
LMS-EPSRC Short Course: Theoretical Fluid Dynamics

A Navier–Stokes equations regularity tutorial and solutions

Simon J.A. Malham

Tutorial

Consider the incompressible Navier–Stokes equations on a bounded domain Td with

periodic boundary conditions. The goal of this tutorial is to derive some energy esti-

mates and achieve some fluency in performing these types of calculations.

Question 1 Show that the Navier–Stokes equations can be expressed in the form

∂u

∂t
+ ω × u = ν ∆u−∇

(
p+ 1

2 |u|
2)+ f .

Directly compute the quantity (d/dt)‖u‖2L2 and use Hölder’s inequality to show that

d

dt
‖u‖2L2 + 2ν‖∇u‖2L2 6 δ‖u‖2L2 +

1

δ
‖f‖2L2 ,

for some constant δ > 0. Hence derive a uniform upper bound for ‖u‖2L2 in time and

deduce that for any time T > 0:

u ∈ L∞([0, T ];L2(Td;Rd)
)
∩ L2([0, T ];H1(Td;Rd)

)
.

Question 2 By considering the L2-inner product of −∆u with the Navier–Stokes for-

mulation quoted above, using that −∆u = ∇× ω show that

1
2

d

dt
‖∇u‖2L2 + ν‖∆u‖2L2 =

∫
Td

ωT(∇u)ω dx− 〈∆u,f〉L2 .

1. Assume d = 2. Show that

u ∈ L∞([0, T ];H1(Td;Rd)
)
∩ L2([0, T ];H2(Td;Rd)

)
.

2. Assume d = 3. Use the Hölder and Gagliardo–Sobolev–Nirenberg inequalities to

show that for some constant c:

1
2

d

dt
‖∇u‖2L2 + ν‖∆u‖2L2 6

c

ν3
‖∇u‖6L2 +

2

ν
‖f‖2L2 .

What can you deduce from this inequality?
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Tutorial solutions

We consider the incompressible Navier–Stokes equations on a periodic domain Td.

Our goal is to derive some basic energy estimates which assume that the solutions

are smooth, but which indicate properties we might expect weak/strong solutions to

satisfy. For example weak solutions satisfy an energy inequality.

Question 1

Step 1. To show that the Navier–Stokes equations can be expressed in the form

∂u

∂t
+ ω × u = ν ∆u−∇

(
p+ 1

2 |u|
2)+ f ,

we simply substitute the identity

u · ∇u = 1
2∇
(
|u|2

)
− u× (∇× u)

into the standard formulation of the Navier–Stokes equations.

Step 2. There are several ways to derive the energy inequality for the forced Navier–

Stokes equations, one of which is to directly compute (d/dt)‖u‖2L2 as follows:

d

dt
1
2‖u‖

2
L2 = 1

2

∫
Td

∂t(u · u) dx

= 1
2

∫
Td

2u · (∂tu) dx

=

∫
Td

u · (−ω × u + ν ∆u−∇
(
p+ 1

2 |u|
2)+ f) dx

= − ν
∫
Td

|∇u|2 dx +

∫
Td

u · f dx.

In the last step we have used that u · (ω × u) ≡ 0, and that∫
Td

u · ∇
(
p+ 1

2 |u|
2) dx =

∫
Td

∇ ·
(
u
(
p+ 1

2 |u|
2)) dx−

∫
Td

(∇ · u)
(
p+ 1

2 |u|
2) dx

and ∫
Td

u · (∆u) dx =

∫
Td

∇ ·
(
(∇u) · u

)
dx−

∫
Td

|∇u|2 dx.

Note that in these last two integral identites we simply use the product formulae for the

vector fields indicated and thus these are also just ‘integration by parts’ formulae. The

divergence terms on the right, by the divergence theorem, generate surface integrals

on ∂Td, the bounding surface of Td. By periodicity these terms are zero. Of course, we

are also assuming incompressibility ∇·u = 0 everywhere. Further note, to be clear, we

define ∫
Td

|∇u|dx =

2∑
i,j=1

∫
Td

(∂xjui)(∂xjui) dx.

Now using the Hölder and Young inequalities we see that

〈u,f〉L2 6 ‖u‖L2 ‖f‖L2 6
δ

2
‖u‖2L2 +

1

2δ
‖f‖2L2 ,
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for some δ > 0. Combining these results gives us the estimate

d

dt
‖u‖2L2 + 2ν‖∇u‖2L2 6 δ‖u‖2L2 +

1

δ
‖f‖2L2 .

Step 3. To derive a uniform upper bound for ‖u‖2L2 in time, we can set δ = ν and

use Poincaré’s inequality

‖u‖L2 6 c ‖∇u‖L2

for some constant c (note that if u(x, 0) has mean zero then u(x, t) also has mean

zero, for t > 0). Using this in the evolution inequality above, we get

d

dt
‖u‖2L2 +

ν

c2
‖u‖2L2 6

1

ν
‖f‖2L2 .

Now we can integrate this time differential inequality, more rigorously we apply the

Gronwall lemma, to get (using the integrating factor technique for linear differential

equations, i.e. variation of constants formula):

‖u(·, t)‖2L2 6 ‖u(·, 0)‖2L2 exp
(
−νt/c2

)
+
(
c2

ν

)2
‖f(·, t)‖2L2

(
1− exp

(
−νt/c2

))
.

This establishes for any time T > 0, we know

u ∈ L∞([0, T ];L2(Td;Rd)
)
.

Step 4. Now note if we simply time integrate the time differential inequality (before

we applied the Poincaré inequality) we get

‖u(·, t)‖2L2 +
ν

c2

∫ T

0

‖∇u(·, τ)‖2L2 dτ 6 ν

∫ T

0

‖u(·, τ)‖2L2 dτ +
1

ν

∫ T

0

‖f(·, τ)‖2L2 dτ.

From this we can deduce for any time T > 0, we have

u ∈ L2([0, T ];H1(Td;Rd)
)
.

Question 2

We consider the L2-inner product of ‘−∆u’ with the Navier–Stokes formulation

quoted above, this generates:

1
2

d

dt
‖∇u‖2L2 + ν‖∆u‖2L2 = 〈∆u,ω × u〉L2 − 〈∆u,f〉L2 .

Note that for the time derivative term, we have used the product formula again (inte-

gration by parts) and that by periodicity the boundary integrals vanish. Now consider

the term generated from the nonlinear term in the Navier–Stokes equations. Since

−∆u ≡ ∇× (∇× u) for divergence free fields u we see that

〈∆u,ω × u〉L2 = − 〈∇× ω,ω × u〉L2

= 〈ω,∇× (ω × u)〉L2

= 〈ω,u · ∇ω〉L2 + 〈ω,ω · ∇u〉L2

= 〈ω, Dω〉L2 ,
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where D is the deformation matrix (the symmetric part of ∇u). In this sequence of

equalities, we have used the product formula

〈∇ × ω,v〉L2 =

∫
Td

∇ ·
(
ω × v

)
dx− 〈ω,∇× v〉L2

with v = ω × u together with the divergence theorem and periodicity round the

boundary. We have also used that for divergence free fields u, with ω = ∇ × u, we

have

∇× (ω × u) = u · ∇ω + ω · ∇u,
and that ω ·∇u = Dω as Rω ≡ 0 (where R is the antisymmetric part of ∇u) and that

〈ω,u · ∇ω〉L2 =

∫
Td

∇ ·
(
1
2u|ω|

2)dx = 0.

Putting all this together, we arrive at the equality:

1
2

d

dt
‖∇u‖2L2 + ν‖∆u‖2L2 = 〈ω, Dω〉L2 − 〈∆u,f〉L2 .

(a) Assume d = 2. Then direct calculation shows that Dω = 0 and thus, using the

Hölder and then Young inequalities

1
2

d

dt
‖∇u‖2L2 + ν‖∆u‖2L2 6

δ

2
‖∆u‖2L2 +

1

2δ
‖f‖2L2 ,

for some δ > 0 (exactly as we did for the energy inequality above). Now choose δ = ν.

Hence we can deduce for any T > 0, we have

u ∈ L∞([0, T ];H1(Td;Rd)
)
.

Note that for any divergence free vector field u we have

‖∇u‖2L2 = ‖ω‖2L2 = 2

∫
Td

tr
(
D2) dx.

(b) Now assume d = 3. The vorticity stretching term Dω is now an important

mechanism of the flow. Using the Hölder inequality, followed by the Gagliardo–Sobolev–

Nirenberg inequality

‖∇u‖L4 6 c ‖∆u‖3/4
L2 ‖∇u‖

1/4
L2 ,

and then the Young inequality, we see that

〈ω, Dω〉L2 6 c ‖∇u‖L2‖∇u‖2L4

6 c ‖∇u‖L2

(
‖∆u‖3/4

L2 ‖∇u‖
1/4
L2

)2
= c ‖∆u‖3/2

L2 ‖∇u‖
3/2
L2

6
3

4
ν‖∆u‖2L2 +

c

4ν3
(
‖∇u‖2L2

)3
.

Inserting this into the equality we have above and using similar estimates for the forcing

term (now use δ = ν/4) we see for some constant c, we have

1
2

d

dt
‖∇u‖2L2 +

ν

8
‖∆u‖2L2 6

c

ν3
(
‖∇u‖2L2

)3
+

2

ν
‖f‖2L2 .

For simplicity assume f ≡ 0. Then using the Gronwall lemma we see, as a function

of time, the best we can show is ‖∇u‖2L2 has an upper bound that blows up in finite

time.


