
ABST
Virtual
offer ne
develop
behavio
experim
We des
develop
Environ
art gam
techniq
physics
we des
alternat
This is
environ

Categ
H5.1 [M
and Vir

Gene
Theory,
Keyw
 Virtual
Simulat

1. INT
Virtual
alternat
physica
after rea
pioneer
Virtual
retained
experim
space a
extent,

Alternative Reality: a New Platform for Virtual Reality Art
Marc Cavazza Simon Hartley Jean-Luc Lugrin Mikael Le Bras

School of Computing and Mathematics,

University of Teesside,

44 01642 382657
{m.o.cavazza, s.hartley, j.l.lugrin, m.lebras}@tees.ac.uk

RACT
Reality Art involves the design of artificial worlds that
w experiences to spectators. An important aspect for the
ment of VR Art installations is the principled definition of
ur for the environment as a whole, which would facilitate
ents with alternative laws of physics, time, and causality.

cribe the first results of an ongoing project dedicated to the
ment of software tools for the use of Intelligent Virtual
ments in VR Art. Using the architecture of a state-of-the-
e engine, we have developed Artificial Intelligence

ues that support the definition of alternative laws of
. After discussing the principles behind alternative reality
cribe two complementary modes of description for

ive behaviour: qualitative physics and causal simulation.
 illustrated by examples integrated into the virtual
ment.

ories and Subject Descriptors
ultiMedia Information Systems] Artificial, Augmented

tual Reality - Virtual Reality for Art and Entertainment

ral Terms
 Algorithms, Design and Experimentation
ords:
 Reality for Art and Entertainment, Modelling and
ion, Intelligent Virtual Environments, Qualitative Physics

RODUCTION
Reality Art [16] [8] offers the perspective of creating

ive worlds that depart from our everyday experience of the
l worlds. In other words, virtuality need not be modelled
lity: this vision was actually part of the original ideas that

ed Virtual Reality, e.g. Leary’s psychedelic metaphor of
Reality [14]. On the other hand, Virtual Reality Art has
 contact with these original ideas, and VR artists have
ented in their works with fundamental aspects, such as

nd the laws of physics [5] or time (Toshio Iwai). To a large
VR Art is concerned with the implementation of

alternative realities: worlds in which to experiment with time and
space, in which laws of physics or even fundamental phenomena
like causality can be tailored to the requirements of an artistic
experience.
But more interestingly, in recent years, the work of several artists
has explicitly addressed Physics as a source of inspiration, in
particular where it could depart from our everyday physical
experience. For instance, the collective exhibition “The Amplitude
of Chance” in Nagasaki was entirely devoted to briefs exploring
causality [21]. One sophisticated and even more explicit example
is constituted by the animation series “The Quarxs™”1, which
features a set of invisible creatures which violate the laws of
physics and provide an explanation for the unaccounted
phenomena of our everyday world. These “insect-like” creatures
are named after the physical laws they twist: for instance the
Reverso Chronocycli causes time to flow backwards and the Spiro
Thermophage(figure 1) lives in water pipes interfering with heat
transfer processes.

Figure 1. The Spiro Thermophage from the Quarxs tm . ©
Maurice Benayoun and Z-A Productions.

This opens the possibility to support the development of
alternative reality installations using Intelligent Virtual
Environments [2], which incorporate novel, programmable, high-
level behaviour layers in a VR system. In this paper, we describe
the development of such a system: after a brief introduction to the
baseline technology used, we present two specific and
complementary techniques to redefine virtual world behaviour:
qualitative physics and causal simulation.
1.1. System Overview and Architecture
In order to maximise user experience as well as making an
installation visible to a wider audience, Virtual Reality Art is often
presented using immersive displays such as CAVEs™. Our target
systems are large-scale virtual reality installations, based on the

1 The Quarxs™ have been ideated by Maurice Benayoun, one of
leading Virtual Reality artists (see e.g., [8]).

SAS Cube™, which is a 4-wall, PC-based, CAVE™-like,
immersive visualisation system. The use of a CAVE-like system
should facilitate interaction with virtual world objects, which is an
essential aspect of the alternative reality experience.

However, redefining physical processes in a consistent fashion is
a challenging task, which should be supported by appropriate
formalisms. In particular it would be extremely difficult to
produce consistent sets of low-level equations defining the new
behaviour of objects. Some high-level description of the physical
processes and their consequences is required instead. Two factors
contribute a solution to this problem: the first one is the
discretisation of physical processes into events which supports the
implementation of physics in most games engines including UT
(and is also developed within more traditional VR systems [12])
and the second is the existence of computing formalisms for high-
level, qualitative descriptions of physical processes that have been
developed in Artificial Intelligence [6]

Another aspect consists in modifying the laws of causality [20],
which relate the occurrence of macroscopic events in the world,
and play a fundamental role in our perception of reality. While
previous work has addressed the replay events in a virtual
environment [10], redefining causality requires more sophisticated
processing of the co-occurring events in order to form a new
causal chain and, in addition, needs to be compatible with real-
time user interaction.

Figure 2. The SAS Cube™ 2.1. Event-based Architectures for Behaviour
Description We use a game engine, Unreal Tournament 2003™ (UT), as a

visualisation engine and as a development environment. Game
engines are now increasingly used for visualisation in scientific
research due to their rendering performance and their ability to
communicate with external software modules [15], which in the
present case is essential to the development of a simulation layer
that will override basic physics mechanism to implement
alternative reality. Another interesting aspect is the growing use of
game engines for 3D Digital Arts. In addition, the engine we are
using, UT, has previously been ported to CAVE™ systems [12]
and we are currently porting it to the SAS Cube™, using the
original approach described in the CAVE-UT implementation.

Most interactive systems are based on the notion of event for their
implementation. Highly interactive systems, such as VR systems
[13] and game engines in particular intensively exploit this notion
for their implementation. On the other hand the notion of event is
also the basis for the high-level description of physical behaviour,
as events discretise the continuous motion of objects (in terms of
positions, trajectories, contacts with other objects) into meaningful
high-level actions.
This section describes the event management mechanisms, which
support the redefinition of alternative behaviours for the virtual
environment. As these mechanisms underlie the implementation
of both alternative causality and alternative physics, we will
describe them first. After introducing the native mechanisms
provided by the UT game engine, we will show how these can be
used to define complex events corresponding to object behaviour
as well as a control strategy to override the basic mechanisms
supporting the world physical behaviour. This will then open the
possibility of extensive redefinitions of the virtual world
behaviour, supporting alternative views on physics and causality.

The rationale for using a game engine is not just its graphic
rendering abilities or the built-in mechanisms for user interaction
with world objects. The UT 2003 engine incorporates a
sophisticated physics engine (the Karma™ system from
Mathengine™) together with a sophisticated API and
programming features supporting the modification of baseline
physics. As it is through the redefinition of physical behaviour
that alternative reality can be implemented, this feature provides
an essential path to the implementation of new behavioural layers
overriding basic mechanisms. The Unreal engine extensively relies on event generation to

support many of its interaction aspects and, most importantly, the
mechanism for event generation is accessible to redefine specific
behaviours for the environment. Formally, an Event can be
characterised as an encapsulated message, which is generated by
an Event Source and sent to one or more Event Consumers, these
being both objects of the environment. The transmission of an
Event to an Event Consumer triggers some specific action in
response to that event. It should be noted that the actions triggered
by Event Consumers can further be detected by other Event
Sources, and this accounts for the possibility of Event propagation
as a kind of “forward chaining”, propagating the consequences of
an action.

2. THE ELEMENTS OF ALTERNATIVE
REALITY
As the examples from the Quarxs™ illustrated, the systematic
modification of physical laws, by defining new rules of behaviour
for physical objects, is a principled way of creating alternative
universes. Of course, to implement alternative reality as we have
defined it, the newly defined physical laws should take place in
real-time in an interactive environment, rather than an offline
animation. The essence of Alternative Reality, like virtual reality
is its user-centred nature and its interactivity. The alternative
nature of physical phenomena is only perceived because the user
is part of them and constitutes an experience insofar as he can be
at the origin of some of the unusual transformations. The main
technical innovation of this research is to establish principles for
redefining the virtual environment physical behaviour.

The Unreal Engine implements two different kinds of event
sources: the basic events, which are primitive low-level events
defined within the game engine and the programmed events. The
latter are events whose definition is scripted (i.e. can be
programmed by the system developer) and are originally used to

customise the interactions between objects, by defining which
objects will trigger (or react to) specific events. The basic events
can be classified into six major categories, of which two are
mostly used in our implementation to redefine environment
behaviour: the interaction events and the time notification events.
Interaction events are generated by the native mechanisms that
control low-level graphical events such as collision detection. The
interaction event category is further refined into several sub-
categories, the most important being: physics and world
interaction event, player input event, and trigger event, which is
the basic event class supporting the definition of high-level
events.
On the other hand, time notification events are related to the
engine internal time management system and can be used to
define the control cycle of any new event-based layer, for instance
to programme the sampling rate of event management, which
determines the temporal course of alternative reality phenomena.
From another perspective, basic events can also be classified as
discrete or continuous events. Discrete events notify instantaneous
actions, such as “bumping”, while continuous events signal the
beginning and ending of durative actions, for instance
touch/untouch, attach/unattach (these are used for instance for
carrying or manipulating physical objects).
The redefinition of event mechanism comprises three main
aspects: i) the attachment of events to specific classes of objects,
ii) the overriding of native event generation mechanisms and iii)
the definition of ad hoc complex events from basic system events.
Relating events to objects is implemented using the native UT
mutator system, which in UT supports the redefinition of object
behaviours. This confers a new behaviour to the environment
objects, which is the ability to enter into an Event Interception
(EI) state. Once an object is set into the EI state, every event fired
for this object will not trigger any corresponding action (via the
procedure described above) i.e. the message coming from the
event source is intercepted at the event consumer level. But it will
use a procedure to signal the event call and arguments to an Event
Controller module. This is a basic, though generic, mechanism by
which events can be “frozen”, i.e. detected and recorded but with
their associated actions temporarily inhibited.
The Unreal Engine relies on a fixed set of basic events. However,
for most applications it is necessary to define high-level events,
whose semantics is dictated by the application. Such complex
events are often called context event. The rationale for the use of
context events is that they capture the semantics of an application
scenario, which facilitates the formalisation of alternative rules for
causality that operate on properties or parameters of the context
events. Because they are aggregates of basic events, context
events can be recognised by parsing a stream of lower-level
events using a template for the (high-level) event to be recognised.
This is a standard approach in event recognition, which has been
used previously in computer vision and VR alike [1] [4]
3. IMPLEMENTING ALTERNATIVE
REALITY
We have developed an example scenario to support the
development of our platform as well as the required experiments.
This environment was inspired from some of the Quarxs™
episodes, which tend to take place in everyday settings such as
kitchens and bathrooms. Actually these areas concentrate many
potential physical processes, such as the fall of objects, flows of
liquids, heat transmission, surface contacts, formation of bubbles

and foam, etc. They are also familiar places where the affordances
for interaction tend to be obvious, and in which unexpected
behaviour becomes immediately salient, precisely because of their
familiar nature. This is why we have developed several test
scenarios in such environments.
3.1. Alternative Laws of Causality
Causality is an important mode of apprehension of reality,
whenever interaction and dynamic processes are involved [20]
[17,18][19]. This mode equally applies to interactive
environments such as virtual environments. Users will attribute
causal relationships to events that follow their interactions with
the virtual world’s objects, which they will consider as
consequences of their actions, or to events showing some form of
correlation, the most frequent being co-occurrence (i.e. temporal,
and to some extent spatial, correlation). Manipulating the
perception of causality thus offers a great potential to leverage
new forms of experience. Consider a normal VR scene: it
comprises several background physical processes, such as water
flows and particles getting in contact with objects; the scene may
contain autonomous agents, which interact between them or with
objects, and finally the user. An ordinary scene is thus hosting
many forms of interaction, on small and large scales. All the
corresponding event occurrences can be re-arranged and, given
the correct emphasis, this will contribute to the definition of a
totally different world.
In an environment in which all interactions are mediated through
events representations, it is thus possible to modify the user’s
perception of his/her environment by modifying the dynamics of
event management by the system. At the heart of causality
reprogramming is the notion of event interception. This
interception “freezes” the activation of the events post-conditions
whenever an event is generated. The basis for alternative causality
is that frozen events in the stack can be subject to several formal
transformations, which will produce the desired effects once the
event is re-activated.
The alternative causality system is based on a set of procedures
operating on the events continuously generated by the system, as
described in the previous section. These procedures operate a
certain frequency, which determines the “sampling rate” of
alternative causality, i.e. the time scale over which events are
intercepted, transformed and re-activated to produce the desired
causal effects. The Figure below reproduces the Event Control
software architecture.

A procedure called Event Interception Process continuously
intercepts and freezes the in-coming event produced by world
objects (set in an Event Interception state) as they occur in the
virtual environment, as a result of user interaction or other
background phenomena.
The frozen basic events intercepted during a given time
(corresponding to the sampling rate) are stored into a
corresponding data structure. This structure of basic events is in
turn parsed to extract higher-level events (context events)
corresponding to the application semantics, which are the events
onto which the causal simulation module will operate. For
instance, from a set of basic events describing the movement of a
stone and its contact with a glass surface, Context Events such as
throwing(stone, glass) can be generated.
The set of Context Events obtained in this way is time stamped
and sent to the causal simulation module, acting as a server,

through a TCP/IP socket. The causal engine uses explicit
knowledge to carry out transformations on the events it receives.

Figure 3. Event Control Software Architecture.

This knowledge encodes the new definition of causality that
should be implemented: for instance, swapping the object of a
given action to displace the cause-effect relationship from one
object to another. One example of this triggers the effect of an
intercepted action on an object other than the one on which the
action was originally executed, but of a compatible nature: for
instance when throwing a stone at the glass of a mirror, a glass
other than the one that has been hit is broken instead. Depending
on the explicit knowledge redefining causality (which can be
expressed in a declarative fashion for each application) various
transformations are carried: swapping objects action’s, re-ordering
events (including reversing the flow of time on some small-size
causal chains), changing the spatial occurrence of events in the
environment, etc.
As a result of these transformations, a new ordered set of Context
Events is generated and sent back to the Event Controller module
in the game engine’s environment. The Event Controller is
“listening” for incoming event data frames from the Causal
Engine.
From a formal perspective, the process by which a new sequence
of events is produced from the original set of Context Events
bears similarities with some AI planning techniques, in particular
search-based planning [9] [3]. The context events can be
associated to STRIPS-like representation. A representation that
contains the objects, pre-conditions and post-conditions which
define the context event. These representations can be re-ordered
to produce the final sequence of events, this re-ordering being
formally equivalent to the generation of a plan. Re-ordering is an
important aspect of alternative causality, as from the user’s
perspective causality is essentially derived from co-occurrence.

However, as previously described, many different transformations
can take place, such as swapping of semantically compatible
parameters between two events. Various mechanisms can be used
to govern these transformations, such as the definition of macro-
operators operating on the STRIPS representation, for a more
expressive formalisation of alternative laws of causality.

Figure 4. Example of Unreal Script Interception Event Code

The final step consists in re-activating the transformed intercepted
events within the environment: this comprises two different
aspects. First the target objects of these events (the event
consumers in UT’s terminology) should be set to an event
execution (rather than event interception) state. Second, the
consequence (post-condition) part of the high-level event
operating on that object should be executed in terms of basic
events corresponding to it. For instance the consequences of a
“breaking” event will consist in the destruction of the glass, the
replay of a breaking-glass animation and the generation of a set of
glass fragments in the world (which in turn will generate more
events to be processed during the next cycle). Once the actions
associated to these basic events have been executed, the objects
are put back into Event Interception mode and a new cycle of
event sampling is resumed.

3.1.1 An Example: The Mirror Causality
The example we use to illustrate alternative causality we call
mirror causality. This consists of propagating the effect of
throwing a projectile at mirror on to the objects being reflected by
the mirror. The consequence being that, following the missile
impact, the mirror will not break but the object whose reflection in
the mirror is hit will behave as if it were struck by the projectile.
In our 3D environment, the Event controller controls each
graphics object instance. Then we have defined a list of Context
event associated with this environment. Context events
correspond to high-level Events each expressed with Pre-
conditions and Post-condition, which can be illustrated through
the following declarative form:

This is the Context Event defined called Break_Glass_Object,
describes the behaviour of a “breakable” object when hit by a
missile. A Context Event can be instantiated when its pre-
conditions are satisfied. CE preconditions are conjunctions of
static and dynamic predicates: static predicates correspond to
object properties (such as the fact that an object is breakable),
while dynamic predicates check the occurrence of a Basic Event
involving objects that can be arguments of that Context Event. In
most cases the BEs appearing in the pre-condition list have been

frozen by the event interception system. Triggering the CE post-
conditions will re-activate relevant BEs (see example above).

Context Event: Break_glass_object (?target, ?missile)

 Pre-conditions:

 Frozen_Event (BE_Bump(?target, ?missile))
 Breakable(?target)
 Moving_object(?missile)

 Post-conditions:

Active_Event ((BE_Bump(?target, ?missile))
Active_Event (explode (? target))

The sequence of events transformations underlying alternative
causality can thus be described as follows: i) objects that are in
event interception mode freeze BEs affecting them at regular
intervals ii) each time a new set of BEs have been produced, the
system identifies CE corresponding to them by, testing the CEs'
pre-conditions iii) this set of CEs sampled over that time unit is
passed to the causal engine, which operates various transformation
on the population of CEs (re-ordering, parameter swapping
between CEs, parameter modification). These modifications affect
the CEs' post-conditions in terms of modification of parameters,
addition of new BEs to the post-condition list or deletion of BEs
(in the latter case, the BE deleted will have to be explicitly
"neutralised"). In our "causal mirror" example, the ?target
parameters for the Active_Event(explode ?target) post-conditions
are modified. iv) after having been transformed by the causal
engine, the modified CEs are activated by triggering their post-
conditions. The figure 5: Event Control for Causal Mirror,
illustrates the pipeline of the Causal Control System with the
causal Example.

Figure 5. Event Control for Causal Mirror

3.2 Defining Alternative Laws of Physics
As we have previously introduced, the redefinition of alternative
physical behaviour for objects is based on an AI technique called
qualitative physics [11] [6,7]. The principle behind qualitative
physics is to make discrete the variation of physical properties and
to model all physical transformations through processes that
encapsulate the relation between physical variables, through the
notion of influence equations (see details of process described
below).

The qualitative physics engine is implemented in an external C++
program that communicates with the UT 3D environment, when
events occur. The implementation of the qualitative physics
system relies on the same event-processing layer as the causal
simulation module, which provides a unified approach for all
alternative behaviours.
The virtual world objects that are manipulated by Qualitative
Processes (QP) are, in fact, derived of a special class of objects
that owns an event interception system. Qualitative Processes
also operate through an event-based approach. For instance,
certain QP events will launch specific animations, while other QP
events will potentially update physical variables of the object
(such as temperature, amount of matter contained, state, etc.).
The infrastructure of the Process Controller is comparable to the
Causal Event Controller. Except for the Context Event Modeller
which converts the event list coming from the QP Engine into a
QP event list, instead of a list of Basic Events. The QP Event
Modeller role is to dispatch those QP events to the targeted virtual
world object instances.
In order for the qualitative physics engine (QP engine) to produce
the events, for physical processes within the virtual environment,
the engine needs to receive data about the list of available

processes and the data for the objects in the world. The qualitative
physics engine then uses this data to generate a list of potential
processes that can occur in the world. The generation of the list of
potential qualitative processes within the external C++ module is
performed by analysis of the individual objects in the world. As
processes are defined in part by the individual objects they apply
to only the processes that have their individuals present can occur.
Below is an example of the fluid flow process that we implement
to show the alternative behaviour of a glass, which can hold an
infinite amount. This alternative behaviour leads to the glass
becoming too heavy for the user to move. The description of the
fluid flow process which describes the filling of the Glass is:

Process: Fluid-flow (?source?sub ?dst ?path)
Individuals: ?source a contained liquid
 ?destination a contained liquid
 ?sub a substance
 ?path a fluid-path
Preconditions:Connects(?path,?source,?dst)
 Aligned(?path)
Quantity Conditions
A[Pressure(C-S(?sub, liquid, ? source))] > A[Pressure(?dst)]
Relations Quantity(flow-rate)
 Flow-rate=Pressure(C-S(?sub,liquid,source)) -
Pressure(?dst)
Influences:I+(Amount-of-in(?sub, liquid, ?Source), A[flow-rate])
 I-(Amount-of-in(?sub, liquid, ?dst), A[flow-rate])

In our example we have defined three Objects for the qualitative
physics simulation. The details for these objects are then sent to
the Qualitative Physics engine which creates instances of the
Processes fluid flow process. The fluid flow process is instantiated
Figure 6. Process Generation and user interaction

as the three objects to which it applies to exist i.e. the Tap (a
contained liquid source), the Glass (a contained liquid
destination.) and a fluid path (shown as a column of water). This
then generates for the list of potential processes two fluid flow
processes these processes represent water flowing processes from
the tap to the glass and from the glass to the tap.
 Next we detail the simulation loop for the qualitative physics
engine is given for the example of the water flowing into the
glass.
The definition of a process determines the conditions under which
it can become active. The conditions that the user can directly
affect are known as preconditions for instance aligning a
glass/container under a tap is a precondition for water flow to
occur. (as shown in Figure 6. Process Generation and user
interaction). Context Events are included within the system by
adding the fluid flow Mutator to the Event controllers list of
Active Context Events. Note: The pouring Context Event is
defined by a Flow-Path Object instance in the world (i.e.: Tap
Water flow) and a destination Container object instance (i.e.
Glass). It is the alignment precondition for the fluid flow process
that the context event pouring fulfils. The pouring context event is
generated and sent to the QP engine when the user moves a
container into a flow path.
 The conditions that apply to the quantities within the objects,
whose values and changes are governed by the qualitative process
theory, are known as quantity conditions. An example of quantity
conditions for the water flow process is that the pressure of the
individuals needs to be different for the process to occur. To
determine which processes are active we have to test the
preconditions and the quantity conditions if these are both active
we place these objects into the active process stack. In our
example, we had two potential processes which both had passed
the quantity conditions. Now for the process to occur the
precondition and quantity conditions for the processes need to be
tested. For both processes the preconditions are that there must be
an aligned path between the two contained liquid individuals. If
the user then moves the glass under the flow we have the context
event aligned path which is sent form the environment to the QP
engine. This event aligns the flow and allows both processes to
pass the preconditions. The next stage is the quantity conditions
for the processes since we are comparing the pressure for the two
objects only one process will pass this stage, the process from tap
to glass. The process will then become active and begin altering
the quantities as described by the influence equations.
In the case of water flow the amount of water in glass will
increase.
The next stage involves calculating the relations between the
individuals for the process and then determining changes in the
quantity via resolving influence equations.
 When determining changes in the quantity via resolving influence
equations the first stage is to resolve the direct influences of the
processes. In our example the directly influenced values are the
amount of water in the glass and the amount of water in tap. Then
the process applies the relations for the changes in these
quantities, this is to alter the indirectly influenced quantities. In
our case we are changing amount of water in the glass but by our
alternate laws the glass can hold an infinite amount so the water
will not over flow but the glass will get heavier so the user will be
unable to move the glass. Eventually a limit point for the
glass/container mass will be reached and this will generate an
event that will be sent from the qualitative physics engine to the
UT 3D virtual environment. This event informs the virtual

environment that the mass has passed a certain value. For
alternative laws the virtual environment could respond in many
ways to this event such as breaking the glass or starting different
processes any of which would affect the user experience.

4. CONCLUSIONS
Modifying the laws of physics in Virtual Reality to create
alternative behaviours on a principled basis is certainly a
challenge in terms of conception, implementation and authoring.
This research should support the creation of VR artistic
installations which support recent ideas in the field for which no
software tools are yet available. Using symbolic representations
should also facilitate the translation of the artistic ideas in terms of
computer implementation. We have shown that state-of-the art AI
techniques such as qualitative physics can be adapted to virtual
environments, taking advantage of the discretisation of physics
events in game engines. In a similar fashion, the explicit
description of new rules for causality is probably one of the
highest levels of description that can be envisioned to describe
behaviours. Current work is dedicated to building libraries of
qualitative physics processes so as to scale up the platform beyond
its current prototype status, as well as integrating the interaction
mechanisms that would be required for immersive installations.

ACKNOWLEDGEMENTS
This work has been funded in part through the ALTERNE project
(IST-38575), funded by the European Union under the
Information Society Technologies programme (Cross-Programme
Action 15). Maurice Benayoun is thanked for his introduction to
the Quarxs™ and for authorising the use of Figure 1. SAS-Cube™
picture courtesy of CLARTE/Laval Mayenne Technopole. Unreal
Tournament™ is a trademark of Epic™ Ltd. We would like to
acknowledge VSK clan as the creators of the original UT Map.
We would also like to acknowledge the work of Fabrizio Morbini
for the planning and event systems.
REFERENCES
[1]Andre, E, Herzog, G and Rist, T,. On the Simultaneous
Interpretation of Real-world images and Natural Language
Descriptions: the SOCCER system. Proceedings of the 8th
European Conference on Artificial Intelligence, Munich, 1988.
[2]Aylett, R. and Cavazza, M., Intelligent Virtual Environments: a
State-of-the-Art report, Eurographics STAR reports,
Eurographics, Manchester, UK, September 2001.

[3] Bonet, B. and Geffner, H. Planning as Heuristic Search,
Artificial Intelligence, vol. 129, n. 1-2. pp. 5-33.
 [4]Cavazza, M. and Palmer, I.J., High-level Interpretation in
Virtual Environments, Applied Artificial Intelligence, 1999.
[5]Char Davis :"Osmose: Notes on Being in Immersive Virtual
Space", in Digital Creativity, Vol. IX (2) [Preliminary version
published in ISEA ’95 Conference Proceedings. ISEA: Sixth
International Symposium on Electronic Arts Montreal (1995).]
(1998), pp. 65-74.
[6]Forbus, K, Qualitative Process Theory. Artificial Intelligence,
1984, 24, 1-3, pp. 85-168
[7]Forbus, K.D.,. Qualitative Reasoning. In A.B. Tucker, editor,
The Computer Science and Engineering Handbook, pages 715--
733. CRC Press, 1996.
[8]Grau, O.,Virtual Art : From Illusion to Immersion ,Cambridge
(Massachussets), MIT press. ISBN: 0262072416,2002
[9] Gerevini A., Saetti A., Serina I Planning through Stochastic
Local Search and Temporal Action Graphs, Jounal of Artificial
Intelligence Research (JAIR). (2002)
[10] Greenhalgh, C., Purbrick, J., Benford, S., Craven, M.,
Drozd, A. and Taylor, I., “Temporal links: recording and
replaying virtual environments”, ACM Multimedia 2000,
L.A. , October 2000.
[11]Hayes, P.,. The Naïve Physics Manifesto. In: D. Michie (Ed.),
Expert Systems in the Micro-electronic Age, Edinburgh, Scotland:
Edinburgh University Press,1978
[12]Jacobson, J. and Hwang, Z. Unreal Tournament for
Immersive Interactive Theater. Communications of the ACM,
Vol. 45, 1, pp. 39-42.
[13]Jiang, H., Kessler, G.D and Nonnemaker, J., DEMIS: a
Dynamic Event Model for Interactive Systems. ACM Virtual
Reality Software Technology 2002, Hong Kong
[14]Leary, T. Chaos and Cyberculture, Ronin Press, 1994.
[15]Lewis, M and Jacobson, Games Engines in Scientific
Research. Communications of ACM, Vol. 45, No. I, January
2002. pp27-31.
[16]Moser, M.A. (Ed.), Immersed in Technology: Art and Virtual
Environments, Cambridge (Massachussets), MIT Press.,1996
[17]Pearl, J.,Reasoning with Cause and Effect, Proceedings of
IJCAI'99,1999, pp. 1437-1449.
[18]Pearl, J.,. Causality. Cambridge University Press, 2000.
[19]Price, H., Agency and Causal Asymmetry. Mind, 1992.
,101, 501-520,
[20]Riedl, R., 1984. The Consequences of Causal Thinking. In P.
Watzlawick (Ed.), The Invented Reality. New York: Norton, 1984
[21]Sato., M. and Makiura, N. Amplitude of Chance: the Horizon
of Occurrences, Kinyosya Printing Co., Kawasaki, Japan, 2001.

	1. INTRODUCTION
	1.1. System Overview and Architecture
	2. THE ELEMENTS OF ALTERNATIVE REALITY
	2.1. Event-based Architectures for Behaviour Description
	3. IMPLEMENTING ALTERNATIVE REALITY
	3.1. Alternative Laws of Causality
	3.1.1 An Example: The Mirror Causality
	3.2 Defining Alternative Laws of Physics
	4. CONCLUSIONS
	�
	ACKNOWLEDGEMENTS
	REFERENCES

