Display systems

Ruth Aylett
Overview

- Display technologies
 - Current
 - In development

- Various VR display systems
 - Non-immersive, semi-immersive and immersive
Often a critical factor

- VEs engage visual senses above others
 - Quality of display may determine quality of system
- Projected or screen-based?
- Size
 - Related to immersive v not
- Speed
 - Will they respond to interaction?
- 2D or 3D?
 - Still mostly 2D pretending to be 3D
 - But new technologies very desirable
More display parameters

- Resolution
 - Size and distance-related
- Colour
 - Use differently-coloured pixels next to each other
- Brightness
- Contrast
- Refresh rate
 - Interactivity depends on this
- Sensitivity to viewing angle
Technologies

- Liquid crystal display - LCD
 - Active and passive
- CRT (Cathode Ray Tube)
- Digital Light Processor
- Auto-stereoscopic
- Virtual Retina Display
LCDs

■ Made of small flat chips
 – Transparency properties change when voltage applied
■ Elements in an $n \times m$ array
 – LCD matrix
■ Level of voltage controls gray levels
■ Elements do not emit light
 – LCD matrix is backlit
LCDs cont

- Colour via filters in front of each LCD element
 - Impacts brightness
 - Usually black space between pixels to separate filters

- Hard to make individual LCD pixels very small
 - Impacts resolution

- Image quality depends on viewing angle.
LCD types

- **Passive**
 - Cycle through LCD matrix applying required voltage to each element
 - Once aligned with the electric field the molecules in the LCD hold their alignment for a short time

- **Active**
 - Each element contains a small transistor that maintains the voltage until the next refresh cycle.
 - Higher contrast and much faster response than passive LCD
Resolution

- Often quoted as separate colour elements not number of RGB triads
 - Example: 320 horizontal by 240 vertical elements = 76,800 elements
 - Equivalent to $76,800 / 3 = 25,600$ RGB pixels
 - So "Pixel Resolution" is c 185 by 139 ($320/\sqrt{3}, 240/\sqrt{3}$)
Screen-based displays

- Limited in size
 - LCD max = 108 ins
 - Plasma max = 103 ins; non interactive
 - Problems with green phosphor latency limiting update rate
- Limited in resolution
- Thin & lightweight
 - Flexible displays in development

 http://en.wikipedia.org/wiki/Flexible_display
Projected displays

- Use bright CRT or LCD screens to generate an image
 - sent through an optical system to focus on (usually) large screen.

- Full colour obtained via separate monochromatic projector for each of R,G,& B colour channels
CRT projector
Front v Back projection

- **Front projection:**
 - Can cast awkward shadows, especially if you get too close
 - Projectors typically high up and hard to access
 - Makes best use of available light

- **Back projection:**
 - Expensive translucent screen
 - Needs more space
 - Loses light: brighter displays needed
Projector pros & cons

- **Very large screens**
 - Large FoV
 - Can be shared by many - supports cooperative working

- **BUT image quality can be fuzzy**
 - Light is lost: dimmer than monitor displays
 - Sensitive to ambient light.
 - Delicate optical alignment, at least with CRTs
CRT pros and cons

- Typically: 3CRT’s + lens per projector
 - Liquid cooled internally
 - Hot; Noisy (cooling); Consume a lot of power; Fragile

- Analogue devices
 - Need frequent calibration; Phosphor decays; Not particularly bright

- Good refresh rate (essential for stereo)

- Very good contrast (20,000:1)

- Can distort the image as necessary to get rectangular display
Dealing with distortion

- Flat display - rectangular image
- Curved display - distorts image
 - Needed on many large-scale displays
- Use CRT distortion to compensate
 - Use automatic hardware to control it
 - Complicates configuration
 - More frequent alignment problems
LCD projector
LCD projected systems

- Usually single projector
 - Brighter; Lower power; Less heat; Less noise
- BUT
 - Lower refresh rate
 - Low contrast (400:1 in typical projectors)
 - Produce polarized light: interferes with LCD shutter glasses
 - Harder to correct for curved screens
Digital projectors

- **Digital Micro-Mirror Device (DMD)**
 - Developed at T.I. Labs in 1994
 - Basis for digital cinema projection
 - 1.3 Million mirrors on a silicon chip
 - Each modulates reflected light, mapping pixel of video data to pixel on display
 - Digitally controlled: load data into memory cell located below the mirror.
 - Switching rate of thousands of Hz
DMD
Digital Light Processing (DLP)

- Electrostatic control of mirror tilt angle
 - +10 degrees (ON) or -10 degrees (OFF).
 - Light from ON mirrors passes through projection lens to screen.

- Digital Light Processing (DLP)
 - All digital display: completely digital except for A/D conversion at front end
 - Progressive display: displaying complete frames of video
 - Removes interlace artefacts such as flicker
DLP cont

- “Square” pixels, fixed display resolution
 - Resolution fixed by number of mirrors on DMD
 - 1:1 aspect ratio of the pixels
- Requires re-sampling of various input video formats to fit onto DMD array
- Digital colour creation
 - Spectral characteristics of colour filters and lamp coupled to digital colour processing in the system
Quality

With LCD projector

With DLP projector
Stereo

- Depends on supplying separate image for each eye
 - Time-parallel (passive stereo)
 - Time-multiplexed (active stereo)
Active stereo

- **One projector**
 - Projects L/R images alternately
 - Quad-buffered stereo - special graphics cards required!
 - Typical refresh rate of projectors 120 Hz (60Hz for each eye)
 - Ghosting problems with CRT projectors (green phosphor too slow)
 - Requires shutter glasses
Shutter glasses

- **LCD display technology**
 - Two crossed, polarized layers per eye
 - One permanently polarized
 - One switchable
 - Controlled by an IR signal
Pros and cons

- Expensive: > 100 GBP/pair
- Quite heavy - batteries and electronics inside
- Maintenance issues:
 - Batteries run out
 - Fragile
- Direct line-of-sight
- 50% light loss
 - could avoid with two active layers
- Single projector
 - Cheaper and easier to set up
 - But impact on frame rate
Passive stereo

- Two projectors
 - Polarize with each with different filter
- View with two lenses
 - Polarized in orthogonal directions
Pros and cons

- Cheap
- Light and comfortable
- More or less indestructible
- Continuous image in both eyes (2 projectors)
- Two projectors
 - Expensive
 - Alignment issues
 - Non-polarizing screen required
 - 50% light loss
 - Can’t tilt head more than a few degrees

Stereo rendering

- Two camera ports
 - Slightly separated
- Can be calculated in software
 - But can be done in hardware on some graphics cards
Displays classification - 1

- **Head-Mounted Displays (HMDs)**
 - The display and a position tracker are attached to the user’s head

- **Head-Tracker Displays (HTDs)**
 - Display is stationary, tracker tracks the user’s head relative to the display.
 - Example: CAVE, Workbench, Stereo monitor
Differences

■ HMD
 - Eyes are fixed distance and location from the display screen(s)
 - User line-of-perpendicular to display screen(s) OR at fixed, known angle to the display screen(s).

■ HTD
 - Distance to display screen(s) varies
 - Line-of-sight to display screen(s) almost never perpendicular
 - Usually much wider FoV than HMD
 - May combine virtual and real imagery
Displays Classification - 2

- Non-immersive (desk-top) VR
- Semi-immersive VR
- Immersive Systems
Non-immersive VR

- workstation screen
- navigation using a mouse/spaceball
- stereo glasses
Semi-immersive VR

- Large screen
- stereo glasses
- datagloves
- position tracking
Immersive Systems

- Head Mounted Displays - HMD’s
- Cubical projection systems - CAVE
- datagloves, position tracking.
HMDs

- Still identified with VR in popular mind
- Originally CRT based: one screen/eye
 - High-end systems still are
 - Expensive, bulky, but higher resolution
- Less expensive systems are LCD-based
 - resolution: varies from 320x240 up to 1700x1350, standard 800x600
- Limited FoV
 - 25-100 degrees diagonal
 - See http://www.stereo3d.com/hmd.htm
Head Mounted Displays
Occulus Rift

- HMD for games partly financed by crowdfunding: $2.4m out of $91m
 - See http://en.wikipedia.org/wiki/Oculus_Rift
- Developer version: 1280x800= 640x800/eye; consumer ?1920×1080
 - Developer cost $300; consumer version ?
 summer 2014
 - LCD 7” screen; 24 bit colour
 - Low latency tracker: 1000Hz
 - Adjustable eye distance; replaceable lenses
 - Inter-pupil adjustment in software
Resolution issues

- Number of pixels related to display area
- Pixel size also related to viewing distance
- Closer to a screen results in less resolution
Accommodation v convergence

- All projected images actually at same distance
 - On the screen
 - Thus *constant* accommodation: unlike real world
- But manipulated to create convergence for eyes
 - Thus variable convergence
- Can create eye strain
 - HMDs have screens very close to the eye
Issues with HMDs

- Inter-pupil distance (IPD) needs to be adjusted
 - Or it puts extra strain on the eyes
- Resolution and FoV not very good
 - OculusR remains to be seen
- Cannot see one’s own body
 - Impairs presence
- Not collaborative
 - Becomes expensive in multiples especially at high end
- Cumbersome to wear
 - Especially over spectacles: need replacable lenses
CAVE
Characteristics

- **4-6 active stereo surfaces**
 - Around 3m sq
 - Usually backprojected using mirrors
 - Floor sometimes front projected from ceiling

- **Enclosure**
 - Tracking system for ONE user
 - Can fit maybe 4 others into space
 - Often adds spatialised sound

- **Can ‘walk around’ displayed objects**
 - Can see own body - high presence
 - Occasionally people walk into a wall
Fully immersive
Large footprint!
Update rates

- Head turning not a problem
 - Unlike many HMDs
 - But much more computational power

- Fast head movement within space can be a problem
 - Tracking allows update
 - Sometimes with a bit of a lag
Computational requirement

- Originally large multi-graphic pipe rack system
 - One pipe per panel
 - SGI: contributed to high cost

- Current work
 - Use of PC cluster
 - x2 PCs per panel: one for each stereo channel

- Cluster issues
 - Software
 - Synchronisation
 - Large models
Workbench

- **Immersadesk**
 - Back-projected
 - Stereo
 - Objects float in front
 - Hand & head tracking

- **Good for object interaction**
 - Life-size (‘widgets’) or less-than-life-size (buildings in city models)

- **Can link for collaboration**
Semi-Immersive Display

- Reality Room
 - Three edge-blended front projectors
 - No tracking
 - 150 by 40 degree Horizontal and Vertical FoV
 - Engages peripheral vision
Characteristics

- **Very good for spatial engagement**
 - Very large FoV
 - Building interiors
 - City models

- **Good for collaborative work**
 - 20 people
 - Design reviews
 - Popular in oil industry
 - Public involvement in urban planning decisions
Issues

- **Interactively weak**
 - Driven by one person with a mouse (possibly 6 dof): no head tracking
 - Can produce cybersickness especially for fast movement

- **Projector ‘blending’ can be a problem**
 - Often visible
 - Projectors need frequent tuning to hide it

- **Must compensate for curved screen**
 - Usually best done with CRT displays: less bright
WorkWall

Features:
- flat screen
- two or more edge blended projectors
- rear projected
WorkWall

- Screen size: (two configurations)
 - 8.0’ h x 16.0’ w and 8.0’ h x 24.0’ w screens
 (2.1m h x 4.9m w and 2.4m h x 7.3m w)
- Size: Scaleable display setup is.
- Work Group Size: Ideal for two to forty viewers
- Maximum Resolution:
 - 3 Projector System 3456 x 1024 resolution
 - 2 Projector System 2304 x 1024 resolution
Dome/sphere displays

- **Multiple projector system**
 - Project onto domed surface above
 - 180 deg or more
 - e.g. Trimension V-dome: Hayden planetarium, American Museum of Natural History
 - 180x180; 21 m diameter; 7 projectors

- **ETH Zurich Visdome**
Solving the movement problem

- **Cybersphere**
 - Bearings at base
 - Rotates as walk
Factors in choosing displays

- Degree of immersiveness and presence needed
 - Relationship to virtual space
 - Objects life-size or not?
- Amount of interactivity needed
 - Balance between object interactivity and navigation
- Degree of cooperative working
- Space requirements and cost
Technologies under development

- **Auto-stereoscopic**
 - Commercially available but non-interactive

- **Virtual Retinal display**
 - Still being researched
Auto-stereoscopic

- **Stereo without glasses**
 - Both halves of stereo pair displayed simultaneously, directed to corresponding eyes
 - Uses special illumination plate behind the LCD: light from compact, intense light sources
 - Optically generates lattice of very thin, very bright, uniformly spaced vertical light lines
 - Lines are spaces with respect to pixel columns of the LCD
 - Left/right eye sees lines through odd/even columns
Lenticules

- **Lenticular sheet**
 - contains series of cylindrical lenses molded in plastic substrate.
 - lens focuses on image behind lenticular sheet.
 - Each eye's line of sight focused onto different strips.
Current state

- Laptop with auto-stereo screen available
- Non-interactive display for product display
 - Similar to plasma screen size
- Sensitive to head position
 - Too slow for interaction right now
Virtual Retinal Display (VRD)

- Scan light directly onto retina
 - No screen needed
- Idea from scanning laser ophthalmoscope
 - Used to acquire picture of retina
- Work at University of Washington
 http://www.hitl.washington.edu/research/vrd/
Laser-based

- VGA video source (640x480)
- Argon for blue and green
- Laser diode for red
- Control and drive circuits
 - Direct modulation of laser diode
 - Indirect modulation of argon source
VRD

- Scanned onto retina using
 - Horizontal: mechanical resonant scanner
 - Vertical: galvanometer
- 40 nsec on retina with no persistence
- Scan loops instead of flyback
 - 60 Hz interlaced
 - Final scanned beams exit through lens
- User puts eye at exit pupil of VRD to see image
 - Total: 307,200 spots of non-persistent lights
Characteristics

- Perceived without flicker
 - With vibrant colour
- Seen both in occluded and augmented viewing modes
- Extremely small exit pupil
 - Large depth of focus
Advantages

- Large colour range
- Theoretical resolution limits set by eye
- Luminance should be safe
 - 60-300 nW for perceived equivalent brightness
 - 3-4 times less power than CRT
- Better contrast ratio than CRT
- Better depth of focus
 - Like a pinhole camera
- Low power consumption (if using laser diodes)
- Theoretically very cheap
Issues

- Problem with head movement
 - Lose the image

- Needs an argon laser
 - Large and costly
 - But red, green, and blue laser diodes are coming

- Safety issues still not clear
 - Coherent light vs. non-coherent

- Need better resolution and larger FoV

- Want portable version (eye glasses)
FogScreen Inia

- Frameless walk-through screen by Inition
- Fog screen injected into a laminar airflow
 - Translucent / fully opaque images projection
 - 2 metres wide X 1.5 metres high
- Fog – ordinary water & ultrasonic waves
FogScreen Inia

- **Standard video projectors**
 - 2 projectors: different images on both sides of the screen
 - At least 3000 ANSI Lumens
 - Can use both back & front projection
 - Min 2 metres between projectors and screen
 - Better result with a darker background

- 25.6" (65cm) high x 35.4" (90cm) deep x 91" (2.31m) wide, Weight 150kg.

- Interactivity through pointer stick
Conclusions

- **Display technology still imperfect**
 - New technologies being developed
 - Still problems with resolution, brightness, FoV

- **A number of different display systems**
 - Different characteristics
 - Choose in relation to application