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We consider a reaction-diffusion system modelling propagating fronts of an auto-
catalytic reaction of order m in a one-dimensional, infinitely extended medium. The
Lewis number, i.e. the ratio of the molecular diffusivity of the autocatalyst to that
of the reactant, is arbitrary. We prove that if the initial profile of the front decays
exponentially or algebraically with exponent p > 1/(m—1), the speed of the front is
bounded for all times. Qur method relies on weighted Lebesgue and Sobolev-space
estimates, from which we can reconstruct pointwise results for the decay of the
front via interpolation. The result gives both, a functional analytic foundation, and
an extension to arbitrary Lewis numbers, to the numerical studies of Sherratt &
Marchant (IMA J. Appl. Math. 56, 1996, pp. 289-302) and the asymptotic analysis
of Needham & Barnes (Nonlinearity 12, 1999, pp. 41-58).
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1. Introduction

We study solutions to the reaction-diffusion system

oy =AY+ (1-9) f(6), (L1a)
8,0 = EAG + (1— ) f(8), (1.1b)

on the real line with front-type boundary data where

Y —1 and 6 —>1 asz— —oo, (1.1¢c)
—0 and 6 —0 asz— oo, (1.1d)

for all t > 0, and compatible smooth initial front profiles ¥(z,0) = vo(z) and
0(z,0) = 6p(z). This equation describes propagating fronts of autocatalytic re-
actions. It has also been proposed as a simple model for combustion, population
genetics, and epidemiological infections—see, for example, Aronson & Weinberger
(1978), Volpert el al. (1994), Billingham & Needham (1991), and references cited
therein.

In the case of autocatalysis, the dynamic variables represent the concentration of
the autocatalyst, § = 6(z,t), and the concentration of another reactant expressed in
the form 1 —1, where ¢ = ¢)(z,t). All variables are non-dimensionalized. The posi-
tive parameter £ is the Lewis number, which is the ratio of the molecular diffusivity
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of the autocatalyst to that of the reactant. Here we consider chemical reactions
of order m, so that f(f) = 6™ for § > 0 and zero otherwise. In our analysis, we
suppose that m > 2, but m need not be integer. The physical interpretation of
and 6 requires that

0<y¥<1 and 0<L846. (1.2)

Indeed, the parabolic maximum principles imply that these properties hold globally
in time provided they are true initially. We assume such bounds throughout the
paper. Finally, there exist unique global classical solutions (Collet & Xin 1997).
With this in mind, we shall only present formal estimates, which can be easily
made rigorous.

The boundary condition at —oo describes the state where all the reactant has
burned up and reaction has ceased, while at 400 no reaction has yet taken place.
Therefore the front, which, roughly speaking, is the region where the gradients of
1 and 0 are largest, must move to the right. In this paper we address the question
of whether the speed at which the front is moving remains finite for all times, or
increases without bound as t — oo, in which case we say that the front accelerates.

Our investigation is motivated by the work of Sherratt & Marchant (1996), who
numerically analysed the scalar Fisher-Kolmogorov equation,

040 = 0,560 + (1 — 6) 6™ (1.3)

This equation can be seen as an instance of system (1.1) in the special case when
¢ =1 and the initial profiles for 1) and 0 are identical. They found that when the
initial profile decays exponentially or algebraically with exponent y > 1/(m — 1),
the solution evolves into a steadily propagating travelling-wave. However, when
< 1/(m—1), the front accelerates. Moreover, the front region appears to stretch,
with the overall slope of the front decreasing as portions of the front where the
concentration field 6 is small propagate at a faster rate. Needham & Barnes (1999)
have recently provided a detailed asymptotic analysis of this effect.

Some heuristic understanding can be gleamed from a scaling argument. Rewrite
the Fisher—Kolmogorov equation in a translating coordinate frame £ = = — ct,

0,0 = Beel + 00+ (1— 0) o™ . (1.4)

Suppose that initially, § ~ £7* as £ — 0o. Then for large values of £ we have that
0¢0 ~ =& #1 and (1 —6)0™ ~ £ #™, while the diffusion term is formally of lower
order. Hence when p > 1/(m — 1), the negative linear term will dominate and 6
will decrease, possibly under the condition that ¢ be large enough to balance the
influence of diffusion over long time scales. On the other hand, if u < 1/(m—1), the
reaction term dominates near infinity no matter how large we choose the translating
speed c.

The results for the Fisher—Kolmogorov model can also be understood rigorously
as follows. A family of travelling-wave solutions 6(z,t) = 0.(£), invariant under
translation, exists on a half-axis of wave-speeds. The travelling-wave of minimum
speed decays exponentially, 6.(£) ~ exp(—cf) as £ — 0o, whereas those of higher
wave-speed decay algebraically

0c(€) ~ <L> " (1.5)
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Figure 1. Accelerating front with 4 = 0.6, m = 2, £ = 4, and Zmax = 2000. All simulations
are initialized with o (z) = 6o(z) = (14 )" on the interval [0, Zmax| and have numerical
boundary conditions ¢y =6 =1 at = 0 and ¥ = § = 0 at £ = Zmax. The code is based
on EPDCOL by Keast & Muir (1991) with 1000 grid points. We plot the surface 0(z,t)
on the left and the corresponding isoconcentration contours on the right.
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Figure 2. Non-accelerating front with 4 =1, m =10, £ = 0.1, and Zmax = 500.

Further, a solution with monotone initial data, exponentially close to a travelling-
wave for large £, will converge to a translate of that wave (see Volpert et al. 1994).
Hence, when 6 is sufficiently well-behaved at £ = —oco and decays exponentially
or decays algebraically faster than, or even critically at £ = oo, it will develop into
a travelling-wave. By using a comparison principle in the spirit of Rothe (1978),
we also know that if a solution initially dominates another one on the whole space,
this order relationship is preserved under the evolution. We can thus compare any
solution against travelling-wave solutions: If the rate of decay is slower than critical,
then 6y dominates translates of travelling-waves of any wave-speed, so the front
accelerates.

The main concern of this paper is the case when £ ## 1. The basic phenomenol-
ogy is similar to £ = 1. For initial data of slow algebraic decay, the front accelerates
as in Figure 1. When the decay at infinity is sufficiently fast, the evolving front
may approach a steady travelling-wave as in Figure 2—the £ # 1 travelling-waves
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Figure 3. Pulsating, non-accelerating front with 4 = 1, m = 10, £ = 10, and Zmax = 2000.
The front pulsates, with 6(z,t) oscillating above and below # = 1 while the unsteady
front velocity appears to remain uniformly bounded. The front is steeper in the 1) variable
because £ > 1.

have similar properties to the Fisher-Kolmogorov travelling-waves (Billingham &
Needham 1991). However, when the Lewis number and the order of reaction are
large, such data may also evolve into a front that starts to pulsate as illustrated
in Figure 3. In this parameter regime, the underlying travelling-waves become un-
stable to small perturbations, a phenomenon known as the pulsating instability
(Metcalfe et al. 1994; Balmforth et al. 1999). As the order of reaction m is fur-
ther increased, period-doubling bifurcations occur, and the front pulsations even-
tually become chaotic. On the other hand, for any given set of parameter values
for £ and m, travelling-waves of sufficiently fast wave-speed ¢ > c4(¢,m), where
c2 > 1/32m - max{1,£}, are asymptotically stable with shift (Takase & Sleeman
1999). Of course, when ¢ and m are large, then ¢, > cmin, Where cpmin denotes the
minimum speed of at which travelling-waves exist, and instabilities occur.

The existence of the pulsating instability precludes using a comparison princi-
ple to bound solutions componentwise by translates of travelling-waves. In fact, if
this were possible, one would have Lyapunov stability of travelling-waves at once.
This difficulty can also be understood as follows. When £ # 1, the system is of
mixed-monotone, monostable type. Comparison principles readily extend to mono-
tone systems (Volpert et al. 1994), and have also been proved for mixed-monotone
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systems by Lu & Sleeman (1993). However, the character of these results is such
that travelling-waves do not qualify as ‘sub’ or ‘super’ solutions unless the ‘sub’ and
‘super’ solution coincide. Hence, a direct application of the comparison principle
only yields trivial information.

In this paper we avoid these difficulties by replacing maximum principles, i.e. L™
estimates, with energy-type estimates. The basic idea is to prove that the solution
to (1.1) remains bounded in a weighted integral norm, so that integrability against
an exponentially (or algebraically) growing weight proves exponential (or algebraic)
decay of the solution at infinity in the sense that the ‘area under the front’ becomes
exponentially (or algebraically) small far ahead of the front.

In §2 we implement the idea in a simple L? setting, and are able to derive a first
result for exponential weights. However, to close up this type of estimate in the case
of algebraic weights one needs pointwise control on the solution, something that can
only be achieved by taking estimates in higher spaces, specifically weighted H' and
L*" spaces for n sufficiently large. Pointwise bounds can then be reconstructed via
an interpolation inequality.

Our main result, valid for all positive Lewis numbers, is the following. If the ini-
tial front profile has a pointwise exponential upper bound, the solution will decay
exponentially for all times. If the initial front profile decays algebraically with expo-
nent u > 1/(m—1), the evolving front will decay faster than any v € (1/(m—1), u).
In both cases the speed of the front is bounded uniformly in time. For a more formal
statement we refer the reader to Theorems 3.3 and 3.4 respectively.

The use of energy estimates has two intrinsic drawbacks. First, the reconstruc-
tion of pointwise bounds from integral bounds, which is an essential step in our
closure, fails at the critical exponent, even for £ = 1. However, we can get results
up to the critical exponent with bounds that diverge in the limit. As a conse-
quence, we do not expect our methods to give sharp, or even close, upper bounds
on the wave speed. Second, we cannot prove that for u < 1/(m — 1) the front must
accelerate. Such a result would require lower bounds on our norms, which are noto-
riously difficult to achieve via energy-type estimates. We believe these limitations
are technical rather than intrinsic properties of the system. An interesting open
question, therefore, is whether there is a comparison principle for certain carefully
constructed ‘sub’ and ‘super functionals’ of the solution. This would allow a more
direct proof parallel to the proof available when ¢ = 1.

2. L? estimates for exponentially decaying fronts

To simplify notation, we write u = (,6)” and rescale the equation so that the
coefficients of molecular diffusion in equations (1.1a) and (1.1b) are 1/p and 1/p*,
respectively, where p = 1+ £ and p* = 1 + 1/¢ are Holder conjugate exponents.
Then the system expressed in the travelling-wave coordinate £ = x — ct is

Ou+ Lu = F(u), (2.1)

where

L= —Adgc—cde, A= diag(%,}%) , and F(u)= G) (L—g)om. (2.2)
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We introduce weighted L? spaces whose weight function w is continuous, piecewise
continuously differentiable, positive, and strictly monotonically increasing. Further-
more, we require that the growth of w is at most exponential, i.e. there exists a
positive constant k£ such that for almost every £ € R

w'(§) < kw(f). (2-3)

For a scalar function ¢ we set
16125y = [ 10O wle) de. (2.4

In particular, L?(w) is the completion of C§° in this norm. For vector-valued func-
tions u,v: R — R? we have the canonical weighted inner product,

(W) ) = [ T wle) e, (25)
as well as an inner product with a matrix weight €2,
R RAGLGEGE (2.6)

The corresponding norms and spaces are defined as in the scalar case. In the fol-
lowing, we set {2 = Bw, where w is as above, and

3 % _
B= <p p p) : (2.7)
—p 1
Here B has been chosen so that it is positive definite and also satisfies two other
properties that will become apparent below.

By taking the L?(€2) inner product of equation (2.1) with u, we obtain

1d 2 / T
u + (u, Lu = [ u QF(u)d§. 2.8
2dt|| ||]L2(Q) < )]]_}’(Q) ( ) ( )

The contribution of the linear operator L is rewritten through integration by parts,
(u, LU>]L2(Q) =- /RUTQAO&U d¢ — c‘/RuTﬂagu d¢

:/aguTQAafudf—i-/uTQ'Aagud{—i—%/uTﬂ'udf. (2.9)
R R R

Noting that pp* > 4, one can easily check that the matrix BA is positive definite,
and therefore the first integral on the right is equivalent to the canonical w-weighted
L? norm of Oz u.

Further, since w is monotonically increasing, the last integral on the right of
(2.9) is positive definite. Thus, the mixed term can be estimated in terms of the
others by using the Cauchy—Schwarz inequality for vectors and then for integrals,
1/2

/ uT ()2 () /2 ADeude < / (T Q) "? (9euT A ADew) ' de
R R

< ”u”]L2 Q) ||8§’U,||]L2 (AQ'A)

S k ||u||]L2 (Q,)||8§u||]Lz (AQA) (210)

Article submitted to Royal Society
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In the last step we have also used (2.3). The matrix weights, AQA and QA, induce
equivalent norms. So applying the Young inequality and inserting the result back
into (2.9) finally gives

2 <ua LU>L2(Q) 2 Haﬁu”]?} (QA) + (C - 6‘1) ”u”]?? @) (2'11)

where ¢; depends on k, B, and A.
The contribution to (2.8) from the nonlinear term, written out explicitly, is

[wrorwae = [p6 - 1w -p-Doa-v)emed. (1)

Since 0 < ¢ < 1, the term in square brackets can only be positive for § < k =
p(p?*p* —1)/(p — 1). For those values of § we neglect the term (p — 1)6 so that

/R TP (u) dE < p (" — 1) /R (1- )™ wde

- w(§)
<p(P*p* — 1) k™2 ||ul|?2 (,, SUP — 2 - 2.13
0" = DR s g sup 63 (213)
For example, if the choose w(€) = exp(k&), we can close the differential inequality
for the L?(Q)-norm;

d

Sl g+ 19l ) + (e = €2) 2 g < 0. (2.14)
Thus, for translating velocities ¢ > ¢y, the L2 (©)-norm is exponentially decreasing.
In other words, the frame of reference of our exponential weight moves faster than
the front. Thus we have proved the following.

Theorem 2.1. Assume that ug is square integrable against an exponential weight
function. Then there exists a maximal front speed cmax so that all features moving
faster than cmax are decaying in the exponentially weighted L sense.

This statement is unsatisfactory for two reasons. First, it does not give pointwise
bounds on the shape of the front, and second, the result is not easily extended to
the case of algebraic decay. If we simply replaced w by an algebraically increasing
function, we cannot close up the estimate because the supremum in (2.13) becomes
infinite. More severely, however, for decay near the critical exponent found by Sher-
ratt & Marchant, the estimate would require a decreasing weight, thereby reversing
the sign of every term that contains w’. Thus a weighted L?-norm is too restric-
tive, but does nonetheless, introduces the basic idea without the technicalities that
appear for higher order norms.

In particular, the L? estimate illustrates how the matrix B was chosen: In ad-
dition to B being positive definite, we also used that BA is positive definite so
that the contribution from the diffusive part of L is of positive sign. Finally, the
coefficients of 1 and 6 in (2.12) must be positive so that large values of § dampen
rather than drive the estimate. We will re-encounter generalized versions of these
three conditions when we construct higher order norms in Lemma 3.1 below.
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3. H' and L> estimates

Consider the Q-weighted inner product of 9;u with the {-derivative of the vector
form of the reaction-diffusion equation (2.1). One gets

1d
2dt||8§u||Lz(Q) + <0§u L6€U>L2(Q) /8§u QagF( ) d¢. (31)

The contribution from the linear part is estimated literally as in the previous section,

2 (Ogu, LOcu) 2 ) > [10eeullf> 4 + (¢ — 1) 10cullfz ) - (3-2)
() (Q24) (

In the integral on the right of (3.1), we differentiate through and take absolute
values. Since ¥ is bounded, we need only keep the contributions from 6, i.e.,

/ OeuT QO F (u) dé = / deuT Q (DF)(u) Ogudé
R R
<K, / |Bcul? (6™ + ™) wdé
R

< Ky (k) / 10¢ul2 0™ L wde + Ks(r) / |Ocul? 0™ w dé .
<k 0>k
(3.3)
For the moment, we suppose x to be any positive constant—we will fix it later on

when we close the estimate. The goal is to absorb the contribution from 6 < x into
the convecting term of (3.1). To do this, consider the following estimate

m—lw

/0< |Ogul® 6™ T wde < /9< |0¢u|® w' A€ - sup (34)

€ o< W

Hence, we can achieve this closure provided we can find a bound on the supremum
on the right of (3.4). Since we cannot yet handle the last term in (3.4), we summarize
the differential inequality for the H'-seminorm:

d m
3 1%ullt2 @) + 19geullfz g, + (¢ = €2) 19¢ullf ) < K /9> |Ogul 0™ w dE,
- (3.5)

where

m—lw

co=c1+ sup (3.6)

£: <k w
The most difficult part of the programme is to obtain an L%-estimate for u,

where ¢ must be large enough to gain control over the remaining term on the right
in estimate (3.5). A general expression for a weighted L*"-norm, for n integer, is

2. o, / Pon (u(€)) w(€) de, (3.7)
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where P = P5, is a homogeneous polynomial in ¢ and 6 of degree 2n. We impose
several conditions on P, one is that P be positive definite, so that the norm defined
above is equivalent to the canonical weighted norm on L?". However, the structure
of our problem makes it convenient to impose further conditions on P, which make
the choice of its coefficients non-trivial. This technique was introduced by Malham
& Xin (1998) and is summarized in the following lemma.

Lemma 3.1. Assume that 0 < ¢ < 1 and 0 < 0 and set u = (¢,0)T. Then for
every n > 1 there exists a homogeneous polynomial P(u) of degree 2n in v and 0
such that the following are true.

(P1) P(u) is positive definite.
ere exists a constant k > 0 such that Oy P + < 0 whenever 6 > k.
P2) There exist tant k> 0 such that 9P + 8y P < 0 wh 6>

(P3) The polynomial v D*PAv is positive definite as a 2n-form, i.e. there exists
a constant § > 0 such that for every v € R?,

vID*PAv > §|v|? |u|>" 2. (3.8)

The proof is not difficult, but technical, and will be given in §4. We use that
0¢(P(u)) = (DP)(u)0u, where DP = (9, P, 09 P), and insert the expression for d;u
from our reaction-diffusion model (2.1). Then integration against w gives

el + /R (DP)(u) Luwd¢ = /R (DP)(u) F(w)wdé.  (3.9)

We integrate by parts to rewrite the contribution from the linear term,

/R (DP)(u) Luwdé = — /]R (DP)(u) A Beuw dé — c /R B (P(u)) w d€

_ / deu” (D>PA) () deuw de + / (DP)(w) A dgu’ de +c [ul% ., .
R R

(3.10)

The first integral is nonnegative due to (P3), while the second has to be estimated:

/(DP)(u)Aaguw' d¢ < K/|u|2"_1 |0cu| @' d€
R R

1 1
< K(/]R|u|2"_2 |0 u|? ' df) ’ (/R|u|2" w' d§) ’ . (3.11)

We apply property (P3) and the bound on w@’, equation (2.3), to the first integral.
Due to (P1), the second integral defines a norm that is equivalent to the L*" (w’)-
norm. Hence, by applying the Young inequality, we find that

[P tumae> 3 [ 10 P wdg + - o) [0l (12)
R R
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Let us now turn to the contribution from the nonlinearity. Due to (P2),

/R(DP)(u) F(u)wdgg/ (80P + 0, P) (1 — ) 6™ w dé

<k
m—1 w
< K ||u||*2., .- 3.13
Altogether, the 12" estimate now reads
d 2n 4 2 2n—2 2n
G o+ 5 [0l P @+ = el oy <0, (314
where
m—1 w
cs =c3+ K- sup (3.15)

¢ o<k @

In the following we will combine this 12" estimate with the H'-seminorm esti-
mate given by inequality (3.5). Since we are only concerned with the behaviour of
the solution at 400, it is convenient to introduce truncated weights

ey - J @ (6) for £ > 1,
wr(€) = {wr(l) ef~1 for £ < 1. (3.16)

Thus, if w is an admissible weight (see the beginning of §2) on [1,00), then wl™! is
an admissible weight on R for every r > 0.

For exponentially decaying initial data, we set { = exp¢, and consider (3.5)
with w(¢) = ¢[?”], and also (3.14) with w(z) = ¢[>"¥]. With this choice, the suprema
occurring in each of the inequalities are immediately bounded in terms of a constant
that depends only on «, n, and v. Further, if n > m/2 4+ 1 and inequality (3.5) is
multiplied with a sufficiently small positive constant €, then the term on the right
of (3.5) is controlled by the dissipation term in the I.*" inequality. Altogether,

d n n
= (a2, ) + e 19eul? ) + (e = es) (IulZEn )+ 06l ) < 0. (3.17)

Since w’ < kw with £ = min{1, v}, this last inequality implies the exponential
bound

(I1alZ2n ) + £ 100l1Z2 g ) < (IluollZEn ) + € 1euollZ2 g ) e~ (3.18)

By choosing a translating velocity ¢ > c¢5, we ‘outrun’ the propagating front. So if
the solution is initially exponentially decaying in the averaged sense of the norms
in (3.18), this property is maintained for all times.

Moreover, we can obtain a pointwise result as follows. Suppose that |ug(€)| <
A exp(—p€) and satisfies the boundary condition of the equation. Then ug €
L?"(¢1?™]) and dgug € L?(¢?") for every v < . For c sufficiently large, indepen-
dent of Ay, the norm of u in these spaces decays exponentially in time. We can
then reconstruct a pointwise exponentially decaying bound with any spatial decay
exponent less than v by applying the following interpolation lemma with w = (,
A=nv,and o < v.
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Lemma 3.2. Let w be an admissible weight function, defined on [1,00), and let
¢ € CH(R) with ¢(£) — const as &€ = —oco. Let n > 1 and o, \ > 0 be real numbers.
Then

21€1§|¢n+1(£) w[)\+g](§)| <Gy ”aﬁd’”iﬁ(w[%]) + C2 ||¢| ig"(w[n]) +C3 M(w)a (319)

provided that

2no—2) Atn—on

M(w)=w n1 (1)+ /1 m|6§w|%w_2 n1  (£)dé (3.20)

is finite. A possible choice of constants is C1 = (n+1)/2, C3 = max{l,\+ 0o}, and
Cy=C1+ Cs.

The proof of this lemma is given in §4. We now summarize our result for expo-
nentially decaying fronts.

Theorem 3.3. Let ( = exp&. Suppose that u solves equation (1.1) with initial data
ug € L*™(¢2™)) for somen > m/2+1 and that Ozuo € L*(¢[?*1). Then the velocity
of the front is bounded by a constant cmax which may depend on n and v, but is
otherwise independent of ug, in the sense that

||u||L2n(<[2m,]) —+0 and ||Ogull > -0 (3.21)

¢tz
exponentially as t — oo whenever ¢ > cpax-

Moreover, if ug(€§) < Ag exp(—u&) for € > 0, then for every v < u there exists
a function A(v,t) and a constant cmax such that

u(€, 0)] < A(v,t)e™* (3.22)

and A(v,t) — 0 for t — oo whenever ¢ > Cmax; in this case cmax may depend on p
but is independent of Ay and v.

For algebraically decaying fronts we combine the H'-seminorm estimate with
w = £ and the L?" estimate with w = £2"#~11, That this choice of weights is
the ‘right’ one can be seen immediately from a simple scaling argument: Assume
that |u| ~ £#, then the exponents on £ in the integrands of the two norms become
identical exactly in the critical case when v = y, and integrability fails.

To absorb the term on the right of (3.5) into the diffusion term of the L*"-
estimate, we must now require, in addition to n > m/2+ 1, that 2v + 1 < 2nv — 1,
which can easily be satisfied. Specifically, if v > 1/(m — 1), a sufficient condition is
n>m.

The suprema in (3.6) and (3.15) both have a bound of the form

0m71 6[7‘] m—1 m—1
sup ————— < K(r) max{ & ,sup|9 £| . (3.23)
ero<n  Ogglr] £>1
Set o — 1 2 +1
nyv — v
 2u(m—1)° 7= 2v(m—1)’ (3:24)
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to use Lemma 3.2 for the supremum on the right of (3.23):

m—1

Sup|0m71 £| < (Sup|0n+1 £[A+a]|) n+1
£>1 £ER

m—1

n n+1
< (Cl ||660”iz(§[2a]) +Ca 6] iz"(g[u]) +Cs M) (3.25)
where
() —v(m_1))
14 / e Dem—D) g¢ (3.26)

is finite whenever the Sherratt & Marchant bound v > 1/(m —1) is satisfied. Under
this condition, we also have that 2\ < 2nv—1 and 20 < 2v+1, so that we altogether
obtain a bound of the form

m—1 ¢[r]
LA S

sup > G(||0”L2"(5[2nu—11) + ”869||L2(5[2u+1])) > (3-27)

¢: o<k Ol
where G is a bounded function, and has coefficients which also depend on &, v/(m—
1), and n.
This allows us to close up the estimate. For ¢ sufficiently small, we get (possibly
absorbing further constants into the expression for G)

d n
= (22 ) + e l0eull?a ) + (e = ) (IlullEh iy + 2 19eulZ ) < 0. (3:28)
where

G = G(||u||L2n(w) + ¢ [|9ull, (Q)) (3.29)

Hence, provided that c is chosen sufficiently large, depending on the initial mag-
nitude of the arguments of G, these same quantities are non-increasing in time
and the estimate extends to arbitrary later times in a self-consistent way. Let us
summarize.

Theorem 3.4. Letv > 1/(m—1) and n > m. Suppose that u solves equation (1.1)
with initial data ug € L*™ (€2 ~1) and that Ogug € L?(€¥+1)). Then the velocity
of the front is bounded by a constant cyax which may depend on v, m, and n, as
well as on the norms of ug in the given spaces.

Moreover, if |ug(§)] < Ao H for € > 1 and p > 1/(m — 1), then for every
v e (1/(m —1),u), there exists an A(v) and a constant cmax such that |u(&,t)| <
A(w) &Y for all t > 0 and translating velocities ¢ > cmax; in this case cmax may
depend on m and p as well as on Ay and v.

Remark 3.5. In particular, there is the possibility that cp.x — 0o as v — p. This
is different from the exponential case where, although the constant in the pointwise
estimate may grow without bounds as v — y, cpax is not affected.

Remark 3.6. Similarly, ¢, may diverge as v approaches the Sherratt & Marchant
critical exponent 1/(m — 1). We speculate that this is an artifact of our method
because results based on comparison theorems that are available for £ = 1 do not
exhibit this behaviour.
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4. Proofs of Lemma 3.1 and Lemma 3.2
Proof of Lemma 3.1. We claim that a possible choice is

2n

P(@,?j}) = Z(_l)k 873 0" ¢2n_k ) (41)
k=0
when the positive coefficients «y, ..., @z, are given by

_ [ (3602 pp*)"~*/2 for k even,
a =
k 4n ag41 for k odd.

Condition (P1) can be checked directly. To verify (P2), we first consider

2n—1

OpP + 0y P = Z (—l)k[ak (2n — k) — opepr (k + 1)]9k k-1
k=0
= Z [(ak (2n —k) — ag41 (K + 1))1/)
R sven,

— (aks1(2n —k—1) — appa (k + 2))9} gk k=2 (4.3)
As ¢ <1, we only need make sure that
a1 (2n—k—1)—ag2(k+2) >0 (4.4)

for k < 2n — 2 even, or, equivalently, that

kE+1
o > o — & Oyl (45)
for k£ odd. By taking
o = 4n gt (4.6)

when k is odd, we always satisfy this condition.
To verify (P3), set v = (x,y)T. A direct calculation gives

2n
vI D?*PAv = Z(_l)k Qg 52 22
k=0
: (@ 22y + (2n — k)kzy v + (2n - k)(ZZ: —k-1) y? 02) @)

The most difficult task is to bound the cross terms proportional to xy. When zy is
positive, the ‘bad’ terms are those for which % is odd. In this case we neglect all cross
terms for k£ even, and control the others with a third fraction of those neighbouring
quadratic terms that have the same homogeneity in 6 and ¥. We must therefore
seek that the sum of their coefficients be non-negative, i.e.,

a1 2n—k+1)2n—k) , a1 (k+ 1Dk o

3 p= y°—ar (2n—k)kzy + 3 Tm >0. (4.8)
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A sufficient condition for the discriminant of this quadratic form in z and y to be
non-negative is that

dog_1arr1 > 9pp* az , (4.9)

or, taking relation (4.6) into account, that
a1 > 36n° pp* aky1 - (4.10)

The case when this last relation is satisfied as an equality, and as,, = 1, corresponds
to the choice made above in (4.2).

On the other hand, when xy is negative, the ‘bad’ cross terms correspond to k
even, with 2 < k < 2n — 2. Each of these terms can be controlled by half of the
neighbouring ‘good’ cross terms. Therefore, for the corresponding sum of coeflicients
we must require that

k1

(2n—k+1)(k—1) ¥* —ay, (2n—k)k ¢0+% (2n—k—1)(k+1)6% > 0. (4.11)

The discriminant of this quadratic form in % and 6 is non-negative whenever

(2n — k)? k?
2n—k—-1)2n—k+1) (k—1)(k+1)

Q—1 Qg1 > ( a2, (4.12)

which is weaker than (4.9).

It remains to be shown that the negative quadratic terms can be bounded as
well. We first consider each negative term proportional to z? and bound it using a
third of those neighbouring positive terms that are proportional to 22 as well. Here
k is odd, k > 3, and we seek that

oy (= 1)(=2) o KE=1) o ek (b1

62> 0. 4.13
3 D D 3 D . (4.13)

The discriminant of this quadratic form in % and 6 is non-negative whenever

kok—1 ,

R R e, 4.14
S rrir_ 2% (4.14)

dop_1apy1 >

Since pp* > 4, this condition is also weaker than (4.9). Finally, the negative terms
proportional to y2 can be estimated in exactly the same way due to the symmetry
of the summation in (4.7).

By carefully keeping track of all the terms in (4.7), we notice that in the process
of cancelling out the negative terms, we have used up all the positive quadratic
terms but a third of each of the corner terms in the scheme, namely

2n(2n — 1) y2 22, 2$2 Y22 2n(2n — 1) 22622, and 3* y2 22,
p* p p

(4.15)

These remaining terms imply the bound on the right side of (3.8). O
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Proof of Lemma 3.2. By the fundamental theorem of calculus,

|67 1(€) WP+l / ‘ g (6" @ ))‘dn
< (n+1) / 0] 6" (1) €71 e + (n+ 1) / 10 61" w2 (€) de

1 oo
+ / |p|" Tt WAt (1) et dE+ (A + o) / |p|" T |Oew| w o (€) dE. (4.16)
o 1
We apply first the Cauchy—Schwarz inequality, and then the Young inequality with
conjugate exponents 1/2 to each of the first two integrals. This yields the following
four integrals,

! 1
%/, |6€¢|2w2"(1)e5*1d§+%/, 62" w? (1) e~ de
1 [ 1
w5 [ooru@act g [Tl @, i

which can be recombined into the norms proportional to C; on the right side of the
interpolation inequality.

To estimate the third integral in (4.16), insert the product w?(1)w~9(1) with
¢ = A\/n—oa, and apply the Holder and Young inequalities with conjugate exponents
2n/(n+1) and 2n/(n—1). One of the integrals can be solved exactly, and we obtain

the terms )
n+1 n _
ot [ lePeP e

For the last integral in (4.16), insert the product w?(§) w™%(§) withg=1—-0+A/n
into the second integral, and apply the Hélder and Young inequalities, again with
conjugate exponents 2n/(n+ 1) and 2n/(n — 1). This yields the terms

—1 2no—2X

). (4.18)

n+1 o, -1 [ 2n_ _,Adn—on
0, n—1 n—1 4.1
e G = LW € (419)
By combining (4.18) and (4.19), we obtain the remaining terms on the right of
(3.19). O
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