoning tools and autonomous planning approaches
can contribute to overcoming them.

Robotic platforms
Unmanned underwater vehicles can be classified in Remote
Operated Underwater Vehicles (ROVs) (see Fig. 2), Au-
tonomous Underwater Vehicles (AUVs) (see Fig. 3) and
Underwater Gliders. They differ on the power capability,
power endurance and the task complexity that they have
been designed for.

Underwater vehicles have become a standard tool for data
gathering for Maritime applications. In these environments,
mission effectiveness directly depends on vehicle’s oper-
ability. Operability underlies the vehicle’s final availability,
affordability and acceptance. Two main vehicle characteris-
tics can improve the vehicle’s operability: reliability relates
to vehicle failures due to the internal hardware components
of the vehicle, and survivability relates to vehicle failures
due to external factors or damages.

Each of these characteristics can be improved by pro-
viding autonomous adaptation of the mission plan and au-
tonomous adaptation of the trajectory plan respectively.
Both require access to the correspondent levels of percep-
tion in order to build their own situation awareness.

In current implementations, the human operator consti-
tutes the decision making phase. When high-bandwidth
communication links exist, the operator remains in the loop
during the mission execution. Examples of this approach are

Figure 2: Typical ROV inspection operation of a riser with a
fluorometer sensor.

Figure 3: AUV recovery after finishing a mission (courtesy
of SeeByte Ltd.).

existing ROVs. However, when the communication is poor,
unreliable or not allowed, the operator tries, based only on
the initial orientation or expertise, to include all possible be-
haviours to cope with execution alternatives. This has unpre-
dictable consequences, in which unexpected situations can
cause the mission to abort and might even cause the loss of
the vehicle. Examples of this architecture are current imple-
mentations for AUVs and gliders.

Towards adaptive autonomy
Autonomous adaptation can release the operator from deci-
sion making tasks at the trajectory and mission planning lev-
els. These, in consequence, can require less communication
with the consequent power saving. Adaptation plays an im-
portant role in providing autonomy. The aim is to be effec-
tive and efficient and a plan costs time to prepare. This time
has been already invested once (to compute the plan that is
now failing), so it might be more efficient to try to reuse pre-
vious efforts by repairing it. Also, commitments might have
been made to the current plan: trajectory reported to other
intelligent agents, assignment of resources or assignment of
part of mission plan to executors, etc. Repairing an existing
plan ensures that as few commitments as possible are inval-
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idated. Finally, several planners (usually autonomous and
human planners combined) could be performing together to
achieve the goals. In such cases, it is more likely that a sim-
ilar mission plan will be accepted by the operator than one
that is potentially completely different.

Autonomous adaptation requires an autonomous under-
standing of the environment. The human capability of deal-
ing and understanding highly dynamic and complex envi-
ronments is known as situation awareness (SAH ). SAH

breaks down into perception of the environment, compre-
hension of the situation and projection of the future status.
Decision making occurs in a cycle of observe-orient-decide-
act (OODA) (Boyd 1995). The Observation component
corresponds to the perception level of SAH . The Orienta-
tion component contains the previously adquired knowledge
and understanding of the situation. The Decision component
represents the SAH levels of comprehension and projection.
This last stage is the central mechanism enabling adaptation
before closing the loop with the final Action stage. Note that
it is possible to take decisions by looking only at orientation
inputs without making any use of observations.

Based on the autonomy levels and environmental char-
acteristics, SAH definitions can be directly applied to
the notion of unmanned vehicle situation awareness
(SAV ) (Adams 2007). Increasing the levels of situation
awareness for individual unmanned vehicle systems (SAS)
can help the transfer from current full human control to fully
autonomous unmanned capabilities (see Fig. 4). This knowl-
edge representation is the focus of the next section.

Knowledge representation and transfer
At present, knowledge representation is embryonic and tar-
gets simple mono-platform and mono-domain applications,
therefore limiting the potential of multiple coordinated ac-
tions between agents. Consequently, the main application
for autonomous underwater vehicles is information gather-
ing from sensor data. In a standard mission flow, data is
collected during mission and then post-processed off-line.

However, in order to be able to let decision making tech-
nologies evolve towards providing higher levels of auton-
omy and control, embedded service-oriented agents require
access to higher levels of knowledge representation or ab-
straction (see Fig. 5). These higher levels will be required to
provide knowledge representation for contextual awareness,
temporal awareness and behavioural awareness.

Two sources can provide this type of information: the do-
main knowledge extracted from the original expert (orien-
tation) or the inferred knowledge from the processed sensor
data (observation). In both cases, it will be necessary for the
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Figure 5: Levels of control related to the level of abstraction
of knowledge for operator’s delegation of tasks to unmanned
vehicles.

information to be stored, accessed and shared efficiently by
the deliberative agents while performing a mission. These
agents, providing different capabilities, might even be dis-
tributed among the different platforms working in collabo-
ration.

Semantic frameworks have recently raise interest provid-
ing hierarchical distributed representation of knowledge for
multidisciplinary agent interaction (Patrón et al. 2008a).
They provide with a common machine understanding rep-
resentation of knowledge between embedded agents that is
generic and extendable. They also include a reasoning inter-
face for inferring new knowledge from the observed data and
knowledge stability by checking for inconsistencies. These
frameworks improve local (machine level) and global (sys-
tem level) situation awareness and context for mission and
trajectory behavior. They can therefore act as enablers for
autonomy and on-board decision making.

There are currently several institutions and consortiums
developing standards for knowledge representation under
these frameworks. Particular attention is taking the effort
describing the concepts and relationships for the domains of
unmanned platforms (jau 2008) and the underwater environ-
ments (mmi 2008). An example is shown in Fig. 6.

Trajectory planning
Navigation and mapping
Existing geographical information for trajectory planning
can be represented using knowledge-based frameworks.
However, mapping of the environment depends on the un-
certainty in the position of the vehicle when the obstacles
are observed and mapped. Navigation in unknown under-
water environments entails high levels of uncertainty.

Geolocating a vehicle on the World’s surface can be accu-
rately performed by using Global Positioning System (GPS)
receivers. But GPS does not work underwater as the radio
signals on which it depends cannot pass through water. Dead
reckoning is the standard technique used underwater and in-
volves use of Inertial Measurement Units (IMUs), a combi-
nation of accelerometers and gyroscopes. Abbe error, mag-
nification of angular error over distance, can be detrimental
to dead reckoning. Inertial Navigation Systems (INS) in-
tegrate accelerations and rates to provide a Kalman filtered
navigation solution. They use inputs from acoustic transmit-
ters and receivers to pin-point the platform’s location. How-



Core Ontology TBox/ABox for MCM Mission
• CAD Module
- hasRequirement: Sidescan
- isCapableOf: Mine-like objects detection,
• CAC Module
- hasRequirement: Mine-like objects detection
- isCapableOf: Mine-like objects classification,
• CAD/CAC Payload
- hasSoftware: CAD/CAC Module,
• Platform
- hasPayload: Payload, ...
? MarineSonic ∈ Sidescan,
? SBCAC ∈ CAC,
? SBCAD ∈ CAD,
? SB337 ∈ CAD/CAC Payload
- hasSoftware: SBCAD & SBCAC,
? Remus337 ∈ Platform
- hasHardware: MarineSonic
- hasPayload: SB337,...
Planning Application Ontology TBox/ABox for MCM
• Action
- hasRequirement:, hasPlatform:,
•Mission
- hasRequirement:, hasPlatform:, ...
? Explore ∈ Action
- hasRequirement: Sidescan driver,
? Detect ∈ Action
- hasRequirement: Mine-like objects detection,
? Classify ∈ Action
- hasRequirement: Mine-like objects classification,
? Clearance ∈Mission
- hasRequirement: Mine-like object classification, ...

Figure 6: Example of platform domain and mission planning
application description for a mine counter measure (MCM)
underwater scenario.

ever, the range of these systems is limited to no more than a
few nautical miles thus restricting the vehicles autonomy. A
better approach involves aiding the INS with a Doppler Ve-
locity Log (DVL) sensor that measures the displacement rate
over the seabed. No matter how accurate the sensors are, the
errors in these systems grow with time and the platform be-
comes progressively lost unless it is able to obtain external
references from acoustic devices or from a GPS receiver on
the surface. This uncertainty in the vehicle’s location gets
passed to the geolocation of the observed elements in the
environement during the mapping process.

A promising alternative is Simultaneous Localisation And
Mapping (SLAM). Using SLAM a platform maps the envi-
ronment and uses the map to localise itself in it. The map can
be georeferenced if the platform maintains an estimate of its
absolute position when the process of mapping is started.
A recent development has shown that it is possible to post-
process and smooth the SLAM solution using the Rauch-
Tung-Striebel smoother (see Fig.7). This new technique,
coined SLAM-RTS, has been used to create better maps of
the environment and to help the trajectory planning systems
to accurately locate the sensed obstacles in the map (Patrón
and Tena-Ruiz 2006).

 

Figure 7: Original, Kalman filtered and RTS smoothed tra-
jectory of an underwater vehicle.

Figure 8: Top: Net avoidance trajectories obtained with the
dynamic model simulator. Bottom : Three sequential obser-
vations of the local map with trail showing planned forward
trajectory to achieve the waypoint in a real scenario.

Obstacle avoidance
Once the navigation and mapping error has been bounded,
an adaptation of the trajectory and waypoints is required
during mission when unexpected events on the planned tra-
jectory are sensed. Collision avoidance and escape is a key
capability for underwater vehicle navigation.

Traditional approaches to collision avoidance and escape
are purely reactive and usually involve an algorithmic for-
mulation of response dictated by the objects geometries and
locations and the relative location of the vehicle. Recent ap-
proaches in rules of collision (Benjamin et al. 2006) and
obstacle avoidance and escape scenarios (Evans et al. 2007)
have focused on reducing susceptibility by looking at the
adaptation of the vehicle’s trajectory plan. These delibera-
tive behaviours provide the defined and bounded event re-
sponses that link to geometric methods of trajectory plan-
ning.

At the trajectory planning level, lifelong planning incre-
mental search methods have been found to decrease com-
putation time while still locating the shortest trajectory be-
tween vehicle and goal (Koenig, Likhachev, and Furcy



Figure 9: AUV survey of two seabed areas with an adaptive
mission planner capable of reacting to water currents and
sensor faults.

2004). Instead of starting from scratch every time a tra-
jectory must be adapted, they reuse data found in previous
searches to save on computation time. Wave propagation
techniques can also provide with smoother and shorter tra-
jectories than classic discrete search approaches. This fast
marching methods are capable of dealing with uncertainty,
dynamic objects and kinematics of the vehicle during the
adaptation process (Pêtrès et al. 2007). A real application of
these techniques in the underwater environment is shown in
Fig. 8.

Mission planning
Single platform
Current mission plan solutions for underwater platforms
are procedural and static (Hagen 2001). If behaviors are
added (Pang et al. 2003), they are only to cope with pos-
sible changes that are known a-priori by the operator. In or-
der to achieve higher levels of autonomy, plan adaptability
should be available not only to procedural waypoint-based
approaches on trajectory planning but also to a declarative
goal-based solution for adaptive mission planning.

On a goal-oriented command and control, decision tools
can be developed providing support for adaptive data sam-
pling, optimization of resources and fault recovery capa-
bilities of the platform (Bellingham, Kirkwood, and Rajan
2006).

The potential benefits of the planning capabilities for
adaptive data sampling have been studied by Rajan (Rajan et
al. 2007) and Fox (Fox et al. 2007). An example of this ap-
plication is the T-Rex system, an adaptive planning architec-
ture with notions of timing and onboard resource manage-
ment responsiveness to opportunistic science events (Mc-
Gann et al. 2007).
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Figure 10: Partial plan representation of an underwater mis-
sion.

In a similar way, fault-tolerant mission planning adap-
tation can also contribute towards providing more mission
flexibility and robustness. When active and passive mea-
sures fail to protect the vehicle, or unexpected hardware fail-
ures occur, the focus of the mission should shift to ’reconfig-
ure’ itself to use alternative combinations of the remaining
resources (see Fig. 9). In the underwater environment, au-
tonomous embedded recoverability, is a key capability for
vehicle’s endurance. This can be achieved via adaptation of
the vehicle’s mission plan (Patrón et al. 2008c). The aim
is to provide with a mission plan as close as possible to the
original. In such case, plan optimality during the adaptation
process can be sacrified for plan stability (Fox et al. 2006).

This level of control can also benefit from the use of
knowledge frameworks. Adaptation is limited to the quality
and scope of the available information. Therefore, to adapt
mission plans due to unforeseen and incipient faults, it is
required that accurate information is available, to recognize
that a fault has occurred and deduce the root cause of the
failure.

Current robotic solutions are generally equipped with
Failure Diagnosis and Detection (FDD) systems based on
damage control that results in the vehicle resurfacing in
the event of any fault in the system. But future operations
will require long-endurance unattended systems that operate
even while being partially damaged or while having con-
strained capabilities. Hence, it is important to develop sys-
tem which not only detect failure in the component but also
provide mission plan modules capable of adapting and re-
covering from these failures. This exchange of meaningful
and reliable knowledge between FDDs and mission planners
can leverage on the use of semantic knowledge frameworks.

Once the knowledge has been transferred from the FDD,
the adaptation approach combines robust execution and mis-
sion plan repair in order to maximize system performance
and response time. Two levels of repair are possible. If the
fault coming from the FDD is incipient or non-critical, a re-
pair at the executive level is performed. This entails adapt-
ing the intances and parameters of the action performing the
task without changing the action itself. If a critical fault on
a component is diagnosed, a repair at the plan level is per-
formed that changes the action requiring of the component



Figure 11: Fleet of unmanned underwater vehicles perform-
ing a survey pattern task in collaboration for an Autonomous
Target Recognition (ATR) scenario.

and the constraints on the action. During this decision mak-
ing process, a combination of refinement and unrefinement
phases of the constraints of a partial ordered mission plan
can be used (Patrón et al. 2008b) (see Fig. 10).

Collaborative planning

Mission plan adaptation can be extended to multiple plat-
forms. The potential benefits of multi-vehicle operations
include force-multiplier effects, redundancy avoidance and
the utilisation of heterogeneous vehicle configurations to re-
duce risk to expensive assets. But to achieve the full bene-
fits, suitable architectures that facilitate true cooperative au-
tonomous planning for task splitting and allocation must be
realised (Evans et al. 2006).

In this case, it is necessary to extend the single vehicle
mission plan recovery to a mission plan recovery for a group
or team of vehicles performing a collaborative mission. A
shared situation awareness is required for the team of vehi-
cles (SAT ) to which every team member possess the SAS

required for its responsibilities (Cartwright et al. 2007). The
main challenge in this case is to deal with the acoustic com-
munication limitations associated to the underwater environ-
ment (Sotzing, Evans, and Lane 2007).

Sensing networks and beyond

The elements previously described are the most immediate
requirements for unmanned platforms in the underwater do-
main. However, other long-term subsea applications are ap-
pearing posing other problems and challenges. The planning
community can help to overcome them.

Ocean observatories in oceanology, all year round sub-
sea field inspection for the energy industry and continous
harbour and coast patroling for the Navy are emerging, re-
quiring a more permanent presence of robotic and sensing
tools underwater. These applications are demanding under-
water networks of fixed sensors in combination with fleets
of AUVs and gliders. These sensing webs require decision
making algorithms in order to be able to optimize the man-
agement of heterogeneous assets and resources, to couple
observation systems and ocean models, to minimize error
in the reconstruction of ocean fields and to provide fast dy-
namic response to events.

Conclusion
Robotic platforms are helping marine applications to gain
routine and permanent access to the underwater environ-
ment. However, challenges related to this domain require
the development and integration of more evolved embed-
ded tools that can raise the platform’s autonomy levels while
maintaining the trust of the operator. This paper shows how
knowledge representation, reasoning and planning tools can
help to overcome these challenges. The study describes cur-
rent approaches to situation awareness, trajectory planning
and mission planning for underwater vehicles. It finishes
by highlighting the long-term scenarios that can also benefit
from planning tools.
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