
Introduction to Open Scene
Graph

Ruth Aylett

What is Open Scene Graph?

 Designed for real-time scene rendering
– Uses a scene graph to manage world database;
– and multiprocessing to improve performance;

 Multi platform (at the moment IRIX, Linux, Windows,
FreeBSD, Mac OSX, Solaris, HP-UX and even
PlayStation2)

 C++ API (Java and Python bindings available too);
 Built on industry standard OpenGL library (supports

direct calls to OpenGL where necessary);

What is Open Scene Graph?

 Open Source with a large and active
community

 Makes Use Of STL and Design Patterns
 Easy to develop plug-ins - lots of them

available, esp. loaders
 Supports modern graphic cards features

through support of OpenGL Shader
Language

 All information and documentation on
http://www.openscenegraph.org/

A few examples

A few examples

A few examples

What is in it? – The libraries (1)
 osg - Core scene graph
 osgUtil - Utility library for useful

operations and traversers
 osgDB – Database reading and writing

library
 osgFX – Special effects framework

Nodekit
 osgText - NodeKit which add support

for TrueType text rendering

What is in it? – The libraries (2)

 osgParticle - NodeKit which adds
support for particle systems

 osgTerrain – Terrain generation
Nodekit

 osgSim – Visual simulation Nodekit
 osgGA - GUI abstraction library
 osgProducer - viewer library

integrating OSG with producer

What is OpenSceneGraph?

 Functional
Components

OSG
Scene Graph

Rendering Elements
OSGDB

Data Base Loading
Plug-in Management

OSGUtil
Traversers

Enhancements

OSGText OSGSim Node Kits…

Plug-Ins

Namespaces

 Every of the libraries has its own namespace
(e.g. osg, osgDB, osgFX, etc.)

 Classes are either referenced including
namespace (using scope operator, e.g.
osg::Group)

 or without namespace, with additional “using
namespace *** ” line (e.g. using namespace
osg;)

Core OSG library

 Helper classes - memory management,
maths classes

 osg::Nodes - the internal nodes in the scene
graph

 osg::Drawables - the leaves of the scene
graph which can be drawn

 osg::State* - the classes which encapsulate
OpenGL state

 Traversers/visitors - classes for traversing
and operations on the scene

The structure of a scene graph

 osg::Group at the top containing the whole
graph

 osg::Groups, LOD's, Transform, Switches in the
middle

 osg::Geode/Billboard Nodes are the leaf nodes,
which contain:

 osg::Drawables which are leaves that contain
the geometry and can be drawn.

 osg::StateSets attached to Nodes and
Drawables, state inherits from parents only.

Group nodes
 osg::Group - Branch node, which may have

children, also normally top-node
 osg::Transform – Transformation of children
 osg::LOD - Level-of-detail selection node
 osg::Switch - Select among children
 osg::Sequence - Sequenced animation node
 osg::CoordinateSystemNode – defines a

coordinateSystem for children
 osg::LightSource – defines a light in the

scene
 And many more..

Leaf nodes

 osg::Geode - "geometry node“, a leaf node on the
scene graph that can have "renderable things"
attached to it.

 In OSG, renderable things are represented by objects
from the Drawable class

 so a Geode is a Node whose purpose is grouping
Drawables

 it is however NOT a group node
 Other leaf node type osg::Billboard - derived form of

osg::Geode that orients its osg::Drawable children to
face the eye point.

Drawables

 osg::Drawable itself is a pure virtual class
 everything that can be rendered is implemented as a

class derived from osg::Drawable
 A Drawable is NOT a node and cannot be directly

added to the scene graph (always through a Geode)
 Like Nodes can be children of several parents, also

Drawables can be shared between several Geodes
 the same Drawable (loaded to memory just once)

can be used in different parts of the scene graph ->
good for performance

Drawable Sub Classes

 osg::Geometry – drawable basic
geometry

 osg::ShapeDrawable - allows to draw
any type of osg::Shape

 osg::DrawPixels – single pixels
 osgParticle::ParticleSystem – allows to

draw a particle system
 osgText::Text – drawable true type text

Drawing basic Geometry

 Drawable osg::Geometry allows drawing
basic geometry:

 Assign to it:
– a vertex array
– Primitive sets

• Can be any of the modes POINTS, LINES, LINE_STRIP,
LINE_LOOP, TRIANGLES, TRIANGLE_STRIP,
TRIANGLE_FAN, QUADS, QUAD_STRIP, POLYGON

• Direct encapsulation of OpenGL primitives
• Contains indices of vertices that form the primitive(s)

– (optional) color, normal and texture coordinate
arrays

Shapes

 Pure virtual base class osg::Shape
 Shapes can be used for culling, collision detection, or

be drawn via osg::ShapeDrawable
 Some shape sub-classes:

– osg::Box
– osg::Sphere
– osg::Cone
– osg::Cylinder
– osg::Capsule
– osg::InfinitePlane
– osg::TriangleMesh

Transformations
 Transformation = Translation,

Rotatation and Scaling
 Base class osg::Transform provides

basic Transformation via 4x4 Matrix
 Often better use more accessible

subclasses though
 Most important sub class:

– osg::PositionAttitudeTransform – sets the
coordinate transform via a vec3 position
and scale and a quaternion attitude

A simple example scene graph
 One box and two spheres

osg::Group

osg::PositionAttitude

Transform

osg::Geode

osg::Geode

osg::Box

osg::ShapeDrawable

osg::Sphere

osg::ShapeDrawable

osg::PositionAttitude

Transform

StateSets

 Stores a set of modes and attributes which
respresent a set of OpenGL state

 Can be attached to any Node or Drawable
 Defines drawing state for node and it’s

subtree
 Drawing state is always inherited from

parents, unless it is overridden
 State’s affect the way OpenGL renders, so

the appearance of objects
 For example: textures, fog, transparency …

State Set Example

Smart Pointers

 Instead of standard pointers to osg objects, use
osg::ref_ptr<> template

 Provides a smart pointer that automatically counts
references

 Object is removed from memory if reference count
drops to zero

 Similar to Java Garbage collection, helps keeping the
memory free and simplifies programming

 Example:
– Dumb pointer: osg::Group *group1 = new osg::Group();
– Smart pointer osg::ref_ptr<osg::Group> group1 = new

osg::Group();

Third Party Dependencies

 To support multi platform functionality,
the open scene graph distribution
includes 3rd party libraries:
– Open Threads for platform independent

threads
– Producer for a platform independent

viewer
– And several file format plugins

Standard steps
– 1. Create a Producer based viewer
– 2. configure the viewer
– 3. Load or create a scene graph, and associate its

top node with the viewer
– 4. (optional) optimize the scene graph
– 5. update the scene
– 6. draw the scene
– 7. Create the simulation loop, which loops between

5. and 6.

The simulation loop
 Three main steps:

– Update the scene, e.g location of an object
• It may be moving

– Update the camera, e.g. zoom in on scene
• The position of the user for example
• May require interaction with input devices
• Normally just the viewer’s update method is

called, standard viewer already implements
basic mouse camera control

• non-standard interaction (i.e. other input
devices, 1st person cam, etc.) would ideally be
implemented in a customized viewer class

– Redraw the frame

Importing 3d-Models

 osgDB library responsible for reading/loading 3d-
model-files

 File format plug-ins (loaders) are registered with
osgDB

 In your application, no matter which supported file
format always use the same function
osgDB::readNodeFile, file extension tells osgDB,
which loader to use

 Function returns an osg::Group pointer
 Best file format to use: osg’s native format *.osg
 Can quickly save any scene graph in a *.osg file with:

osgDB::writeNodeFile

Importing VRML

 VRML loading is handled by Inventor plug-in
 Not part of standard Open Scene Graph distribution,

need to compile and register first
 Easier way: use 3D Studio Max to convert wrl file to

3ds file
 3ds files can be loaded by standard osg distribution
 Whichever way is used, not all VRML is imported,

because not everything in a VRML file belongs in a
scene graph (e.g. scripts, animations)

Optimization

 You can optimize the scene graph to improve
performance

 Use osgUtil::Optimizer
 Makes especially sense for huge loaded models
 Optimization will rearrange scene graph, don’t

optimize parts, that you want to modify at runtime,
scene graph structure might change

 How can a scene graph be optimized:
– By removing redundant nodes
– By minimizing state changes
– By using more efficient geom. Primitives (e.g. tristrips)
– …

Examples

 Jason McVeigh's OpenSceneGraph
Tutorial Set.

 http://openscenegraph.org/documentati
on/NPSTutorials/

Example 1

 Loading geometric models from files
and positioning them in a scene

Example 1
root

(osg::Group)

tankNode
(osg::Node)

tankXform
(osg::PositionAttitudeTransform)

Example 2

 Finding named nodes, updating DOF
and switch nodes

Example 2
root

(osg::Group)

tankTwoGroup
(osg::Group)

tankTwoPAT
(osg::PositionAttitudeTransform)

tankOneGroup
(osg::Group)

tankThreeGroup
(osg::Group)

tankThreePAT
(osg::PositionAttitudeTransform)

Example 3

 Using an update callback to articulate a
node within a scene

Example 4

 Manually positioning
a camera

1. Create and initialize a
matrix with the correct
world position and
orientation.

2. Get the inverse of this
matrix and …

3. Provide a world up
orientation. In this case by
rotating from ‘Y’ up to ‘Z’
up.

Example 5

 Using tracking devices

Available Resources

 www.openscenegraph.org
 OpenSceneGraphReferenceDocs.zip
 Tutorials
 Examples
 Source Code
 Mailing List Archives

