
Abstracting Chains of Reasoning

Alan Lindsay, Maria Fox, Derek Long
University of Strathclyde, Glasgow

Abstract

The search space of planning problems is very large. This
means that policies that allow the planner to cut straight
through the search space are extremely attractive. In this pa-
per we look at a rule based representation of a policy and
highlight several structures that the language cannot reason
with. We present an architecture that allows the policy to in-
teract with special purpose solvers, designed to deal specif-
ically with these structures. In our experiments we show
that from within our architecture a policy can control search
through domains with interesting structure. We argue that our
architecture could potentially enable strategy learners, such
as L2Plan [11], to learn policies that provide control in inter-
esting structures too.

1 Introduction
A problem in classical planning involves producing a list
of actions that progress the initial state, to a goal satisfying
state. Forward chaining planners explore the possible states
starting from the initial state, constructing this list from be-
ginning to end, with possible backtracking. At the start of
search, the planner can consider all of the actions that can
be applied in the initial state. Each of these presents a new
state and search can continue into these new states. This
search space often branches out very quickly and so some
method of selecting promising states is required.

The success of TLPlan [2] and TALPlanner [5] has
demonstrated that the use of control knowledge in search,
is an effective way of selecting good states. These two plan-
ners performed very well in the hand written tracks of the
earlier planning competitions [1, 12]. They allow control
knowledge to be expressed in a very rich rule language and
high levels of pruning can be achieved. However, the control
knowledge must be hand written because the current learn-
ing technologies cannot cope with the large language.

Several techniques have been applied to learning control
knowledge and the inclusion of a domain knowledge learn-
ing track in the international planning competition, marks
this field as a core aspect in the planning community. Sev-
eral of the entrants in this section of the planning competi-
tion learned rule based policies, a particular method of en-
coding control knowledge.

In this work we examine the limitation of the expres-
sive power of policies with one of these rule based repre-

sentations, and show how these limitations prevent the poli-
cies from reasoning in several benchmark planning domains.
Several solutions to these limitations are explored and a
method of utilising these solutions in search is presented.
We also provide experimental evidence that this approach is
indeed possible for two domains: the Driverlog and Gold-
miner domains.

2 Related Work
Two successful planners that utilise control knowledge are
TLPlan and TALPlanner. TLPlan [2] uses first order control
rules extended with modal operators and several additional
language features, such as functions and macros. TALPlan-
ner [5] uses a simpler control rule language, but compli-
ments the rules with inferred domain invariants, using the
invariants to constrain search and to simplify rule applica-
tion. TLPlan has been more effective, as it provides many
more language features, allowing rules to tightly fit the do-
main. In both cases however, control knowledge learning
technologies cannot cope with the large languages.

Several approaches to policy generation have been made
and there have been some very promising results [11, 10,
13]. Fern et al. [7] presents a variant of approximate policy
iteration, and shows that it is a generally applicable learning
approach. The learning process uses progressively longer
random walks, using a solution to a shorter random walk to
bootstrap the learning machinery. The approximate policy
iteration is then used to produce a policy that covers the ex-
ample walks and thus to seed a solution to a longer walk. In
previous work, Khardon [10] used an iterative rule learning
approach and Martin and Geffner [13] used the same learn-
ing approach, however solved some of the expressive limita-
tions by using a description logic. L2Plan is another policy
learner and can learn extremely high quality policies for two
domains: the blocksworld and briefcase domains [11]. Their
approach uses a genetic algorithm to evolve generalised pol-
icy and the variety of operators that they use, in particular
the operators that effect rule order, mean that the two poli-
cies compare favourably to other approaches.

STAN [9] is a planning system that uses domain analysis
to identify certain behaviours in a domain and uses special
purpose solvers to solve these parts of the problem. The
parts of a problem that can be solved by one of the solvers
are removed from the problem and some special tags are

added for reference during planning. The solvers can esti-
mate how many steps a task will take, and this is used in
the heuristic. A relaxed graph plan based, forward chain-
ing planner is used as the supporting planner. The STAN
architecture differs from the architecture presented here, as
we use a policy to control search and allow the policy to in-
teract with the solvers, whereas STAN extracts part of the
problem and solves it separately, using a solver that only
communicates with heuristic estimate information. Other
forms of planning by decomposition (eg. SGPlan [3]) and
pattern databases use abstraction in planning, however these
are not as relevant to this work.

3 Policies
A policy is a complete mapping from states to actions that is
guaranteed to direct search towards the goal.
Definition 3.1 A Policy P, is a total map, P: states 7→ ac-
tions, to achieve a single goal.
From a state in the planning search space, the policy maps
to an action. From the definition this action will lead the
planner towards the goal. In the next state the policy will
again map to an action that will direct the planner closer
to the goal. By repeating this strategy from the initial state
to the goal state, a policy can remove the need to search
entirely.

An ideal policy would provide a total mapping from states
to actions, however this is not always required. In a certain
world, only a small subset of states will be visited and a par-
tial policy suffices to direct search to the goal. In situations
with uncertainty however, a fuller mapping is required as the
set of possible states is much larger.

In practice it is not always reasonable to have a separate
policy for each goal. A generalised policy is not specific to a
particular goal. The presented action is not only dependent
on the state, but also the goal that is to be achieved. Follow-
ing the definition used in the learning system L2Plan, we
allow sets of actions to be mapped to.
Definition 3.2 A generalised policy P, is a total map P:
states x goals 7→ sets of actions.
A generalised policy must be able to solve the complete set
of possible problems for a domain. However, the goals and
initial states generated for the benchmark problem sets of-
ten lie in restricted subsets of the possible goals and initial
states, therefore a partial mapping is often sufficient.
Definition 3.3 A partial generalised policy P, is a partial
map P: states x goals 7→ sets of actions.
We use policy to mean partial generalised policy in the rest
of this paper.

3.1 Using Policies
To use policies effectively in planning, the decision process
that powers the policy must be computable and efficient. A
policy representation that has been used successfully in pre-
vious work, uses an ordered set of rules to form the policy’s
decision process [10, 13, 7, 11]. In this paper we focus on
this rule based policy representation, in particular the rule
language of the L2Plan learning system [11].

(:rule MoveBriefcaseToDropoff
:condition (and (at ?bc ?from)

(in ?obj ?bc))
:goalCondition (and (at ?obj ?to))
:action movebriefcase ?bc ?from ?to)

Figure 1: An example rule based policy in L2Plan syntax.
The rule conditions are simple lists of predicates. This rule
will move the briefcase(?bc) from ?from to ?to, if the brief-
case holds a package(?obj) that must be delivered to ?to.

The L2Plan Language Each rule in the ordered list has
two conditions and a corresponding action, in the form:
if condition and goal condition then action.

A rule is satisfied if the current state satisfies the rule’s con-
dition and the rule’s goal condition is part of the goal state-
ment. These conditions are lists of predicates. The goal
condition list can have negated predicates, meaning that the
predicate is not in the goal formula. If there are several bind-
ings for the first satisfied rule, L2Plan returns all of the bind-
ings. For example, in a transportation problem there may be
a rule that moves a truck to drop off a package, (Figure 1).
If there are several packages in the truck, then there will be
several bindings and the policy will map to all of these move
actions.

This set of actions form a subset of the actions applica-
ble in the current state. With a very high quality policy, any
of these actions can be chosen. This means that the planner
can cut through the search space applying a single action
in each state, thus removing search entirely. This is an ex-
tremely attractive property given the enormous search space
of planning problems. High quality policies are, however,
very difficult to produce, especially if they are required to
produce optimal solutions.

3.2 Learning Policies
Several approaches to learning rule based policies have
been made and there have been some very promising re-
sults [11, 10, 13]. L2Plan can learn extremely high qual-
ity policies for two domains: the Blocksworld and Briefcase
domains [11] and their policies have two key benefits. They
generalise to much bigger problems than they are learned
with and the language is clear and concise, allowing trans-
parency between the learner and user.

3.3 Limitations of Policies
The policy rules learned by L2Plan can reason over the cur-
rent state and the goal. To ensure that a rule is only satisfied
for certain bindings, the condition must filter out unwanted
objects. This is simple in some cases, where a distinguish-
ing property is discretised in the domain, however this is not
always the case. In this section we look at three situations
where choosing between objects requires a chain of reason-
ing and highlight a key limitation in the language.

Chains of Properties One example of a chain of proper-
ties is a graph structure in a transportation problem. Driver-
log is a transportation domain that involves redistributing

packages amongst locations using trucks. The locations are
linked in a directed graph that is encoded using a link predi-
cate for every edge of the graph. It is often the case that we
want to reason about a location several steps away, for exam-
ple if there is a package in the truck, we may want to move
the truck in the direction of the package’s goal location. This
requires reasoning over the whole chain of properties that
link the current location to the goal location. This can of
course be of any length, and therefore cannot be expressed
in a policy rule.

Resource Management In the Driverlog domain, the
trucks must have a driver before they can move. We must
therefore get drivers into trucks before we begin deliver-
ing packages. There are various important issues that must
be considered when allocating the drivers to trucks: firstly
whether the truck will be useful for delivering packages, and
whether it must move to a goal location, but also how close
the driver and truck are in the initial and goal states. There
is another graph network that allows the drivers to walk be-
tween locations. This means that a driver must be able to
walk to the truck it is assigned to and when a driver disem-
barks from a truck for the last time, it must be able to walk
to its final destination. This requires several chains of prop-
erties to be reasoned over and the results to be compared
numerically over the various possible driver truck pairings,
both features are impossible to express in the policy lan-
guage.

Goal Goal

A B C

1

2

3

A B C

1

2

3

(a) The robot must pick
up the flower shape and
open the door in cell B1.
It will then be able to
pickup the no entry shape
and open the door in C2.

Goal Goal

A B C

1

2

3

A B C

1

2

3

(b) The robot will then
pickup the star shape
and move to the goal.
Noticing this sequence
of steps, requires several
steps of reasoning.

Figure 2: The Grid Domain.

Recursive Subgoals The Grid domain is based in a grid of
cells with connections between adjacent cells. A robot can
move between adjacent cells, unless the cell is locked. If it
is locked the robot must find the key that fits the door’s lock.
On its way to get this key however, it might be blocked by
another locked cell and require to find the key to open this
door, figure 2(a). In this way, the task of moving the robot
to a specific location can construct a stack of subgoals that
must be completed to allow the robot to move to the goal

location, figure 2(b).
The problem in this case, is that the chain of reasoning

that must be created to unravel the subgoals, can be of any
length. The policy’s rules cannot express such chains and
therefore are not able to indicate the first step to make.

4 Domain and Problem Abstraction
There are many situations in planning where the desired
level of reasoning is not the same as the level of the de-
scribed world. Abstraction is the process of making a view
of the underlying world that is simplified in some way. If
the level of reasoning can be raised to an appropriate level,
complicated reasoning may become much simpler. Several
of the control rule descriptions used by TLPlan in the 2002
planning competition [12], used some form of abstraction
in order to allow simple control rules to form their decision
process. In this section we explore some solutions to the
expressive limitations brought by the policy representation,
attempting to use similar ideas of abstraction.

4.1 Graph Abstraction
The presence of graph structures in planning problems is
very frequent. It forces the planner to reason over the spa-
tial relationship between objects. As we have shown, this
reasoning is difficult to achieve in policy rules. We discuss
different approaches that will provide a policy with ways of
reasoning in static and dynamic graphs and transportation
problems.

Moving in a Static Graph The restriction imposed by the
policy language means that the policies cannot understand
how to move towards a point of interest in a graph. One
approach to solving this problem is to provide macro move
operations between all points in the graph. However, there
are two problems to this. The first is that there is no control
on the quality of the solution, as the distance between two
points is never considered. The other problem is that no
actions are considered at the intermediate nodes in the graph.

As an alternative, we can allow the policy to suggest mov-
ing between two unconnected nodes, but only make the first
step between them. This allows the policy to make a choice
at each step, but only requires that the policy states where it
wants to go, not how to get there. In a transportation prob-
lem this would allow a transporter to pick up a misplaced
package on its way to delivering another package.

In our experiments, if there is more than one node that can
be moved to, we simply move to the closest node. However,
in several scenarios we may visit all these possible nodes;
making a path through them and starting along this path
might be a better solution.

Moving in a Dynamic Graph Dynamic graphs are graph
structures that can be modified during plan execution. The
basic movement around the graph can use the solution for
moving in static graphs. When a move is made to a blocked
location, the move is prevented and two pieces of informa-
tion are provided. The first is that the path is blocked and the
second identifies the closest blocked node. We introduce the
GoldMiner domain to demonstrate how this strategy works.

Figure 3: The Gold Miner Domain. In this problem, the
miner can move to a cell adjacent to the gold. It will there-
fore pickup the bomb on the way and use this to blow up the
rock that blocks the gold.

The GoldMiner domain was introduced for the learning
track of the planning competition this year. The problems
have locations connected in a grid and a gold miner, a laser, a
bomb and some gold, figure 3. The locations can be blocked
by rocks and the goal is for the gold miner to have the gold.
The miner must clear a path through the rock using the bomb
and laser. The laser will destroy the gold if it is fired at it and
the bomb can only be used once. The idea is to move to a
square adjacent to the gold using the laser, and then use the
bomb to free the gold, so that it can be taken.

In this domain the two useful facts are whether we can
move to the gold and if not, then is the closest blocked node
adjacent to the gold. A strategy could be to attempt to move
straight to the gold, if that fails and if we can get to an adja-
cent node, then pick up the bomb and otherwise pickup the
laser. This information is also useful in the Grid domain,
as knowing which key should be picked up requires that the
shape of the key hole is known. If the robot is trying to get
to a location but it is blocked, the key hole that is of inter-
est is the key hole in the door at the first blocked door. It is
often the case that to unlock a node in a dynamic graph, an
object must be at that location or adjacent to it, therefore this
information is likely to be useful in other circumstances too.

In problems that require a path between disconnected
components to be opened and used several times, it could
be beneficial to make the connection at a node convenient
to both components. Ideally the decision of where the point
is made, should take into consideration the number of locks
to open, the centrality and the load between the two compo-
nents.
Hub Points In transportation problems, it is sometimes
useful to bring the objects to certain central areas, and then
reallocate the transporting resources to objects with simi-
lar destinations. This can split the problem up into phases:
the collection phase, where trucks pick up packages in some
close by regions, then the packages can be brought together,
to these hub locations. Trucks would then be given delivery

areas and reallocated packages based on these. These are
nodes in a graph that can be used effectively as redistribu-
tion points.

There are two possible methods of tackling this problem,
the first is to look at the graph structure in isolation and
therefore solve a node centrality problem. The second ap-
proach is to consider the delivery information, and make
hubs that are relevant. Discovering a node’s centrality is a
well researched field and could be used to suggest perma-
nent distribution centers. However, when a different graph
is presented in each problem, it is not so useful. In this case,
the hubs should be decided based on the deliveries that are
to be made. It will likely be useful to cluster the nodes first
to allow areas of the graph to be reasoned about. Identifying
object’s delivery paths through these clusters could then be
used to assist the identification of useful hubs. An exam-
ple of this process is illustrated in Figure 4, however a full
implementation of this process is not complete.

4.2 Resource Management
Resource management is the task of allocating resources to
consumers. There are many ways in which a resource can
be used, for example, the resource could be destroyed, or
the resource may have to be free-ed at some later point. The
difficulty in making good resource allocation choices is that
it depends on several factors. Some of these factors might
be real constraints, such as a door can only be unlocked by a
particular subtype of key. Other factors might be entirely ef-
ficiency oriented. Of course it is essential to make decisions
that satisfy the constraints, however the efficiency decisions
can be extremely important too.

The policy language can ensure many of the hard con-
straints are satisfied. This means that the solver can be
concentrated on making efficiency decisions between differ-
ent resource bindings. In the Driverlog domain, the graph
structures are identified. The graph abstraction will be able
to determine when a particular object is tied into a graph.
Therefore, when allocating a driver to a truck, the path graph
would be queried to provide the number of steps the driver
would have to make to get to the truck. When a graph is not
involved we could use the object’s state transition graph to
make an estimate.

4.3 Recursive Sub Goal
The recursive sub goal is the feature of a problem where a
goal can be recursively expanded to a subgoal of the same
type as the original goal, as we have shown occurs in the
Grid domain. If we introduce a subgoal stack, that can be
added to as subgoals are uncovered, we can allow a policy to
act on one subgoal at a time. The subgoals would be added
to the stack as the policy discovers a new subgoal that must
be achieved first.

5 Utilising the Solvers in Planning
In the previous section we described solutions to some of
the expressive limitations of the policies. In this section we
describe our architecture that allows solvers (based on these
solutions) to support a policy during planning.

(a) Graph struc-
ture.

Length3p15p16p18

p2p5p8p11

Length3p19p20p17

Length3p18p16p15

Length3p17p20p19

Length3p14p13p12

p0p3p6p9

Length3p12p13p14

p1p4p7p10

(b) Clustered graph structure.
Chains of nodes are grouped to-
gether and highly connected groups
are clustered.

Length3p15p16p18

HUBp2p5p8p11

p0p3p6p9

Length3p19p20p17Length3p18p16p15

Length3p17p20p19

Length3p14p13p12

p1p4p7p10

Length3p12p13p14

(c) Hub and Trail Analysis. The
delivery trails are drawn and hub
locations are inferred (labelled
HUB).

Figure 4: Clustering and hub and trail analysis on a static structure.

Feature
Inference

Policy

Solvers

JavaFF

Abstract
Action Filter

Internal
State

Current
State

Domain
& Problem

Abstract
Language

Figure 5: The abstraction architecture. The architecture
allows higher level predicates to be added into an internal
state. It also supports policies that provide abstracted ac-
tions. These actions are then translated back into the original
language using the special purpose solvers.

5.1 The Architecture

JavaFF [4] is a Java implementation of the successful FF
planning system. The JavaFF system provides a suitable
framework to nest our system into. The filter that supplies
the possible actions to the FF planning system, usually pro-
vides FF’s useful action set. This has been swapped with an
abstract action filter. The abstract action filter branches the
two systems and also branches between the abstracted and
domain language. In this subsection we describe the archi-
tecture that we have developed.

Our architecture, outlined in figure 5, uses our solvers to
raise the level of the world, to a level that a policy can reason
with. The two main features are the internal state, that allows
additional predicates to be provided for a policy to reason
about and a translation feature of the solvers, that means that

a policy can return actions with a higher level of abstraction.

5.2 Identification of Features

In order to select the correct solvers to be used in a domain,
certain features must be identified. Examples of domain
features are graph structures or the requirement of resource
management. In PDDL these can be encoded in many dif-
ferent ways. In this subsection we describe how we will
identify which solvers are required and how to separate the
solver from the encoding type.
Domain Encoding The way in which a domain feature is
described can be considered as its encoding. There are many
ways of describing the same feature in PDDL, this makes
the task of identifying a specific feature difficult. Where dif-
ferent representations of the same feature are possible, it is
important that the decision process used by the solver does
not need to be repeated for each representation. To ensure
this, we have designed our system with changeable encoding
modules. These modules deal with the communication be-
tween the domain encoding and the standard language used
by the solver.

For example, the static graph abstraction solver has dif-
ferent encoding modules for the graph and move action rep-
resentations. The graph representation encoding infers the
graph structure from the problem and can respond to queries
about distance between nodes and what the first step along
a shortest path is. The move action encoding must extract
which nodes are to be moved between. Also it must be able
to reconstruct a new action that moves to a node chosen by
the solver. Through separating the solvers from the domain
description, we reduce the work in adding new encodings
and focus the solvers on solving their problems.

Feature Inference To select which solvers should be
used, our system analyses the domain for specific features.
TIM [8], a static analysis tool, uncovers useful information
from a domain and problem file. This includes a set of prop-
erty spaces that show the transitions that an object can make,
from one group of relationships to another and static rela-
tionships. We have extended it to infer a special type of
enabling relationship too. This is when a property in a prop-
erty space is required to enable another object’s transition.
We use this relationship to flag the need of resource man-
agement in a domain. We identify the allocation and deal-
location actions to be registered with the filter and we also
identify what effect the allocation has on the resource.

A loop transition in a property space means that the object
holds the same relationships after the transition, but with dif-
ferent objects. We define a graph move action as a loop from
a single binary relationship. If the other object in the rela-
tionship doesn’t feature in a property space then this would
identify a static graph. The enabler to the move action may
include several restrictions, these can be divided by the ob-
jects that they involve. A static binary predicate with the
two graph nodes enforces a static graph structure on move-
ment. A dynamic singleton relationship with a node object
will allow the node to be locked and thus define a dynamic
graph.

5.3 Special Purpose Solvers
The special purpose solvers are key to allowing the policy to
reason at a suitable level for the domain. In the previous sec-
tion we presented some solutions to limitations in the policy
language. These solutions provided a way of allowing a pol-
icy to reason with a particular domain feature. Our architec-
ture allows us to include these solutions as special purpose
solvers and provides us several mechanisms for supporting
the policy.

The graph abstraction solver allows the policy to make
move actions of any length. These actions are translated by
the solver into move actions of one step in the direction in-
dicated by the policy actions. The solver notifies the filter
that the move action is an abstract action, presenting itself
as the solver that can deal with it. The resource manage-
ment solver, allows the policy to make resource allocation
requests and these special actions are also registered with
the filter. The solver uses the internal state to communicate
the allocation decision back to the policy.

5.4 Abstract Action Filter
The abstract action filter has two tasks: to provide the FF
system with a collection of actions and to ensure that all of
these actions are applicable in the current state. The latter
task is important as the actions provided by the policy can
use an abstracted language. The policy is presented with the
internal state and the current state, from these it produces
one or more bindings of an action. If the actions are ab-
stracted, the actions are translated by the solvers. The solver
will either provide a domain language action, or it will make
a change to the internal state. The filter will continue to
query the policy, using the solvers if needed, until a domain
language action is obtained.

Internal state The level of the domain language often
makes capturing reasoning in policy rules difficult. To allow
abstract properties to be provided to the policy, an internal
state is used. The policy can query this in the same way that
it queries the current state. The solvers can interact with the
internal state to supply useful information in a manner that
the policy can utilise.

5.5 Policy Language
The architecture isolates the policy from the domain lan-
guage. The internal state complements the current state with
abstract concepts that can be used in the condition of the
policy, to reason over higher level concepts.

The abstract action filter allows the policy to output do-
main language actions, or abstract actions. The abstract ac-
tions can be used to request that a decision is made by a
solver, such as a resource allocation, or to make an action
that combines several domain actions. Dependent on the
type of the abstract action, the filter uses the appropriate
solver to act on the action. The solver will either provide
a domain language action, or it will make a change to the
internal state. The filter will continue to query the policy
(using the solvers if needed) until a domain language action
is obtained.

6 Results
In this paper we have highlighted some of the limitations
of a rule based policy language. In the previous section we
described an architecture to lift these limitations and allow
reasoning in domains with rich structure. In this section we
describe the experiments that we have carried out, demon-
strating that the architecture allows a policy to reason in the
Driverlog and GoldMiner domains.

In these experiments we have used handwritten policies,
however we believe that due to the limited language used,
policy learners could also generate similar policies.

6.1 Driverlog Experiment
The hand written policy, outlined in Figure 6, was used in
this experiment. The order reflects the priority of the rules
and does not define a list of steps, as such the order of execu-
tion is not obvious. In Driverlog package delivery is enabled
by trucks and trucks are enabled by drivers. Therefore, al-
though we give priority to the package transitions, such as
load and unload, these rules will not be applicable in earlier
states. The policy breaks the problem into several phases:
allocation of trucks to packages; allocation and boarding of
drivers to trucks; picking up misplaced packages, dropping
off packages at their destinations if visited; dropping off
packages; moving trucks home and finally moving drivers
home. In problems with more trucks than drivers, the final
rule allows the driver to get out of their truck and take a dif-
ferent one home.

The policy utilises the two types of solver required in this
domain: static graph and resource management. The static
graph solver allows the policy to make actions that move
several steps. The solver translates this as a single move in
that direction, allowing the policy to make a new decision

1. If package in truck and truck at package destination then
dropoff package.

2. If package is bound to truck then load misplaced package
into truck.

3. Allocate a truck to a misplaced package.
4. Move to pickup misplaced package, if package bound to

truck.
5. Move to dropoff a package in this truck.
6. Move truck home.
7. Board a driver into its allocated truck.
8. Allocate a driver to a truck, if a misplaced pacakge has

been bound to the truck , or if the truck must move to go
home.

9. Walk to board a driver onto its allocated truck.
10. Disembark to get driver home.
11. Disembark from truck.

Figure 6: An outline of the hand written policy used for
the Driverlog problems.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e

PFile

JavaFF
TLPlan

Policy With Backup
Policy With No Backup

30 mins

Figure 7: Time taken for Driverlog pfiles1-20.

at each step. The resource management solver is very sim-
ple in these experiments. The resource allocations are made
statically at the start, matching consumers with the closest
resource. There are several ways that we can improve this
strategy, such as attempting to spread drivers out over trucks,
(because these are one to one allocations), or making the al-
locations dynamically.

Results Our abstraction architecture was used to solve
the Driverlog problems from the 2002 planning competi-
tion [12]. The results for time, Figure 7 and quality, Figure 8,
are plotted for two different policy executions, TLPlan and
JavaFF.

The policy run with backup, has JavaFF in the background
as a backup incase the policy doesn’t map to any actions.
Also where there is any choice between which action to
choose, the FF heuristic is used to decide. Policy with no
backup has no backup and uses no strategy to choose the best
action. For this experiment, the policy mapping was com-
plete enough to solve all of the problems and the solvers only

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16 18 20

Qu
ali

ty(
St

ep
s)

PFile

JavaFF
TLPlan

Policy With Backup
Policy With No Backup

Figure 8: Number of steps made for Driverlog pfiles1-20.

 0.1

 1

 10

 0 5 10 15 20 25 30

Policy
FF

Figure 9: Time taken for Gold Miner problems.

allowed choice over the order that packages were loaded and
unloaded. The time taken by JavaFF to ground the actions
at the beginning and to compute the heuristic at each step
makes a considerable difference in larger problems. When
using a policy learner, it may not be possible to ensure a full
mapping and this cost might be necessary.

The results show that our architecture is sufficient to solve
all the problems in this problem set. The time results show
that we compare favourably to JavaFF on the problems that it
can solve, and that our plan quality is comparable with both
of the other planners. Although the analysis before planning
prevents us from being competitive with TLPlan’s time on
the smaller problems. As the difficulty increases, the effect
of this initial period is reduced. We believe that if we can
incorporate more of the ideas presented in section 4 into our
solvers, we can improve on the quality of our solutions.

6.2 Gold Miner Domain
The GoldMiner domain, described in subsection 4.1, was
used in the learning track of the planning competition [6].
For this experiment we have modified the domain to make
the implicit objects, explicit. As our inference system is not
yet complete, the dynamic graph feature was also provided
in this experiment. An example set of target problems was
distributed before the competition and as the actual compe-
tition problems have not been released, we have used these.
The difficulty should however be similar.

In GoldMiner, rocks can be cleared from locations, al-

lowing the miner to move through them. This requires a
dynamic graph solver to monitor the changes to the graph
and to report on paths that can’t be travelled along. The
dynamic graph solver allows the policy to move the miner
towards any location that is connected to the miner’s current
location. If the location is not connected, then the solver
sets this path to blocked in the internal state. The underlying
connection matrix is used to get the shortest path between
the two locations and the first blocked location along this is
reported as the closest blocked location.

Even with this naive solver for dynamic graphs, the pol-
icy solved all of the problems. The time taken to solve the
problems is presented in Figure 9 and there is very little dif-
ference in the time taken to solve any of the problems. This
is a key benefit of using a policy to control search.

7 Conclusion
The use of a policy in the planning search space is incredi-
bly powerful. If the policy is of high quality, the planner can
slice through the search space from initial state to goal with
little search. Unfortunately rule based policies have a lim-
ited expressive capability, and this has prevented their use
in structurally rich domains. In this paper we have shown
that with the use of several special purpose abstraction mod-
ules, policies can be used to solve problems in these more
interesting domains.

This work has highlighted several of the key limitations of
a rule based policy language. These limitations prevent the
policy from reasoning in domains with certain features, such
as, graph structures, resource allocation and recursive sub
goals. We have discussed several solutions to these prob-
lems. An architecture that could be used to identify the fea-
tures in domains, and utilise them with the policy during
search, has been presented.

Our experiment has demonstrated that, assisted by our
solvers, policies can provide control in domains with inter-
esting structure. This is an important discovery, as there is
a large collection of work using machine learning to gener-
ated policies. In the future this might allow policy learners
to learn policies for many more domains.

8 Future Work
The architecture presented in this work is still in the imple-
mentation phase. In the GoldMiner domain we provided the
feature information. The feature inference unit will be com-
pleted.

We have shown that policies have the potential to solve
problems in interesting benchmark domains. In our experi-
ments we have realised this potential in two domains. There
are many other domains that could be explored. In some do-
mains we may have to provide new encoding modules for
our solvers and for other domains we may require new fea-
tures that we have not considered here.

Already this work allows us to use a policy, learned by
L2Plan to solve problems of the Briefcase domain, to solve
problems if the domain is extended to restrict the briefcase’s
movements to connections of a graph structure. In our con-
tinued work we will focus on using policy learning tech-

niques to learn policies that can use our solvers to provide
control in domains with more of these interesting structure.

References
[1] F. Bacchus. International planning competition, 2000.
[2] F. Bacchus and F. Kabanza. Using temporal logics to

express search control knowledge for planning. Artifi-
cial Intelligence, 116:123–191, 2000.

[3] Y. X. Chen, B. W. Wah, and C. W. Hsu. Tempo-
ral planning using subgoal partitioning and resolution
in sgplan. Journal of Artificial Intelligence Research,
26:323–369, August 2006.

[4] A. I. Coles, M. Fox, D. Long, and A. J. Smith. Teach-
ing forward-chaining planning with javaff. In Collo-
quium on AI Education, Twenty-Third AAAI Confer-
ence on Artificial Intelligence, July 2008.

[5] P. Doherty and J. Kvarnström. Talplanner: A temporal
logic based planner. AI Magazine, 22(3):95–102, 2001.

[6] A. Fern, R. Khardon, and P. Tadepalli. International
planning competition: Learning track, 2008.

[7] A. Fern, S. Yoon, and R. Givan. Approximate policy it-
eration with a policy language bias: Solving relational
markov decision processes. Journal of Artificial Intel-
ligence Research, 25:75–118, 2006.

[8] M Fox and D Long. The automatic inference of state
variables in TIM. Journal of Artificial Intelligence Re-
search, 9:367–421, 1998.

[9] M. Fox and D. Long. Stan4: A hybrid planning strat-
egy based on subproblem abstraction. AI Magazine,
22(3):102–111, 2001.

[10] R. Khardon. Learning action strategies for planning
domains. Artificial Intelligence, 113(1-2):125–148,
1999.

[11] J. Levine and D Humphreys. Learning action strate-
gies for planning domains using genetic programming.
In Proceedings of the 4th European Workshop on
Scheduling and Timetabling (EvoSTIM 2003), 2003.

[12] D. Long and M. Fox. The 3rd international planning
competition: Results and analysis. Journal of AI Re-
search, 20:1–59, 2003.

[13] M Martin and H Geffner. Learning generalized poli-
cies in planning using concept languages. In Proceed-
ings of the 7th Internation Conference of Knowledge
Representation and Reasoning, 2000.

