
Introduction to Open Scene
Graph

Ruth Aylett

What is Open Scene Graph?

 Designed for real-time scene rendering
– Uses a scene graph to manage world database;
– and multiprocessing to improve performance;

 Multi platform (at the moment IRIX, Linux, Windows,
FreeBSD, Mac OSX, Solaris, HP-UX and even
PlayStation2)

 C++ API (Java and Python bindings available too);
 Built on industry standard OpenGL library (supports

direct calls to OpenGL where necessary);

What is Open Scene Graph?

 Open Source with a large and active
community

 Makes Use Of STL and Design Patterns
 Easy to develop plug-ins - lots of them

available, esp. loaders
 Supports modern graphic cards features

through support of OpenGL Shader
Language

 All information and documentation on
http://www.openscenegraph.org/

A few examples

A few examples

A few examples

What is in it? – The libraries (1)
 osg - Core scene graph
 osgUtil - Utility library for useful

operations and traversers
 osgDB – Database reading and writing

library
 osgFX – Special effects framework

Nodekit
 osgText - NodeKit which add support

for TrueType text rendering

What is in it? – The libraries (2)

 osgParticle - NodeKit which adds
support for particle systems

 osgTerrain – Terrain generation
Nodekit

 osgSim – Visual simulation Nodekit
 osgGA - GUI abstraction library
 osgProducer - viewer library

integrating OSG with producer

What is OpenSceneGraph?

 Functional
Components

OSG
Scene Graph

Rendering Elements
OSGDB

Data Base Loading
Plug-in Management

OSGUtil
Traversers

Enhancements

OSGText OSGSim Node Kits…

Plug-Ins

Namespaces

 Every of the libraries has its own namespace
(e.g. osg, osgDB, osgFX, etc.)

 Classes are either referenced including
namespace (using scope operator, e.g.
osg::Group)

 or without namespace, with additional “using
namespace *** ” line (e.g. using namespace
osg;)

Core OSG library

 Helper classes - memory management,
maths classes

 osg::Nodes - the internal nodes in the scene
graph

 osg::Drawables - the leaves of the scene
graph which can be drawn

 osg::State* - the classes which encapsulate
OpenGL state

 Traversers/visitors - classes for traversing
and operations on the scene

The structure of a scene graph

 osg::Group at the top containing the whole
graph

 osg::Groups, LOD's, Transform, Switches in the
middle

 osg::Geode/Billboard Nodes are the leaf nodes,
which contain:

 osg::Drawables which are leaves that contain
the geometry and can be drawn.

 osg::StateSets attached to Nodes and
Drawables, state inherits from parents only.

Group nodes
 osg::Group - Branch node, which may have

children, also normally top-node
 osg::Transform – Transformation of children
 osg::LOD - Level-of-detail selection node
 osg::Switch - Select among children
 osg::Sequence - Sequenced animation node
 osg::CoordinateSystemNode – defines a

coordinateSystem for children
 osg::LightSource – defines a light in the

scene
 And many more..

Leaf nodes

 osg::Geode - "geometry node“, a leaf node on the
scene graph that can have "renderable things"
attached to it.

 In OSG, renderable things are represented by objects
from the Drawable class

 so a Geode is a Node whose purpose is grouping
Drawables

 it is however NOT a group node
 Other leaf node type osg::Billboard - derived form of

osg::Geode that orients its osg::Drawable children to
face the eye point.

Drawables

 osg::Drawable itself is a pure virtual class
 everything that can be rendered is implemented as a

class derived from osg::Drawable
 A Drawable is NOT a node and cannot be directly

added to the scene graph (always through a Geode)
 Like Nodes can be children of several parents, also

Drawables can be shared between several Geodes
 the same Drawable (loaded to memory just once)

can be used in different parts of the scene graph ->
good for performance

Drawable Sub Classes

 osg::Geometry – drawable basic
geometry

 osg::ShapeDrawable - allows to draw
any type of osg::Shape

 osg::DrawPixels – single pixels
 osgParticle::ParticleSystem – allows to

draw a particle system
 osgText::Text – drawable true type text

Drawing basic Geometry

 Drawable osg::Geometry allows drawing
basic geometry:

 Assign to it:
– a vertex array
– Primitive sets

• Can be any of the modes POINTS, LINES, LINE_STRIP,
LINE_LOOP, TRIANGLES, TRIANGLE_STRIP,
TRIANGLE_FAN, QUADS, QUAD_STRIP, POLYGON

• Direct encapsulation of OpenGL primitives
• Contains indices of vertices that form the primitive(s)

– (optional) color, normal and texture coordinate
arrays

Shapes

 Pure virtual base class osg::Shape
 Shapes can be used for culling, collision detection, or

be drawn via osg::ShapeDrawable
 Some shape sub-classes:

– osg::Box
– osg::Sphere
– osg::Cone
– osg::Cylinder
– osg::Capsule
– osg::InfinitePlane
– osg::TriangleMesh

Transformations
 Transformation = Translation,

Rotatation and Scaling
 Base class osg::Transform provides

basic Transformation via 4x4 Matrix
 Often better use more accessible

subclasses though
 Most important sub class:

– osg::PositionAttitudeTransform – sets the
coordinate transform via a vec3 position
and scale and a quaternion attitude

A simple example scene graph
 One box and two spheres

osg::Group

osg::PositionAttitude

Transform

osg::Geode

osg::Geode

osg::Box

osg::ShapeDrawable

osg::Sphere

osg::ShapeDrawable

osg::PositionAttitude

Transform

StateSets

 Stores a set of modes and attributes which
respresent a set of OpenGL state

 Can be attached to any Node or Drawable
 Defines drawing state for node and it’s

subtree
 Drawing state is always inherited from

parents, unless it is overridden
 State’s affect the way OpenGL renders, so

the appearance of objects
 For example: textures, fog, transparency …

State Set Example

Smart Pointers

 Instead of standard pointers to osg objects, use
osg::ref_ptr<> template

 Provides a smart pointer that automatically counts
references

 Object is removed from memory if reference count
drops to zero

 Similar to Java Garbage collection, helps keeping the
memory free and simplifies programming

 Example:
– Dumb pointer: osg::Group *group1 = new osg::Group();
– Smart pointer osg::ref_ptr<osg::Group> group1 = new

osg::Group();

Third Party Dependencies

 To support multi platform functionality,
the open scene graph distribution
includes 3rd party libraries:
– Open Threads for platform independent

threads
– Producer for a platform independent

viewer
– And several file format plugins

Standard steps
– 1. Create a Producer based viewer
– 2. configure the viewer
– 3. Load or create a scene graph, and associate its

top node with the viewer
– 4. (optional) optimize the scene graph
– 5. update the scene
– 6. draw the scene
– 7. Create the simulation loop, which loops between

5. and 6.

The simulation loop
 Three main steps:

– Update the scene, e.g location of an object
• It may be moving

– Update the camera, e.g. zoom in on scene
• The position of the user for example
• May require interaction with input devices
• Normally just the viewer’s update method is

called, standard viewer already implements
basic mouse camera control

• non-standard interaction (i.e. other input
devices, 1st person cam, etc.) would ideally be
implemented in a customized viewer class

– Redraw the frame

Importing 3d-Models

 osgDB library responsible for reading/loading 3d-
model-files

 File format plug-ins (loaders) are registered with
osgDB

 In your application, no matter which supported file
format always use the same function
osgDB::readNodeFile, file extension tells osgDB,
which loader to use

 Function returns an osg::Group pointer
 Best file format to use: osg’s native format *.osg
 Can quickly save any scene graph in a *.osg file with:

osgDB::writeNodeFile

Importing VRML

 VRML loading is handled by Inventor plug-in
 Not part of standard Open Scene Graph distribution,

need to compile and register first
 Easier way: use 3D Studio Max to convert wrl file to

3ds file
 3ds files can be loaded by standard osg distribution
 Whichever way is used, not all VRML is imported,

because not everything in a VRML file belongs in a
scene graph (e.g. scripts, animations)

Optimization

 You can optimize the scene graph to improve
performance

 Use osgUtil::Optimizer
 Makes especially sense for huge loaded models
 Optimization will rearrange scene graph, don’t

optimize parts, that you want to modify at runtime,
scene graph structure might change

 How can a scene graph be optimized:
– By removing redundant nodes
– By minimizing state changes
– By using more efficient geom. Primitives (e.g. tristrips)
– …

Examples

 Jason McVeigh's OpenSceneGraph
Tutorial Set.

 http://openscenegraph.org/documentati
on/NPSTutorials/

Example 1

 Loading geometric models from files
and positioning them in a scene

Example 1
root

(osg::Group)

tankNode
(osg::Node)

tankXform
(osg::PositionAttitudeTransform)

Example 2

 Finding named nodes, updating DOF
and switch nodes

Example 2
root

(osg::Group)

tankTwoGroup
(osg::Group)

tankTwoPAT
(osg::PositionAttitudeTransform)

tankOneGroup
(osg::Group)

tankThreeGroup
(osg::Group)

tankThreePAT
(osg::PositionAttitudeTransform)

Example 3

 Using an update callback to articulate a
node within a scene

Example 4

 Manually positioning
a camera

1. Create and initialize a
matrix with the correct
world position and
orientation.

2. Get the inverse of this
matrix and …

3. Provide a world up
orientation. In this case by
rotating from ‘Y’ up to ‘Z’
up.

Example 5

 Using tracking devices

Available Resources

 www.openscenegraph.org
 OpenSceneGraphReferenceDocs.zip
 Tutorials
 Examples
 Source Code
 Mailing List Archives

