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• Properties of Nonholonomic Systems:

• Energy Conservation

Hamiltonian: Yes. Nonholonomic: Yes.

• Momentum Conservation

Hamiltonian: Yes, Noether’s Theorem. Nonholonomic: No, Momentum Equation

• Measure (volume ) Preservation

Hamiltonian: Yes. Nonholonomic: No, in general

• Stability

Hamiltonian: Never asymptotic. Nonholonomic: Can be asymptotic.

• Key: Almost Poisson structure, Nonvariational



•Nonholonomic Equations of Motion

See e.g. Bloch, Krishnaprsad, Marsden and Murray [1996] and Zenkov, Bloch and Marsden

[1998], Bloch and Crouch [1995] and other references in these papers.

•The Lagrange-d’Alembert Principle

• Consider a system with a configuration space Q, local coordinates qi and m nonintegrable

constraints

ṡa + Aa
α(r, s)ṙ

α = 0

where q = (r, s) ∈ R
n−p × R

p, which we write as qi = (rα, sa), where 1 ≤ α ≤ n − p and

1 ≤ a ≤ p.

• Lagrangian L(qi, q̇i).

Equations of motion given by Lagrange-d’Alembert principle.

Definition 0.1 The Lagrange-d’Alembert equations of motion for the system are

those determined by

δ

∫ b

a

L(qi, q̇i) dt = 0,

where we choose variations δq(t) of the curve q(t) that satisfy δq(a) = δq(b) = 0 and δq(t)

satisfies the constraints for each t where a ≤ t ≤ b.

• This principle is supplemented by the condition that the curve itself satisfies the constraints.



• Note that we take the variation before imposing the constraints; that is, we do not impose

the constraints on the family of curves defining the variation.

• Equivalent to:

−δL =

(
d

dt

∂L

∂q̇i
−
∂L

∂qi

)
δqi = 0

for all variations δqi = (δrα, δsa) satisfying the constraints at each point of the underlying

curve q(t), i.e. such that δsa + Aa
αδr

α = 0.

Substituting:

(
d

dt

∂L

∂ṙα
−
∂L

∂rα

)
= Aa

α

(
d

dt

∂L

∂ṡa
−
∂L

∂sa

)

for all α = 1, . . . , n− p.

Combined with the constraint equations

ṡa = −Aa
αṙ

α

for all a = 1, . . . , p, give the complete equations of motion of the system.

Useful way of reformulating equations (0.2) is to define a constrained Lagrangian by substi-

tuting the constraints (0.3) into the Lagrangian:

Lc(r
α, sa, ṙα) := L(rα, sa, ṙα,−Aa

α(r, s)ṙ
α).



The equations of motion can be written in terms of the constrained Lagrangian in the following

way, as a direct coordinate calculation shows:

d

dt

∂Lc
∂ṙα

−
∂Lc
∂rα

+ Aa
α

∂Lc
∂sa

= −
∂L

∂ṡb
Bb
αβ ṙ

β,

where Bb
αβ is defined by

Bb
αβ =

(
∂Ab

α

∂rβ
−
∂Ab

β

∂rα
+ Aa

α

∂Ab
β

∂sa
− Aa

β

∂Ab
α

∂sa

)
.



• The Falling Rolling Disk
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Figure 0.1: The geometry for the rolling disk.

This is a system which exhibits stability but not asymptotic stability.

Denote mass, the radius, and the moments of inertia of the disk by m, R, A, B.

L =
m

2

[
(ξ −R(φ̇ sin θ + ψ̇))2 + η2 sin2 θ + (η cos θ +Rθ̇)2

]

+
1

2

[
A(θ̇2 + φ̇2 cos2 θ) +B(φ̇ sin θ + ψ̇)2

]
−mgR cos θ,

where ξ = ẋ cosφ + ẏ sinφ + Rψ̇ and η = −ẋ sinφ + ẏ cosφ, while the constraints are given

by

ẋ = −ψ̇R cosφ, ẏ = −ψ̇R sinφ.



Other systems:
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Figure 0.2: The Chaplygin sleigh is a rigid body moving on two sliding posts and one knife edge.
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Figure 0.3: The geometry for the roller racer.

Figure 0.4: The rattleback.



•The Chaplygin Sleigh

• Perhaps the simplest mechanical system which illustrates the possible dissipative nature of

energy preserving nonholonomic systems.

Compare the sleigh equations to the Toda lattice equations.
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Figure 0.5: The Chaplygin sleigh is a rigid body moving on two sliding posts and one knife edge.

Equations:

v̇ = aω2

ω̇ = −
ma2

I +ma2
vω

Equations have a family of relative equilibria given by (v, ω)|v = const, ω = 0.

Linearizing about any of these equilibria one finds one zero eigenvalue and one negative



eigenvalue.

In fact the solution curves are ellipses in v − ω plane with the positive v-axis attracting all

solutions.
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Figure 0.6: Chaplygin Sleigh/2d Toda phase portrait.

Normalizing, we have the equations

v̇ = ω2

ω̇ = −vω .

Scaling time by a factor of two have: Chaplygin sleigh equations are equivalent to the two-

dimensional Toda lattice equations except for the fact that there is no sign restriction on the



variable ω. Hence can be written in Lax pair form and solved by the method of factorization.



•The Toda Lattice

Interacting particles on the line.

Non-periodic finite Toda lattice as analyzed by Moser [1974]:

H(x, y) =
1

2

n∑

k=1

y2
k +

n−1∑

k−1

e(xk−xk+1) .

Hamiltonian equations:

ẋk =
∂H

∂yk
= yk

ẏk = −
∂H

∂xk
= exk−1−xk − exk−xk−1 ,

where assume ex0−x1 = exn−xn+1 = 0.

Flaschka:

ak =
1

2
e(xk−xk+1)/2 bk = −

1

2
yk .

Get:

ȧk = ak(bk+1 − bk) , k = 1, · · · , n− 1

ḃk = 2(a2
k − a2

k−1) , k = 1, · · · , n

with the boundary conditions a0 = an = 0 and where the ai > 0.



Matrix form:
d

dt
L = [B,L] = BL− LB,

If N is the matrix diag[1, 2, · · · , n] the Toda flow can be written

L̇ = [L, [L,N ]] .

Shows flow also gradient (on a level set of its integrals).

• Double bracket form of Brockett [1988] (see Bloch [1990], Bloch Brockett and Ratiu [1990,

1992]).

•The Two-dimensional Toda Lattice

In two-dimensional case matrices in the Lax pair are

L =

(
b1 a1

a1 −b1

)
B =

(
0 a1

−a1 0

)
.

Equations of motion:

ḃ1 = 2a2
1

ȧ1 = −2a1b1

For initial data b1 = 0, a1 = c, explicitly carrying out the factorization yields explicit solution

b1(t) = −c
sinh 2ct

cosh 2ct
, a1(t) =

c

cosh 2ct



Symmetries Symmetries play an important role in our analysis. Suppose we are given a

nonholonomic system with Lagrangian L : TQ → R, and a (nonintegrable) constraint distri-

bution D. We can then look for a group G that acts freely and properly on the configuration

space Q. It induces an action on the tangent space TQ and so it makes sense to ask that the

Lagrangian L be invariant. Also, one can ask that the distribution be invariant in the sense

that the action by a group element g ∈ G maps the distribution Dq at the point q ∈ Q to the

distribution Dgq at the point gq. If these properties hold, we say that G is a symmetry group.

The manifold Q/G is called the shape space of the system and the configuration space has the

structure of a principal fiber bundle π : Q→ Q/G.

Geometry of Nonholonomic Systems with Symmetry

The group orbit through a point q, an (immersed) submanifold, is denoted

Orb(q) := {gq | g ∈ G}.

Let g denote the Lie algebra of the Lie group G. For an element ξ ∈ g, we denote by ξQ the

vector field on Q arising from the corresponding infinitesimal generator of the group action,

so these are also the tangent spaces to the group orbits. Define, for each q ∈ Q, the vector

subspace g
q to be the set of Lie algebra elements in g whose infinitesimal generators evaluated

at q lie in both Dq and Tq(Orb(q)):

g
q := {ξ ∈ g | ξQ(q) ∈ Dq ∩ Tq(Orb(q))} .

The corresponding bundle over Q whose fiber at the point q is given by g
q, is denoted by g

D.



Reduced dynamics. Assuming that the Lagrangian and the constraint distribution are

G-invariant, we can form the reduced velocity phase space TQ/G and the reduced constraint

space D/G. The Lagrangian L induces well defined functions, the reduced Lagrangian

l : TQ/G→ R

and the constrained reduced Lagrangian

lc : D/G→ R,

satisfying L = l ◦ πTQ and L|D = lc ◦ πD where πTQ : TQ → TQ/G and πD : D → D/G

are the projections. By general considerations, the Lagrange-d’Alembert equations induce well

defined reduced equations on D/G. That is, the vector field on the manifold D determined by

the Lagrange-d’Alembert equations (including the constraints) is G-invariant, and so defines

a reduced vector field on the quotient manifold D/G. Call these equations the Lagrange-

d’Alembert-Poincaré equations.



Let a local trivialization be chosen on the principle bundle π : Q → Q/G, with a local

representation having components denoted (r, g). Let r, an element of shape space Q/G, have

coordinates denoted rα, and let g be group variables for the fiber, G. In such a representation,

the action of G is the left action of G on the second factor. The coordinates (r, g) induce the

coordinates (r, ṙ, ξ) on TQ/G, where ξ = g−1ġ. The Lagrangian L is invariant under the left

action of G and so it depends on g and ġ only through the combination ξ = g−1ġ. Thus the

reduced Lagrangian l is given by

l(r, ṙ, ξ) = L(r, g, ṙ, ġ).

Therefore the full system of equations of motion consists of the following two groups:

1. The Lagrange-d’Alembert-Poincaré equation on D/G (see theorem 0.2).

2. The reconstruction equation

ġ = gξ.



The nonholonomic momentum in body representation. Choose a q-dependent

basis eA(q) for the Lie algebra such that the first m elements span the subspace g
q in the

following way. First, one chooses, for each r, such a basis at the identity element g = Id, say

e1(r), e2(r), . . . , em(r), em+1(r), . . . , ek(r).

Now define the body fixed basis by

eA(r, g) = Adg eA(r).

Then the first m elements will indeed span the subspace g
q since the distribution is invariant.

We denote the structure constants of the Lie algebra relative to this basis by CC
AB.

To avoid confusion, we make the following index conventions:

1. The first batch of indices range from 1 to m corresponding to the symmetry directions along

constraint space. These indices will be denoted a, b, c, . . . .

2. The second batch of indices range fromm+1 to k corresponding to the symmetry directions

not aligned with the constraints. Indices for this range will be denoted by a′, b′, c′, . . . .

3. The indices A,B,C, . . . on the Lie algebra g range from 1 to k.

4. The indices α, β, . . . on the shape variables r range from 1 to σ. Thus, σ is the dimension

of the shape space Q/G and so σ = n− k.

The summation convention for all of these indices will be understood.



Assume that the Lagrangian has the form of kinetic minus potential energy, and that the

constraints and the orbit directions span the entire tangent space to the configuration space:

Dq + Tq(Orb(q)) = TqQ.

Then it is possible to introduce a new Lie algebra variable Ω called the body angular velocity

such that:

1. Ω = Aṙ+ξ, where the Lie algebra valued form A = AA
αeA(r)drα is called the nonholonomic

connection (see Bloch et al. [1996] for details).

2. The constraints are given by Ω ∈ span{e1(r), . . . , em(r)} or Ωm+1 = · · · = Ωk = 0.

3. The reduced Lagrangian in the variables (r, ṙ,Ω) becomes

l(rα, ṙα,ΩA) =
1

2
gαβ ṙ

αṙβ +
1

2
IABΩAΩB + λa′αṙ

αΩa′ − U(r). (0.8)

Here gαβ are coefficients of the kinetic energy metric induced on the manifold Q/G, IAC are

components of the locked inertia tensor defined by

〈I(r)ξ, η〉 = 〈〈ξQ, ηQ〉〉, ξ, η ∈ g,

where 〈〈· , ·〉〉 is the kinetic energy metric. The coefficients λa′α are defined by

λa′α =
∂2l

∂ξa′∂rα
−

∂2l

∂ξa′∂ξB
AB
α .



The constrained reduced Lagrangian becomes especially simple in the variables (r, ṙ,Ω):

lc =
1

2
gαβ ṙ

αṙβ +
1

2
IabΩ

aΩb − U. (0.9)

We remark that this choice of Ω block-diagonalizes the kinetic energy metric, i.e., eliminates

the terms proportional to Ωaṙα in (0.9).



The nonholonomic momentum in body representation is defined by

pa =
∂l

∂Ωa
=

∂lc
∂Ωa

, a = 1, . . . ,m.

Notice that the nonholonomic momentum may be viewed as a collection of components of the

ordinary momentum map along the constraint directions.

The Lagrange-d’Alembert-Poincaré equations. As in Bloch et al. [1996], the

reduced equations of motion are given by the next theorem.

Theorem 0.2 The following reduced nonholonomic Lagrange-d’Alembert-Poin-

caré equations hold for each 1 ≤ α ≤ σ and 1 ≤ b ≤ m:

d

dt

∂lc
∂ṙα

−
∂lc
∂rα

= −Dc
bαI

bdpcpd −Kαβγ ṙ
β ṙγ

− (Bc
αβ − Ic′a′I

a′cBc′

αβ + DbβαI
bc)pcṙ

β, (0.10)

d

dt
pa = (Cc

ba − Cc′

baIc′a′I
a′c)Ibdpcpd + Dc

aαpcṙ
α + Daαβ ṙ

αṙβ. (0.11)

Here and below lc(r
α, ṙα,Ωa) is the constrained Lagrangian, and I bd and Ia′c′ are the inverse of

the tensors I|gq and I
−1|(gq)∗, respectively. We stress that in general I bd 6= I

bd and Ia′c′ 6= Ia′c′.



The coefficients BC
αβ, D

c
bα, Dbαβ, Kαβγ are given by the formulae

BC
αβ =

∂AC
α

∂rβ
−
∂AC

β

∂rα
− CC

BAA
A
αA

B
β + γCAβA

A
α − γCAαA

A
β ,

Dc
bα = −(Cc

Ab − Cc′

AbIc′a′I
a′c)AA

α + Cc′

abλc′αI
ac + γcbα − γc

′

bαIc′a′I
a′c, (0.12)

Dbαβ = λc′β(γ
c′

bα − Cc′

AbA
A
α ),

Kαβγ = λc′γB
c′

αβ,

and the coefficients γCbα are defined by

∂eb
∂rα

= γCbαeC.

Equations (0.10) and (0.11) generalize the equations of motion in the orthogonal body frame

(see Bloch et al. [1996]). Here we no longer assume that the body frame is orthogonal.



•Almost Poisson Systems

Recall:

Definition 0.3 An almost Poisson manifold is a pair (M, {, }) where M is a smooth

manifold and (i){, } defines an almost Lie algebra structure on the C∞ functions on M ,

i.e. the bracket satisfies all conditions for a Lie algebra except that the Jacobi identity is

not satisfied and (ii) {, } is a derivation in each factor.

If in addition Jacobi satisfied, Poisson manifold.

An almost Poisson structure on M will be Poisson if its Jacobiator, defined by

J(f, g, h) = {{f, g}, h} + {{g, h}, f} + {{h, f}g}

vanishes.

• One can define an almost Poisson vector field on M by

żi = πij(z)
∂H

∂zj
.

.



• “Hamiltonian” Formulation of Nonholonomic Systems

Nonholonomic systems are almost Poisson.

Start on the Lagrangian side with a configuration space Q and a Lagrangian L (possibly of

the form kinetic energy minus potential energy, i.e.,

L(q, q̇) =
1

2
〈〈q̇, q̇〉〉 − V (q),

As above, our nonholonomic constraints are given by a distribution D ⊂ TQ. We also let

D0 ⊂ T ∗Q denote the annihilator of this distribution. Using a basis ωa of the annihilator Do,

we can write the constraints as

ωa(q̇) = 0,

where a = 1, . . . , k.

Recall that the cotangent bundle T ∗Q is equipped with a canonical Poisson bracket and is

expressed in the canonical coordinates (q, p) as

{F,G}(q, p) =
∂F

∂qi
∂G

∂pi
−
∂F

∂pi

∂G

∂qi
=

(
∂F T

∂q
,
∂F T

∂p

)
J

(
∂G
∂q

∂G
∂p

)
.

Here J is the canonical Poisson tensor

J =

(
0n In
−In 0n

)
.



A constrained t phase space M = FL(D) ⊂ T ∗Q is defined so that the constraints on the

Hamiltonian side are given by p ∈ M. In local coordinates,

M =

{
(q, p) ∈ T ∗Q

∣∣∣ ωai
∂H

∂pi
= 0

}
.

Let {Xα} be a local basis for the constraint distribution D and let {ωa} be a local basis for

the annihilator D0. Let {ωa} span the complementary subspace to D such that 〈ωa, ωb〉 = δab ,

where δab is the usual Kronecker delta. Here a = 1, . . . , k and α = 1, . . . , n − k. Define a

coordinate transformation (q, p) 7→ (q, p̃α, p̃a) by

p̃α = X i
αpi, p̃a = ωiapi.

In the new (generally not canonical) coordinates (q, p̃α, p̃a), the Poisson tensor becomes

J̃(q, p̃) =

(
{qi, qj} {qi, p̃j}

{p̃i, q
j} {p̃i, p̃j}

)
.



Use (q, p̃α) as induced local coordinates for M. It is easy to show that

∂H̃

∂qj
(q, p̃α, p̃a) =

∂HM

∂qj
(q, p̃α),

∂H̃

∂p̃β
(q, p̃α, p̃a) =

∂HM

∂p̃β
(q, p̃α),

where HM is the constrained Hamiltonian on M expressed in the induced coordinates. We

can also truncate the Poisson tensor J̃ by leaving out its last k columns and last k rows and

then describe the constrained dynamics on M expressed in the induced coordinates (q i, p̃α) as

follows: (
q̇i

˙̃pα

)
= JM(q, p̃α)

(∂HM
∂qj

(q, p̃α)
∂HM
∂p̃β

(q, p̃α)

)
,

(
qi

p̃α

)
∈ M.

Here JM is the (2n − k) × (2n − k) truncated matrix of J̃ restricted to M and is expressed

in the induced coordinates.



The matrix JM defines a bracket {· , ·}M on the constraint submanifold M as follows:

{FM, GM}M(q, p̃α) :=

(
∂F T

M

∂qi
∂F T

M

∂p̃α

)
JM(qi, p̃α)

( ∂GM
∂qj

∂GM
∂p̃β

)
,

for any two smooth functions FM, GM on the constraint submanifold M. Clearly, this bracket

satisfies the first two defining properties of a Poisson bracket, namely, skew symmetry and the

Leibniz rule, and one can show that it satisfies the Jacobi identity if and only if the constraints

are holonomic. Furthermore, the constrained Hamiltonian HM is an integral of motion for the

constrained dynamics on M due to the skew symmetry of the bracket.



Following e.g. van der Schaft and Maschke [1994] and Koon and Marsden [1997] we can write

the nonholonomic equations of motion as follows:



ṡa

ṙα

˙̃pα


 =




0 0 −Aa
β

0 0 δαβ
(Ab

α)
T −δβα −pcB

c
αβ







∂HM
∂sb

∂HM
∂rβ

∂HM
∂p̃β




Jacobiator of the Poisson tensor vanishes precisely when the curvature of the nonholonomic

constraint distribution is zero or the constraints are holonomic.



•Euler-Poincaré-Suslov Equations

Important special case of the reduced nonholonomic equations.

•Example: Euler-Poincaré-Suslov Problem on SO(3) In this case the problem can

be formulated as the standard Euler equations

Iω̇ = Iω × ω

where ω = (ω1, ω2, ω3) are the system angular velocities in a frame where the inertia matrix is

of the form I = diag(I1, I2, I3) and the system is subject to the constraint

a · ω = 0

where a = (a1, a2, a3).

The nonholonomic equations of motion are then given by

Iω̇ = Iω × ω + λa

subject to the constraint. Solve for λ:

λ = −
I−1a · (Iω × ω)

I−1a · a
.

If a is an eigenvector of the moment of inertia tensor flow is measure preserving.



Invariant Measures of the Euler-Poincaré-Suslov Equations An important spe-

cial case of the reduced nonholonomic equations is the case when there is no shape space at all.

In this case the system is characterized by the Lagrangian L = 1
2IABΩAΩB and the left-invariant

constraint

〈a,Ω〉 = aAΩA = 0. (0.20)

Here a = aAe
A ∈ g

∗ and Ω = ΩAeA, where eA, A = 1, . . . , k, is a basis for g and eA is its

dual basis. Multiple constraints may be imposed as well. The two classical examples of such

systems are the Chaplygin Sleigh and the Suslov problem. These problems were introduced

by Chaplygin in 1895 and Suslov in 1902, respectively.

We can consider the problem of when such systems exhibit asymptotic behavior. Following

Kozlov [1988] it is convenient to consider the unconstrained case first. In the absence of

constraints the dynamics is governed by the basic Euler-Poincaré equations

ṗB = CC
ABI

ADpCpD = CC
ABpCΩA (0.21)

where pB = IABΩB are the components of the momentum p ∈ g
∗. One considers the question of

whether the (unconstrained) equations (0.21) have an absolutely continuous integral invariant

fdkΩ with summable density M. If M is a positive function of class C 1 one calls the integral

invariant an invariant measure. Kozlov [1988] shows

Theorem 0.4 The Euler-Poincaré equations have an invariant measure if and only if

the group G is unimodular.

A group is said to be unimodular if it has a bilaterally invariant measure. A criterion



for unimodularity is CC
AC = 0 (using the Einstein summation convention). Now we know

(Liouville’s theorem) that the flow of a vector differential equation ẋ = f (x) is phase volume

preserving if and only if div f = 0. In this case the divergence of the right hand side of equation

(0.21) is CC
ACI

ADpD = 0. The statement of the theorem now follows from the following theorem

of Kozlov [1998]: A flow due to a homogeneous vector field in R
n is measure-preserving if

and only if this flow preserves the standard volume in R
n.

Now, turning to the case where we have the constraint (0.20) we obtain the Euler-Poincaré-

Suslov equations

ṗB = CC
ABI

ADpCpD + λaB = CC
ABpCΩA + λaB (0.22)

together with the constraint (0.20). Here λ is the Lagrange multiplier. This defines a system on

the subspace of the dual Lie algebra defined by the constraint. Since the constraint is assumed

to be nonholonomic, this subspace is not a subalgebra. One can then formulate a condition for

the existence of an invariant measure of the Euler-Poincaré-Suslov equations.

Theorem 0.5 Equations (0.22) have an invariant measure if and only if

Kad∗
I−1aa + T = µa, µ ∈ R, (0.23)

where K = 1/〈a, I−1a〉 and T ∈ g
∗ is defined by 〈T, ξ〉 = Tr(adξ).

This theorem was proved by Kozlov [1988] for compact algebras and for arbitrary algebras by

Jovanović [1998]. In coordinates, condition (0.23) becomes

KCC
ABI

ADaCaD + CC
BC = µaB.



For a compact algebra (0.23) becomes

[I−1a, a] = µa, µ ∈ R, (0.24)

where we identified g
∗ with g.

The proof of theorem 0.5 reduces to the computation of the divergence of the vector field in

(0.22).

In the compact case only constraint vectors a which commute with I
−1a allow the measure to

be preserved. This means that a and I
−1amust lie in the same maximal commuting subalgebra.

In particular, if a is an eigenstate of the inertia tensor, the reduced phase volume is preserved.

When the maximal commuting subalgebra is one-dimensional this is a necessary condition.

This is the case for groups such as SO(3).

We thus have the following result which reflects a symmetry requirement on the constraints:

Theorem 0.6 A compact Euler-Poincaré-Suslov system is measure preserving (i.e. does

not exhibit asymptotic dynamics) if the constraint vectors a are eigenvectors of the inertia

tensor, or if the constrained system is Z2 symmetric about each of its principal axes. If

the maximal commuting subalgebra is one-dimensional this condition is necessary.



Invariant Measures of Systems with Internal Degrees of Freedom In this

section we extend the result of Kozlov [1988] and Jovanović [1998] to nonholonomic systems

with nontrivial shape space. One can think of these systems as the Euler-Poincaré-Suslov

systems with internal degrees of freedom. Recall that the constraints are of the form Ωm+1 =

· · · = Ωk = 0. To simplify the exposition, we consider below systems with a single constraint.

The results are valid for systems with multiple constraints as well.

Consider a nonholonomic system with the reduced Lagrangian l(r, ṙ,Ω) and a constraint

〈a(r),Ω〉 = 0. The subspace of the Lie algebra defined by the constraint at the configuration q

is denoted here by g
q. The orientation of this subspace in g depends on the shape configuration

of the system, r. The dimension of g
q however stays the same. As discussed in section , we

choose a special moving frame in which g
q is spanned by the vectors e1(r), . . . , ek−1(r). The

equation of the constraint in this basis becomes Ωk = 0. Recall that the horizontal part of the

kinetic energy metric is gαβ(r).

Theorem 0.7 The system associated with the reduced Lagrangian l(r, ṙ,Ω) and the con-

straint 〈a(r),Ω〉 = 0 has an integral invariant with a C1 density M(r) if and only if

(i)

(
Ca
ba − Ck

ba

I
ka

Ikk

)
− gαδDbαδ = 0,

(ii) the form
[
Db
bβ − gαδλkδB

k
αβ

]
drβ is exact.



Systems with One-Dimensional Shape Space. Assume that condition (i) of theorem

0.7 is satisfied. In this case the equation for the density of the invariant measure becomes

d(lnM) = d(ln g) + Db
bdr. (0.25)

The solution of this equation is globally defined if the shape space is either noncompact (and

thus diffeomorphic to R), or compact and the average of the function Db
b equals zero.

Systems with Conserved Momentum. If the nonholonomic momentum is a constant

of motion, then condition (i) of theorem 0.7 is trivially satisfied. Moreover, condition (ii) now

asks that the form

gαδλkδB
k
αβr

β (0.26)

is exact. The system thus preserves the measure with the density

M = det g exp

(
−

∫
gαδλkδB

k
αβr

β

)
.



Examples

The Routh Problem. This mechanical system consists of a uniform sphere rolling without

slipping on the inner surface of a vertically oriented surface of revolution. He described the

family of stationary periodic motions and obtained a necessary condition for stability of these

motions. Routh noticed as well that integration of the equations of motion may be reduced

to integration of a system of two linear differential equations with variable coefficients and

considered a few cases when the equations of motion can be solved by quadratures. Modern

references that treat this system are Hermans [1995] and Zenkov [1995].

This problem is SO(2)×SO(2)-invariant, where the first copy of SO(2) represents rotations

about the axis of the surface of revolution while the second copy of SO(2) represents rotations

of the sphere about its radius through the contact point of the surface and the sphere.



Let r be the latitude of this contact point, a be the radius of the sphere, c(r) + a be the

reciprocal of the curvature of the meridian of the surface, and b(r) be the distance from the

axis of the surface to the sphere’s center. The shape metric is c2(r)ṙ2/2 while the momentum

equations are

ṗ1 =
c(r) sin r

b(r)
p1ṙ −

2

7
p2ṙ, ṗ2 =

(
1 −

c(r) cos r

b(r)

)
p1ṙ.

The shape space is one-dimensional, the symmetry group SO(2) × SO(2) is commutative,

and there are no terms proportional to ṙ2 in the momentum equations. The trace term in (0.25)

equals c(r) sin r/b(r), and thus the density of the invariant measure for the Routh problem is

M = c2(r)e
∫ c(r) sin r

b(r)
dr
. (0.27)

The group action in this problem is singular: the intersection points of the surface of revolu-

tion and its axis have nontrivial isotropy subgroups. The shape coordinate r equals ±π/2 at

these points. As a result,

lim
r→−π/2

M(r) = lim
r→π/2

M(r) = ∞.



The Falling Disk. Consider a homogeneous disk rolling without sliding on a horizontal

plane. This mechanical system is SO(2) × SE(2)-invariant; the group SO(2) represents the

symmetry of the disk while the group SE(2) represents the Euclidean symmetry of the overall

system.

Classical references for the rolling disk are Vierkandt [1892], Korteweg [1899], and Appel

[1900]. In particular, Vierkandt showed that on the reduced space D/SE(2)—the constrained

velocity phase space modulo the action of the Euclidean group SE(2)—most orbits of the

system are periodic.

The shape of the system is specified by a single coordinate—the tilt of the disk denoted here

by r. The momentum equations are

ṗ1 = mR2

(
−

sin r

A cos r
p1 +

(
cos r

mR2 +B
+

sin2 r

A cos r

)
p2

)
ṙ,

ṗ2 = mR2

(
−

1

A cos r
p1 +

sin r

A cos r
p2

)
ṙ.

Hence, the trace terms Db
b in (0.25) vanish, and the density of the invariant measure equals the

component of the shape metric g(r). The latter equals the moment of inertia of the disk with

respect to the line through the rim of the disk and parallel to its diameter. Since the density

of the measure is determined up to a constant factor, we conclude that the dynamics preserves

the reduced phase space volume.



The 3D Chaplygin Sleigh with an Oscillating Mass. The three-dimensional Chap-

lygin sleigh is a free rigid body subject to the nonholonomic constraint v3 = 0, where v3 is the

third component of the (linear) velocity relative to the body frame. The Lagrangian of this

system is
1

2
M
[
(v1)2 + (v2)2 + (v3)2

]
+

1

2

[
I1(Ω

1)2 + I2(Ω
2)2 + I3(Ω

3)2
]
.

In this formula M is the mass of the body, Ij are the eigenvalues of its inertia tensor, and

(Ω1,Ω2,Ω3) and (v1, v2, v3) are the angular and linear velocities relative to the body frame.

The dynamics of this system is discussed in Neimark and Fufaev [1972].

We couple this system with an oscillator moving along the third coordinate axis of the body

frame. The mass of this oscillator is m and the displacement from the origin is r. To keep

the notation uniform with the general theory, we write the components of the linear velocity

relative to the body frame as (Ω4,Ω5,Ω6). The vector (Ω1,Ω2,Ω3,Ω4,Ω5,Ω6) should be viewed

as an element of the Lie algebra se(3). The Lagrangian of this new system is

L =
1

2

[
I1(Ω

1)2 + I2(Ω
2)2 + I3(Ω

3)2
]

+
M

2

[
(Ω4)2 + (Ω5)2 + (Ω6)2

]

+
m

2

[
(Ω4 + Ω2r)2 + (Ω5 − Ω1r)2 + (Ω6 + ṙ)2

]
− U(r). (0.28)

The configuration space is R×SE(3), and the system is invariant under the left action of SE(3)

on the second factor. We have not specified the potential energy as its choice does not affect

the existence of the invariant measure. The shape space is just the first factor of R × SE(3)

and is one dimensional, and thus the above theory is applicable. To show the existence of the



invariant measure, we note the following:

1. The constrained Lagrangian does not contain terms that simultaneously depend on ṙ and

pa. The constraint is Ω6 = 0. Therefore, all the coefficients of the nonholonomic connection

as well as its curvature form vanish. This implies that the terms Daαβ and Kαβγ vanish too.

The differential form from condition (ii) of theorem 0.7 is therefore trivial.

2. The moving frame is r-independent. Therefore all of the coefficients γBAα are trivial. Con-

dition (i) of theorem 0.7 is satisfied since the group SE(3) is unimodular and e6 is the

eigenvector of the inertia tensor.

3. The shape metric is r-independent.

The system’s dynamics preserves the volume in the reduced phase space.

This can be verified by a straightforward computation of the divergence of the vector field

that defines the equations of motion:

r̈ = −
∂Ua
∂r

,

ṗ1 = −Ω2p3 + Ω3p2 −mΩ5ṙ,

ṗ2 = −Ω3p1 + Ω1p3 +mΩ4ṙ,

ṗ3 = −Ω1p2 + Ω2p1 − Ω4p5 + Ω5p4,

ṗ4 = Ω3p5 −mΩ2ṙ,

ṗ5 = −Ω3p4 +mΩ1ṙ.



Chaplygin Sphere. This system consists of a sphere rolling without slipping on a hor-

izontal plane. The center of mass of this sphere is at the geometric center, but the principal

moments of inertia are distinct. Chaplygin [1903] proved integrability of this problem. Modern

references for the Chaplygin sphere include Kozlov [1985] and Schneider [2002].

One may view this system as a nonholonomic version of the Euler top. The configuration

space is diffeomorphic to SO(3) × R
2. We choose the Euler angles (θ, φ, ψ) and the Cartesian

coordinates (x, y) as the configuration parameters of the Chaplygin sphere. The Lagrangian

and constraints written in these coordinates become

L =
I1
2

(θ̇ cosψ + φ̇ sinψ sin θ)2 +
I2
2

(−θ̇ sinψ + φ̇ cosψ sin θ)2

+
I3
2

(ψ̇ + φ̇ cos θ)2 +
M

2
(ẋ2 + ẏ2)

and

ẋ− θ̇ sinφ + ψ̇ cosφ sin θ = 0, ẏ + θ̇ cosφ + ψ̇ sinφ sin θ = 0,

respectively.

This system is SE(2) invariant. The action by the group element (α, a, b) on the configuration

space is given by

(θ, ψ, φ, x, y) 7→ (θ, ψ, φ + α, x cosα− y sinα + a, x sinα + y cosα + b).

The shape space for the Chaplygin sphere is diffeomorphic to the two-dimensional sphere. The

nonholonomic momentum map has just one component and is moreover preserved. Straight-

forward computations show that the form (0.26) is exact. The conditions for measure existence



are therefore satisfied. The density of the invariant measure is computed in overdetermined

coordinates in Chaplygin [1903] (see also Kozlov [1985]).

The invariant manifolds of the Chaplygin sphere are two-dimensional tori. The phase flow

on these tori is measure preserving and thus there are angle variables (x, y) on each torus in

which the flow equations become

ẋ =
λ

M(x, y)
, ẏ =

µ

M(x, y)
.

See Kolmogorov [1953] and Kozlov [1985] for details. In general, these equations cannot be

rewritten as

ẋ = λ, ẏ = µ.

The flow however becomes quasi-periodic after a time substitution dt = M(x, y)dτ (see Kozlov

[1985] for details). This example thus shows that the flow on the nonholonomic invariant tori

can be more complicated than a Hamiltonian flow.

It follows that adding a symmetry preserving potential to the Lagrangian of the Chaplygin

sphere leaves the new system measure preserving with the same measure density. This was

pointed out by Kozlov for a specific potential (see Kozlov [1985] for details).



A Spherical Robot: Controlled Chaplygin’s Sphere and Chaplygin’s Top

Robot viewed as a controlled Chaplygin’s sphere or Chaplygin’s top.
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Figure 0.7: Schematic configuration of a spherical robot in a uniform gravitational field with a slider and a rotor

Assume the spherical base body can roll without sliding on a horizontal plane in a uniform

gravitational field; the radius of the ball is a. See Figure 0.7 for its schematic configuration.

Choose a base body coordinate frame with the origin at the center of the ball. Let x ∈ R
3

denote the position of the center of the ball in the inertial frame, and let R ∈ SO(3) represent

the base body attitude that maps from the base body coordinate frame onto the inertial frame.

The spherical robot is controlled by internal actuators. Relative motion of the internal actuators

with respect to the base body is described by generalized shape coordinates r ∈ Qs, where Qs

is referred to as the shape space. Hence, the configuration space manifold is SO(3)×R
3 ×Qs.

Note that we are only interested in (x1, x2), the horizontal position of the center of the ball.

The general theory of developing equations of motion in the form of Euler-Poincarè is given in

the next subsection.



General System

Let G be a general linear matrix Lie group and W be a vector space; let S denote the semidi-

rect product GsW . The shape space Qs is an n-dimensional Abelian Lie group with local

coordinates r = (r1, · · · , rn). The configuration manifold is Q = S × Qs. We assume that

G × Qs forms a trivial principal fiber bundle and that for every q = (g, r) ∈ Q where g ∈ G

and r ∈ Qs, the left action of G on G×Qs is a smooth map Φ : G× (G×Qs) → (G×Qs)

given by Φhq = (hg, r) for an arbitrary h ∈ G, where Φ is assumed to be free and proper. We

assume that controls act on the shape space Qs so that the shape is fully actuated.

Let the reduced Lagrangian be

l(ξ, Y,Γ, r, ṙ) = T (ξ, Y, r, ṙ) − V (Γ, r),

where ξ = g−1ġ ∈ g, Γ = g−1a0 ∈ W for a fixed a0 ∈ W . Let y(t) be a (smooth) curve in W ,

Y = g−1ẏ ∈ W . Assume the reduced kinetic energy T (ξ, Y, r, ṙ) can be written as

T (ξ, Y, r, ṙ) =
1

2

(
ξ, Y, ṙ

)
M(r)



ξ

Y

ṙ


 ,

where M(r) denotes a reduced inertia tensor on Qs only. Assume the reduced constraint can

be written as Y = ξζ(Γ), where ζ : W → W is a smooth vector-valued function. Thus the

constrained reduced Lagrangian becomes

lc(ξ,Γ, r, ṙ) = Tc(ξ,Γ, r, ṙ) − V (Γ, r),



where

Tc(ξ,Γ, r, ṙ) =
1

2

(
ξ, ṙ
)
M(Γ, r)

(
ξ

ṙ

)
.

Here M(Γ, r) defines another reduced inertia tensor dependent on Qs and the dynamic param-

eter Γ ∈ W , which is referred to as “advected parameter” in the literature. Since Γ = g−1a0

evolves on G, one may view M(Γ, r) as a function on G×Qs.



Equations of Motion of the Spherical Robot

In this section, we apply the general results given in the previous section to the spherical

robot. For this example, the Lie group G =SO(3) and the vector space W = R
3.

Let m0 be the mass of the base body, J0 be the inertia tensor of the base body defined with

respect to the base body coordinate frame, mi, i = 1, · · · , N, be the mass of the i-th auxiliary

body, and Ji(r) be the inertia tensor of the i-th auxiliary body defined with respect to the base

body coordinate frame. Moreover, let ρ0 denote the relative position vector of the center of

mass of the ball and let ρi(r) denote the relative position vector of the center of mass of the

i-th auxiliary body. We denote the angular velocity of the i-th body relative to the base body

coordinate frame by Ci(r)ṙ. That is, suppose the orientation of the i-th body in the base body

frame is given by Ri(r) ∈ SO(3), where Ri(r) maps from a coordinate frame for the i-th body

into the base body coordinate frame. Let ω̂i(r, ṙ) = R−1
i (r) ddtRi(r) denote the angular velocity

of the i-th body relative to its own coordinate frame. Then Ci(r)ṙ = Ri(r)ωi(r, ṙ).

We obtain the reduced equations of motion for SO(3) ×Qs

d

dt

(∂lc
∂ω

)
−
∂lc
∂ω

× ω = −mTa
{[(∂ρc(r)

∂r
ṙ
)
· ω
]
Γ −

[
(ρc(r) × Γ) · ω +

(∂ρc(r)
∂r

ṙ
)
· Γ
]
ω
}

+mTagΓ × ρc(r), (0.29)
d

dt

(∂lc
∂ṙ

)
−
∂lc
∂r

= us, (0.30)

where the shape dynamics are completely controlled.


