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1 Introduction

We consider the incompressible Navier–Stokes equations in R3, assuming suit-
able decay of the solution at infinity. Our goal is to provide the essential
arguments underlying the conditional regularity result of Constantin and Fef-
ferman [1] from 1993. The main theorem they prove can be stated as follows.

Theorem 1 (Constantin and Fefferman, 1993) Suppose there exists con-
stants Ω and ρ such that

| sinφ| ≤ |y|
ρ
,

holds whenever |ω(x, t)| > Ω and |ω(x + y, t)| > Ω, for 0 6 t 6 T for any
T > 0. Here ω = ω(x, t) is the vorticity field and φ is the angle between the
vorticity vectors ω(x, t) and ω(x+y, t). Then the solution to the initial value
problem of the Navier–Stokes equation is strong and hence smooth on the time
interval [0, T ].

Our proof is brief. We will list the caveats thus induced at the end.
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2 Proof

2.1 Enstrophy evolution

We start by writing the incompressible Navier–Stokes equations in the form

∂tu+ ω ∧ u = ν ∆u−∇
(
p+ 1

2 |u|
2
)
,

∇ · u = 0,

where ω = ∇∧ u is the vorticity. To achieve this, we substitute the identity

u · ∇u = 1
2∇
(
|u|2

)
− u ∧ (∇∧ u)

into the standard formulation of the Navier–Stokes equations. Taking the curl
of the Navier–Stokes equations and using for divergence free fields u with
ω = ∇ ∧ u we have ∇ ∧ (ω ∧ u) = u · ∇ω − ω · ∇u, we obtain the following
evolution equation for the vorticity,

∂tω + u · ∇ω = ν ∆ω + ω · ∇u.

If R is the antisymmetric part of ∇u and D is the symmetric part of ∇u which
is also called the deformation matrix, then we observe that ω · ∇u = Dω as
Rω ≡ 0. Hence the evolution of the vorticity is equivalent to the form

∂tω + u · ∇ω = ν ∆ω +Dω.

Consider the L2-inner product of this evolution equation with the vorticity
itself. This generates the equation for the evolution of the enstrophy

1
2

d

dt
‖ω‖2L2 + ν‖∇ω‖2L2 =

∫
ω · (Dω) dx.

Here we have used that

d

dt

∫
|ω(x, t)|2 dx = 2

∫
ω(x, t) · ∂

∂t
ω(x, t) dx,

and that ∫
ω ·∆ω dx =

∫
∆
(
1
2 |ω|

2
)

dx−
∫
|∇ω(x, t)|2 dx.

We implicitly assume suitable decay for the vorticity at infinity so that the
boundary integral term above (the first term on the right) is zero.

Remark 1 The main idea in Constantin and Fefferman’s paper is to try to be
more subtle about estimating the vorticity stretching term.

Remark 2 Since u is divergence-free the following quantities are equivalent:

‖∇u‖2L2 = ‖ω‖2L2 = 2

∫
tr
(
D2
)

dx.
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2.2 Biot–Savart Law

Since ∇ ·u = 0, there exists a vector potential ψ such that u = ∇∧ψ. Hence
we see that ω = ∇∧∇ ∧ψ ≡ −∆ψ and thus u = −∇ ∧ (∆−1ω). This is the
Biot–Savart Law from potential theory. More explicitly, we have

u(x) =
1

4π

∫
ω(x+ y) ∧∇

(
1

|y|

)
dy.

In the integrand we can freely swap x+ y and y.

2.3 Deformation matrix

Taking the gradient with respect to x of the Biot–Savart Law we see that

∇u(x) =
1

4π

∫
ω(x+ y) ∧∇∇

(
1

|y|

)
dy

=
1

4π

∫
ω(x+ y) ∧

(
3 ŷ ⊗ ŷ − I

) 1

|y|3
dy,

where we have used that by direct computation

∇∇
(

1

|y|

)
=
(
3 ŷ ⊗ ŷ − I

) 1

|y|3
.

Here I is the 3 × 3 identity matrix, we set ŷ := y/|y| and ŷ ⊗ ŷ denotes the
3× 3 matrix with (i, j)th entries given by yiyj .

Using that for any 3 × 3 matrix A, the quantity ω ∧ A denotes the 3 × 3
matrix whose columns are the vector cross product of ω with the corresponding
column of A, we compute ω ∧ I as follows. Each of the columns of I is the
unit vector ei with 1 at position i and zero elsewhere. Direct computation of
the cross product reveals

ω ∧ e1 = ω3e2 − ω2e3,

ω ∧ e2 = ω1e3 − ω3e1,

ω ∧ e3 = ω2e1 − ω1e2.

Hence ω ∧ I ≡ R the rotation matrix or antisymmetric part of ∇u. Since
RT = −R, we have R+RT = O.

When we compute D, the symmetric part of ∇u, since ω∧I+(ω∧I)T = O,
the term involving the identity is zero, and we are left with computing the sum
of the terms

ω ∧ (ŷ ⊗ ŷ) = (ω ∧ ŷ)⊗ ŷ and
(
ω ∧ (ŷ ⊗ ŷ)

)T
= ŷ ⊗ (ω ∧ ŷ).

Hence we deduce

D(x) =
3

8π

∫ (
ω(x+ y) ∧ ŷ ⊗ ŷ + ŷ ⊗ ω(x+ y) ∧ ŷ

) 1

|y|3
dy.
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2.4 Vorticity stretching

Now consider the vorticity stretching term. If we set ω̂ := ω/|ω|, then we see

(
ω̂ · (Dω̂)

)
(x) =

3

4π

∫ (
ω̂(x) ·

(
ω̂(x+ y) ∧ ŷ

))(
ŷ · ω̂(x)

)∣∣ω(x+ y)
∣∣ 1

|y|3
dy.

Note that the integrand contains the triple scalar product given by

ω̂(x) ·
(
ω̂(x+ y) ∧ ŷ

)
.

This is invariant to a cyclic rotation of the vectors therein and is equivalent to

ŷ ·
(
ω̂(x) ∧ ω̂(x+ y)

)
.

Importantly though, in magnitude it has an upper bound given by∣∣∣ŷ · (ω̂(x) ∧ ω̂(x+ y)
)∣∣∣ 6 | sinφ|,

where φ is the angle between ω̂(x) and ω̂(x+ y). Hence we immediately see∫ ∣∣ω(x)
∣∣2 (ω̂ · (Dω̂)

)
(x) dx 6

3

4π

∫ ∣∣ω(x)
∣∣2 ∫ | sinφ| ∣∣ω(x+ y)

∣∣
|y|3

dy dx.

2.5 Estimating vorticity stretching

Using the assumption on | sinφ| stated, we see the vorticity stretching term
can be bounded as follows∫ ∣∣ω(x)

∣∣2 (ω̂ · (Dω̂)
)
(x) dx 6

3

4πρ

∫ ∣∣ω(x)
∣∣2 ∫ ∣∣ω(x+ y)

∣∣ 1

|y|2
dy dx.

To bound the term on the righthand side we can use the Hardy–Littlewood–
Sobolev inequality as follows (see for example Khotyakov [2]).

Theorem 2 (Hardy–Littlewood–Sobolev inequality [2]) For every 0 < λ < d
and for every f ∈ Lp(Rd) and g ∈ Lq(Rd) with p, q > 1 and 1/p+λ/d+1/q = 2
there exists a sharp constant C(d, λ, p) such that∣∣∣∣∫

Rd

∫
Rd

f(x)|x− y|−λg(y) dx dy

∣∣∣∣ 6 C(d, λ, p) ‖f‖p‖g‖q.

We apply this result to the double integral above where in our case d = 3,
λ = 2, f(x) = |ω(x)|2 and g(y) = |ω(y)|—with time dependence suppressed.
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With p = 1 and q = 3 we explicitly find that (denoting multiplicative constants
by a generic finite constant C)

3

4πρ

∫ ∣∣ω(x)
∣∣2 ∫ ∣∣ω(x+ y)

∣∣ 1

|y|2
dy dx

6 C
∥∥|ω|2∥∥

L1‖ω‖L3

= C
∥∥ω∥∥2

L2‖ω‖L3

6 ‖ω
∥∥2
L2‖∇ω‖

1/2
L2 ‖ω‖1/2L2

= C‖∇ω‖1/2L2 ‖ω‖5/2L2

6
ν

8
‖∇ω‖2L2 +

C

ν1/3
‖ω‖10/3L2

=
ν

8
‖∇ω‖2L2 +

C

ν1/3
(
‖ω‖2L2

)2/3‖ω‖2L2 .

where we have used the Sobolev–Gagliardo–Nirenberg and Young inequalities.

2.6 Bounded enstrophy

From the energy estimate for ‖u‖2L2 it is known that ‖ω‖2L2 is integrable on
[0, T ]. Thus the coefficient of ‖ω‖2L2 in the last inequality is integrable in time.
Hence if we combine the inequality above with our result in Section 2.1, we
can integrate the resulting inequality to show that ‖ω‖2L2 is uniformly bounded
on [0, T ] for any T > 0. A standard result in Navier–Stokes analysis is if the
quantity ‖ω‖2L2 is known to be bounded on any time interval [0, T ] for any
T > 0, then the solution to the Navier–Stokes equation is smooth (on R3) on
that time interval.

3 Caveats

Here is the list of results that we glossed over in our proof of the Constantin
and Fefferman conditional regularity result above:

1. Constantin and Fefferman establish, in a very succint proof on page 782,
that ‖ω‖L1

is bounded on any finite time interval.
2. More rigorously we should actually consider an approximate system to

the Navier–Stokes equations for which we know global regularity—say the
approximate system is a perturbation by a parameter ε away. We would
carry through analogous estimates for the approximate system to those
above, proving bounds uniform in ε. Then passing to a subsequence if
necessary, we would take the limit as ε→ 0. In the case of Constantin and
Fefferman, they constructed their approximate system by mollifying the
advecting velocity, i.e. by replacing the term u · ∇u by uε · ∇u, where uε
is a smoother (mollified) velocity field.
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