Display systems

Ruth Aylett

Overview

- Display technologies
 - Current
 - In development
- Various VR display systems
 - Non-immersive, semi-immersive and immersive

Often a critical factor

- VEs engage visual senses above others
 - Quality of display may determine quality of system
- Projected or screen-based?
- Size
 - Related to immersive v not
- Speed
 - Will they respond to interaction?
- 2D or 3D?
 - Still mostly 2D pretending to be 3D
 - But new technologies very desirable

More display parameters

Resolution

- Size and distance-related
- Colour
 - Use differently-coloured pixels next to each other
- Brightness
- Contrast
- Refresh rate
 - Interactivity depends on this
- Sensitivity to viewing angle

Technologies

- Liquid crystal display LCD
 Active and passive
 CDT (Cethode Dev Tube)
- CRT (Cathode Ray Tube)
- Digital Light Processor
- Auto-stereoscopic
- Virtual Retina Display

LCDs

- Made of small flat chips
 - Transparency properties change when voltage applied
- Elements in an *mx m* array
 - LCD matrix
- Level of voltage controls gray levels
- Elements do not emit light
 - LCD matrix is backlit

LCDs cont

- Colour via filters in front of each LCD element
 - Impacts brightness
 - Usually black space between pixels to separate filters
- Hard to make individual LCD pixels very small
 - Impacts resolution
- Image quality depends on viewing angle.

LCD types

Passive

- Cycle through LCD matrix applying required voltage to each element
- Once aligned with the electric field the molecules in the LCD hold their alignment for a short time
- Active
 - Each element contains a small transistor that maintains the voltage until the next refresh cycle.
 - Higher contrast and much faster response than passive LCD

Resolution

- Often quoted as separate colour elements not number of RGB triads
 - Example: 320 horizontal by 240 vertical elements = 76,800 elements
 - Equivalent to 76,800/3 = 25,600 RGB pixels
 - So "Pixel Resolution" is c 185 by 139 (320/ √3, 240/√3)

Screen-based displays

Limited in size

- LCD max = 108 ins
- Plasma max = 103 ins; non interactive
 - Problems with green phosphor latency limiting update rate
- Limited in resolution
- Thin & lightweight
 - Flexible displays in development

http://en.wikipedia.org/wiki/Flexible_display

Projected displays

- Use bright CRT or LCD screens to generate an image
 - sent through an optical system to focus on (usually) large screen.
- Full colour obtained via separate monochromatic projector for each of R,G,& B colour channels

CRT projector

HERIOT

WATT

Front v Back projection

Front projection:

- Can cast awkward shadows, especially if you get too close
- Projectors typically high up and hard to access
- Makes best use of available light
- Back projection:
 - Expensive translucent screen
 - Needs more space
 - Loses light: brighter displays needed

Projector pros & cons

- Very large screens
 - Large FoV
 - Can be shared by many supports cooperative working
- BUT image quality can be fuzzy
 - Light is lost: dimmer than monitor displays
 - Sensitive to ambient light.
 - Delicate optical alignment, at least with CRTs

CRT pros and cons

Typically: 3CRT's + lens per projector

- Liquid cooled internally
- Hot; Noisy (cooling); Consume a lot of power; Fragile
- Analogue devices
 - Need frequent calibration; Phosphor decays; Not particularly bright
- Good refresh rate (essential for stereo)
- Very good contrast (20,000:1)
- Can distort the image as necessary to get rectangular display

Dealing with distortion

- Flat display rectangular image
 Curved display distorts image

 Needed on many large-scale displays

 Use CRT distortion to compensate

 Use automatic hardware to control it
 Complicates configuration
 - More frequent alignment problems

LCD projector

LCD projected systems

- Usually single projector
 - Brighter; Lower power; Less heat; Less noise
- BUT
 - Lower refresh rate
 - Low contrast (400:1 in typical projectors)
 - Produce polarized light: interferes with LCD shutter glasses
 - Harder to correct for curved screens

Digital projectors

- Digital Micro-Mirror Device (DMD)
 - Developed at T.I. Labs in 1994
 - Basis for digital cinema projection
 - 1.3 Million mirrors on a silicon chip
 - Each modulates reflected light, mapping pixel of video data to pixel on display
 - Digitally controlled: load data into memory cell located below the mirror.
 - Switching rate of thousands of Hz

DMD

Digital Light Processing (DLP)

- Electrostatical control of mirror tilt angle
 - +10 degrees (ON) or -10 degrees (OFF).
 - Light from ON mirrors passes through projection lens to screen.
- Digital Light Processing (DLP)
 - All digital display: completely digital except for A/D conversion at front end
 - Progressive display: displaying complete frames of video
 - Removes interlace artefacts such as flicker

DLP cont

- "Square" pixels, fixed display resolution
 - Resolution fixed by number of mirrors on DMD
 - 1:1 aspect ratio of the pixels
- Requires re-sampling of various input video formats to fit onto DMD array
- Digital colour creation
 - Spectral characteristics of colour filters and lamp coupled to digital colour processing in the system

Quality

With LCD projector

With DLP projector

Stereo

- Depends on supplying separate image for each eye
 - Time-parallel (passive stereo)
 - Time-multiplexed (active stereo)

Active stereo

One projector

- Projects L/R images alternately
- Quad-buffered stereo special graphics cards required!
- Typical refresh rate of projectors 120 Hz (60Hz for each eye)
- Ghosting problems with CRT projectors (green phosphor too slow
- Requires shutter glasses

Shutter glasses

LCD display technology

- Two crossed, polarized layers per eye
- One permanently polarized
- One switchable
- Controlled by an IR signal

Pros and cons

- Expensive: > 100 GBP/pair
- Quite heavy batteries and electronics inside
- Maintenance issues:
 - Batteries run out
 - Fragile
- Direct line-of-sight
- 50% light loss
 - could avoid with two active layers
- Single projector
 - Cheaper and easier to set up
 - But impact on frame rate

Passive stereo

- Two projectors
 - Polarize with each with different filter
- View with two lenses
 - Polarized in orthogonal directions

Pros and cons

Cheap

- Light and comfortable
- More or less indestructible
- Continuous image in both eyes(2 projectors)
- Two projectors
 - Expensive
 - Alignment issues
 - Non-polarizing screen required
 - 50% light loss
 - Can't tilt head more than a few degrees

Stereo rendering

- Two camera ports
 - Slightly separated
- Can be calculated in software
 - But can be done in hardware on some graphics cards

Displays classification - 1

- Head-Mounted Displays (HMDs)
 - The display and a position tracker are attached to the user's head
- Head-Tracked Displays (HTDs)
 - Display is stationary, tracker tracks the user's head relative to the display.
 - Example: CAVE, Workbench, Stereo monitor

Differences

HMD

- Eyes are fixed distance and location from the display screen(s)
- User line-ofperpendicular to display screen(s) OR at fixed, known angle to the display screen(s).

HTD

- Distance to display screen(s) varies
- Line-of-sight to display screen(s) almost never perpendicular
- Usually much wider
 FoV than HMD
- May combine virtual and real imagery

Displays Classification - 2

- Non-immersive (desk-top) VR
- Semi-immersive VR
- Immersive Systems

Non-immersive VR

- workstation screen
 navigation using a mouse/spaceball
- stereo glasses

Semi-immersive VR

- Large screen
- stereo glasses
- datagloves
- position tracking

Immersive Systems

- Head Mounted Displays HMD's
- Cubical projection systems -CAVE
- datagloves, position tracking.

HMDs

- Still identified with VR in popular mind
- Originally CRT based: one screen/eye
 - High-end systems still are
 - Expensive, bulky, but higher resolution
- Less expensive systems are LCD-based
 - resolution: varies from 320x240 up to 1700x1350, standard 800x600
- Limited FoV
 - 25-100 degrees diagonal
 - See http://www.stereo3d.com/hmd.htm

Head Mounted Displays

Occulus Rift

- HMD for games partly financed by crowdfunding: \$2.4m out of \$91m
 - See http://en.wikipedia.org/wiki/Oculus_Rift
- Developer version: 1280x800=
 640x800/eye; consumer ?1920×1080
 - Developer cost \$300; consumer version ? summer 2014
 - LCD 7" screen; 24 bit colour
 - Low latency tracker: 1000Hz
 - Adjustable eye distance; replaceable lenses
 - Inter-pupil adjustment in software

Resolution issues

- Number of pixels related to display area
- Pixel size also related to viewing distance
- Closer to a screen results in less resolution

Accommodation v convergence

- All projected images actually at same distance
 - On the screen
 - Thus constant accommodation: unlike real world
- But manipulated to create convergence for eyes
 - Thus variable convergence
- Can create eye strain
 - HMDs have screens very close to the eye

Issues with HMDs

- Inter-pupil distance (IPD) needs to be adjusted
 - Or it puts extra strain on the eyes
- Resolution and FoV not very good
 - OcculusR remains to be seen
- Cannot see one's own body
 - Impairs presence
- Not collaborative
 - Becomes expensive in multiples especially at high end
- Cumbersome to wear
 - Especially over spectacles: need replacable lenses

ctors(4)

Characteristics

- 4-6 active stereo surfaces
 - Around 3m sq
 - Usually backprojected using mirrors
 - Floor sometimes front projected from ceiling
- Enclosure
 - Tracking system for ONE user
 - Can fit maybe 4 others into space
 - Often adds spatialised sound
- Can 'walk around' displayed objects
 - Can see own body high presence
 - Occasionally people walk into a wall

Fully immersive

Large footprint!

Update rates

- Head turning not a problem
 - Unlike many HMDs
 - But much more computational power
- Fast head movement within space can be a problem
 - Tracking allows update
 - Sometimes with a bit of a lag

Computational requirement

- Originally large multi-graphic pipe rack system
 - One pipe per panel
 - SGI: contributed to high cost
- Current work
 - Use of PC cluster
 - x2 PCs per panel: one for each stereo channel
- Cluster issues
 - Software
 - Synchronisation
 - Large models

Workbench

Immersadesk

- Back-projected
- Stereo
- Objects float in front
- Hand & head tracking
- Good for object interaction
 - Life-size ('widgets') or less-than-life-size (buildings in city models)
- Can link for collaboration

Semi-Immersive Display

- Reality Room
 - Three edgeblended front projectors
 - No tracking
 - 150 by 40
 degree
 Horizontal and
 Vertical FoV
 - Engages
 peripheral vision

Characteristics

Very good for spatial engagement

- Very large FoV
- Building interiors
- City models
- Good for collaborative work
 - 20 people
 - Design reviews
 - Popular in oil industry
 - Public involvement in urban planning decisions

Issues

- Interactively weak
 - Driven by one person with a mouse (possibly 6 dof): no head tracking
 - Can produce cybersickness especially for fast movement
- Projector 'blending' can be a problem
 - Often visible
 - Projectors need frequent tuning to hide it
- Must compensate for curved screen
 - Usually best done with CRT displays: less bright

WorkWall

Features:

- flat screen
- two or more edge blended projectors
- rear projected

WorkWall

- Screen size: (two configurations)
 - 8.0' h x 16.0' w and 8.0' h x 24.0' w screens
 (2.1m h x 4.9m w and 2.4m h x 7.3m w)
- Size: Scaleable display setup is.
- Work Group Size: Ideal for two to forty viewers
- Maximum Resolution:
 3 Projector System 3456 x 1024 resolution
 2 Projector System 2304 x 1024 resolution

Dome/sphere displays

- Multiple projector system
 - Project onto domed surface above
 - 180 deg or more
 - e.g Trimension V-dome: Hayden planetariium, American Museum of Natural History
 - 180x180; 21 m diameter; 7 projectors
- ETH Zurich Visdome

Solving the movement problem

- Cybersphere
 - Bearings at base
 - Rotates as walk

Factors in choosing displays

- Degree of immersiveness and presence needed
 - Relationship to virtual space
 - Objects life-size or not?
- Amount of interactivity needed
 - Balance between object interactivity and navigation
- Degree of cooperative working
- Space requirements and cost

Technologies under development

- Auto-stereoscopic
 - Commercially available but non-interactive
- Virtual Retinal display
 - Still being researched

Auto-stereoscopic

Stereo without glasses

- Both halves of stereo pair displayed simultaneously, directed to corresponding eyes
- Uses special illumination plate behind the LCD: light from compact, intense light sources
- Optically generates lattice of very thin, very bright, uniformly spaced vertical light lines
- Lines are spaces with respect to pixel columns of the LCD
- Left/right eye sees lines through odd/even columns

Lenticules

- Lenticular sheet
 - contains series of cylindrical lenses molded in plastic substrate.
 - lens focuses on image behind lenticular sheet.
 - Each eye's line of sight focused onto different strips.

HERIC

Current state

- Laptop with auto-stereo screen available
- Non-interactive display for product display
 - Similar to plasma screen size
- Sensitive to head position
 - Too slow for interaction right now

Virtual Retinal Display (VRD)

- Scan light directly onto retina
 No screen needed
- Idea from scanning laser ophthalmoscope
 - Used to acquire picture of retina
- Work at University of Washington
 - http://www.hitl.washington.edu/research/vrd/

Laser-based

- VGA video source (640x480)
- Argon for blue and green
- Laser diode for red
- Control and drive circuits
 - Direct modulation of laser diode
 - Indirect modulation of argon source

VRD

- Scanned onto retina using
 - Horizontal: mechanical resonant scanner
 - Vertical: galvanometer
- 40 nsec on retina with no persistence
- Scan loops instead of flyback
 - 60 Hz interlaced
 - Final scanned beams exit through lens
- User puts eye at exit pupil of VRD to see image
 - Total: 307,200 spots of non-persistent lights

Characteristics

- Perceived without flicker
 - With vibrant colour
- Seen both in occluded and augmented viewing modes
- Extremely small exit pupil
 - Large depth of focus

Advantages

- Large colour range
- Theoretical resolution limits set by eye
- Luminance should be safe
 - 60-300 nW for perceived equivalent brightness
 - 3-4 times less power than CRT
- Better contrast ratio than CRT
- Better depth of focus
 - Like a pinhole camera
- Low power consumption (if using laser diodes)
- Theoretically very cheap

Issues

Problem with head movement

- Lose the image
- Needs an argon laser
 - Large and costly
 - But red, green, and blue laser diodes are coming
- Safety issues still not clear
 - Coherent light vs. non-coherent
- Need better resolution and larger FoV
- Want portable version (eye glasses)

FogScreen Inia

- Frameless walk-through screen by Inition
- Fog screen injected into a laminar airflow
 - Translucent / fully opaque images projection
 - 2 metres wide X 1.5 metres high
- Fog ordinary water & ultrasonic waves

FogScreen Inia

- Standard video projectors
 - 2 projectors: different images on both sides of the screen
 - At least 3000 ANSI Lumens
 - Can use both back & front projection
 - Min 2 metres between projectors and screen
 - Better result with a darker background
- 25.6" (65cm) high x 35.4" (90cm) deep x
 91" (2.31m) wide, Weight 150kg.
- Interactivity through pointer stick

Conclusions

- Display technology still imperfect
 - New technologies being developed
 - Still problems with resolution, brightness, FoV
- A number of different display systems
 - Different characteristics
 - Choose in relation to application

