
Incrementally Solving the STP by Enforcing Partial Path Consistency

Léon Planken
Delft University of Technology, The Netherlands

l.r.planken@tudelft.nl

Abstract

The Simple Temporal Problem (STP) appears as a sub-
problem of many planning and scheduling problems. Re-
cently, we have published a new algorithm to solve the STP,
called P3C, and have showed that it outperformed all existing
algorithms. Our approach was based on enforcing partial path
consistency (PPC), starting from a chordal constraint graph.
When dealing with complex problems, e.g. planning prob-
lems, dynamic situations, or the Disjunctive Temporal Prob-
lem, it is important to have efficient methods for building up
and solving STP instances incrementally. In this paper, we
present a brief survey of existing incremental algorithms and
a new algorithm that incrementally enforces PPC; the per-
formance of our new algorithm is experimentally compared
against the existing ones.

Introduction
In planning and scheduling problems, an important role is
played by time constraints. Planners may choose to main-
tain a selection of simple temporal constraints that must be
satisfied in the ultimate plan; as search progresses, this col-
lection of constraints grows until either a complete plan is
found or an inconsistency is detected. Also, from a selection
of temporal constraints, new information may be logically
inferred and used to guide the search.

The Simple Temporal Problem (STP), proposed by
Dechter, Meiri, and Pearl (1991), is defined as such a col-
lection of simple temporal constraints, and efficient algo-
rithms exist to decide whether the given constraints are con-
sistent and to infer new information from them. Tradi-
tionally, the latter task of inferring new information was
done by solving the all-pairs shortest paths (APSP) prob-
lem; the solution is then represented in a complete graph,
which gives the inferred relations between all pairs of time
points. It has been shown (Bliek and Sam-Haroud 1999;
Xu and Choueiry 2003) that if one is only interested in a
selection of this information, this can be inferred more effi-
ciently by enforcing partial path consistency (PPC). We re-
cently published an algorithm that used this approach, called
P3C, and showed that it outperformed all other known ap-
proaches for calculating APSP or enforcing PPC (Planken,
De Weerdt, and Van der Krogt 2008).

The contribution of this paper consists in a new algorithm
for incrementally solving STP instances by enforcing partial

path consistency (PPC): it takes an STP instance that is al-
ready partially path-consistent and a new constraint that is to
be added to it. Incremental algorithms are of great interest
for planners, because they gradually select more and more
temporal constraints that must be satisfied. When adding a
new constraint to such a collection, an incremental method
can build upon the work that has already been done for the
constraints currently in the collection, and can thus decide
consistency and infer new information faster than single-
shot approaches which start from scratch each time.

In this paper, we first formally introduce the STP and
survey existing work on solving it, both as a single-shot
approach and incrementally. Next, we give some graph-
theoretical background which is required for our new IPPC
algorithm, which we subsequently introduce. We theoreti-
cally analyse this algorithm, and test it against its competi-
tors on two test cases. Finally, we give a brief overview of
other related work, conclude, and give directions for future
research.

The Simple Temporal Problem
In this section, we give a definition of the STP and state a
motivating example, both based upon the seminal work by
Dechter, Meiri, and Pearl (1991). Then, we examine what a
solution to the STP might look like; for this, we also refer to
publications by Bliek and Sam-Haroud (1999) and Xu and
Choueiry (2003).

An STP instance S consists of a set X = {x1, . . . , xn} of
time-point variables representing events, and a set C of m
constraints over pairs of time points, bounding the time dif-
ference between events. Every constraint ci→j has a weight
wi→j ∈ R corresponding to an upper bound on the time dif-
ference, and thus represents an inequality xj − xi ≤ wi→j .
Two constraints ci→j and cj→i can be combined into a sin-
gle constraint ci↔j : −wj→i ≤ xj − xi ≤ wi→j or, equiv-
alently, xj − xi ∈ [−wj→i, wi→j], giving both upper and
lower bounds. An unspecified constraint is equivalent to a
constraint with an infinite weight; therefore, if ci→j exists
and cj→i does not, we have ci↔j : xj − xi ∈ [−∞, wi→j].

We now give an example planning problem and illustrate
how it may give rise to an STP instance as a sub-problem.

Example. This example deals with planning for an indus-
trial environment, including rostering and production plan-

x0

x1 x2

x3 x4

[10, 20]

[30, 40]

[0, 20]

[40, 50]

[50, 70]

Figure 1: An example STN S

ning. For the purposes of this example, consider a situa-
tion in which large parts of the plan have been computed
already. To get a fully working plan, all that remains to be
done is to ensure that at all times, an operator is assigned
to monitor the casting process. However, as casting is a
relatively safe process, it can be left unattended for up to 20
minutes (between operator shifts). Furthermore, the mon-
itoring room is small and can accommodate only a single
person.

Two operators are available to be assigned to the
casting task: John and Fred. Today, Fred’s shift must end
between 7:50 and 8:10. However, before he leaves, he has to
attend to some paperwork, which takes 40–50 minutes. John
is currently assigned to another task that ends between 7:10
and 7:20. As it is located on the far side of the plant, it will
take him 30–40 minutes to make his way down to the casting
area.

The planning software generates a plan that lets Fred
start his shift at the casting process, with John taking over
after Fred leaves for his paperwork. The question now is:
is this a viable plan, and if so, at what times can Fred stop
monitoring the casting process and John take it up again?

We can encode this information into a Simple Temporal
Problem; solving this will then answer our question. We
first have to assign time-point variables to each event in the
plan: let x1 and x2 represent John leaving his previous ac-
tivity and arriving at the casting process, respectively; and
let x3 and x4 denote Fred leaving the casting process for
his paperwork and finishing it. A temporal reference point,
denoted by x0, is included to enable us to refer to absolute
time; for our example, it is convenient to take x0 to stand
for 7:00. If we represent all time values in minutes, a graph
representation of the STP for this example is given in Fig-
ure 1. Here, each vertex denotes a time-point variable, and
each edge denotes a constraint. When represented as a graph
in this way, the STP is also referred to as a Simple Tempo-
ral Network (STN); however, note that these terms are often
used interchangeably.

It should be clear that the problem can arise from a PDDL
planning description of the overall problem. Durative ac-
tions with variable durations can be used to model the vari-
ous activities and a “clip” (Cresswell and Coddington 2003)
can be used to ensure that the process does not go without
an operator for more than 20 minutes. Note that intervals
labelling constraints are used to represent both freedom of

x0

x1 x2

x3 x4

[10, 20]

[40, 50]

[20, 30]

[60, 70]

[30, 40]

[10, 20]

[40, 50]

Figure 2: The partially path-consistent STN

choice for the actors (e.g. John’s departure from his previous
activity) and uncertainty induced by the environment (e.g.
travelling time).∗ It is up to the planner to decide how to act
when an uncertainty interval is reduced (e.g. by having Fred
rush through his paperwork).

A solution to an STP instance consists of an assignment of
a real value to each time-point variable such that the differ-
ences between each constrained pair of variables fall within
the range specified by the constraint. If an STP instance
admits a solution, it is called consistent. For example, the
reader can verify both from the network and from the orig-
inal plan that 〈x0 = 0, x1 = 10, x2 = 40, x3 = 20, x4 =
70〉 is a solution to our example STP.

In general, many solutions may exist; to capture them all,
we are interested in calculating an equivalent decomposable
STP instance, from which any solution can then be extracted
in a backtrack-free manner. In the remainder of this text,
we do not concern ourselves with finding individual solu-
tions, but focus instead on finding decomposable networks.
Traditionally, decomposability is attained by calculating the
minimal network M corresponding to S. M is a complete
constraint graph in which all constraint intervals have been
tightened as much as possible without invalidating any solu-
tions from the original instance. If the STP is considered as
a type of constraint satisfaction problem (CSP), calculating
M is exactly equivalent to enforcing path consistency (PC)
on it. On the other hand, when considered as a graph prob-
lem, calculating M corresponds exactly to calculating all-
pairs-shortest-paths (APSP).

If the original STN was a sparse graph, the effort and
memory requirements of calculatingM are relatively large.
For these cases, it is preferable to have a way of attaining de-
composability that preserves the graph’s sparseness as much
as possible instead of having to calculate the complete graph
of M. This is possible by enforcing partial path consis-
tency (PPC), which was proposed by Bliek and Sam-Haroud
(1999) and first applied to the STP by Xu and Choueiry
(2003). PPC is defined for chordal graphs†, which gener-
ally contain far fewer edges than the complete graph. Once

∗Note that for modelling the latter, there exists an extension of
the STP: the Simple Temporal Problem with Uncertainty (STPU).

†Informally, a graph is chordal if every cycle of length greater
than 3 has a “shortcut”; for a formal definition, see Definition 1.

PPC has been enforced, the label of every edge present in
the STN is minimal: it is equivalent to the label it would
have inM. Note that the original STP instance S, the mini-
mal networkM, and the PPC network are equivalent, which
means that their solution sets are identical; however, only
for the latter two it is guaranteed that any solution can be
extracted in a backtrack-free manner.

The partially path-consistent network of our example is
depicted in Figure 2. New information has become avail-
able, which answers the remainder of the question stated
above: we know from constraint c0→2 that John arrives in
the monitoring room between 7:40 and 7:50, and from con-
straint c0→3 that Fred left there between 7:20 and 7:30. Fur-
thermore, the constraints c0→4 and c3→2 have been tight-
ened, which means that our original information can be re-
fined: Fred’s shift won’t end before 8:00, and the casting
process will be left unattended for at least 10 minutes.

In the remainder of this section, we expand our example
with a situation where new information becomes available.

Example (continued). John cannot finish his previous task
before 7:20. How does this influence the results we attained
thus far?

Of course, it is possible to incorporate this information
into the STP instance and to either decide consistency or
enforce decomposability from scratch. However, it is gen-
erally far more efficient to build upon the consistency or de-
composability result that has been achieved earlier and re-
calculate only those constraints which have to be changed.
The importance of efficient incremental methods becomes
clear if one thinks of problem instances where initially very
little information is known, and frequent updates with new
information have to be incorporated into a growing temporal
plan.

Currently, several methods exist for incrementally main-
taining consistency or decomposability, a selection of which
we presently review.

Known Approaches
In this section, we first briefly mention some available
single-shot methods for solving the STP; then, we move
on to a more detailed description of known incremental ap-
proaches. The list of methods we include here is not com-
plete; especially in the case of incremental algorithms, many
other approaches exist, some of which are designed for spe-
cial cases, e.g. where all edge weights are positive. We give
some more references in a later section; here, our focus is
mostly on some incremental algorithms that have been used
in solvers of the Disjunctive Temporal Problem (DTP; Ster-
giou and Koubarakis 2000).

Single-Shot Algorithms
Single-shot methods take an STP instance and solve it by
deciding consistency and/or enforcing decomposability, as
described above.

Floyd-Warshall It was already noted by Dechter, Meiri,
and Pearl (1991) that the Floyd-Warshall APSP algorithm

can be used to compute the minimal network M. Floyd-
Warshall is simple to implement and runs in O

(
n3

)
time,

where n is the number of time-point variables in the STP
instance. This corresponds to enforcing the property of path
consistency (PC), known from constraint satisfaction litera-
ture (Montanari 1974).

Johnson Like Floyd-Warshall, Johnson’s algorithm also
solves the APSP problem; however, it has better worst-case
time complexity: O

(
nm + n2 log n

)
. Here, m is the num-

ber of constraint edges in the STP instance.

Directed path consistency (DPC) This method for deter-
mining consistency of an STP instance was also described
by Dechter, Meiri, and Pearl (1991); it is a tailored version
of the directed path consistency algorithm for general con-
straint satisfaction problems (Dechter and Pearl 1987). Its
time complexity is O

(
n(w∗)2

)
, where w∗ is a parameter

known as the induced width of the constraint graph. If δ is
the graph degree (i.e. the maximum number of neighbours
that any single vertex has), it holds that w∗ ≤ δ ≤ n. Note
that unlike the others, this algorithm does not enforce de-
composability; however, it is relevant as a subroutine in our
new algorithms.

4STP In 2003, Xu and Choueiry published the 4STP
algorithm. It is based on a publication by Bliek and Sam-
Haroud (1999), which introduced a new type of path con-
sistency, called partial path consistency (PPC). Instead of
producing complete constraint graphs, as does standard path
consistency, PPC requires only a chordal graph, which may
be much sparser. Thus, by avoiding computation of infor-
mation which is not interesting anyway, computational ef-
fort is decreased, while maintaining decomposability. The
worst-case time complexity of 4STP is not known; empir-
ical evaluation by the authors showed that it nearly always
outperformed other solution methods.

P3C Recently, Planken, De Weerdt, and Van der Krogt
(2008) identified a class of STP instances for which 4STP
performs quite badly (requiring time Ω

(
n4

)
), and published

a new method for enforcing PPC which does not suffer from
this flaw: the P3C algorithm, included in Figure 3 (see also
Definition 1 below). Having established chordality, it per-
forms just a forward and backward sweep along the vertices;
the forward sweep is identical to enforcing DPC, as is the al-
gorithm’s time complexity: O

(
n(w∗)2

)
.

Incremental algorithms
The STP appears as a pivotal sub-problem of more complex
temporal problems, such as the Disjunctive Temporal Prob-
lem, introduced by Stergiou and Koubarakis (2000). The
usual approach for solving these problems is to gradually
build up an STP instance (called a component STP) and
backtrack whenever an inconsistency is encountered. Be-
side the consistency check, maintaining minimal relations is
often also very relevant, as this information can be used in
heuristics that guide the search process.

Input: A chordal STN S = 〈V,E〉 with a simplicial
elimination ordering d = (vn, vn−1, . . . , v1)

Output: The PPC network of S or INCONSISTENT

call DPC(S, d)1
return INCONSISTENT if DPC did2
for k ← 1 to n do3

forall i, j < k such that {i, k}, {j, k} ∈ E do4
wi→k ← min(wi→k, wi→j + wj→k)5
wk→j ← min(wk→j , wk→i + wi→j)6

end7

end8
return S9

Figure 3: The P3C algorithm

More concretely, at each step in the backtracking search,
a single constraint is to be added to a component STP that
is already known to be consistent (or decomposable). In this
situation, single-shot STP algorithms are not the most ef-
ficient option; instead, one wants to build upon the consis-
tency (or decomposability) result that has been achieved ear-
lier and reconsider only those constraints which may have to
be changed. In the past, two types of incremental algorithms
have been employed by DTP solvers: incremental (full) path
consistency and incremental directed path consistency. We
describe these methods below.

Incremental Directed Path Consistency This method for
incrementally enforcing directed path consistency (IDPC)
was published by Chleq (1995). The algorithm is simi-
lar to the single-shot DPC algorithm mentioned above; the
chief difference is that track is kept of the constraints that
have been modified, to avoid unnecessary constraint checks.
However, the worst-case complexity of the incremental al-
gorithm is no better than that of the single-shot version, and
remains O

(
n(w∗)2

)
.

The IDPC algorithm was employed in the original DTP
solver by Stergiou and Koubarakis (2000). Tsamardinos and
Pollack (2003) mention IDPC and incorrectly state that its
worst-case time complexity is O

(
n2

)
.

Incremental Full Path Consistency (IFPC) Beside
maintaining directed path consistency, it is also possible
to incrementally maintain full path consistency (IFPC), i.e.
all-pairs shortest paths. Tsamardinos and Pollack (2003)
use this approach, citing a paper by Mohr and Henderson
(1986); however, instead of an incremental approach, this
paper only presented a new single-shot path consistency al-
gorithm for general constraint satisfaction problems. Never-
theless, it is not hard to come up with a straightforward algo-
rithm that does the job within the O

(
n2

)
time bound stated

by Tsamardinos and Pollack. We present such an algorithm
in Figure 4. The sets I and J are maintained to improve effi-
ciency by avoiding unnecessary constraint checks: they are
not relevant for the algorithm’s soundness.

As noted by Even and Gazit (1985), this is also the best at-
tainable general upper bound on the time complexity for an

Input: A minimal STN S = 〈V,E〉 and a new
constraint c′a→b.

Output: CONSISTENT if c′a→b has been added to S,
which is again minimal; INCONSISTENT
otherwise.

if w′a→b + wb→a < 0 then return INCONSISTENT1
if w′a→b ≥ wa→b then return CONSISTENT2
wa→b ← w′a→b3
I ← ∅; J ← ∅4
forall vk ∈ V, vk 6= va, vb do5

if wk→b > wk→a + wa→b then6
wk→b ← wk→a + wa→b7
I ← I ∪ {k}8

end9
if wa→k > wa→b + wb→k then10

wa→k ← wa→b + wb→k11
J ← J ∪ {k}12

end13

end14
forall i ∈ I, j ∈ J, i 6= j do15

if wi→j > wi→a + wa→j then16
wi→j ← wi→a + wa→j17

end18

end19
return CONSISTENT20

Figure 4: An incremental full path consistency algorithm
(IFPC)

incremental APSP algorithm. They then proceed to describe
a more involved algorithm whose complexity is O (δm∗),
where m∗ is the number of constraint edges that were al-
ready present whose weight is to be changed by the addi-
tion of the new constraint. Their algorithm (which we dub
IAPSP) thus improves over the straightforward implementa-
tion especially if the original graph degree δ is low or few
changes have to be made. Due to space constraints, we can-
not include the pseudocode of this algorithm.

Graph Triangulation
In this section, we list some definitions and theorems from
graph theory which underlie our new algorithms. These re-
sults are readily available in graph-theoretical literature, e.g.
West (1996).

Definition 1. Let G = 〈V,E〉 be an undirected graph. We
can define the following concepts:

• If (v1, v2, . . . , vk, vk+1 = v1) with k > 3 is a cycle, then
any edge on two nonadjacent vertices {vi, vj} with 1 <
j − i < k − 1 is a chord of this cycle.
• G is chordal (also ambiguously called “triangulated”) if

every cycle of length greater than 3 has a chord.∗

∗The term “triangulated graph” is also used for maximal planar
graphs, which do not concern us here.

• A vertex v ∈ V is simplicial if the set of its neighbours
N(v) = {w | {v, w} ∈ E} induces a clique, i.e. if
∀{s, t} ⊆ N(v) : {s, t} ∈ E.

• Let d = (vn, . . . , v1) be an ordering of V . Also, let Gi

denote the subgraph of G induced by Vi = {v1, . . . , vi};
note that Gn = G. The ordering d is a simplicial elimina-
tion ordering of G if every vertex vi is a simplicial vertex
of the graph Gi.

We then have the following (known) result:
Theorem 1 (e.g. West, 1996). An undirected graph G =
〈V,E〉 is chordal if and only if it has a simplicial elimination
ordering.

Chordality checking can be done efficiently inO (n + m)
time by the maximum cardinality search algorithm, which
also produces (in reverse order) a simplicial elimination or-
dering if the graph is indeed chordal.

If a graph is not chordal, it can be made so by the addi-
tion of a set of fill edges. These are found by eliminating the
vertices one by one and connecting all vertices in the neigh-
bourhood of each eliminated vertex, thereby making it sim-
plicial; this process thus constructs a simplicial elimination
ordering as a byproduct. If the graph was already chordal,
following its simplicial elimination ordering means that no
fill edges are added. In general, it is desirable to achieve
chordality with as few fill edges as possible.
Definition 2 (Kjærulff, 1990). Let G = 〈V,E〉 be an undi-
rected graph that is not chordal. A set of edges T with
T ∩ E = ∅ is called a triangulation if G′ = 〈V,E ∪ T 〉
is chordal. T is minimal if there exists no subset T ′ ⊂ T
such that T ′ is a triangulation. T is minimum if there exists
no triangulation T ′ with |T ′| < |T |.

Determining a minimum triangulation is an NP-hard
problem; in contrast, a (locally) minimal triangulation can
be found in O (nm) time (Kjærulff 1990). Since finding
the smallest triangulations is so hard, several heuristics have
been proposed for this problem. Kjærulff has found that both
the minimum fill and minimum degree heuristics produce
good results. The minimum fill heuristic always selects a ver-
tex whose elimination results in the addition of the fewest fill
edges; it has worst-case time complexity O

(
n2

)
. The min-

imum degree heuristic is even simpler, and at each step se-
lects the vertex with the smallest number of neighbours; its
complexity is only O (n), but its effectiveness is somewhat
inferior to that of the minimum fill heuristic.

Incremental Partial Path Consistency
As the main contribution of this paper, we now present in
Figure 5 a new algorithm, called IPPC, that incrementally
enforces partial path consistency to complement the incre-
mental methods presented above. The algorithm as pre-
sented here assumes that a set E′ ⊆ V × V of all constraint
edges that may be added is known on beforehand; therefore,
the graph representing all time points and all these constraint
edges can be triangulated once. Alternatively, chordality it-
self could be enforced incrementally before running the in-
cremental PPC algorithm; note, however, that this would
also require computing the weights on the new edges added

Input: A partially path-consistent STN instance
S = 〈V,E〉 and a new constraint c′a→b with
{a, b} ∈ E.

Output: CONSISTENT if c′a→b has been added to S,
which is again partially path-consistent;
INCONSISTENT otherwise.

if w′a→b + wb→a < 0 then return INCONSISTENT1
if w′a→b ≥ wa→b then return CONSISTENT2
wa→b ← w′a→b3
Fix a simplicial elimination ordering4
d = (xn, xn−1, . . . , x1) of S such that
xa = x1 ∧ xb = x2

D ← {(1, 2)}5
for k ← 1 to n do6

forall i, j < k such that7
{i, k}, {j, k} ∈ E ∧ (i, j) ∈ D do

if wi→k > wi→j + wj→k then8
wi→k ← wi→j + wj→k9
D ← D ∪ {(i, k)}10

end11
if wk→j > wk→i + wi→j then12

wk→j ← wk→i + wi→j13
D ← D ∪ {(k, j)}14

end15

end16

end17
return CONSISTENT18

Figure 5: Incremental partial path consistency algorithm
(IPPC)

during incremental triangulation. This matter is subject to
further research and as such outside the scope of this text.

Like IFPC, this algorithm has the desirable property that
any inconsistency caused by tightening a constraint is de-
tected in constant time; this follows from the fact that every
constraint in a partially path-consistent STP instance is min-
imal.

With respect to IPPC’s soundness, the fundamental in-
sight is that after tightening the new constraint c′a→b, the
network is directionally path-consistent with respect to the
simplicial elimination ordering d fixed in line 4. This fol-
lows from the observations that

• if a network is partially path-consistent, it is directionally
path-consistent with respect to any simplicial elimination
ordering; and

• directional path consistency with respect to some variable
ordering cannot be lost by tightening the constraint that
appears last in this ordering.

Recall also from the preceding section that fixing a sim-
plicial elimination ordering requires only linear time using
maximum cardinality search.

The main loop of IPPC is in effect similar to the second
main loop from the P3C algorithm (Figure 3); having re-
established DPC, it enforces PPC in the reverse order of a

simplicial elimination ordering. The chief difference is that
the algorithm maintains the set D of constraints that have
been updated; in this way, only the necessary checks are
performed. By now, this can be recognised as a recurring
theme in all incremental algorithms presented.

The worst-case performance of this algorithm is no
better than the “single-shot” PPC algorithm and remains
O

(
n · (w∗)2

)
. This suggests that IFPC remains the incre-

mental method of choice for dense graphs, though the actual
performance of IPPC may be better in practical cases. In the
next section, we empirically evaluate the actual performance
of IPPC against IAPSP for graphs of different densities.

Experimental Results
In this section, we discuss the results of putting our new
IPPC algorithm to the test against its competitors described
earlier. We mentioned that IPPC requires the constraint
graph to be chordal, and that this could be ensured in sev-
eral ways. In our experiments, we considered two methods:
(i) naively triangulate (using the minimum-degree heuristic)
after the addition of each new constraint edge; and (ii) con-
struct the graph consisting of all constraint edges that will be
added and triangulate it once with the minimum-fill heuris-
tic. As was to be expected, option (i) is always slower than
option (ii); however, the latter is only feasible if the structure
of the constraint graph is known beforehand. In the results
discussed here, we only include the latter option.

Our tests included three other algorithms: the straightfor-
ward IFPC implementation from Figure 4, the IDPC algo-
rithm by Chleq (1995), and the improved IAPSP algorithm
by Even and Gazit (1985). The algorithms were tested on
two types of problem instances:
• STP instances with enforced consistency, generated from

job shop problems. The structure of the constraint graphs
of these instances is expected to be similar to the types
of problems that STP solvers would be expected to deal
with if they were used in a DTP solver on the job shop
problem. The labels on the edges have been modified to
ensure that the problem instances are consistent and all
constraints can be incrementally added.

• Random consistent STP instances on scale-free constraint
graphs, generated according to the BA model (Albert and
Barabási 2002) with varying density parameter. In scale-
free constraint graphs, the distribution of the vertex de-
gree follows a power law; these graphs can be used to
accurately model many real-life examples (e.g. social net-
works) in which few nodes have a high degree, and many
nodes have a low degree.
The test results are included in Figures 6 through 8. All

plots list, on the vertical axis, the time in seconds required
for adding all constraints in the various STP instances; the
horizontal axis depicts the number of vertices in Figures 6
and 7, whereas it depicts the density parameter in Figure 8.

The immediate first observation is that unfortunately, our
algorithm is woefully outperformed in all cases (and some-
times even exceeds the time limit of 12 minutes). Further,
in all of our experiments, the straightforward IFPC algo-
rithm surprisingly is faster than the more advanced IAPSP,

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250

tim
e

[s
]

vertices

IPPC
IDPC

IAPSP
IFPC

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250

tim
e

[s
]

vertices

IPPC
IDPC

IAPSP
IFPC

Figure 6: Incremental methods on the job shop problem
linear scale (top) and log scale (bottom)

though the right-hand side of the plot in Figure 6 hints that
for larger instances, IAPSP may gain the upper hand. Fi-
nally, the IDPC algorithm lies somewhere in between IAPSP
and IPPC. Since this algorithm does not enforce decompos-
ability, it is probably safe to state that an IFPC algorithm is
always a better choice than IDPC.

We have not yet found a satisfying explanation why IPPC
performs so poorly, whereas its sibling P3C is the new state-
of-the-art algorithm for enforcing decomposability. It would
seem that the additional information that is present in a com-
plete graph representation as maintained by IFPC allows ad-
ditions of constraints to be processed more efficiently, at the
cost of a higher space complexity. This is subject to future
research.

Related Work
Of course, the list of algorithms we gave earlier is not com-
plete; this section lists some other publications relevant to
incrementally solving the STP.

The Bellman-Ford algorithm can be used as a single-shot
approach if one is interested in only determining consis-
tency, and an incremental variant tailored to the STP has
been published by Cesta and Oddi (1996). More work on

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140 160

tim
e

[s
]

vertices

IPPC
IDPC

IAPSP
IFPC

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160

tim
e

[s
]

vertices

IPPC
IDPC

IAPSP
IFPC

Figure 7: Incremental methods on sparse scale-free graphs
linear scale (top) and log scale (bottom)

incremental consistency checking for the STP has been done
by Ramalingam et al. (1999), who also list some algorithms
for special cases of the STP.

Demetrescu and Italiano (2002) give a mostly graph-
theoretical overview of available algorithms for the dynamic
all-pairs shortest paths problem. They also consider the
problem with only positive edge-weights, and moreover list
algorithms that can not only handle decreasing edge weights
and edge additions, but also increases in edge weights and
edge deletions; hence the name “dynamic APSP” instead of
“incremental APSP”.

We earlier briefly mentioned the possibility of represent-
ing uncertainty induced by the environment. The Simple
Temporal Problem with Uncertainty (STPU) is an extension
of the STP that can be used to model these situations. For
real-time execution of STPU instances, the property of dis-
patchability is desirable; it means that the problem can be
executed without fear of conflicts. Shah et al. (2007) present
an algorithm that incrementally maintains dispatchability.
An example of a situation where their approach is useful is
when an exogenous event occurs, and a previous interval of
uncertainty can be reduced to a single value representing the
exact time of occurrence.

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80

tim
e

[s
]

density (m-value)

IPPC
IDPC

IAPSP
IFPC

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80

tim
e

[s
]

density (m-value)

IPPC
IDPC

IAPSP
IFPC

Figure 8: Incremental methods on scale-free graphs
with n = 150 and varying density

linear scale (top) and log scale (bottom)

Conclusions and Future Research
Based on our earlier success with the P3C algorithm, we
made a natural adaptation of this algorithm to incrementally
enforce partial path consistency on the STP. Unfortunately
and surprisingly, the IPPC algorithm is consistently much
slower than all its competitors. The foremost subject for
future research is to investigate what causes this poor per-
formance.

Further, since P3C works so well as a single-shot STP
algorithm, in which all constraints are considered at once,
whereas processing a single constraint at a time in IPPC
proved to be slow, a natural question is to ask whether there
is a trade-off here. Might IPPC perform better, when com-
pared to its competitors, in a situation where new constraints
become available in batches, instead of one by one?

The theoretical worst-case time complexity of the im-
proved IAPSP algorithm by Even and Gazit (1985) can be
expressed in the number of constraints to be changed. If we
could find a similar bound for IPPC, this could also give us
an idea of areas where it performs better than our current
experiments showed.

We also noted earlier that we have not yet addressed the

issue of incremental triangulation in our current work. Con-
straints that are added may form new (unchorded) cycles in
the constraint graph, which have to be dealt with. There
would appear to be another trade-off between dealing with
these cycles in a fast and naive way, or in a clever but slower
way. However, this issue is moot unless IPPC can be shown
to be a viable alternative to other approaches.

Finally, the incremental algorithms we presented can only
deal with lowering edge weights and adding new edges; if an
edge weight is increased or an edge is deleted, solving has
to start anew. Above, we mentioned the existence of algo-
rithms that deal with the fully dynamic situation where both
additions and deletions are possible; we hope to investigate
in a future publication whether a PPC-based algorithm for
this setting is feasible.

References
Albert, R., and Barabási, A.-L. 2002. Statistical me-
chanics of complex networks. Reviews of Modern Physics
74(1):47–97.
Bliek, C., and Sam-Haroud, D. 1999. Path consistency on
triangulated constraint graphs. In IJCAI ’99: Proceedings
of the Sixteenth International Joint Conference on Artificial
Intelligence, 456–461. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
Cesta, A., and Oddi, A. 1996. Gaining efficiency and flex-
ibility in the simple temporal problem. In TIME ’96: Pro-
ceedings of the 3rd Workshop on Temporal Representation
and Reasoning (TIME’96), 45–50. Washington, DC, USA:
IEEE Computer Society.
Chleq, N. 1995. Efficient algorithms for networks
of quantitative temporal constraints. In Proceedings of
CONSTRAINTS-95, First International Workshop on Con-
straint Based Reasoning, 40–45.
Cresswell, S., and Coddington, A. 2003. Planning with
timed literals and deadlines. In Proceedings of the Twenty-
Second Workshop of the UK Planning and Scheduling Spe-
cial Interest Group (PlanSIG-03), 22–35.
Dechter, R., and Pearl, J. 1987. Network-based heuristics
for constraint-satisfaction problems. Artif. Intell. 34(1):1–
38.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1–3):61–95.
Demetrescu, C., and Italiano, G. F. 2002. Improved bounds
and new trade-offs for dynamic all pairs shortest paths. In
ICALP, volume 2380, 633–643. Springer.
Even, S., and Gazit, H. 1985. Updating distances in dy-
namic graphs. Methods of Oper. Res. 49:371–387.
Kjærulff, U. 1990. Triangulation of graphs - algorithms
giving small total state space. Technical report, Aalborg
University.
Mohr, R., and Henderson, T. C. 1986. Arc and path con-
sistency revisited. Artificial Intelligence 28(2):225–233.
Montanari, U. 1974. Networks of constraints: Fundamen-
tal properties and applications to picture processing. Infor-
mation Science 7(66):95–132.

Planken, L.; De Weerdt, M.; and Van der Krogt, R. 2008.
P3C: A new algorithm for the Simple Temporal Problem.
In Rintanen, J.; Nebel, B.; Beck, J. C.; and Hansen, E., eds.,
Proceedings of the 18th International Conference on Auto-
mated Planning and Scheduling, 256–263. Menlo Park,
CA, USA: AAAI Press.
Ramalingam, G.; Song, J.; Joskowicz, L.; and Miller, R. E.
1999. Solving systems of difference constraints incremen-
tally. Algorithmica 23(3):261–275.
Shah, J.; Stedl, J.; Williams, B.; and Robertson, P. 2007.
A fast incremental algorithm for maintaining dispatcha-
bility of partially controllable plans. In Boddy, M. S.;
Fox, M.; and Thiébaux, S., eds., Proceedings of the Sev-
enteenth International Conference on Automated Planning
and Scheduling, 296–303. AAAI Press.
Stergiou, K., and Koubarakis, M. 2000. Backtracking al-
gorithms for disjunctions of temporal constraints. Artificial
Intelligence 120(1):81–117.
Tsamardinos, I., and Pollack, M. E. 2003. Efficient so-
lution techniques for disjunctive temporal reasoning prob-
lems. Artificial Intelligence 151(1–2):43–89.
West, D. B. 1996. Introduction to Graph Theory. Prentice-
Hall.
Xu, L., and Choueiry, B. Y. 2003. A new efficient algo-
rithm for solving the Simple Temporal Problem. In TIME-
ICTL 2003: Proceedings of the 10th International Sym-
posium on Temporal Representation and Reasoning and
Fourth International Conference on Temporal Logic, 210–
220. Los Alamitos, CA, USA: IEEE Computer Society.

