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1 Introduction

The derivation of the equations of motion for an ideal fluid by Euler in 1755, and

then for a viscous fluid by Navier (1822) and Stokes (1845) were a tour-de-force of

18th and 19th century mathematics. These equations have been used to describe and

explain so many physical phenomena around us in nature, that currently billions of

dollars of research grants in mathematics, science and engineering now revolve around

them. They can be used to model the coupled atmospheric and ocean flow used by

the meteorological office for weather prediction down to any application in chemical

engineering you can think of, say to development of the thrusters on NASA’s Apollo

programme rockets. The incompressible Navier–Stokes equations are given by

∂u

∂t
+ u · ∇u = ν∇2u− 1

ρ
∇p+ f ,

∇ · u = 0,

where u = u(x, t) is a three dimensional fluid velocity, p = p(x, t) is the pressure and

f is an external force field. The constants ρ and ν are the mass density and kinematic

viscosity, respectively. The frictional force due to stickiness of a fluid is represented by

the term ν∇2u. An ideal fluid corresponds to the case ν = 0, when the equations above

are known as the Euler equations for a homogeneous incompressible ideal fluid. We will

derive the Navier–Stokes equations and in the process learn about the subtleties of fluid

mechanics and along the way see lots of interesting applications.

2 Fluid flow, the Continuum Hypothesis and conservation principles

A material exhibits flow if shear forces, however small, lead to a deformation which is

unbounded—we could use this as definition of a fluid. A solid has a fixed shape, or at

least a strong limitation on its deformation when force is applied to it. With the cate-

gory of “fluids”, we include liquids and gases. The main distinguishing feature between

these two fluids is the notion of compressibility. Gases are usually compressible—as we

know from everyday aerosols and air canisters. Liquids are generally incompressible—a

feature essential to all modern car braking mechanisms.

Fluids can be further subcatergorized. There are ideal or inviscid fluids. In such

fluids, the only internal force present is pressure which acts so that fluid flows from a

region of high pressure to one of low pressure. The equations for an ideal fluid have been

applied to wing and aircraft design (as a limit of high Reynolds number flow). However

fluids can exhibit internal frictional forces which model a “stickiness” property of the

fluid which involves energy loss—these are known as viscous fluids. Some fluids/ma-

terial known as “non-Newtonian or complex fluids” exhibit even stranger behaviour,

their reaction to deformation may depend on: (i) past history (earlier deformations),

for example some paints; (ii) temperature, for example some polymers or glass; (iii)

the size of the deformation, for example some plastics or silly putty.

For any real fluid there are three natural length scales:

1. Lmolecular, the molecular scale characterized by the mean free path distance of

molecules between collisions;

2. Lfluid, the medium scale of a fluid parcel, the fluid droplet in the pipe or ocean

flow;
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3. Lmacro, the macro-scale which is the scale of the fluid geometry, the scale of the

container the fluid is in, whether a beaker or an ocean.

And, of course we have the asymptotic inequalities:

Lmolecular � Lfluid � Lmacro.

Continuum Hypothesis We will assume that the properties of an elementary vol-

ume/parcel of fluid, however small, are the same as for the fluid as a whole—i.e. we

suppose that the properties of the fluid at scale Lfluid propagate all the way down

and through the molecular scale Lmolecular. This is the continuum assumption. For

everyday fluid mechanics engineering, this assumption is extremely accurate (Chorin

and Marsden [3, p. 2]).

Our derivation of the basic equations underlying the dynamics of fluids is based on

three basic conservation principles:

1. Conservation of mass, mass is neither created or destroyed;

2. Newton’s 2nd law/balance of momentum, for a parcel of fluid the rate of change of

momentum equals the force applied to it;

3. Conservation of energy, energy is neither created nor destroyed.

In turn these principles generate the:

1. Continuity equation which governs how the density of the fluid evolves locally and

thus indicates compressibility properties of the fluid;

2. Navier–Stokes equations of motion for a fluid which indicates how the fluid moves

around from regions of high pressure to those of low pressure and under the effects

of viscosity;

3. Equation of state which indicates the mechanism of energy exchange within the

fluid.

3 Trajectories and streamlines

Suppose that our fluid is contained with a region/domain D ⊆ Rd where d = 2 or

3, and x = (x, y, z)T ∈ D is a position/point in D. Imagine a small fluid particle or

a speck of dust moving in a fluid flow field prescribed by the velocity field u(x, t) =

(u, v, w)T. Suppose the position of the particle at time t is recorded by the variables(
x(t), y(t), z(t)

)T
. The velocity of the particle at time t at position

(
x(t), y(t), z(t)

)T
is

d

dt
x(t) = u

(
x(t), y(t), z(t), t

)
,

d

dt
y(t) = v

(
x(t), y(t), z(t), t

)
,

d

dt
z(t) = w

(
x(t), y(t), z(t), t

)
.

Definition 1 (Particle path or trajectory) The particle path or trajectory of a fluid

particle is the curve traced out by the particle as time progresses. If the particle starts

at position (x0, y0, z0)T then its particle path is the solution to the system of differential

equations (the same as those above but here in shorter vector notation)

d

dt
x(t) = u(x(t), t),

with initial conditions x(0) = x0, y(0) = y0 and z(0) = z0.



4 Simon J.A. Malham

Definition 2 (Streamline) Suppose for a given fluid flow u(x, t) we fix time t. A stream-

line is an integral curve of u(x, t) for t fixed, i.e. it is a curve x = x(s) parameterized

by the variable s, that satisfies the system of differential equations

d

ds
x(s) = u(x(s), t),

with t held constant.

Remark 1 If the velocity field u is time-independent, i.e. u = u(x) only, or equivalently

∂u/∂t = 0, then trajectories and streamlines coincide. Flows for which ∂u/∂t = 0 are

said to be stationary.

Example. Suppose a velocity field u(x, t) = (u, v, w)T is given byuv
w

 =

−ΩyΩx

0


for some constantΩ > 0. Then the particle path for a particle that starts at (x0, y0, z0)T

is the integral curve of the system of differential equations

dx

dt
= −Ωy, dy

dt
= Ωx and

dz

dt
= 0.

This is a coupled pair of differential equations as the solution to the last equation is

z(t) = z0 for all t > 0. There are several methods for solving the pair of equations, one

method is as follows. Differentiating the first equation with respect to t we find

d2x

dt2
= −Ω dy

dt

⇔ d2x

dt2
= −Ω2x.

In other words we are required to solve the linear second order differential equation for

x = x(t) shown. The general solution is

x(t) = A cosΩt+B sinΩt,

where A and B are arbitrary constants. We can now find y = y(t) by substituting this

solution for x = x(t) into the first of the pair of differential equations as follows:

y(t) = − 1

Ω

dx

dt

= − 1

Ω
(−AΩ sinΩt+BΩ cosΩt)

= A sinΩt−B cosΩt.

Using that x(0) = x0 and y(0) = y0 we find that A = x0 and B = −y0 so the particle

path of the particle that is initially at (x0, y0, z0)T is given by

x(t) = x0 cosΩt− y0 sinΩt, y(t) = x0 sinΩt+ y0 cosΩt and z(t) = z0.
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This particle thus traces out a horizontal circular particle path at height z = z0 of

radius
√
x2

0 + y2
0 . Since this flow is stationary, streamlines coincide with particle paths

for this flow.

Example. Consider the two-dimensional flow(
u

v

)
=

(
u0

v0 cos(kx− αt)

)
,

where u0, v0, k and α are constants. Let us find the particle path and streamline for

the particle at (x0, y0)T = (0, 0)T at t = 0. Starting with the particle path, we are

required to solve the coupled pair of ordinary differential equations

dx

dt
= u0 and

dy

dt
= v0 cos(kx− αt).

We can solve the first differential equation which tells us

x(t) = u0t,

where we used that x(0) = 0. We now substitute this expression for x = x(t) into the

second differential equation and integrate with respect to time (using y(0) = 0) so

dy

dt
= v0 cos

(
(ku0 − α)t

)
⇔ y(t) = 0 +

∫ t

0

v0 cos
(
(ku0 − α)τ

)
dτ

⇔ y(t) =
v0

ku0 − α
sin
(
(ku0 − α)t

)
.

If we eliminate time t between the formulae for x = x(t) and y = y(t) we find that the

trajectory through (0, 0)T is

y =
v0

ku0 − α
sin

((
k − α

u0

)
x

)
.

To find the streamline through (0, 0)T, we fix t, and solve the pair of differential equa-

tions
dx

ds
= u0 and

dy

ds
= v0 cos(kx− αt).

As above we can solve the first equation so that x(s) = u0s using that x(0) = 0. We can

substitute this into the second equation and integrate with respect to s—remembering

that t is constant—to get

dy

ds
= v0 cos(ku0s− αt)

⇔ y(s) = 0 +

∫ s

0

v0 cos(ku0r − αt) dr

⇔ y(s) =
v0

ku0

(
sin(ku0s− αt)− sin(−αt)

)
.

If we eliminate the parameter s between x = x(s) and y = y(s) above, we find the

equation for the streamline is

y =
v0

ku0

(
sin(kx− αt) + sin(αt)

)
.
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The equation of the streamline through (0, 0)T at time t = 0 is thus given by

y =
v0

ku0
sin(kx).

As the underlying flow is not stationary, as expected, the particle path and streamline

through (0, 0)T at time t = 0 are distinguished. Finally let us examine two special limits

for this flow. As α → 0 the flow becomes stationary and correspondingly the particle

path and streamline coincide. As k → 0 the flow is not stationary. In this limit the

particle path through (0, 0)T is y = (v0/α) sin(αx/u0), i.e. it is sinusoidal, whereas the

streamline is given by x = u0s and y = 0, which is a horizontal straight line through

the origin.

Remark 2 A streakline is the locus of all the fluid elements which at some time have

past through a particular point, say (x0, y0, z0)T. We can obtain the equation for a

streakline through (x0, y0, z0)T by solving the equations (d/dt)x(t) = u(x(t), t) as-

suming that at t = t0 we have
(
x(t0), y(t0), z(t0)

)T
= (x0, y0, z0)T. Eliminating t0

between the equations generates the streakline corresponding to (x0, y0, z0)T. For ex-

ample, ink dye injected at the point (x0, y0, z0)T in the flow will trace out a streakline.

4 Continuity equation

Recall, we suppose our fluid is contained with a region/domain D ⊆ Rd (here we will

assume d = 3, but everything we say is true for the collapsed two dimensional case

d = 2). Hence x = (x, y, z)T ∈ D is a position/point in D. At each time t we will

suppose that the fluid has a well defined mass density ρ(x, t) at the point x. Further,

each fluid particle traces out a well defined path in the fluid, and its motion along

that path is governed by the velocity field u(x, t) at position x at time t. Consider an

arbitrary subregion Ω ⊆ D. The total mass of fluid contained inside the region Ω at

time t is ∫
Ω

ρ(x, t) dV.

where dV is the volume element in Rd. Let us now consider the rate of change of mass

inside Ω. By the principle of conservation of mass, the rate of increase of the mass in

Ω is given by the mass of fluid entering/leaving the boundary ∂Ω of Ω per unit time.

To compute the total mass of fluid entering/leaving the boundary ∂Ω per unit time,

we consider a small area patch dS on the boundary of ∂Ω, which has unit outward

normal n. The total mass of fluid flowing out of Ω through the area patch dS per unit

time is

mass density× fluid volume leaving per unit time = ρ(x, t)u(x, t) · n(x) dS,

where x is at the centre of the area patch dS on ∂Ω. Note that to estimate the fluid

volume leaving per unit time we have decomposed the fluid velocity at x ∈ ∂Ω, time t,

into velocity components normal (u · n) and tangent to the surface ∂Ω at that point.

The velocity component tangent to the surface pushes fluid across the surface—no fluid

enters or leaves Ω via this component. Hence we only retain the normal component—

see Fig. 2.
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Ω

D

Fig. 1 The fluid of mass density ρ(x, t) swirls around inside the container D, while Ω is an
imaginary subregion.

dS

n u

u.n

Fig. 2 The total mass of fluid moving through the patch dS on the surface ∂Ω per unit time,
is given by the mass density ρ(x, t) times the volume of the cylinder shown which is u ·n dS.

Returning to the principle of conservation of mass, this is now equivalent to the

integral form of the law of conservation of mass:

d

dt

∫
Ω

ρ(x, t) dV = −
∫
∂Ω

ρu · n dS.

The divergence theorem and that the rate of change of the total mass inside Ω equals

the total rate of change of mass density inside Ω imply, respectively,∫
Ω

∇ · (ρu) dV =

∫
∂Ω

(ρu) · n dS and
d

dt

∫
Ω

ρ dV =

∫
Ω

∂ρ

∂t
dV.

Using these two relations, the law of conservation of mass is equivalent to∫
Ω

∂ρ

∂t
+∇ · (ρu) dV = 0.

Now we use that Ω is arbitrary to deduce the differential form of the law of conservation

of mass or continuity equation that applies pointwise:

∂ρ

∂t
+∇ · (ρu) = 0.

This is the first of our three conservation laws.
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5 Transport Theorem

Recall our image of a small fluid particle moving in a fluid flow field prescribed by the

velocity field u(x, t). The velocity of the particle at time t at position x(t) is

d

dt
x(t) = u(x(t), t).

As the particle moves in the velocity field u(x, t), say from position x(t) to a nearby

position an instant in time later, two dynamical contributions change: (i) a small instant

in time has elapsed and the velocity field u(x, t), which depends on time, will have

changed a little; (ii) the position of the particle has changed in that short time as it

moved slightly, and the velocity field u(x, t), which depends on position, will be slightly

different at the new position.

Let us compute the acceleration of the particle to explicitly observe these two

contributions. By using the chain rule we see that

d2

dt2
x(t) =

d

dt
u
(
x(t), t

)
=
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt
+
∂u

∂z

dz

dt
+
∂u

∂t

=

(
dx

dt

∂

∂x
+

dy

dt

∂

∂y
+

dz

dt

∂

∂z

)
u+

∂u

∂t

= u · ∇u+
∂u

∂t
.

Indeed for any function F (x, y, z, t), scalar or vector valued, the chain rule implies

d

dt
F
(
x(t), y(t), z(t), t

)
=
∂F

∂t
+ u · ∇F.

Definition 3 (Material derivative) If the velocity field components are

u = (u, v, w)T and u · ∇ ≡ u ∂

∂x
+ v

∂

∂y
+ w

∂

∂z
,

then we define the material derivative following the fluid to be

D

Dt
:=

∂

∂t
+ u · ∇.

Suppose that the region within which the fluid is moving is D. Suppose Ω is a subregion

of D identified at time t = 0. As the fluid flow evolves the fluid particles that originally

made up Ω will subsequently fill out a volume Ωt at time t. We think of Ωt as the

volume moving with the fluid.

Theorem 1 (Transport Theorem) For any function F and density function ρ satisfying

the continuity equation, we have

d

dt

∫
Ωt

ρF dV =

∫
Ωt

ρ
DF

Dt
dV.
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We will use the Transport Theorem to deduce both the Euler and Cauchy equations of

motion from the primitive integral form of the balance of momentum; see Sections 10

and 15. We now carefully elucidate the steps required for the proof of the Transport

Theorem—see Chorin and Marsden [3, pp. 6–11]. Importantly the concepts of the

flow map in Step 1 and the evolution of its Jacobian in Step 3 will have important

ramifications in coming sections. The four steps are as follows.

Step 1: Fluid flow map. For a fixed position x ∈ D we denote by ξ(x, t) = (ξ, η, ζ)T

the position of the particle at time t, which at time t = 0 was at x. We use ϕt to denote

the map x 7→ ξ(x, t), i.e. ϕt is the map that advances each particle at position x at

time t = 0 to its position at time t later; it is the fluid flow-map. Hence, for example

ϕt(Ω) = Ωt. We assume ϕt is sufficiently smooth and invertible for all our subsequent

manipulations.

Step 2: Change of variables. For any two functions ρ and F we can perform the

change of variables from (ξ, t) to (x, t)—with J(x, t) the Jacobian for this transforma-

tion given by definition as J(x, t) := det
(
∇ξ(x, t)

)
. Here the gradient operator is with

respect to the x coordinates, i.e. ∇ = ∇x. Note for Ωt we integrate over volume ele-

ments dV = dV (ξ), i.e. with respect to the ξ coordinates, whereas for Ω we integrate

over volume elements dV = dV (x), i.e. with respect to the fixed coordinates x. Hence

by direct computation

d

dt

∫
Ωt

ρF dV =
d

dt

∫
Ωt

(ρF )(ξ, t) dV (ξ)

=
d

dt

∫
Ω

(ρF )(ξ(x, t), t) J(x, t) dV (x)

=

∫
Ω

d

dt

(
(ρF )(ξ(x, t), t) J(x, t)

)
dV

=

∫
Ω

d

dt
(ρF )(ξ(x, t), t) J(x, t) + (ρF )(ξ(x, t), t)

d

dt
J(x, t) dV

=

∫
Ω

(
D

Dt
(ρF )

)
(ξ(x, t), t) J(x, t) + (ρF )(ξ(x, t), t)

d

dt
J(x, t) dV.

Step 3: Evolution of the Jacobian. We establish the following result for the Jacobian:

d

dt
J(x, t) =

(
∇ · u(ξ(x, t), t)

)
J(x, t).

We know that a particle at position ξ(x, t) =
(
ξ(x, t), η(x, t), ζ(x, t)

)T
, which started

at x at time t = 0, evolves according to

d

dt
ξ(x, t) = u

(
ξ(x, t), t

)
.

Taking the gradient with respect to x of this relation, and swapping over the gradient

and d/dt operations on the left, we see that

d

dt
∇ξ(x, t) = ∇u

(
ξ(x, t), t

)
.

Using the chain rule we have

∇x u
(
ξ(x, t), t

)
=
(
∇ξ u

(
ξ(x, t), t

))
·
(
∇x ξ(x, t)

)
.



10 Simon J.A. Malham

Combining the last two relations we see that

d

dt
∇ξ = (∇ξ u)∇ξ.

Abel’s Theorem then tells us that J = det∇ξ evolves according to

d

dt
det∇ξ =

(
Tr(∇ξ u)

)
det∇ξ,

where Tr denotes the trace operator on matrices—the trace of a matrix is the sum of

its diagonal elements. Since Tr(∇ξ u) ≡ ∇ · u we have established the required result.

Step 4: Conservation of mass. We see that we thus have

d

dt

∫
Ωt

ρF dV =

∫
Ω

(
D

Dt
(ρF ) + (ρF )

(
∇ · u

))
(ξ(x, t), t) J(x, t) dV

=

∫
Ωt

(
D

Dt
(ρF ) +

(
ρ∇ · u

)
F

)
dV

=

∫
Ωt

ρ
DF

Dt
dV,

where in the last step we have used the conservation of mass equation.

We have thus completed the proof of the Transport Theorem. A straightforward

corollary proved in a manner analogous to that of the Transport Theorem is as follows.

Corollary 1 For any function F = F (ξ(t), t) we have

d

dt

∫
Ωt

F dV =

∫
Ωt

(
∂F

∂t
+∇ · (Fu)

)
dV.

6 Incompressible flow

We now characterize a subclass of flows which are incompressible. The classic examples

are water, and the brake fluid in your car whose incompressibility properties are vital

to the effective transmission of pedal pressure to brakepad pressure. Herein we closely

follow the presentation given in Chorin and Marsden [3, pp. 10–11].

Definition 4 (Incompressible flow) A flow is said to be incompressible if for any sub-

region Ω ⊆ D, the volume of Ωt is constant in time.

Corollary 2 (Equivalent incompressibility statements) The following statements are

equivalent:

1. Fluid is incompressible;

2. Jacobian J ≡ 1;

3. The velocity field u = u(x, t) is divergence free, i.e. ∇ · u = 0.
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Proof Using the result for the Jacobian of the flow map in Step 3 of the proof of the

Transport Theorem, for any subregion Ω of the fluid, we see

d

dt
vol(Ωt) =

d

dt

∫
Ωt

dV (ξ)

=
d

dt

∫
Ω

J(x, t) dV (x)

=

∫
Ω

(
∇ · u(ξ(x, t), t)

)
J(x, t) dV (x)

=

∫
Ωt

(
∇ · u(ξ, t)

)
dV (ξ).

Further, noting that by definition J(x, 0) = 1, establishes the result. ut

The continuity equation and the identity, ∇ · (ρu) = ∇ρ · u+ ρ∇ · u, imply

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0.

Hence since ρ > 0, a flow is incompressible if and only if

∂ρ

∂t
+ u · ∇ρ = 0,

i.e. the fluid density is constant following the fluid.

Definition 5 (Homogeneous fluid) A fluid is said to be homogeneous if its mass density

ρ is constant in space.

If we set F ≡ 1 in the Transport Theorem we get

d

dt

∫
Ωt

ρ dV = 0.

This is equivalent to the statement∫
Ωt

ρ(x, t) dV =

∫
Ω

ρ(x, 0) dV

⇔
∫
Ω

ρ
(
ξ(x, t), t

)
J(x, t) dV =

∫
Ω

ρ(x, 0) dV ,

where we made a change of variables. Since Ω is arbitrary, we deduce

ρ
(
ξ(x, t), t

)
J(x, t) = ρ(x, 0).

From this relation we see that if the flow is incompressible so J(x, t) ≡ 1 then

ρ
(
ξ(x, t), t

)
= ρ(x, 0). Thus if an incompressible fluid is homogeneous at time t = 0

then it remains so. If we combine this with the result that mass density is constant

following the fluid, then we conclude that ρ is constant in time.
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7 Stream functions

A stream function exists for a given flow u = (u, v, w)T if the velocity field u is

solenoidal, i.e. ∇ · u = 0, and we have an additional symmetry that allows us to

eliminate one coordinate. For example, a two dimensional incompressible fluid flow

u = u(x, y, t) is solenoidal since ∇ · u = 0, and has the symmetry that it is uniform

with respect to z. For such a flow we see that

∇ · u = 0 ⇔ ∂u

∂x
+
∂v

∂y
= 0.

This equation is satisfied if and only if there exists a function ψ(x, y, t) such that

∂ψ

∂y
= u(x, y, t) and − ∂ψ

∂x
= v(x, y, t).

The function ψ is called Lagrange’s stream function. A stream function is always only

defined up to any arbitrary additive constant. Further note that for t fixed, streamlines

are given by constant contour lines of ψ (note ∇ψ · u = 0 everywhere).

Note that if we use plane polar coordinates so u = u(r, θ, t) and the velocity

components are u = (ur, uθ) then

∇ · u = 0 ⇔ 1

r

∂

∂r
(r ur) +

1

r

∂uθ
∂θ

= 0.

This is satisfied if and only if there exists a function ψ(r, θ, t) such that

1

r

∂ψ

∂θ
= ur(r, θ, t) and − ∂ψ

∂r
= uθ(r, θ, t).

Example Suppose that in Cartesian coordinates we have the two dimensional flow

u = (u, v)T given by (
u

v

)
=

(
k x

−k y

)
,

for some constant k. Note that ∇ · u = 0 so there exists a stream function satisfying

∂ψ

∂y
= k x and − ∂ψ

∂x
= −k y.

Consider the first partial differential equation. Integrating with respect to y we get

ψ = k xy + C(x)

where C(x) is an arbitrary function of x. However we know that ψ must simultaneously

satisfy the second partial differential equation above. Hence we substitute this last

relation into the second partial differential equation above to get

−∂ψ
∂x

= −k y ⇔ −k y + C′(x) = −k y.

We deduce C′(x) = 0 and therefore C is an arbitrary constant. Since a stream function

is only defined up to an arbitrary constant we take C = 0 for simplicity and the stream

function is given by

ψ = k xy.
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Now suppose we used plane polar coordinates instead. The corresponding flow

u = (ur, uθ)
T is given by (

ur
uθ

)
=

(
k r cos 2θ

−k r sin 2θ

)
.

First note that ∇ · u = 0 using the polar coordinate form for ∇ · u indicated above.

Hence there exists a stream function ψ = ψ(r, θ) satisfying

1

r

∂ψ

∂θ
= k r cos 2θ and − ∂ψ

∂r
= −k r sin 2θ.

As above, consider the first partial differential equation shown, and integrate with

respect to θ to get

ψ = 1
2 k r

2 sin 2θ + C(r).

Substituting this into the second equation above reveals that C′(r) = 0 so that C is a

constant. We can for convenience set C = 0 so that

ψ = 1
2 k r

2 sin 2θ.

Comparing this form with its Cartesian equivalent above, reveals they are the same.

8 Rate of strain tensor

Consider a fluid flow in a region D ⊆ R3. Suppose x and x+ h are two nearby points

in the interior of D. How is the flow, or more precisely the velocity field, at x related

to that at x+ h? From a mathematical perspective, by Taylor expansion we have

u(x+ h) = u(x) +
(
∇u(x)

)
· h+O(h2),

where (∇u) · h is simply matrix multiplication of the 3× 3 matrix ∇u by the column

vector h. Recall that ∇u is given by

∇u =

 ∂u/∂x ∂u/∂y ∂u/∂z

∂v/∂x ∂v/∂y ∂v/∂z

∂w/∂x ∂w/∂y ∂w/∂z

 .

In the context of fluid flow it is known as the rate of strain tensor. This is because,

locally, it measures that rate at which neighbouring fluid particles are being pulled

apart (it helps to recall that the velocity field u records the rate of change of particle

position with respect to time).

Again from a mathematical perspective, we can decompose ∇u as follows. We can

always write

∇u = 1
2

(
(∇u) + (∇u)T

)
+ 1

2

(
(∇u)− (∇u)T

)
.

We set

D := 1
2

(
(∇u) + (∇u)T

)
,

R := 1
2

(
(∇u)− (∇u)T

)
.
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Note that D = D(x) is a 3 × 3 symmetric matrix, while R = R(x) is the 3 × 3

skew-symmetric matrix given by

R =

 0 ∂u/∂y − ∂v/∂x ∂u/∂z − ∂w/∂x
∂v/∂x− ∂u/∂y 0 ∂v/∂z − ∂w/∂y
∂w/∂x− ∂u/∂z ∂w/∂y − ∂v/∂z 0

 .

Note that if we set

ω1 =
∂w

∂y
− ∂v

∂z
, ω2 =

∂u

∂z
− ∂w

∂x
and ω3 =

∂v

∂x
− ∂u

∂y
,

then R is more simply expressed as

R = 1
2

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

Further by direct computation we see that

Rh = 1
2ω × h,

where ω = ω(x) is the vector with three components ω1, ω2 and ω3. At this point, we

have thus established the following.

Theorem 2 If x and x+ h are two nearby points in the interior of D, then

u(x+ h) = u(x) +D(x) · h+ 1
2ω(x)× h+O(h2).

The symmetric matrix D is the deformation tensor. Since it is symmetric, there is

an orthonormal basis e1, e2, e3 in which D is diagonal, i.e. if X = [e1, e2, e3] then

X−1DX =

d1 0 0

0 d2 0

0 0 d3

 .

By direct computation, the vector field ω above is equivalently given by ω = ∇× u.

Definition 6 (Vorticity field) For any velocity vector field u the associated vector field

given by

ω = ∇× u,

is known as the vorticity field of the flow. It encodes the magnitude of, and direction

of the axis about which, the fluid rotates, locally.

Now consider the motion of a fluid particle labelled by x+h where x is fixed and h is

small (for example suppose that only a short time has elapsed). Then the position of

the particle is given by

d

dt
(x+ h) = u(x+ h)

⇔ dh

dt
= u(x+ h)

⇔ dh

dt
≈ u(x) +D(x) · h+ 1

2ω(x)× h.

Let us consider in turn each of the effects on the right shown:
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1. The term u(x) is simply uniform translational velocity (the particle being pushed

by the ambient flow surrounding it).

2. Now consider the second term D(x) ·h. If we ignore the other terms then, approx-

imately, we have
dh

dt
= D(x) · h.

Making a local change of coordinates so that h = Xĥ we get

d

dt

ĥ1

ĥ2

ĥ3

 =

d1 0 0

0 d2 0

0 0 d3

ĥ1

ĥ2

ĥ3

 .

We see that we have pure expansion or contraction (depending on whether di
is positive or negative, respectively) in each of the characteristic directions ĥi,

i = 1, 2, 3. Indeed the small linearized volume element ĥ1ĥ2ĥ3 satisfies

d

dt
(ĥ1ĥ2ĥ3) = (d1 + d2 + d3)(ĥ1ĥ2ĥ3).

Note that d1 + d2 + d3 = Tr(D) = ∇ · u.

3. Let us now examine the effect of the third term 1
2ω × h. Ignoring the other two

terms we have
dh

dt
= 1

2ω(x)× h.

Direct computation shows that

h(t) = Θ(t,ω(x))h(0),

where Θ(t,ω(x)) is the matrix that represents the rotation through an angle t

about the axis ω(x). Note also that ∇ ·
(
ω(x)× h

)
= 0.

9 Internal fluid forces

Let us consider the forces that act on a small parcel of fluid in a fluid flow. There are

two types:

1. external or body forces, these may be due to gravity or external electromagnetic

fields. They exert a force per unit volume on the continuum.

2. surface or stress forces, these are forces, molecular in origin, that are applied by

the neighbouring fluid across the surface of the fluid parcel.

The surface or stress forces are normal stresses due to pressure differentials, and shear

stresses which are the result of molecular diffusion. We explain shear stresses as follows.

Imagine two neighbouring parcels of fluid P and P ′ as shown in Fig. 3, with a mutual

contact surface is S as shown. Suppose both parcels of fluid are moving parallel to S

and to each other, but the speed of P , say u, is much faster than that of P ′, say u′.
In the kinetic theory of matter molecules jiggle about and take random walks; they

diffuse into their surrounding locale and impart their kinetic energy to molecules they

pass by. Hence the faster molecules in P will diffuse across S and impart momentum

to the molecules in P ′. Similarly, slower molecules from P ′ will diffuse across S to slow

the fluid in P down. In regions of the flow where the velocity field changes rapidly over

small length scales, this effect is important—see Chorin and Marsden [3, p. 31].
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P

P’

u

u’
S

Fig. 3 Two neighbouring parcels of fluid P and P ′. Suppose S is the surface of mutual contact
between them. Their respective velocities are u and u′ and in the same direction and parallel
to S, but with |u| � |u′|. The faster molecules in P will diffuse across the surface S and
impart momentum to P ′.

dS

n

dF

x

(1)

(2)

Fig. 4 The force dF on side (2) by side (1) of dS is given by Σ(n) dS.

We now proceed more formally. The force per unit area exerted across a surface

(imaginary in the fluid) is called the stress. Let dS be a small imaginary surface in the

fluid centred on the point x—see Fig. 4. The force dF on side (2) by side (1) of dS in

the fluid/material is given by

dF = Σ(n) dS.

Here Σ is the stress at the point x. It is a function of the normal direction n to the

surface dS, in fact it is given by:

Σ(n) = σ(x)n.

Note σ = [σij ] is a 3× 3 matrix known as the stress tensor. The diagonal components

of σij , with i = j, generate normal stresses, while the off-diagonal components, with

i 6= j, generate tangential or shear stresses. Indeed let us decompose the stress tensor

σ = σ(x) as follows (here I is the 3× 3 identity matrix):

σ = −p I + σ̂.

Here the scalar quantity p = p(x, t) is defined to be

p := − 1
3 (σ11 + σ22 + σ33)

and represents the fluid pressure. The remaining part of the stress tensor σ̂ = σ̂(x) is

known as the deviatoric stress tensor. In this decomposition, the term −p I generates

the normal stresses, since if this were the only term present,

σ = −p I ⇒ Σ(n) = −pn.

The deviatoric stress tensor σ̂ on the other hand, generates the shear stresses. We will

discuss them in some detail in Section 14 prior to our derivation of the Navier–Stokes

equations in Section 15.
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10 Euler equations of fluid motion

Consider an arbitrary imaginary subregion Ω ⊆ D identified at time t = 0, as in Fig. 1.

As the fluid flow evolves to some time t > 0, let Ωt denote the volume of the fluid

occupied by particles that originally made up Ω. The total force exerted on the fluid

inside Ωt through the normal stresses exerted across its boundary ∂Ωt is given by∫
∂Ωt

(−pI)n dS ≡
∫
Ωt

(−∇p) dV.

If f is a body force (external force) per unit mass, which can depend on position and

time, then the body force on the fluid inside Ωt is∫
Ωt

ρf dV.

Thus on any parcel of fluid Ωt, the total force acting on it is∫
Ωt

−∇p+ ρf dV.

Hence using Newton’s 2nd law (force = rate of change of total momentum) we have

d

dt

∫
Ωt

ρu dV =

∫
Ωt

−∇p+ ρf dV.

Now we use the Transport Theorem with F ≡ u and that Ω and thus Ωt are arbitrary.

We see that for at each x ∈ D and t > 0, the following relation must hold—the

differential form of the balance of momentum in this case:

ρ
Du

Dt
= −∇p+ ρf .

Thus for an ideal fluid for which we only include normal stresses and completely ignore

any shear stresses, the fluid flow is governed by the Euler equations of motion (derived

by Euler in 1755) given by:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ f ,

Now that we have partial differential equations that determine how fluid flows

evolve, we complement them with boundary and initial conditions. The initial condition

is the velocity profile u = u(x, 0) at time t = 0. It is the state in which the flow

starts. To have a well-posed evolutionary partial differential system for the evolution

of the fluid flow, we also need to specify how the flow behaves near boundaries. Here

a boundary could be a rigid boundary, for example the walls of the container the fluid

is confined to or the surface of an obstacle in the fluid flow. Another example of a

boundary is the free surface between two immiscible fluids—such as between seawater

and air on the ocean surface. Here we will focus on rigid boundaries.

For ideal fluid flow, i.e. one evolving according to the Euler equations, we simply

need to specify that there is no net flow normal to the boundary—the fluid does not

cross the boundary but can move tangentially to it. Mathematically this is means that

we specify that

u · n = 0

everywhere on the rigid boundary.
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r

zp

a

0

Fig. 5 Water draining from a bath.

Remark 3 The incompressible Euler equations of motion can also be derived as a

geodesic submanifold flow. The submanifold is the group of measure preserving dif-

feomorphisms. For a formal discussion see Malham [14].

For many examples of simple Euler flows we refer the reader ahead to Section 17—all

the examples there are Euler flows except for the last one. Extending those examples

further, we now examine an every day flow.

Example (sink or bath drain) As we have all observed when water runs out of a bath

or sink, the free surface of the water directly over the drain hole has a depression in

it—see Fig. 5. The question is, what is the form/shape of this free surface depression?

The essential idea is we know that the pressure at the free surface is uniform,

it is atmospheric pressure, say P0. We need the Euler equations for a homogeneous

incompressible fluid in cylindrical coordinates (r, θ, z) with the velocity field u =

(ur, uθ, uz)T. These are

∂ur
∂t

+ (u · ∇)ur −
u2
θ

r
= −1

ρ

∂p

∂r
+ fr,

∂uθ
∂t

+ (u · ∇)uθ +
uruθ
r

= − 1

ρr

∂p

∂θ
+ fθ,

∂uz
∂t

+ (u · ∇)uz = −1

ρ

∂p

∂z
+ fz ,

where p = p(r, θ, z, t) is the pressure, ρ is the uniform constant density and f =

(fr, fθ, fz)T is the body force per unit mass. Here we also have

u · ∇ = ur
∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z
.

Further the incompressibility condition ∇ ·u = 0 is given in cylindrical coordinates by

1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0.

We need to make some sensible simplifying assumptions to reduce this system of

equations to a set of partial differential equations we might be able to solve analytically.

We will assume the fluid has uniform density ρ, that the flow is steady, and ur = uz = 0,

i.e. only the azimuthal velocity is non-zero so that the water particles move in horizontal

circles—see Fig. 5. We further assume fr = fθ = 0. The force due to gravity implies
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fz = −g. The whole problem is also symmetric with respect to θ, so we will also

assume all partial derivatives with respect to θ are zero. Combining all these facts

reduces Euler’s equations above to

−u
2
θ

r
= −1

ρ

∂p

∂r
,

0 = − 1

ρr

∂p

∂θ

0 = −1

ρ

∂p

∂z
− g.

The incompressibility condition is satisfied trivially. The second equation above tells

us the pressure p is independent of θ, as we might have already suspected. Hence we

assume p = p(r, z) and focus on the first and third equation above.

The question now is can we find functions uθ = uθ(r, z) and p = p(r, z) that satisfy

the first and third partial differential equations above? To help us in this direction

we will make some further assumptions. We will suppose that as the water flows out

through the hole at the bottom of a bath the residual rotation is confined to a core of

radius a, so that the water particles may be taken to move on horizontal circles with

uθ =

{
Ωr, r 6 a,
Ωa2

r , r > a.

The azimuthal flow we assume for r 6 a represents solid body rotation in the core

region. The flow we assume for r > a represents two-dimensional irrotational flow

generated by a point source at the origin. With uθ = uθ(r) assumed to have this form,

the question now is, can we find a corresponding pressure field p = p(r, z) so that the

first and third equations above are satisfied?

Assume r 6 a. Using that uθ = Ωr in the first equation we see that

∂p

∂r
= ρΩ2 r ⇔ p(r, z) = 1

2ρΩ
2 r2 + C(z),

where C(z) is an arbitrary function of z. If we then substitute this into the third

equation above we see that

1

ρ

∂p

∂z
= −g ⇔ C′(z) = −ρg,

and hence C(z) = −ρgz +C0 where C0 is an arbitrary constant. Thus we now deduce

that the pressure function is given by

p(r, z) = 1
2ρΩ

2 r2 − ρgz + C0.

At the free surface of the water, the pressure is constant atmospheric pressure P0 and

so if we substitute this into this expression for the pressure we see that

P0 = 1
2ρΩ

2 r2 − ρgz + C0 ⇔ z = (Ω2/2g) r2 − (C0 − P0)/ρg.

Hence the depression in the free surface for r 6 a is a parabolic surface of revolution.

Note that pressure is only ever globally defined up to an additive constant so we are

at liberty to take C0 = 0 or C0 = P0 if we like.
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For r > a a completely analogous argument using uθ = Ωa2/r shows that

p(r, z) = −ρΩ
2a4

2 r2
− ρgz +K0,

where K0 is an arbitrary constant. Since the pressure must be continuous at r = a, we

substitute r = a into the expression for the pressure here for r > a and the expression

for the pressure for r 6 a, and equate the two. This gives

− 1
2ρΩ

2a2 − ρgz +K0 = 1
2ρΩ

2 a2 − ρgz ⇔ K0 = ρΩ2 a2.

Hence the pressure for r > a is given by

p(r, z) = −ρΩ
2a4

2 r2
− ρgz + ρΩ2 a2.

Using that the pressure at the free surface is p(r, z) = P0, we see that for r > a the

free surface is given by

z = −Ω
2a4

g r2
+
Ω2 a2

g
.

Remark 4 The fact that there are no tangential forces in an ideal fluid has some im-

portant consequences, quoting from Chorin and Marsden [3, p. 5]:

...there is no way for rotation to start in a fluid, nor, if there is any at the

beginning, to stop... ... even here we can detect trouble for ideal fluids because

of the abundance of rotation in real fluids (near the oars of a rowboat, in

tornadoes, etc. ).

In particular see D’Alembert’s paradox in Section 12. We discuss some further conse-

quences of Euler flow in Appendix D.

11 Bernoulli’s Theorem

Theorem 3 (Bernoulli’s Theorem) Suppose we have an ideal homogeneous incompress-

ible stationary flow with a conservative body force f = −∇Φ, where Φ is the potential

function. Then the quantity

H := 1
2 |u|

2 +
p

ρ
+ Φ

is constant along streamlines.

Proof We need the following identity that can be found in Appendix A:

1
2∇
(
|u|2

)
= u · ∇u+ u× (∇× u).

Since the flow is stationary, Euler’s equation of motion for an ideal fluid imply

u · ∇u = −∇
(
p

ρ

)
−∇Φ.
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Using the identity above we see that

1
2∇
(
|u|2

)
− u× (∇× u) = −∇

(
p

ρ

)
−∇Φ

⇔ ∇
(

1
2 |u|

2 +
p

ρ
+ Φ

)
= u× (∇× u)

⇔ ∇H = u× (∇× u),

using the definition for H given in the theorem. Now let x(s) be a streamline that

satisfies x′(s) = u
(
x(s)

)
. By the fundamental theorem of calculus, for any s1 and s2,

H
(
x(s2)

)
−H

(
x(s1)

)
=

∫ s2

s1

dH
(
x(s)

)
=

∫ s2

s1

∇H · x′(s) ds

=

∫ s2

s1

(
u× (∇× u)

)
· u
(
x(s)

)
ds

= 0,

where we used that (u× a) · u ≡ 0 for any vector a (since u× a is orthogonal to u).

Since s1 and s2 are arbitrary we deduce that H does not change along streamlines. ut

Remark 5 Note that ρH has the units of an energy density. Since ρ is constant here,

we can interpret Bernoulli’s Theorem as saying that energy density is constant along

streamlines.

Example (Torricelli 1643). Consider the problem of an oil drum full of water that

has a small hole punctured into it near the bottom. The problem is to determine the

velocity of the fluid jetting out of the hole at the bottom and how that varies with the

amount of water left in the tank—the setup is shown in Fig 6. We shall assume the hole

has a small cross-sectional area α. Suppose that the cross-sectional area of the drum,

and therefore of the free surface (water surface) at z = 0, is A. We naturally assume

A� α. Since the rate at which the amount of water is dropping inside the drum must

equal the rate at which water is leaving the drum through the punctured hole, we have(
−dh

dt

)
·A = U · α ⇔

(
−dh

dt

)
=
(
α

A

)
· U.

We observe that A� α, i.e. α/A� 1, and hence we can deduce

1

U2

(
dh

dt

)2

=
(
α

A

)2
� 1.

Since the flow is quasi-stationary, incompressible as it’s water, and there is conserva-

tive body force due to gravity, we apply Bernoulli’s Theorem for one of the typical

streamlines shown in Fig. 6. This implies that the quantity H is the same at the free

surface and at the puncture hole outlet, hence

1
2

(
dh

dt

)2

+
P0

ρ
= 1

2U
2 +

P0

ρ
− gh.



22 Simon J.A. Malham

h

z=0

z=−h

P

U

P = air pressure0

0

Typical streamline

Fig. 6 Torricelli problem: the pressure at the top surface and outside the puncture hole is
atmospheric pressure P0. Suppose the height of water above the puncture is h. The goal is to
determine how the velocity of water U out of the puncture hole varies with h.

Thus cancelling the P0/ρ terms then we can deduce that

gh = 1
2U

2 − 1
2

(
dh

dt

)2

= 1
2U

2

(
1− 1

U2

(
dh

dt

)2)
= 1

2U
2

(
1−

(
α

A

)2
)

∼ 1
2U

2

for α/A� 1 with an error of order (α/A)2. Thus in the asymptotic limit gh = 1
2U

2 so

U =
√

2gh.

Remark 6 Note the pressure inside the container at the puncture hole level is P0 +ρgh.

The difference between this and the atmospheric pressure P0 outside, accelerates the

water through the puncture hole.

Example (Channel flow: Froude number). Consider the problem of a steady flow

of water in a channel over a gently undulating bed—see Fig 7. We assume that the

flow is shallow and uniform in cross-section. Upstream the flow is characterized by flow

velocity U and depth H. The flow then impinges on a gently undulating bed of height

y = y(x) as shown in Fig 7, where x measures distance downstream. The depth of the

flow is given by h = h(x) whilst the fluid velocity at that point is u = u(x), which is

uniform over the depth throughout. Re-iterating slightly, our assumptions are thus,∣∣∣∣dydx

∣∣∣∣� 1 (bed gently undulating)
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x

P0

U
H

u
h(x)

y(x)

Fig. 7 Channel flow problem: a steady flow of water, uniform in cross-section, flows over a
gently undulating bed of height y = y(x) as shown. The depth of the flow is given by h = h(x).
Upstream the flow is characterized by flow velocity U and depth H.

and ∣∣∣∣dhdx

∣∣∣∣� 1 (small variation in depth).

The continuity equation (incompressibility here) implies that for all x,

uh = UH.

Then Euler’s equations for a steady flow imply Bernoulli’s theorem which we apply

to the surface streamline, for which the pressure is constant and equal to atmospheric

pressure P0, hence we have for all x:

1
2U

2 + gH = 1
2u

2 + g(y + h).

Substituting for u = u(x) from the incompressibility condition above, and rearranging,

Bernoulli’s theorem implies that for all x we have the constraint

y =
U2

2g
+H − h− (UH)2

2gh2
.

We can think of this as a parametric equation relating the fluid depth h = h(x) to the

undulation height h = h(x) where the parameter x runs from x = −∞ far upstream

to x = +∞ far downstream. We plot this relation, y as a function of h, in Fig 8. Note

that y has a unique global maximum y0 coinciding with the local maximum and given

by

dy

dh
= 0 ⇔ h = h0 =

(UH)2/3

g1/3
.

Note that if we set

F := U/
√
gH

then h0 = HF2/3, where F is known as the Froude number. It is a dimensionless

function of the upstream conditions and represents the ratio of the oncoming fluid

speed to the wave (signal) speed in fluid depth H.

Note that when y = y(x) attains its maximum value at h0, then y = y0 where

y0 := H
(
1 + 1

2F2 − 3
2F2/3).
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h

y

h
0

y0

Fig. 8 Channel flow problem: The flow depth h = h(x) and undulation height y = y(x) are
related as shown, from Bernoulli’s theorem. Note that y has a maximum value y0 at height
h0 = HF2/3 where F = U/

√
gH is the Froude number.

F

y0 / H

F=1 F>1F<10

Fig. 9 Channel flow problem: Two different values of the Froude number F give the same
maximum permissible undulation height y0. Note we actually plot the normalized maximum
possible height y0/H on the ordinate axis.

This puts a bound on the height of the bed undulation that is compatible with the

upstream conditions. In Fig 9 we plot the maximum permissible height y0 the undula-

tion is allowed to attain as a function of the Froude number F. Note that two different

values of the Froude number F give the same maximum permissible undulation height

y0, one of which is slower and one of which is faster (compared with
√
gH).

Let us now consider and actual given undulation y = y(x). Suppose that it attains

an actual maximum value ymax. There are three cases to consider, in turn we shall

consider ymax < y0, the more interesting case, and then ymax > y0. The third case

ymax = y0 is an exercise (see the Exercises section at the end of these notes).

In the first case, ymax < y0, as x varies from x = −∞ to x = +∞, the undulation

height y = y(x) varies but is such that y(x) 6 ymax. Refer to Fig. 8, which plots

the constraint relationship between y and h resulting from Bernoulli’s theorem. Since

y(x) 6 ymax as x varies from −∞ to +∞, the values of (h, y) are restricted to part

of the branches of the graph either side of the global maximum (h0, y0). In the figure

these parts of the branches are the locale of the shaded sections shown. Note that the

derivative dy/dh = 1/(dh/dy) has the same fixed (and opposite) sign in each of the

branches. In the branch for which h is small, dy/dh > 0, while the branch for which

h is larger, dy/dh < 0. Indeed note the by differentiating the constraint condition, we

have

dy

dh
= −

(
1− (UH)2

gh3

)
.
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U U

F<1 F>1

Fig. 10 Channel flow problem: for the case ymax < y0, when F < 1, as the bed height y
increases, the fluid depth h decreases and vice-versa. Hence we see a depression in the fluid
surface above a bump in the bed. On the other hand, when F > 1, as the bed height y increases,
the fluid depth h increases and vice-versa. Hence we see an elevation in the fluid surface above
a bump in the bed.

Using the incompressibility condition to substitute for UH we see that this is equivalent

to

dy

dh
= −

(
1− u2

gh

)
.

We can think of u/
√
gh as a local Froude number if we like. In any case, note that since

we are in one branch or the other, and in either case the sign of dy/dh is fixed, this

means that using the expression for dy/dh we just derived, for any flow realization the

sign of 1− u2/gh is also fixed. When x = −∞ this quantity has the value 1−U2/gH.

Hence the sign of 1 − U2/gH determines the sign of 1 − u2/gh. Hence if F < 1 then

U2/gH = F2 < 1 and therefore for all x we must have u2/gh < 1. And we also deduce

in this case that we must be on the branch for which h is relatively large as dy/dh is

negative. The flow is said to be subcritical throughout and indeed we see that

dh

dy
=

(
dy

dh

)−1

= −
(

1− u2

gh

)−1

< −1 ⇒ d

dy
(h+ y) < 0.

Hence in this case, as the bed height y increases, the fluid depth h decreases and vice-

versa. On the other hand if F > 1 then U2/gH > 1 and thus u2/gh > 1. We must be

on the branch for which h is relatively small as dy/dh is positive. The flow is said to

be supercritical throughout and we have

dh

dy
= −

(
1− u2

gh

)−1

> 0 ⇒ d

dy
(h+ y) > 1.

Hence in this case, as the bed height y increases, the fluid depth h increases and vice-

versa. Both cases, F < 1 and F > 1, are illustrated by a typical scenario in Fig. 10.

In the second case, ymax > y0, the undulation height is larger than the maximum

permissible height y0 compatible with the upstream conditions. Under the conditions

we assumed, there is no flow realized here. In a real situation we may imagine a flow

impinging on a large barrier with height ymax > y0, and the result would be some

sort of reflection of the flow occurs to change the upstream conditions in an attempt

to make them compatible with the obstacle. (Our steady flow assumption obviously

breaks down here.)



26 Simon J.A. Malham

12 Irrotational/potential flow

Many flows have extensive regions where the vorticity is zero; some have zero vorticity

everywhere. We would call these, respectively, irrotational regions of the flow and

irrotational flows. In such regions

ω = ∇× u = 0.

Hence the field u is conservative and there exists a scalar function φ such that

u = ∇φ.

The function φ is known as the flow potential. Note that u is conservative in a region

if and only if the circulation ∮
C
u · dx = 0

for all simple closed curves C in the region.

If the fluid is also incompressible, then φ is harmonic since ∇ · u = 0 implies

∆φ = 0.

Hence for such situations, we in essence need to solve Laplace’s equation∆φ = 0 subject

to certain boundary conditions. For example for an ideal flow, u ·n = ∇φ ·n = ∂φ/∂n

is given on the boundary, and this would constitute a Neumann problem for Laplace’s

equation.

Example (linear two-dimensional flow) Consider the flow field u = (kx,−ky)T

where k is a constant. It is irrotational. Hence there exists a flow potential φ = 1
2k(x2−

y2). Since∇·u = 0 as well, we have ∆φ = 0. Further, since this flow is two-dimensional,

there also exists a stream function ψ = kxy.

Example (line vortex) Consider the flow field (ur, uθ, uz)T = (0, k/r, 0)T where

k > 0 is a constant. This is the idealization of a thin vortex tube. Direct computation

shows that ∇ × u = 0 everywhere except at r = 0, where ∇ × u is infinite. For

r > 0, there exists a flow potential φ = kθ. For any closed circuit C in this region the

circulation is ∮
C
u · dx = 2πkN

where N is the number of times the closed curve C winds round the origin r = 0.

The circulation will be zero for all circuits reducible continuously to a point without

breaking the vortex.

Example (D’Alembert’s paradox) Consider a uniform flow into which we place an

obstacle. We would naturally expect that the obstacle represents an obstruction to the

fluid flow and that the flow would exert a force on the obstacle, which if strong enough,

might dislodge it and subsequently carry it downstream. However for an ideal flow, as

we are just about to prove, this is not the case. There is no net force exerted on an

obstacle placed in the midst of a uniform flow.

We thus consider a uniform ideal flow into which is placed a sphere, radius a.

The set up is shown in Fig. 11. We assume that the flow around the sphere is steady,

incompressible and irrotational. Suppose further that the flow is axisymmetric. By this

we mean the following. Use spherical polar coordinates to represent the flow with the
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r

θ

Fig. 11 Consider an ideal steady, incompressible, irrotational and axisymmetric flow past a
sphere as shown. The net force exerted on the sphere (obstacle) in the flow is zero. This is
D’Alembert’s paradox.

south-north pole axis passing through the centre of the sphere and aligned with the

uniform flow U at infinity; see Fig. 11. Then the flow is axisymmetric if it is independent

of the azimuthal angle ϕ of the spherical coordinates (r, θ, ϕ). Further we also assume

no swirl so that uϕ = 0.

Since the flow is incompressible and irrotational, it is a potential flow. Hence we

seek a potential function φ such that ∆φ = 0. In spherical polar coordinates this is

equivalent to

1

r2

(
∂

∂r

(
r2 ∂φ

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

))
= 0.

The general solution to Laplace’s equation is well known, and in the case of axisym-

metry the general solution is given by

φ(r, θ) =

∞∑
n=0

(
Anr

n +
Bn
rn+1

)
Pn(cos θ)

where Pn are the Legendre polynomials; with P1(x) = x. The coefficients An and Bn
are constants, most of which, as we shall see presently, are zero. For our problem we

have two sets of boundary data. First, that as r → ∞ in any direction, the flow field

is uniform and given by u = (0, 0, U)T (expressed in Cartesian coordinates with the

z-axis aligned along the south-north pole) so that as r →∞

φ ∼ Ur cos θ.

Second, on the sphere r = a itself we have a no normal flow condition

∂φ

∂r
= 0.

Using the first boundary condition for r → ∞ we see that all the An must be zero

except A1 = U . Using the second boundary condition on r = a we see that all the

Bn must be zero except for B1 = 1
2Ua

3. Hence the potential for this flow around the

sphere is

φ = U(r + a3/2r2) cos θ.
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In spherical polar coordinates, the velocity field u = ∇φ is given by

u = (ur, uθ) =
(
U(1− a3/r3) cos θ,−U(1 + a3/2r3) sin θ

)
.

Since the flow is ideal and steady as well, Bernoulli’s theorem applies and so along a

typical streamline 1
2 |u|

2 + P/ρ is constant. Indeed since the conditions at infinity are

uniform so that the pressure P∞ and velocity field U are the same everywhere there,

this means that for any streamline and in fact everywhere for r > a we have

1

2
|u|2 + P/ρ =

1

2
U2 + P∞/ρ.

Rearranging this equation and using our expression for the velocity field above we have

P − P∞
ρ

= 1
2U

2(1− (1− a3/r3)2 cos2 θ − (1 + a3/2r3)2 sin2 θ
)
.

On the sphere r = a we see that

P − P∞
ρ

= 1
2U

2(1− 9
4 sin2 θ

)
.

Note that on the sphere, the pressure is symmetric about θ = 0, π/2, π, 3π/2. Hence

the fluid exerts no net force on the sphere! (There is no drag or lift.) This result, in

principle, applies to any shape of obstacle in such a flow. In reality of course this cannot

be the case, the presence of viscosity remedies this paradox (and crucially generates

vorticity).

13 Kelvin’s circulation theorem, vortex lines and tubes

We turn our attention to important concepts centred on vorticity in a flow.

Definition 7 (Circulation) Let C be a simple closed contour in the fluid at time t = 0.

Suppose that C is carried along by the flow to the closed contour Ct at time t, i.e.

Ct = ϕt(C). The circulation around Ct is defined to be the line integral∮
Ct
u · dx.

Using Stokes’ Theorem an equivalent definition for the circulation is∮
Ct
u · dx =

∫
S

(∇× u) · n dS =

∫
S

ω · n dS

where S is any surface with perimeter Ct; see Fig. 13. In other words the circulation is

equivalent to the flux of vorticity through the surface with perimeter Ct.

Theorem 4 (Kelvin’s circulation theorem (1869)) For ideal, incompressible flow with-

out external forces, the circulation for any closed contour Ct is constant in time.

Proof Using a variant of the Transport Theorem and the Euler equations, we see

d

dt

∮
Ct
u · dx =

∮
Ct

Du

Dt
· dx = −

∮
Ct
∇p · dx = 0,

for closed loops of fluid particles Ct. ut
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Fig. 12 Stokes’ theorem tells us that the circulation around the closed contour C equals the
flux of vorticity through any surface whose perimeter is C. For example here the flux of vorticity
through S0, S1 and S2 is the same.

C

S

Fig. 13 The strength of the vortex tube is given by the circulation around any curve C that
encircles the tube once.

Corollary 3 The flux of vorticity across a surface moving with the fluid is constant in

time.

Definition 8 (Vortex lines) These are the lines that are everywhere parallel to the

local vorticity ω, i.e. with t fixed they solve (d/ds)x(s) = ω(x(s), t). These are the

trajectories for the field ω for t fixed.

Definition 9 (Vortex tube) This is the surface formed by the vortex lines through the

points of a simple closed curve C; see Fig. 13. We can define the strength of the vortex

tube to be ∫
S

ω · n dS ≡
∮
Ct
u · dx.

Remark 7 This is a good definition because it is independent of the precise cross-

sectional area S, and the precise circuit C around the vortex tube taken (because

∇ ·ω ≡ 0); see Fig. 13. Vorticity is larger where the cross-sectional area is smaller and

vice-versa. Further, for an ideal fluid, vortex tubes move with the fluid and the strength

of the vortex tube is constant in time as it does so (Helmholtz’s theorem; 1858); see

Chorin and Marsden [3, p. 26].

14 Shear stresses

Recall our discussion on internal fluid forces in Section 9. We now consider the explicit

form of the shear stresses and in particular the deviatoric stress tensor. This is necessary

if we want to consider/model any real fluid (i.e. non-ideal fluid). We assume that the
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deviatoric stress tensor σ̂ is a function of the rate of strain tensor ∇u. We shall make

three assumptions about the deviatoric stress tensor σ̂ and its dependence on the

velocity gradients ∇u. These are that it is:

1. Linear: each component of σ̂ is linearly related to the rate of strain tensor ∇u.

2. Isotropic: if U is an orthogonal matrix, then

σ̂
(
U · ∇u · U−1) ≡ U · σ̂(∇u) · U−1.

Equivalently we might say that it is invariant under rigid body rotations.

3. Symmetric; i.e. σ̂ij = σ̂ji. This can be deduced as a result of balance of angular

momentum.

Hence each component of the deviatoric stress tensor σ̂ is a linear function of each

of the components of the velocity gradients ∇u. This means that there is a total of

81 constants of proportionality. We will use the assumptions above to systematically

reduce this to 2 constants.

When the fluid performs rigid body rotation, there should be no diffusion of momen-

tum (the whole mass of fluid is behaving like a solid body). Recall our decomposition

of the rate of strain tensor, ∇u = D + R, where D is the deformation tensor and R

generates rotation. Thus σ̂ only depends on the symmetric part of ∇u, i.e. it is a linear

function of the deformation tensor D. Further, since σ̂ is symmetric, we can restrict our

attention to linear functions from symmetric matrices to symmetric matrices. We now

lean heavily on the isotropy assumption 2; see Gurtin [7, Section 37] for more details.

First, we have the transfer theorem.

Theorem 5 (Transfer theorem) Let σ̂ be an endomorphism on the set of 3 × 3

symmetric matrices. Then if σ̂ is isotropic, the symmetric matrices D and σ̂(D) are

simultaneously diagonalizable.

Proof Let e be an eigenvector of D and let U be the orthogonal matrix denoting

reflection in the plane perpendicular to e, so that Ue = −e, while any vector per-

pendicular to e is invariant under U . The eigenstructure of D is invariant to such

a transformation so that UDU−1 = D. Thus, since σ̂ = σ̂(D) is isotropic, we have

Uσ̂U−1 = σ̂(UDU−1) = σ̂(D) and thus Uσ̂ = σ̂U . Any such commuting matrices

share eigenvectors since Uσ̂e = σ̂Ue = −σ̂e. Thus σ̂e is also an eigenvector of the

reflection transformation U corresponding to the same eigenvalue −1. Thus σ̂ e is pro-

portional to e and so e is an eigenvector of σ̂. Since e was any eigenvector of D, the

statement of the theorem follows. ut

Second, for any 3× 3 matrix A with eigenvalues λ1, λ2, λ3, the three scalar functions

I1(A) := TrA, I2(A) := 1
2

(
(TrA)2 − Tr(A2)

)
and I2(A) := detA,

are isotropic. This can be checked by direct computation. Indeed these three functions

are the elementary symmetric functions of the eigenvalues of A:

I1(A) = λ1 + λ2 + λ3, I2(A) = λ1λ2 + λ2λ3 + λ2λ3 and I2(A) = λ1λ2λ3.

We have the following representation theorem for isotropic functions.
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Theorem 6 (Representation theorem) An endomorphism σ̂ on the set of 3 × 3

symmetric matrices is isotropic if and only if it has the form

σ̂(D) = α0 I + α1D + α2D
2,

for every symmetric matrix D, where α0, α1 and α2 are scalar functions that depend

only on the isotropic invariants I1(D), I2(D) and I3(D).

Proof Scalar functions α = α(D) are isotropic if and only if they are functions of the

isotropic invariants of D only. The ‘if’ part of this statement follows trivially as the

isotropic invariants are isotropic. The ‘only if’ statement is established if, assuming α

is isotropic, we are able to show that

Ii(D) = Ii(D
′) for i = 1, 2, 3 =⇒ α(D) = α(D′).

Since the map between the eigenvalues of D and its isotropic invariants is bijective,

if Ii(D) = Ii(D
′) for i = 1, 2, 3, then D and D′ have the same eigenvalues. Since

the isospectral action UDU−1 of orthogonal matrices U on symmetric matrices D is

transitive, there exists an orthogonal matrix U such that D′ = UDU−1. Since α is

isotropic, α(UDU−1) = α(D), i.e. α(D′) = α(D).

Now let us consider the symmetric matrix valued function σ̂. The ‘if’ statement of

the theorem follows by direct computation and the result we just established for scalar

isotropic functions. The ‘only if’ statement is proved as follows. Assume σ̂ has three

distinct eigenvalues (we leave the other possibilities as an exercise). Using the transfer

theorem and the Spectral Theorem (see for example Meyer [16, p. 517]) we have

σ̂(D) =

3∑
i=1

σ̂iEi

where σ̂1, σ̂2 and σ̂3 are the eigenvalues of σ̂ and the projection matrices E1, E2 and

E3 have the properties EiEj = O when i 6= j and E1 + E2 + E3 = I. Since we have

span{I,D,D2} = span{E1, E2, E3},

there exist scalars α0, α1 and α2 depending on D such that

σ̂(D) = α0 I + α1D + α2D
2.

We now have to show that α0, α1 and α2 are isotropic. This follows by direct compu-

tation, combining this last representation with the property that σ̂ is isotropic. ut

Remark 8 Note that neither the transfer theorem nor the representation theorem re-

quire that the endomorphism σ̂ is linear.

Third, now suppose that σ̂ is a linear function of D. Thus for any symmetric matrix

D it must have the form

σ̂(D) = λ I + 2µD,

where the scalars λ and µ depend on the isotropic invariants of D. By the Spectral

Theorem we have

D =

3∑
i=1

diEi,
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where d1, d2 and d3 are the eigenvalues of D and E1, E2 and E3 are the correspond-

ing projection matrices—in particular each Ei is symmetric with an eigenvalue 1 and

double eigenvalue 0. Since σ̂ is linear we have

σ̂(D) =

3∑
i=1

di σ̂(Ei)

=

3∑
i=1

di
(
λ I + 2µEi

)
.

where for each i = 1, 2, 3 the only non-zero isotropic invariant is I1(Ei) = 1 so that λ

and µ are simply constant scalars. Using that E1 + E2 + E3 = I we have

σ̂ = λ(d1 + d2 + d3)I + 2µD.

Recall that d1 + d2 + d3 = ∇ · u. Thus we have

σ̂ = λ(∇ · u)I + 2µD.

If we set ζ = λ+ 2
3µ this last relation becomes

σ̂ = 2µ
(
D − 1

3 (∇ · u)I
)

+ ζ(∇ · u)I,

where µ and ζ are the first and second coefficients of viscosity, respectively.

Remark 9 Note that if ∇·u = 0, then the linear relation between σ̂ and D is homoge-

neous, and we have the key property of what is known as a Newtonian fluid : the stress

is proportional to the rate of strain.

15 Navier–Stokes equations

Consider again an arbitrary imaginary subregion Ω of D identified at time t = 0, as

in Fig. 1. As in our derivation of the Euler equations, let Ωt denote the volume of the

fluid occupied by the particles at t > 0 that originally made up Ω. The total force

exerted on the fluid inside Ωt through the stresses exerted across its boundary ∂Ωt is

given by ∫
∂Ωt

(−pI + σ̂)n dS ≡
∫
Ωt

(−∇p+∇ · σ̂) dV,

where (for convenience here set (x1, x2, x3)T ≡ (x, y, z)T and (u1, u2, u3)T ≡ (u, v, w)T)

[∇ · σ̂]i =

3∑
j=1

∂σ̂ij
∂xj

= λ[∇(∇ · u)]i + 2µ

3∑
j=1

∂Dij
∂xj

= λ[∇(∇ · u)]i + µ

3∑
j=1

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)

= λ[∇(∇ · u)]i + µ

3∑
j=1

∂2ui
∂x2

j

+
∂2uj
∂xi∂xj

= (λ+ µ)[∇(∇ · u)]i + µ∇2ui.
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If f is a body force (external force) per unit mass, which can depend on position and

time, then on any parcel of fluid Ωt, the total force acting on it is∫
Ωt

−∇p+∇ · σ̂ + ρf dV.

Hence using Newton’s 2nd law we have

d

dt

∫
Ωt

ρudV =

∫
Ωt

−∇p+∇ · σ̂ + ρf dV.

Using the Transport Theorem with F ≡ u and that Ω and thus Ωt are arbitrary, we

see for each x ∈ D and t > 0, we can deduce the following relation known as Cauchy’s

equation of motion:

ρ
Du

Dt
= −∇p+∇ · σ̂ + ρf .

Combining this with the form for ∇ · σ̂ we deduced above, we arrive at

ρ
Du

Dt
= −∇p+ (λ+ µ)∇(∇ · u) + µ∆u+ ρf ,

where ∆ = ∇2 is the Laplacian operator. These are the Navier–Stokes equations. If we

assume we are in three dimensional space so d = 3, then together with the continuity

equation we have four equations, but five unknowns—namely u, p and ρ. Thus for a

compressible fluid flow, we cannot specify the fluid motion completely without specify-

ing one more condition/relation. (We could use the principle of conservation of energy

to establish as additional relation known as the equation of state; in simple scenarios

this takes the form of relationship between the pressure p and density ρ of the fluid.)

For an incompressible homogeneous flow for which the density ρ is constant, we get

a complete set of equations known as the Navier–Stokes equations for an incompressible

flow :

∂u

∂t
+ u · ∇u = ν ∆u− 1

ρ
∇p+ f ,

∇ · u = 0,

where ν = µ/ρ is the coefficient of kinematic viscosity. Note that we have a closed

system of equations: we have four equations in four unknowns, u and p.

Remark 10 Often the factor 1/ρ is scaled into the pressure and thus explicitly omitted:

since ρ is constant (∇p)/ρ ≡ ∇(p/ρ), and we re-label the term p/ρ to be p.

As for the Euler equations of motion for an ideal fluid, we need to specify initial

and boundary conditions. For viscous flow we specify an additional boundary condition

to that we specified for the Euler equations. This is due to the inclusion of the extra

term ν∆u which increases the number of spatial derivatives in the governing evolution

equations from one to two. Mathematically, we specify that

u = 0

everywhere on the rigid boundary, i.e. in addition to the condition that there must

be no net normal flow at the boundary, we also specify there is no tangential flow

there. The fluid velocity is simply zero at a rigid boundary; it is sometimes called

no-slip boundary conditions. Experimentally this is observed as well, to a very high
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degree of precision; see Chorin and Marsden [3, p. 34]. (Dye can be introduced into a

flow near a boundary and how the flow behaves near it observed and measured very

accurately.) Further, recall that in a viscous fluid flow we are incorporating the effect

of molecular diffusion between neighbouring fluid parcels—see Fig. 3. The rigid non-

moving boundary should impart a zero tangential flow condition to the fluid particles

right up against it. The no-slip boundary condition crucially represents the mechanism

for vorticity production in nature that can be observed everywhere. Just look at the

flow of a river close to the river bank.

Remark 11 At a material boundary (or free surface) between two immiscible fluids,

we would specify that there is no jump in the velocity across the surface boundary.

This is true if there is no surface tension or at least if it is negligible—for example at

the seawater-air boundary of the ocean. However at the surface of melting wax at the

top of a candle, there is surface tension, and there is a jump in the stress σn at the

boundary surface. Surface tension is also responsible for the phenomenon of being able

to float a needle on the surface of a bowl of water as well as many other interesting

effects such as the shape of water drops.

16 Evolution of vorticity

Recall from our discussion in Section 8, that the vorticity field of a flow with velocity

field u is defined as

ω := ∇× u.

It encodes the magnitude of, and direction of the axis about which, the fluid rotates,

locally. Note that ∇× u can be computed as follows

∇× u = det

 i j k

∂/∂x ∂/∂y ∂/∂z

u v w

 =

∂w/∂y − ∂v/∂z∂u/∂z − ∂w/∂x
∂v/∂x− ∂u/∂y

 .

Using the Navier–Stokes equations for a homogeneous incompressible fluid, we can in

fact derive a closed system of equations governing the evolution of vorticity ω = ∇×u
as follows. Using the identity u · ∇u = 1

2∇
(
|u|2

)
− u × (∇ × u) we see that we can

equivalently represent the Navier–Stokes equations in the form

∂u

∂t
+ 1

2∇
(
|u|2

)
− u× ω = ν ∆u−∇

(
p

ρ

)
+ f .

If we take the curl of this equation and use the identity

∇× (u× ω) = u (∇ · ω)− ω (∇ · u) + (ω · ∇)u− (u · ∇)ω,

noting that ∇ · u = 0 and ∇ · ω = ∇ · (∇× u) ≡ 0, we find that we get

∂ω

∂t
+ u · ∇ω = ν ∆ω + ω · ∇u+∇× f .

Note that we can recover the velocity field u from the vorticity ω by using the identity

∇× (∇× u) = ∇(∇ · u)−∆u. This implies

∆u = −∇× ω,
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and closes the system of partial differential equations for ω and u. However, we can

also simply observe that

u =
(
−∆
)−1

(∇× ω).

If the body force is conservative so that f = ∇Φ for some potential Φ, then ∇×f ≡ 0.

Remark 12 We can replace the ‘vortex stretching’ term ω·∇u in the evolution equation

for the vorticity by Dω, where D is the 3× 3 deformation matrix, since

ω · ∇u = (∇u)ω = Dω +Rω = Dω,

as direct computation reveals that Rω ≡ 0.

17 Simple example flows

We roughly follow an illustrative sequence of examples given in Majda and Bertozzi [13,

pp. 8–15]. The first few are example flows of a class of exact solutions to both the Euler

and Navier–Stokes equations.

Lemma 1 (Majda and Bertozzi, p. 8) Let D = D(t) be a real symmetric 3× 3 matrix

such that Tr(D) = 0 (representing the deformation matrix). Suppose that the vorticity

ω = ω(t) solves the ordinary differential system

dω

dt
= D(t)ω

for some initial data ω(0) = ω0. If the three components of vorticity are thus ω =

(ω1, ω2, ω3)T, set

R := 1
2

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

Then we have that

u(x, t) = 1
2ω(t)× x+D(t)x,

p(x, t) = − 1
2

(
dD

dt
+D2(t) +R2(t)

)
x · x,

are exact solutions to the incompressible Euler and Navier–Stokes equations.

Remark 13 Since the pressure is a quadratic function of the spatial coordinates x,

these solutions only have meaningful interpretations locally. Note the pressure field

here has been rescaled by the constant mass density ρ—see Remark 10. Further note

that the velocity solution field u only depends linearly on the spatial coordinates x;

this explains why once we established these are exact solutions of the Euler equations,

they are also solutions of the Navier–Stokes equations.
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Proof Recall that ∇u is the rate of strain tensor. It can be decomposed into a direct

sum of its symmetric and skew-symmetric parts which are the 3× 3 matrices

D := 1
2

(
(∇u) + (∇u)T

)
,

R := 1
2

(
(∇u)− (∇u)T

)
.

We can determine how ∇u evolves by taking the gradient of the homogeneous (no

body force) Navier–Stokes equations so that

∂

∂t
(∇u) + u · ∇(∇u) + (∇u)2 = ν ∆(∇u)−∇∇p.

Note here (∇u)2 = (∇u)(∇u) is simply matrix multiplication. By direct computation

(∇u)2 = (D +R)2 = (D2 +R2) + (DR+RD),

where the first term on the right is symmetric and the second is skew-symmetric. Hence

we can decompose the evolution of ∇u into the coupled evolution of its symmetric and

skew-symmetric parts

∂D

∂t
+ u · ∇D +D2 +R2 = ν ∆D −∇∇p,

∂R

∂t
+ u · ∇R+DR+RD = ν ∆R.

Directly computing the evolution for the three components of ω = (ω1, ω2, ω3)T from

the second system of equations we would arrive at the following equation for vorticity,

∂ω

∂t
+ u · ∇ω = ν ∆ω +Dω,

which we derived more directly in Section 16.

Thus far we have not utilized the ansatz (form) for the velocity or pressure we

assume in the statement of the theorem. Assuming u(x, t) = 1
2ω(t) × x + D(t)x,

for a given deformation matrix D = D(t), then ∇ × u = ω(t), independent of x,

and substituting this into the evolution equation for ω above we obtain the following

system of ordinary differential equations governing the evolution of ω = ω(t):

dω

dt
= D(t)ω.

Now the symmetric part governing the evolution of D = D(t), which is independent of

x, reduces to the system of differential equations

dD

dt
+D2 +R2 = −∇∇p.

Note that R = R(t) only as well, since ω = ω(t), and thus ∇∇p must be a function of

t only. Hence p = p(x, t) can only quadratically depend on x. Indeed after integrating

we must have p(x, t) = − 1
2 (dD/dt+D2 +R2)x · x. ut
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Fig. 14 Strain flow example.

Example (jet flow) Suppose the initial vorticity ω0 = 0 and D = diag{d1, d2, d3}
is a constant diagonal matrix where d1 + d2 + d3 = 0 so that Tr(D) = 0. Then from

Lemma 1, we see that the flow is irrotational, i.e. ω(t) = 0 for all t > 0. Hence the

velocity field u is given by

u(x, t) = D(t)x =

d1 x

d2 y

d3 z

 .

The particle path for a particle at (x0, y0, z0)T at time t = 0 is given by: x(t) = ed1tx0,

y(t) = ed2ty0 and z(t) = ed3tz0. If d1 < 0 and d2 < 0, then d3 > 0 and we see the flow

resembles two jets streaming in opposite directions away from the z = 0 plane.

Example (strain flow) Suppose the initial vorticity ω0 = 0 and D = diag{d1, d2, 0}
is a constant diagonal matrix such that d1 + d2 = 0. Then as in the last example, the

flow is irrotational with ω(t) = 0 for all t > 0 and

u(x, t) =

d1 x

d2 y

0

 .

The particle path for a particle at (x0, y0, z0)T at time t = 0 is given by: x(t) = ed1tx0,

y(t) = ed2ty0 and z(t) = z0. Since d2 = −d1, the flow forms a strain flow as shown in

Fig. 14—neighbouring particles are pushed together in one direction while being pulled

apart in the other orthogonal direction.

Example (vortex) Suppose the initial vorticity ω0 = (0, 0, ω0)T and D = O. Then

from Lemma 1 the velocity field u is given by

u(x, t) = 1
2ω × x =

− 1
2ω0y

1
2ω0x

0

 .

The particle path for a particle at (x0, y0, z0)T at time t = 0 is given by: x(t) =

cos( 1
2ω0t)x0− sin( 1

2ω0t)y0, y(t) = sin( 1
2ω0t)x0 + cos( 1

2ω0t)y0 and z(t) = z0. These are

circular trajectories, and indeed the flow resembles a solid body rotation; see Fig. 15.

Example (jet flow with swirl) Now suppose the initial vorticity ω0 = (0, 0, ω0)T and

D = diag{d1, d2, d3} is a constant diagonal matrix where d1 + d2 + d3 = 0. Then from
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Fig. 15 When a fluid flow is a rigid body rotation, the fluid particles flow on circular stream-
lines. The fluid particles on paths further from the origin or axis of rotation, circulate faster
at just the right speed that they remain alongside their neighbours on the paths just inside
them.

x

y

z

Fig. 16 Jet flow with swirl example. Fluid particles rotate around and move closer to the
z-axis whilst moving further from the z = 0 plane.

Lemma 1, we see that the only non-zero component of vorticity is the third component,

say ω = ω(t), where

ω(t) = ω0ed3t.

The velocity field u is given by

u(x, t) =

d1 x− 1
2ω(t)y

d2 y + 1
2ω(t)x

d3 z

 .

The particle path for a particle at (x0, y0, z0)T at t = 0 can be described as follows.

We see that z(t) = z0ed3t while x = x(t) and y = y(t) satisfy the coupled system of

ordinary differential equations

d

dt

(
x

y

)
=

(
d1 − 1

2ω(t)
1
2ω(t) d2

)(
x

y

)
.

If we assume d1 < 0 and d2 < 0 then the particles spiral around the z-axis with

decreasing radius and increasing angular velocity 1
2ω(t). The flow thus resembles a

rotating jet flow; see Fig. 16.

We now derive a simple class of solutions that retain the three underlying mecha-

nisms of Navier–Stokes flows: convection, vortex stretching and diffusion.

Example (shear-layer flows) Recall the vorticity ω evolves according to the partial

differential system
∂ω

∂t
+ u · ∇ω = ν ∆ω +Dω,
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with ∆u = −∇× ω. The material derivative term ∂ω/∂t+ u · ∇ω convects vorticity

along particle paths, while the term ν ∆ω is responsible for the diffusion of vorticity

and Du represents vortex stretching—the vorticity ω increases/decreases when aligns

along eigenvectors of D corresponding to positive/negative eigenvalues of D.

We seek an exact solution to the incompressible Navier–Stokes equations of the

following form (the first two velocity components represent a strain flow)

u(x, t) =

 −γxγy
w(x, t)


where γ is a constant, with p(x, t) = − 1

2γ
2
(
x2 + y2

)
. This represents a solution to

the Navier–Stokes equations if we can determine the solution w = w(x, t) to the linear

diffusion equation
∂w

∂t
− γx∂w

∂x
= ν

∂2w

∂x2
,

with w(x, 0) = w0(x). Computing the vorticity directly we get

ω(x, t) =

 0

−
(
∂w/∂x

)
(x, t)

0

 .

If we differentiate the equation above for the velocity field component w with respect

to x, then if ω := −∂w/∂x, we get

∂ω

∂t
− γx∂ω

∂x
= γω + ν

∂2ω

∂x2
,

with ω(x, 0) = ω0(x) = −(∂w0/∂x)(x). For this simpler flow we can see simpler sig-

natures of the three effects we want to isolate: there is the convecting velocity −γx;

vortex stretching from the term γω and diffusion in the term ν∂2ω/∂x2. Note that as

in the general case, the velocity field w can be recovered from the vorticity field ω by

w(x, t) = −
∫ x

−∞
ω(ξ, t) dξ.

Let us consider a special case: the viscous shear-layer solution where γ = 0. In this

case we see that the partial differential equation above for ω reduces to the simple heat

equation with solution

ω(x, t) =

∫
R
G(x− ξ, νt)ω0(ξ) dξ,

where G is the Gaussian heat kernel

G(ξ, t) :=
1√
4πt

e−ξ
2/4t.

Indeed the velocity field w is given by

w(x, t) =

∫
R
G(x− ξ, νt)w0(ξ) dξ,

so that both the vorticity ω and velocity w fields diffuse as time evolves; see Fig. 17.

It is possible to write down the exact solution for the general case in terms of

the Gaussian heat kernel, indeed, a very nice exposition can be found in Majda and

Bertozzi [13, p. 18].
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x

x

w(x,0)

w(x,t)

Fig. 17 Viscous shear flow example. The effect of diffusion on the velocity field w = w(x, t) is
to smooth out variations in the field as time progresses.

18 Dynamical similarity and Reynolds number

Our goal in this section is to demonstrate an important scaling property of the Navier–

Stokes equations for a homogeneous incompressible fluid without body force:

∂u

∂t
+ u · ∇u = ν ∆u− 1

ρ
∇p,

∇ · u = 0.

Note that two physical properties inherent to the fluid modelled are immediately ap-

parent, the mass density ρ, which is constant throughout the flow, and the kinematic

viscosity ν. Suppose we consider such a flow which is characterized by a typical length

scale L and velocity U . For example we might imagine a flow past an obstacle such a

sphere whose diameter is characterized by L and the impinging/undisturbed far-field

flow is uniform and given by U . These two scales naturally determine a typically time

scale T = L/U . Using these scales we can introduce the dimensionless variables

x′ =
x

L
, u′ =

u

U
and t′ =

t

T
.

Directly substituting for u = Uu′ and using the chain rule to replace t by t′ and x by

x′ in the Navier–Stokes equations, we obtain:

U

T

∂u′

∂t′
+
U2

L
u′ · ∇x′u′ =

νU

L2
∆x′u′ − 1

ρL
∇x′p.

The incompressibility condition becomes∇x′ ·u′ = 0. Using that T = L/U and dividing

through by U2/L we get

∂u′

∂t′
+ u′ · ∇x′u′ =

ν

UL
∆x′u′ − 1

ρU2
∇x′p.

If we set p′ = p/ρU2 and then drop the primes, we get

∂u

∂t
+ u · ∇u =

1

Re
∆u−∇p,
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which is the representation for the Navier–Stokes equations in dimensionless variables.

The dimensionless number

Re :=
UL

ν

is the Reynolds number. Its practical significance is as follows. Suppose we want to

design a jet plane (or perhaps just a wing). It might have a characteristic scale L1 and

typically cruise at speeds U1 with surrounding air having viscosity ν1. Rather than

build the plane to test its airflow properties it would be cheaper to build a scale model

of the aircraft—with exactly the same shape/geometry but smaller, with characteristic

scale L2. Then we could test the airflow properties in a wind tunnel for example, by

using a driving impinging wind of characteristic velocity U2 and air of viscosity ν2 so

that

U1L1

ν1
=
U2L2

ν2
.

The Reynolds number in the two scenarios are the same and the dimensionless Navier–

Stokes equations for the two flows identical. Hence the shape of the flows in the two

scenarios will be the same. We could also for example, replace the wind tunnel by a

water tunnel: the viscosity of air is ν1 = 0.15 cm2/s and of water ν2 = 0.0114 cm2/s,

i.e. ν1/ν2 ≈ 13. Hence for the same geometry and characteristic scale L1 = L2, if we

choose U1 = 13U2, the Reynolds numbers for the two flows will be the same. Such

flows, with the same geometry and the same Reynolds number are said to be similar.

Remark 14 Some typical Reynolds are as follows: aircraft: 108 to 109; cricket ball: 105;

blue whale: 108; cruise ship: 109; canine artery: 103; nematode: 0.6; capillaries: 10−3.

19 Stokes flow

Consider the individual terms in the incompressible three-dimensional Navier–Stokes

equations with no body force (in dimensionless form):

∂u

∂t
+ u · ∇u︸ ︷︷ ︸

inertia or

convective terms

= Re−1∆u︸ ︷︷ ︸
diffusion or

dissipation term

−∇p,

where Re is the Reynolds number. We wish to consider the small Reynolds number limit

Re → 0. Naively this means that the diffusion/dissipation term will be the dominant

term in the equations above. However we also want to maintain incompressibility, i.e.

∇ · u = 0. Since the pressure field is the Lagrange multiplier term that maintains the

incompressibility constraint, we should attempt to maintain it in the limit Re → 0.

Hence we suppose

p = Re−1q,

for a scaled pressure q. Further the flow may evolve on a slow timescale so that

t = Re τ.
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Making these changes of variables in the Navier–Stokes equations and taking the limit

Re→ 0, we obtain

∂u

∂τ
= ∆u−∇q,

⇔ ∂u

∂t
= Re−1∆u−∇p.

In dimensional variables we have thus derived the equations for Stokes flow :

ρ
∂u

∂t
= µ∆u−∇p.

More commonly, the stationary version of these equations are denoted Stokes flow.

Some immediate consequences are useful. If we respectively take the curl and divergence

of the Stokes equations we get

∂ω

∂t
= µ∆ω,

∆p = 0.

Suppose we know a stream function exists for the flow under consideration—so the

flow is incompressible and an additional symmetry allows us to eliminate one spatial

coordinate and one velocity component. For example suppose we have a stationary

two-dimensional flow u = (u, v)T in cartesian coordinates x = (x, y)T. Then there

exists a stream function ψ = ψ(x, y) given by

u =
∂ψ

∂y
and v = −∂ψ

∂x
.

Hence the vorticity of such a flow is given by ω = (0, 0,−∆ψ)T. Since for a stationary

Stokes flow ∆ω = 0, we must have

∆(∆ψ) = 0.

In other words the stream function satisfies the biharmonic equation.

In cylindrical polar coordinates assuming a stationary axisymmetric flow with no

swirl, i.e. no θ dependence and uθ = 0, the stream function ψ = ψ(r, z) is given by

ur =
1

r

∂ψ

∂z
and uz = −1

r

∂ψ

∂r
.

(We could use ψ → −rψ.) Direct computation reveals that the vorticity is given by

ω = (0, 1
rD2ψ, 0)T, where D2 is the second order partial differential operator defined

by

D2 := r
∂

∂r

(
1

r

∂

∂r

)
+

∂2

∂z2
.

Again, for a stationary Stokes flow ∆ω = 0. We use that for a divergence-free vector

field ω we have ∆ω = −∇×∇× ω to show that the stream function satisfies

D2(D2ψ) = 0.

In spherical polar coordinates assuming a stationary axisymmetric flow with no

swirl, i.e. no ϕ dependence and uϕ = 0, the stream function ψ = ψ(r, θ) is given by

ur =
1

r2 sin θ

∂ψ

∂θ
and uθ = − 1

r sin θ

∂ψ

∂r
.
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Direct computation implies that the vorticity is ω = (0, 0,− 1
r sin θD2ψ)T, where D2 is

now the second order partial differential operator given by

D2 :=
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
.

For a stationary Stokes flow ∆ω = 0. We again use that ∆ω = −∇×∇×ω to show that

the only non-zero component of ∆ω is its third component given by − 1
r sin θD2(D2ψ),

where D2 in both cases is the operator just quoted. Hence the stream function satisfies

D2(D2ψ) = 0.

Example (Viscous drag on sphere) Consider a uniform incompressible viscous flow

of velocity U , into which we place a spherical obstacle, radius a. The physical set up is

similar to that shown in Fig. 11. We assume that the flow around the sphere is steady.

Use spherical polar coordinates (r, θ, ϕ) to represent the flow with the south-north pole

axis passing through the centre of the sphere and aligned with the uniform flow U at

infinity. We assume that the flow is axisymmetric, i.e. independent of the azimuthal

angle ϕ, and there is no swirl so that uϕ = 0. Further, take the flow around the sphere

to be a Stokes flow, i.e. we have

∇p = µ∆u,

where p = p(r, θ) is the pressure field, u the velocity field and µ is the viscosity (a

constant parameter). Also assume the stream function is given by ψ = ψ(r, θ). For

such a flow, as we have seen, the stream function satisfies

D2(D2 ψ) = 0,

where D2 is the second order partial differential operator

D2 :=
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
.

Step 1: Determine the boundary conditions. The stream function ψ for the flow

prescribed is given by

ur =
1

r2 sin θ

∂ψ

∂θ
and uθ = − 1

r sin θ

∂ψ

∂r
.

First let us consider the boundary conditions as r → ∞. Decomposing the far-field

axial directed velocity field of speed U into components along r̂ and θ̂ we get U cos θ

and −U sin θ, respectively. Hence in the far-field limit we have

1

r2 sin θ

∂ψ

∂θ
∼ U cos θ and

1

r sin θ

∂ψ

∂r
∼ U sin θ.

The solution to this pair of first order partial differential equations is

ψ ∼ 1
2Ur

2 sin2 θ,

generating the far-field boundary condition in terms of ψ.
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Second consider the boundary conditions on the surface of the sphere. The no-slip

condition on r = a =⇒

1

a2 sin θ

∂ψ

∂θ
= 0 and

1

a sin θ

∂ψ

∂r
= 0.

Hence ψ is independent of r and θ along the boundary r = a; we can therefore take

ψ = 0 and ∂ψ/∂r = 0 to be the boundary conditions on r = a. Thus, to summarize,

the boundary conditions for this problem are

ψ → 1
2Ur

2 sin2 θ as r →∞ and ψ =
∂ψ

∂r
= 0 on r = a.

Step 2: Solve the modified biharmonic equation. Motivated by the boundary condi-

tions, we look for a solution to the modified biharmonic equation D2(D2 ψ) = 0 of the

form ψ = Uf(r) sin2 θ. First computing D2 ψ gives

D2 ψ = U
(
f ′′(r)− 2

r2
f(r)

)
sin2 θ,

in which we set

F (r) := f ′′(r)− 2

r2
f(r).

Now compute D2(D2 ψ) which gives

D2(D2 ψ) = D2(UF (r) sin2 θ)

= U
(
F ′′(r)− 2

r2
F (r)

)
sin2 θ.

Hence D2(D2 ψ) = 0 if and only if

F ′′(r)− 2

r2
F (r) = 0.

This is a linear second order ordinary differential equation whose two independent

solutions are r2 and 1/r; thus F (r) is a linear combination of these two solutions.

However we require f(r) which satisfies

f ′′(r)− 2

r2
f(r) = F (r).

This is a non-homogeneous linear second order ordinary differential equation, again

whose two independent homogeneous solutions are r2 and 1/r; while the particular

integral for the non-homogeneous component F (r), which is a linear combination of

r2 and 1/r, has the form Ar4 + Cr for some constants A and C. Hence f = f(r)

necessarily has the form

f(r) = Ar4 +Br2 + Cr +
D

r
,

where B and D are two further constants.

Step 3: Substitute the boundary conditions. First we see as r →∞ we must have

U
(
Ar4 +Br2 + Cr +

D

r

)
sin2 θ = 1

2Ur
2 sin2 θ
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so that A = 0 and B = 1
2 . Second we see that on r = a we must have

U
(
a2

2
+ Ca+

D

a

)
sin2 θ = 0 and U

(
a+ C − D

a2

)
sin2 θ = 0.

Hence we get two simultaneous equations for C and D, namely a2/2 + Ca+D/a = 0

and a+ C −D/a2 = 0, whose solution is C = −3a/4 and D = a3/4. We thus have

ψ = 1
4Ua

2

(
2r2

a2
− 3r

a
+
a

r

)
sin2 θ.

Step 4: Compute the pressure. Using the stationary Stokes equations ∇p = µ∆u

we first compute u, i.e. the components ur and uθ from the stream function ψ. Using

the relations given

ur = 1
4Ua

2 · 2
(

2

a2
− 3

ar
+

a

r3

)
cos θ and uθ = − 1

4Ua
2 · 1

r

(
4r

a2
− 3

a
− a

r2

)
sin θ.

Then second, using the hint given, compute ω = ∇× u and then ∇× ω. Note ω has

only one non-zero component, namely

ωϕ =
1

r

∂

∂r

(
ruθ
)
− 1

r

∂

∂θ

(
ur
)

= −3Ua

2r2
sin θ,

with a lot of terms cancelling. Then we have

−∇× ω =
3Ua

2r3

2 cos θ

sin θ

0

 .

Thus to find the pressure p we must solve the pair of first order partial differential

equations: ( ∂p
∂r

1
r
∂p
∂θ

)
= −3Uaµ

2r3

(
2 cos θ

sin θ

)
These give (here p∞ is the constant ambient pressure as r →∞)

p = p∞ −
3Uaµ

2r2
cos θ.

Step 5: Compute the axial force. For a small patch of area dS on the surface of the

sphere the force is given by dF = σ(x)n̂ dS. Since the stress tensor σ = −pI + σ̂ where

p is the pressure and σ̂ is the deviatoric stress tensor, the total force on the surface of

the sphere r = a is given by

F =

∫ ∫
(−pI + σ̂)n̂ dS.
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Now use that the deviatoric stress is a linear function of the deformation tensor D,

indeed σ̂ = 2µD. Further the normal n̂ to the surface r = a is simply r̂, the unit

normal in the r coordinate direction, and so

σ̂n̂ = 2µDr̂

= 2µ

Drr Drθ DrϕDrθ Dθθ Dθϕ
Drϕ Dθϕ Dϕϕ

1

0

0


= 2µ

DrrDrθ
0


= 2µ

(
Drrr̂ +Drθθ̂

)
,

where θ̂ is the unit vector in the θ coordinate direction. Now note that the area integral

over the sphere surface r = a can be split into a single integral of concentric rings of

radius a sin θ on the sphere surface of area ‘2πa · a sin θ dθ’. Thus we get

F = 2πa2
∫ π

0

(
−pr̂ + 2µDrrr̂ + 2µDrθθ̂

)
sin θ dθ,

The axial component of the force F ax (i.e. along the direction of the far-field flow),

since the components of r̂ and θ̂ in the axial direction are given by r̂ cos θ and −θ̂ sin θ,

respectively, is thus given by

F ax = 2πa2
∫ π

0

(
(−p+ 2µDrr) cos θ − 2µDrθ sin θ

)
sin θ dθ.

From the formulae sheet we find

Drr =
∂ur
∂r

and Drθ = 1
2

(
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

)
.

The no-slip boundary conditions on the sphere surface r = a implies ur = uθ = 0.

Further from our expressions for ur and uθ in part (d) above we see that ∂ur/∂r =

∂ur/∂θ = 0 and ∂uθ/∂r = −(3U/2a) sin θ on r = a. Substituting these into the

expressions for the total force above, as well as using the expression for the pressure p

from Step 4, we get

F ax = 2πa2
∫ π

0

(
3Uµ

2a

)(
cos2 θ sin θ + sin3 θ

)
dθ

= 3πUµa

∫ π

0

sin θ dθ

= 6πUµa.

Hence the axial component of the force which corresponds to the drag on the sphere

is given by 6πµUa.

Example (Viscous corner flow) Consider a steady incompressible viscous corner

flow as shown in Fig. 18. The fluid is trapped between two plates, one is horizontal,

while the other plate lies above the horizontal plate at an acute angle α. The flat edge

of the upper plate almost touches the horizontal plate; there is a small gap between

the two. The horizontal plate moves with a speed U to the left perpendicular to the
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imaginary line of intersection between the two plates; the upper plate remains fixed.

We assume the trapped flow between the two plates to be a Stokes flow, i.e. we have

∇p = µ∆u,

where p is the pressure field, u the velocity field and µ is the viscosity. Further we

assume the flow is uniform in the direction given by the imaginary line of intersection

between the plates—denote this the z-axis. Hence in cylindrical polar coordinates there

exists a stream function ψ = ψ(r, θ) such that

u = ∇×

 0

0

ψ(r, θ)

 .

Taking the curl of the Stokes flow equation we see that

0 = ∇×
(
µ∆u

)
= µ∆

(
∇× u

)
= µ∆

(
∇×∇×

 0

0

ψ(r, θ)

)

= µ∆ (−∆)

 0

0

ψ(r, θ)

 .

Hence the the stream function ψ for this Stokes flow satisfies the biharmonic equation

∆(∆ψ) = 0.

Next we determine the boundary conditions. Explicitly in plane polar coordinates

(we henceforth drop the third z coordinate with respect to which the corner flow is

uniform), the relations between the velocity components ur and uθ and the stream

function ψ are

ur =
1

r

∂ψ

∂θ
and uθ = −∂ψ

∂r
.

First, using the no-slip boundary conditions on the plate along θ = 0 which is moving

towards the origin at speed U we immediately see that

∂ψ

∂r
= 0 and

1

r

∂ψ

∂θ
= −U on θ = 0.

Second, for the plate at the angle θ = α, the no-slip boundary conditions imply

∂ψ

∂r
= 0 and

∂ψ

∂θ
= 0 on θ = α.

Given the form of the boundary conditions, we look for a solution to the biharmonic

equation ∆(∆ψ) = 0 of the form ψ = Urf(θ). Directly computing, we have

∆
(
Urf(θ)

)
= U

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)(
rf(θ)

)
=
U

r

(
f(θ) + f ′′(θ)

)
.
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U

α

fluid

Fig. 18 Corner flow: An incompressible viscous fluid is trapped between two plates, one is
horizontal, while the other plate lies above at an acute angle α. The flat edge of the upper
plate almost touches the horizontal plate; there is a small gap between the two. The horizontal
plate moves with a speed U to the left perpendicular to the imaginary line of intersection
between the two plates; the upper plate remains fixed.

Then we directly compute

∆
(
∆
(
Urf(θ)

))
= ∆

(
U

r

(
f(θ) + f ′′(θ)

))
= U

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)(
1

r

(
f(θ) + f ′′(θ)

))
=
U

r3

(
f(θ) + 2f ′′(θ) + f ′′′′(θ)

)
.

Hence ∆(∆ψ) = 0 if and only if f = f(θ) satisfies

f ′′′′ + 2f ′′ + f = 0.

This is a linear homogeneous constant coefficient fourth order ordinary differential

equation. Looking for solutions of the form f(θ) = exp(λθ) we obtain the polynomial

auxiliary equation (λ2 +1)2 = 0 whose roots are ±i (each repeated). Hence the general

solution has the form

f(θ) = A sin θ +B cos θ + Cθ sin θ +Dθ cos θ,

for some constants A, B, C and D.

Now for the boundary conditions, note that the form of the solution assumed implies

ur = Uf ′(θ) and uθ = −Uf(θ). First consider the boundary conditions on θ = 0:

ur = −U ⇔ f ′(0) = −1 and uθ = 0 ⇔ f(0) = 0.

Second for the boundary conditions on θ = α:

ur = 0 ⇔ f ′(α) = 0 and uθ = 0 ⇔ f(α) = 0.

In other words f = f(θ) must satisfy

f(0) = f(α) = f ′(α) = 0 and f ′(0) = −1.

We can use these four boundary conditions to determine the constants A, B, C and

D, indeed we get

f(θ) =
θ sinα sin(α− θ)− α(α− θ) sin θ

α2 − sin2 α
.
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Finally we should ask ourselves, what is the distance from the origin within which

the solution we sought is consistent with our assumption of Stokes flow? Since the

inertia terms u ·∇u scale like U2/r while the viscous terms ν∆u scale like νU/r2. Our

Stokes flow assumption was that

U2/r

νU/r2
� 1 ⇔ Ur

ν
� 1.

Hence our solution is valid provided r � ν/U .

20 Lubrication theory

In lubrication theory we consider the following scenario. Suppose an incompressible

homogeneous viscous fluid occupies a shallow layer whose typical depth is H and

horizontal extent is L; see Fig. 19 for the set up. Let x and y denote horizontal Cartesian

coordinates and z is the vertical coordinate. Suppose (u, v, w) are the fluid velocity

components in the three coordinate directions x, y and z, respectively. As usual, p

denotes the pressure, while ρ denotes the constant density, of the fluid. We also assume

a typical horizontal velocity scale for (u, v) is U and a typical vertical velocity scale for

w is W . As we have already hinted, we assume H � L. Our goal is to systematically

derive a reduced set of equations from the incompressible Navier–Stokes equations

that provide a very accurate approximation under the conditions stated. Note that the

natural time scale for this problem is T = O(L/U).

First consider the continuity equation (incompressibility condition) which reveals

the scaling
∂u

∂x︸︷︷︸
U/L

+
∂v

∂y︸︷︷︸
U/L

+
∂w

∂z︸︷︷︸
W/H

= 0.

To maintain incompressibility we deduce we must haveW = O
(
U(H/L)

)
. SinceH � L

we conclude W � U .

Second consider the Navier–Stokes equation for the velocity components u and v

and the corresponding scaling of each of the terms therein:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z︸ ︷︷ ︸
U2/L

= ν
(
∂2u

∂x2
+
∂2u

∂y2︸ ︷︷ ︸
νU/L2

+
∂2u

∂z2︸︷︷︸
νU/H2

)
− 1

ρ

∂p

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z︸ ︷︷ ︸
U2/L

= ν
(
∂2v

∂x2
+
∂2v

∂y2︸ ︷︷ ︸
νU/L2

+
∂2v

∂z2︸︷︷︸
νU/H2

)
− 1

ρ

∂p

∂y
.

In the first equation, comparing the viscous terms ∂2u/∂x2 and ∂2u/∂y2 to ∂2u/∂z2

we see that the ratio of their scaling is

νU/L2

νU/H2
=
H2

L2
� 1.

Thus we omit the ∂2u/∂x2 and ∂2u/∂y2 terms. Now compare the inertia terms (those

on the left-hand side) to the viscosity term ν∂2u∂z2, the ratio of their scaling is

U2/L

νU/H2
=
UH2

νL
=
UH

ν

H

L
� 1,
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L

H z=h(x,y,t) fluid

Fig. 19 Lubrication theory: an incompressible homogeneous viscous fluid occupies a shallow
layer whose typical depth is H and horizontal extent is L. In the asymptotic limit H � L, the
Navier–Stokes equations reduce to the shallow layer equations.

and hence we omit all the inertia terms—under the assumption that the modified

Reynolds number Rm = UH/ν is small or order one. Finally to keep the pressure term

(which mediates the incompressibility condition) it must have the scaling

∂xP/ρ = O
(
νU/H2) =⇒ P = O

(
µUL/H2).

An exactly analogous scaling argument applies to the second equation above and thus

we see that the final equations for these two components are (with µ = ρν)

∂p

∂x
= µ

∂2u

∂z2
,

∂p

∂y
= µ

∂2v

∂z2
.

Third consider the Navier–Stokes equation for the velocity component w. The scal-

ing of the individual terms reveals:

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z︸ ︷︷ ︸
UW/L=U2H/L2

= ν
(

∂2w

∂x2
+
∂2w

∂y2︸ ︷︷ ︸
νW/L2=νUH/L3

+
∂2w

∂z2︸︷︷︸
νW/H2=νU/LH

)
− 1

ρ

∂p

∂z︸︷︷︸
νUL/H3

.

The largest scaling term appears to be the pressure term so we compare the other

terms to that. The ratio of the inertia terms to the pressure term in terms of their

scaling is

U2H/L2

νUL/H3
=
UH4

νL3
=
UH

ν

(
H

L

)3
� 1,

again under the assumption the modified Reynolds number Rm = UH/ν is small or

order one. The ratio of the viscous terms ν∂2w/∂x2 and ν∂2w/∂y2 to the pressure

term in terms of their scaling is

νUH/L3

νUL/H3
=
(
H

L

)4
� 1.

Finally the ratio of the viscous term ν∂2w/∂z2 to the pressure term is

νU/LH

νUL/H3
=
(
H

L

)2
� 1.
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Hence the third equation reduces to ∂p/∂z = 0. The complete shallow layer equations

are thus

∂p

∂x
= µ

∂2u

∂z2
,

∂p

∂y
= µ

∂2v

∂z2
,

∂p

∂z
= 0,

together with the incompressibility condition. Note that from the third equation we

deduce the pressure p = p(x, y, t) only.

As shown in Fig. 19 suppose that the fluid occupies a region between a lower rigid

plate at z = 0 and a top surface at z = h(x, y, t). We assume here for the moment that

the top surface is free, so perhaps it represents a fluid-air boundary, however we can

easily specialize our subsequent analysis to a rigid lid upper boundary. Importantly

though, we assume no-slip boundary conditions at z = 0 while we suppose the velocity

components at the surface height z = h(x, y, t) are u(x, y, h, t) = U and v(x, y, h, t) = V

with U and V given. For this scenario, we can derive a closed form equation for how

the surface height z = h(x, y, t) evolves in time as follows. Since p = p(x, y, t) only

we deduce that from the first two shallow layer equations that u and v are quadratic

functions of z. Indeed if we integrate the equations for u and v with respect to z twice

and apply the boundary conditions we find

u =
Uz

h
+

1

2µ
· z(z − h) · ∂p

∂x

v =
V z

h
+

1

2µ
· z(z − h) · ∂p

∂y
.

However incompressibility implies we have

w(x, y, h, t)− w(x, y, 0, t) = −
∫ h

0

∂u

∂x
+
∂v

∂y
dz.

Recall we have no-slip boundary conditions at z = 0. Further note that at z = h the

vertical velocity component is

w =
∂h

∂t
+ U

∂h

∂x
+ V

∂h

∂y
.

Also we have the calculus identity

∂

∂x

∫ h

0

u dz =

∫ h

0

∂u

∂x
dη + U

∂h

∂x

∣∣∣∣
z=h

,

with a similar result for the ∂v/∂y component in the incompressibility constraint just

above. Putting all this together we find that

∂h

∂t
= − ∂

∂x

∫ h

0

u dz − ∂

∂y

∫ h

0

v dz.

If we substitute our expressions for u and v above into the right-hand side and integrate

we arrive at the following closed form evolution equation for h:

∂h

∂t
+

∂

∂x

(
h3

12µ

∂p

∂x
− 1

2Uh
)

+
∂

∂y

(
h3

12µ

∂p

∂y
− 1

2V h
)

= 0,



52 Simon J.A. Malham

or equivalently

12µ
∂h

∂t
+ 6µ

(
∂(Uh)

∂x
+
∂(V h)

∂y

)
=

∂

∂x

(
h3 ∂p

∂x

)
+

∂

∂y

(
h3 ∂p

∂y

)
.

Example (Squeeze film) An incompressible homogeneous viscous fluid occupies a

region between two parallel plates that are very close together—a squeeze film. The

upper plate is a circular disc with radius L. Assume that the volume occupied by the

liquid is a flat cylindrical shape with circular cross-section of radius L and height H—

see Fig. 20 for the set up. Suppose (r, θ, z) are cylindrical polar coordinates relative to

the origin which is on the lower plate at the centre of the disc of fluid. Let (ur, uθ, uz) be

the fluid velocity components in the three coordinate directions r, θ and z, respectively.

We assume throughout that the flow is axisymmetric (independent of θ) and there is no

swirl (the velocity component uθ = 0). Further we assume that the lower plate remains

fixed at z = 0 while the height of the parallel upper disc plate given by z = h(t) changes

with time. No-slip boundary conditions apply on both plates, i.e. ur = 0 on z = 0 and

z = h(t), while uz = 0 on z = 0 and uz = h′(t) on z = h(t). Our goal in this example is

to compute the total force on the upper disc plate. Since the relative scaling of the terms

in the incompressible Navier–Stokes equations here concern the separation of scales

between the vertical (z, uz) and horizontal (r, θ, ur, uθ) coordinates and velocities in

cylindrical polar coordinates, we can equally carry out the scale analysis in Cartesian

vertical (z, w) and horizontal (x, y, u, v) coordinates and velocities, as we did above,

assuming the same scaling for the two, namely (H,W ) and (L,U) for the vertical and

horizontal coordinates and velocities. Hence in this example, the scale analysis above

assuming H � L generates the shallow layer equations:

∂p

∂r
= µ

∂2ur
∂z2

,

∂p

∂z
= 0,

together with incompressibility (note uθ ≡ 0). We deduce p = p(r) only and

∂p

∂r
= µ

∂2ur
∂z2

.

Integrating and using the no-slip boundary conditions on both plates, we get

ur =
1

2µ
· ∂p
∂r
· z(z − h).

The flow out of the volume of fluid (cylinder) is the integral quantity∫ h

0

∫ 2π

0

ur r dθ dz,

since ‘r dθ dz’ is a small patch of area on the sides of the cylinder and ur is the normal

velocity there. Hence the rate of change of total volume of the fluid between the parallel

plates is

2πr

∫ h

0

ur dz,
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upper disc plate

lower plate

h

L

Fig. 20 Lubrication theory: an incompressible homogeneous viscous fluid occupies a region
between two plates that are very close together—a squeeze film. The upper plate is a circular
disc with radius L. We assume that the volume occupied by the liquid is a flat cylindrical
shape with circular cross-section of radius L and height H.

Substituting the expression for the velocity field ur above we find

2πr

∫ h

0

ur dz =
πr

µ

∂p

∂r

∫ h

0

z(z − h) dz

= −πr
µ
· ∂p
∂r
· h

3

6
.

If the upper disc plate moves with velocity h′(t) then the rate of change of total volume

of the fluid between the parallel plates is also given by the cross-sectional area times

that velocity, i.e. πr2h′(t). Equating this expression with that above we get

πr2h′(t) = −πr
µ
· ∂p
∂r
· h

3

6
⇔ ∂p

∂r
= −6µr

h3
h′.

Assuming that the pressure at the r = L boundary of the cylindrical volume of fluid

is zero, the total force on the disc plate is given by

p(r) =
6µ

h3
h′
∫ L

r

r dr

=
3µ

h3
h′(L2 − r2).

Hence the total force on the disc is given by

3µ

h3
h′
∫ L

0

(L2 − r2) 2πr dr =
3πµL4

2h3
h′.

Finally, we can approximate time for a constant force F to pull the parallel plates apart

if the initial separation is h0. Assuming the mass of the upper disc plate is negligible,

we have

F =
3πµL4

2h3
h′ ⇔ h−2 = h−2

0 − 4Ft

3πµL4
.

Hence h → ∞ when t → 3πµL4/4Fh2
0; which is the time it takes to pull the parallel

plates apart.
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UE

δ

boundary layer

EU

L

Fig. 21 Boundary layer theory: the flow over the wing is well approximated by an Euler flow
as it is a high Reynolds number flow. However the fluid is ultimately viscous and fluid particles
at the wing surface must adhere to it. Hence there is a boundary layer between the wing and
bulk flow across which the velocity field rapidly changes from zero velocity relative to the wing
to the bulk velocity UE past the wing.

21 Boundary layer theory

The Reynolds numbers associated with flows past aircraft or ships are typically large,

indeed of the order 108 of 109—recall the remark at the end of Section 18 on Dynamical

similarity and Reynolds numbers. For individual wings or fins the Reynolds number

may be an order of magnitude or two smaller. However such Reynolds numbers are

still large and the flow around wings for example would be well approximated by Euler

flow. We can imagine the flow over the top of the wing of an aircraft has a high relative

velocity tangential to the surface wing directed towards the rear edge of the wing.

This would appear to be consistent with no flux boundary conditions we apply for

the Euler equations—in particular there is no boundary restriction on the tangential

component of the fluid velocity field. However air or water flow is viscous. The fluid

particles on the wing must satisfy viscous boundary conditions, i.e. exactly at the

surface they must adhere to the wing and thus have zero velocity relative to the wing.

The reconciliation of this conundrum is that there must be a boundary layer on the

surface of the wing. By this we mean a special thin fluid layer exists between the wing

and the fast moving Euler flow past the wing. The velocity profile of the flow past the

wing across the boundary layer as one measures continuously from the wing surface to

the top of the boundary layer must change extremely rapidly. Indeed it must change

from zero velocity relative to the wing surface to fast relative velocity (the speed of the

aircraft) towards the rear of the wing—see Fig. 21.

We shall now derive an accurate model, reduced (or even deduced!) from the full

Navier–Stokes equations, for this scenario. We will assume a two dimensional flow

around an object of typical size L (for example the length from wing tip to rear edge).

We assume that the bulk flow is governed by the Euler equations, which is a good

approximation given it is a very high Reynolds number flow (as discussed above). We

further assume it is one-dimensional and given by a horizontal velocity field to the right

UE = UE(x, t) which depends on the horizontal parameter x which is positive towards

the right—see Fig. 21. This is consistent with no normal flow close to the boundary

layer. We return to discussing the bulk flow once we have derived the boundary layer

equations. If U represents the typical bulk fluid velocity (relative speed of the object)

then the underlying Reynolds number is

Re =
UL

ν
.
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A typical time scale is thus T = O(L/U).

Let us now focus on the boundary layer itself. We assume the flow is two-dimensional

incompressible homogeneous Navier–Stokes flow. Suppose the velocity components

u = u(x, y, t) and v = v(x, y, t) in the horizontal and vertical directions, respectively,

with typical scale U and V . Let δ denote the typical width of the boundary layer. The

continuity equation reveals the scaling

∂u

∂x︸︷︷︸
U/`

+
∂v

∂y︸︷︷︸
V/δ

= 0.

To maintain incompressibility we deduce that V = O(Uδ/`). We now consider the

Navier–Stokes equation for the first velocity component u which is given by

∂u

∂t
+ u

∂u

∂x︸ ︷︷ ︸
U2/L

+ v
∂u

∂y︸︷︷︸
V U/δ

= ν
∂2u

∂x2︸ ︷︷ ︸
νU/L2

+ ν
∂2u

∂y2︸ ︷︷ ︸
νU/δ2

− 1

ρ

∂p

∂x︸ ︷︷ ︸
P/ρL

,

where we suppose the pressure has typical scale P . Note since V = O(Uδ/`), all the

inertia terms have the same scaling. Our goal in the boundary layer is to keep the inertia

terms and a viscous term. In particular the horizontal velocity field in the boundary

layer varies rapidly with y. We thus want to retain the ν∂2u/∂y2 term. This means we

must have

U2

L
=
νU

δ2
⇔ δ =

(
νL

U

)1/2
⇔ δ =

L

(Re)1/2
.

The other viscous term ν∂2u/∂x2 thus has typical scaling νU/L2 = (Re)−1U2/L which

is thus asymptotically small compared to the inertia terms since we are assuming the

Reynolds number Re is very large. We thus neglect this viscous term. If we now consider

the second velocity component v, we find

∂v

∂t
+ u

∂v

∂x︸ ︷︷ ︸
UV/L

+ v
∂v

∂y︸︷︷︸
V 2/δ

= ν
∂2v

∂x2︸ ︷︷ ︸
νV/L2

+ ν
∂2v

∂y2︸ ︷︷ ︸
νV/δ2

− 1

ρ

∂p

∂y︸ ︷︷ ︸
P/ρδ

.

Using the equivalent scaling we already established above we observe that

UV

L
=
U2δ

L2
= (Re)−1/2U

2

L
and

V 2

δ
=
U2δ

L2
= (Re)−1/2U

2

L
.

We further observe that

νV

L2
=
νUδ

L3
= (Re)−1/2 νU

L2
= (Re)−1U

2

L

and
νV

δ2
=
νU

δL
= (Re)1/2 νU

L2
= (Re)−1/2U

2

L
.

Hence we see the viscous term ν∂2v/∂y2 is very small and we immediately neglect

it. Further we observe that the pressure term −(1/ρ)∂p/∂y, to balance the remaining

terms in the equation for the field v = v(x, y, t), must have the scaling (Re)−1/2U2/L.
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Since these terms are asymptotically small compared to the terms we have retained in

the evolution equation for horizontal velocity field u = u(x, y, t), we deduce that

∂p

∂y
= 0.

Consequently we only retain the evolution equation for the u = u(x, y, t) with the vis-

cous term ν∂2u/∂x2 neglected. Let us now non-dimensionalize our variables as follows

x′ =
x

L
, y′ =

y

δ
, u′ =

u

U
, v′ =

v

V
, t′ =

tU

L
and p′ =

p

ρU2
.

Using the natural scaling above, in these non-dimensional variables after dropping the

primes, we obtain the Prandtl boundary layer equations (derived in 1904):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − ∂p

∂x
+
∂2u

∂y2
,

∂p

∂y
= 0,

∂u

∂x
+
∂v

∂y
= 0.

These equations are supplemented with the boundary conditions

u = 0 and v = 0

when y = 0. The second equation above implies that the pressure field in the boundary

layer is independent of y so that p = p(x, t) only. Hence if the pressure field or more

particularly ∂p/∂x can be determined at the top boundary of the boundary layer,

then it is determined inside the boundary layer. With this knowledge, we note that the

system of equations represented by the first and third Prandtl equations above, is third

order with respect to y—the first equation is a second order partial differential equation

with respect to y while the third equation is first order. We thus require an additional

boundary condition in the y direction. This is naturally provided by matching the

boundary layer flow with the bulk Euler flow outside the boundary layer. See Chorin

and Marsden [?, Section 2.2] for an in depth discussion of possible matching strategies.

Here we will simply match horizontal boundary layer velocity field u = u(x, y, t) with

the far field Euler flow UE = UE(x, t). In terms of the non-dimensionalized y coordinate,

temporarily reverting back to the primed notation for them, we have

y′ =
y

δ
= (Re)1/2 y

L
.

In the limit of large Reynolds number, the top boundary corresponds to y′ →∞. Thus,

dropping primes again, the third boundary condition we require is, as y →∞, that

u ∼ UE(x, t).

Thus we can in principle solve the Prandtl boundary layer equations if UE = UE(x, t)

is known, in which case
∂p

∂x
=
∂UE

∂t
+ UE

∂UE

∂x
.

This can be directly substituted into the first Prandtl boundary layer equation above.
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Fig. 22 Blasius problem: steady boundary layer flow over a semi-infinite flat plate, uniform in
the z direction.

Remark 15 We have implicitly assumed that the lower surface is flat. If lower surface

has curvature then ∂p/∂y is not zero, corresponding to some centripetal acceleration.

Example (Blasius problem, 1908) Consider a steady boundary layer flow on a semi-

infinite flat plate as shown in Fig. 22. The plate and flow is assumed to be uniform

in the z direction. The leading edge of the plate coincides the origin while the plate

itself lies along the positive x-axis. The y-axis is orthogonal to the plate as shown in

Fig. 22. We will focus in the flow in the x > 0 and y > 0 region. We suppose that a

uniform horizontal flow of velocity U in the positive x direction washes over the plate.

We assume that a steady boundary layer flow develops on the plate as shown. Since

the Euler flow outside the boundary is uniformly U there is no pressure gradient with

respect to x so that ∂p/∂x is zero outside the boundary, as thus by the arguments in

the general theory above, also zero inside the boundary. Hence the Prandtl boundary

layer equations in dimensional form are

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
,

∂u

∂x
+
∂v

∂y
= 0.

The boundary conditions for u = u(x, y) and v = v(x, y) on the flat plate are

u(x, 0) = 0 and v(x, 0) = 0,

for all x > 0. Since the plate is semi-infinite there is no imposed horizontal scale.

Following the arguments in the general theory above, but with L replace by x we

deduce that V = Uδ/x and thus also that δ = δ(x) where

δ(x) :=
(
νx

U

)1/2
.

In the boundary layer, the natural non-dimensional vertical coordinate is

η :=
y

δ(x)
.

As the flow is incompressible and two dimensional there is a stream function ψ = ψ(x, y)

satisfying ∂ψ/∂y = u and ∂ψ/∂y = −v. We seek a similarity solution of the form

ψ = U δ(x) f(η).
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Directly computing the partial derivatives we find that

u = U f ′(η) and v = − 1
2

(
νU

x

)1/2
(f − ηf ′).

Substituting these forms for u and v into the first Prandtl boundary layer equation

above we find that f = f(η) satisfies the third order ordinary differential equation

f ′′′ + 1
2ff

′′ = 0.

This is supplemented with the boundary conditions on the flat plate that correspond

to f(0) = 0 and f ′(0) = 0. The final boundary condition should be that u ∼ U as

y′ →∞. Indeed we see that this boundary condition corresponds to f ′ ∼ 1 as η →∞.

This boundary value problem can be numerically computed.

22 Exercises

Exercise (trajectories and streamlines: expanding jet) Find the trajectories and stream-

lines when (u, v, w)T = (xe2t−z , ye2t−z , 2e2t−z)T. What is the track of the particle

passing through (1, 1, 0)T at time t = 0?

Exercise (trajectories and streamlines: three dimensions) Suppose a velocity field

u(x, t) = (u, v, w)T is given for t > −1 by

u =
x

1 + t
, v =

y

1 + 1
2 t

and w = z.

Find the particle paths and streamlines for a particle starting at (x0, y0, z0)T.

Exercise (streamlines: plane/cylindrical polar coordinates) Sketch streamlines for the

steady flow field (u, v, w)T = α(t) · (x − y, x + y, 0)T—show that the streamlines are

exponential spirals. Here α = α(t) is an arbitrary function of t. (Hint: convert to

cylindrical polar coordinates (r, θ, z) first. Note that in these coordinates the equations

for trajectories are

dr

dt
= ur, r

dθ

dt
= uθ, and

dz

dt
= uz ,

where ur, uθ and uz are the velocity components in the corresponding coordinate

directions.)

Exercise (steady oscillating channel flow) An incompressible fluid is in steady two-

dimensional flow in the channel −∞ < x < ∞, −π/2 < y < π/2, with velocity

u = (1 + x sin y, cos y)T. Find the equation of the streamlines and sketch them. Show

that the flow has stagnation points at (1,−π/2) and (−1, π/2).

Exercise (channel shear flow) Consider the two-dimensional channel flow (with U a

given constant)

u =

 0

U(1− x2/a2)

0

 ,

between the two walls x = ±a. Show that there is a stream function and find it. (Hint:

a stream function ψ exists for a velocity field u = (u, v, w)T when ∇ · u = 0 and we
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two walls of the cylinders
fluid lies between the

Region of flow is Ω :

R1R2

Fig. 23 Couette flow between two concentric cylinders of radii R1 < R2.

have an additional symmetry. Here the additional symmetry is uniformity with respect

to z. You thus need to verify that if u = ∂ψ/∂y and v = −∂ψ/∂x, then ∇ · u = 0 and

then solve this system of equations to find ψ.)

Show that approximately 91% of the volume flux across y = y0 for some constant

y0 flows through the central part of the channel |x| 6 3
4a.

Exercise (flow inside and around a disc) Calculate the stream function ψ for the flow

field u =
(
U cos θ·(1−a2/r2),−U sin θ·(1+a2/r2)−Γ/2πr

)T
in plane polar coordinates,

where U, a, γ are constants.

Exercise (Couette flow) (From Chorin and Marsden, p. 31.) Let Ω be the region

between two concentric cylinders of radii R1 and R2, where R1 < R2. Suppose the

velocity field in cylindrical coordinates u = (ur, uθ, uz)T of the fluid flow inside Ω, is

given by ur = 0, uz = 0 and

uθ =
A

r
+Br,

where

A = −R
2
1R

2
2(ω2 − ω1)

R2
2 −R2

1

and B = −R
2
1ω1 −R2

2ω2

R2
2 −R2

1

.

This is known as a Couette flow—see Fig. 23. Show that the:

(a) velocity field u = (ur, uθ, uz)T is a stationary solution of Euler’s equations of

motion for an ideal fluid with density ρ ≡ 1 (hint: you need to find a pressure field

p that is consistent with the velocity field given. Indeed the pressure field should

be p = −A2/2r2 + 2AB log r +B2r2/2 + C for some arbitrary constant C.);

(b) angular velocity of the flow (i.e. the quantity uθ/r) is ω1 on the cylinder r = R1

and ω2 on the cylinder r = R2.

(c) the vorticity field ∇× u = (0, 0, 2B).

Exercise (hurricane) We devise a simple model for a hurricane.

(a) Using the Euler equations for an ideal incompressible flow in cylindrical coordinates

(see the bath or sink drain problem in the main text) show that at position (r, θ, z),
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for a flow which is independent of θ with ur = uz = 0, we have

u2
θ

r
=

1

ρ0

∂p

∂r
,

0 =
1

ρ0

∂p

∂z
+ g,

where p = p(r, z) is the pressure and g is the acceleration due to gravity (assume

this to be the body force per unit mass). Verify that any such flow is indeed in-

compressible.

(b) In a simple model for a hurricane the air is taken to have uniform constant density

ρ0 and each fluid particle traverses a horizontal circle whose centre is on the fixed

vertical z-axis. The (angular) speed uθ at a distance r from the axis is

uθ =

{
Ωr, for 0 6 r 6 a,

Ω a3/2

r1/2
, for r > a,

where Ω and a are known constants.

(i) Now consider the flow given above in the inner region 0 6 r 6 a. Using the

equations in part (a) above, show that the pressure in this region is given by

p = c0 + 1
2ρ0Ω

2r2 − gρ0z,

where c0 is a constant. A free surface of the fluid is one for which the pressure

is constant. Show that the shape of a free surface for 0 6 r 6 a is a paraboloid

of revolution, i.e. it has the form

z = Ar2 +B,

for some constants A and B. Specify the exact form of A and B.

(ii) Now consider the flow given above in the outer region r > a. Again using the

equations in part (a) above, and that the pressure must be continuous at r = a,

show that the pressure in this region is given by

p = c0 −
ρ0

r
Ω2a3 − gρ0z + 3

2ρ0Ω
2a2,

where c0 is the same constant (reference pressure) as that in part (i) above.

Exercise (Venturi tube) Consider the Venturi tube shown in Fig. 24. Assume that the

ideal fluid flow through the construction is homogeneous, incompressible and steady.

The flow in the wider section of cross-sectional area A1, has velocity u1 and pressure

p1, while that in the narrower section of cross-sectional area A2, has velocity u2 and

pressure p2. Separately within the uniform wide and narrow sections, we assume the

velocity and pressure are uniform themselves.

(a) Why does the relation A1u1 = A2u2 hold? Why is the flow faster in the narrower

region of the tube compared to the wider region of the tube?

(b) Use Bernoulli’s theorem to show that

1
2u

2
1 +

p1

ρ0
= 1

2u
2
2 +

p2

ρ0
,

where ρ0 is the constant uniform density of the fluid.



Introductory fluid mechanics 61

streamline

A  , u , p 1       1       1A  , u , p 1       1       1
A  , u  , p 2       2        2

Fig. 24 Venturi tube: the flow in the wider section of cross-sectional area A1 has velocity
u1 and pressure p1, while that in the narrower section of cross-sectional area A2 has velocity
u2 and pressure p2. Separately within the uniform wide and narrow sections, we assume the
velocity and pressure are uniform themselves.

(c) Using the results in parts (a) and (b), compare the pressure in the narrow and wide

regions of the tube.

(d) Give a practical application where the principles of the Venturi tube is used or

might be useful.

Exercise (Clepsydra or water clock) A clepsydra has the form of a surface of revolution

containing water and the level of the free surface of the water falls at a constant rate,

as the water flows out through a small hole in the base. The basic setup is shown in

Fig. 25.

(a) Apply Bernoulli’s theorem to one of the typical streamlines shown in Fig. 25 to

show that

1

2

(
dz

dt

)2

= 1
2U

2 − gz

where z is the height of the free surface above the small hole in the base, U is the

velocity of the water coming out of the small hole and g is the acceleration due to

gravity.

(b) If S is the cross-sectional area of the hole in the bottom, and A is the cross-sectional

area of the free surface, explain why we must have

A
dz

dt
= S U.

(c) Assuming that S � A, combine parts (a) and (b) to explain why we can deduce

U ∼
√

2gz.

(d) Now combine the results from (b) and (c) above, to show that the shape of the

container that guarantees that the free surface of the water drops at a constant

rate must have the form z = C r4 in cylindrical polars, where C is a constant.

Exercise (coffee in a mug) A coffee mug in the form of a right circular cylinder (diam-

eter 2a, height h), closed at one end, is initially filled to a depth d > 1
2h with static

inviscid coffee. Suppose the coffee is then made to rotate inside the mug—see Fig. 26.
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Fig. 25 Clepsydra (water clock).

(a) Using the Euler equations for an ideal incompressible homogeneous flow in cylin-

drical coordinates show that at position (r, θ, z), for a flow which is independent of

θ with ur = uz = 0, the Euler equations reduce to

u2
θ

r
=

1

ρ

∂p

∂r
,

0 =
1

ρ

∂p

∂z
+ g,

where p = p(r, z) is the pressure, ρ is the constant uniform fluid density and g is

the acceleration due to gravity (assume this to be the body force per unit mass).

Verify that any such flow is indeed incompressible.

(b) Assume that the coffee in the mug is rotating as a solid body with constant angular

velocity Ω so that the velocity component uθ at a distance r from the axis of

symmetry for 0 6 r 6 a is

uθ = Ωr.

Use the equations in part (a), to show that the pressure in this region is given by

p = 1
2ρΩ

2r2 − gρz + C,

where C is an arbitrary constant. At the free surface between the coffee and air,

the pressure is constant and equal to the atmospheric pressure P0. Use this to show

that the shape of the free surface has the form

z =
Ω2

2g
r2 +

C − P0

ρg
.

(c) Note the we are free to choose C = P0 in the equation of the free surface so that

it is described by z = Ω2r2/2g. This is equivalent to choosing the origin of our

cylindrical coordinates to be the centre of the dip in the free surface. Suppose that

this origin is a distance z0 from the bottom of the mug.

(i) Explain why the total volume of coffee is πa2d. Then by using incompressibility,

explain why the following constraint must be satisfied:

πa2z0 +

∫ a

0

Ω2r2

2g
· 2πr dr = πa2d.
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Fig. 26 Coffee mug: we consider a mug of coffee of diameter 2a and height h, which is initially
filled with coffee to a depth d. The coffee is then made to rotate about the axis of symmetry
of the mug. The free surface between the coffee and the air takes up the characteristic shape
shown, dipping down towards the middle (axis of symmetry). The goal is to specify the shape
of the free surface.

(ii) By computing the integral in the constraint in part (i), show that some coffee

will be spilled out of the mug if Ω2 > 4g(h − d)/a2. Explain briefly why this

formula does not apply when the mug is initially less than half full.

Exercise (Channel flow: Froude number) Recall the scenario of the steady channel

flow over a gently undulating bed given in Section 11. Consider the case when the

maximum permissible height y0 compatible with the upstream conditions, and the

actual maximum height ymax of the undulation are exactly equal, i.e. ymax = y0. Show

that the flow becomes locally critical immediately above ymax and, by a local expansion

about that position, show that there are subcritical and supercritical flows downstream

consistent with the continuity and Bernoulli equations (friction in a real flow leads to

the latter being preferred).

Exercise (Bernoulli’s Theorem for irrotational unsteady flow) Consider Euler’s equa-

tions of motion for an ideal homogeneous incompressible fluid, with u = u(x, t) de-

noting the fluid velocity at position x and time t, ρ the uniform constant density,

p = p(x, t) the pressure, and f denoting the body force per unit mass. Suppose that

the flow is unsteady, but irrotational, i.e. we know that ∇×u = 0 throughout the flow.

This means that we know there exists a scalar potential function ϕ = ϕ(x, t) such that

u = ∇ϕ. Also suppose that the body force is conservative so that f = −∇Φ for some

potential function Φ = Φ(x, t).

(a) Using the identity

u · ∇u = 1
2∇(|u|2)− u× (∇× u),

show from Euler’s equations of motion that the Bernoulli quantity

H :=
∂ϕ

∂t
+ 1

2 |u|
2 +

p

ρ
+ Φ

satisfies ∇H = 0 throughout the flow.

(b) From part (a) above we can deduce that H can only be a function of t throughout

the flow, say H = f(t) for some function f . By setting

V := ϕ−
∫ t

0

f(τ) dτ,
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show that the Bernoulli quantity

∂V

∂t
+ 1

2 |u|
2 +

p

ρ
+ Φ

is constant throughout the flow.

Exercise (rigid body rotation) An ideal fluid of constant uniform density ρ0 is contained

within a fixed right-circular cylinder (with symmetry axis the z-axis). The fluid moves

under the influence of a body force field f = (αx + βy, γx + δy, 0)T per unit mass,

where α, β, γ and δ are independent of the space coordinates. Use Euler’s equations of

motion to show that a rigid body rotation of the fluid about the z-axis, with angular

velocity ω(t) given by ω̇ = 1
2 (γ−β) is a possible solution of the equation and boundary

conditions. Show that the pressure is given by

p = p0 +
1

2
ρ0

(
(ω2 + α)x2 + (β + γ)xy + (ω2 + δ)y2),

where p0 is the pressure at the origin.

Exercise (vorticity and streamlines) An inviscid incompressible fluid of uniform density

ρ is in steady two-dimensional horizontal motion. Show that the Euler equations are

equivalent to

∂H

∂x
= vω and

∂H

∂y
= −uω,

where H = p/ρ+ 1
2 (u2 + v2), where p is the dynamical pressure, (u, v)T is the velocity

field and ω is the vorticity. Deduce that ω is constant along streamlines and that this

is in accord with Kelvin’s theorem.

Exercise (vorticity, streamlines with gravity) An incompressible inviscid fluid, under

the influence of gravity, has the velocity field u = (2αy,−αx, 0)T with the z-axis

vertically upwards; and α is constant. Also the density ρ is constant. Verify that u

satisfies the governing equations and find the pressure p. Show that the Bernoulli

function H = p/ρ+ 1
2 |u|

2 + Φ is constant on streamlines and vortex lines, where Φ is

the gravitational potential.

Exercise (Flow in an infinite pipe: Poiseuille flow) (From Chorin and Marsden, pp. 45-

6.) Consider an infinite pipe with circular cross-section of radius a, whose centre line

is aligned along the z-axis. Assume no-slip boundary conditions at r = a, for all z,

i.e. on the inside surface of the cylinder. Using cylindrical polar coordinates, look for a

stationary solution to the fluid flow in the pipe of the following form. Assume there is

no radial flow, ur = 0, and no swirl, uθ = 0. Further assume there is a constant pressure

gradient down the pipe, i.e. that p = −Cz for some constant C. Lastly, suppose that

the flow down the pipe, i.e. the velocity component uz , has the form uz = uz(r) (it is

a function of r only).

(a) Using the Navier–Stokes equations, show that

C = −ρν∆uz = −ρν
(

1

r

∂

∂r

(
r
∂uz
∂r

))
.
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(b) Integrating the equation above yields

uz = − C

4ρν
r2 +A log r +B,

where A and B are constants. We naturally require that the solution be bounded.

Explain why this implies A = 0. Now use the no-slip boundary condition to deter-

mine B. Hence show that

uz =
C

4ρν
(a2 − r2).

(c) Show that the mass-flow rate across any cross section of the pipe is given by∫
ρuz dS = πCa4/8ν.

This is known as the fourth power law.

Exercise (Elliptic pipe flow) Consider an infinite horizontal pipe with constant elliptical

cross-section, whose centre line is aligned along the z-axis. Assume no-slip boundary

conditions at

x2

a2
+
y2

b2
= 1,

where a and b are the semi-axis lengths of the elliptical cross-section. Using the incom-

pressible Navier–Stokes equations for a homogeneous fluid in Cartesian coordinates,

look for a stationary solution to the fluid flow in the pipe of the following form. As-

sume there is no flow transverse to the axial direction of the pipe, so that if u and v are

the velocity components in the coordinate x and y directions, respectively, then u = 0

and v = 0. Further assume there is a constant pressure gradient down the pipe, i.e. the

pressure p = −Gz for some constant G, and there is no body force. Lastly, suppose

that for the flow down the pipe the velocity component w = w(x, y) only.

(a) Using the Navier–Stokes equations, show that w must satisfy

∂2w

∂2x
+
∂2w

∂2y
= −G

ν
.

(b) Show that, assuming A, B and C are constants,

w = Ax2 +By2 + C

is a solution to the partial differential equation for w in part (a) above provided

A+B = − G
2ν
.

(c) Use the no-slip boundary condition to show that

A = − G
2ν
· b2

a2 + b2
, B = − G

2ν
· a2

a2 + b2
and C =

G

2ν
· a2b2

a2 + b2
.
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(d) Explain why the volume flux across any cross section of the pipe is given by∫
w dS

and then show that it is given by

πa3b3G

4(a2 + b2)ν
.

(Hint: to compute the integral you may find the substitutions x = ar cos θ and

y = br sin θ, together with the fact that the infinitesimal area element ‘dxdy’

transforms to ‘ab rdr dθ’, useful.)

(e) Explain why for a given elliptical cross-sectional area, the optimal choice of a and

b to maximize the volume flow-rate is a = b.

Exercise (Wind blowing across a lake) Wind blowing across the surface of a lake of

uniform depth d exerts a constant and uniform tangential stress S. The water is initially

at rest. Find the water velocity at the surface as a function of time for νt� d2. (Hint:

solve for the vorticity using the vorticity equation for a very deep lake.)

Suppose now that the wind has been blowing for a sufficiently long time to es-

tablish a steady state. Assuming that the water velocity can be taken to be almost

uni-directional and that the horizontal dimensions of the lake are large compared with

d, show that the water velocity at the surface is Sd/4µ. (Hint: A pressure gradient

would be needed to ensure no net flux (why?) in the steady state, and this pressure

gradient leads to a small rise in the surface elevation of the lake in the direction of the

wind.)

Exercise (Stokes flow: between hinged plates) Starting with the continuity and Navier–

Stokes equations for a steady incompressible two-dimensional flow, show that for Stokes

flow the stream function satisfies ∇4ψ = 0. Two identical rigid plates are hinged

together along their line of intersection O, and have a relative angular velocity Ω.

Find the stream function representing the (two-dimensional) Stokes flow near O, and

estimate the distance within O within which the solution is self-consistent.

Exercise (Stokes flow: rotating sphere) A rigid sphere of radius a is rotating with

angular velocity Ω in a fluid at rest at infinity. Show that when ρa2Ω/µ � 1 the

couple exerted on the fluid by the sphere is 8πµa3Ω. (Use that in spherical polar

coordinates (r, θ, ϕ) for a velocity field u = (0, 0, uϕ)T, the relevant component of the

deformation matrix is Drϕ = 1
2r∂(uϕ/r)/∂r.)

Exercise (Lubrication theory: shear stress) Incompressible fluid of viscosity µ is con-

tained between y = 0 and y = h(x) for 0 6 x 6 a where h� a. The fluid pressure at

x = 0 exceeds that at x = a by an amount p̂. Using lubrication theory show that

dp

dx
=

A(
h(x)

)3
where A is a constant. For the special case where h = Ce−Bx, determine dp/dx, where

B and C are positive constants. Hence show that the maximum shear stress on the

plane is

3
2 p̂

(
BCe2Ba

e3Ba − 1

)
.
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Exercise (Lubrication theory: shallow layer) An incompressible homogeneous viscous

fluid occupies a shallow layer whose typical depth is H and horizontal extent is L; see

Fig. 19 for the set up. Suppose that for this question x and y are horizontal Cartesian

coordinates and z is the vertical coordinate. Let u, v and w be the fluid velocity

components in the three coordinate directions x, y and z, respectively. Suppose p is

the pressure. Assume throughout that a typical horizontal velocity scale for u and v is

U and a typical vertical velocity scale for w is W . We denote by ρ, the constant density

of the fluid.

(a) Assume throughout that H � L.

(i) Using that the fluid is incompressible, explain how we can deduce that W is

asymptotically smaller than U .

(ii) The body force ρg in this example is due to gravity g which we suppose acts

in the negative z direction (i.e. downwards). Using part (i), show the three

dimensional Navier–Stokes equations reduce to the shallow layer equations:

∂P

∂x
= µ

∂2u

∂z2
,

∂P

∂y
= µ

∂2v

∂z2
,

∂P

∂z
= 0,

where P := p + ρgz is the modified pressure and µ = ρν is the first coefficient

of viscosity

(b) For the shallow fluid layer shown in Fig. 19, assume no-slip boundary conditions on

the rigid lower layer. Further suppose that the pressure p is constant (indeed take

it to be zero) along the top surface of the layer at z = h(x, y, t). Further suppose

that surface stress forces are applied to the surface z = h(x, y, t) so that

µ
∂u

∂z
=
∂Γ

∂x
,

µ
∂v

∂z
=
∂Γ

∂y
,

where Γ = Γ (x, y) is a given function. Using the shallow layer equations in part

(a) and the boundary conditions, show that the height function h(x, y, t) satisfies

the partial differential equation

2µ
∂h

∂t
+

∂

∂x

(
h2 ∂

∂x

(
Γ − 1

3ρgh
2))+

∂

∂y

(
h2 ∂

∂y

(
Γ − 1

3ρgh
2)) = 0.

Exercise (Lubrication theory: Hele–Shaw cell) An incompressible homogeneous fluid

occupies the region between two horizontal rigid parallel planes, which are a distance

h apart, and outside a rigid cylinder which intersects the planes normally; see Fig. 27

for the set up. Suppose that for this question x and y are horizontal coordinates and z

is the vertical coordinate. Assume throughout that a typical horizontal velocity scale

for u and v is U and a typical vertical velocity scale for w is W .

(a) Explain very briefly why a is a typical horizontal scale for (x, y) and h a typical

vertical scale for z.



68 Simon J.A. Malham

fluid

cylinder

a

h

Side view Above view

cylinder

fluid

Fig. 27 Hele–Shaw cell: an incompressible homogeneous fluid occupies the region between two
parallel planes (a distance h apart) and outside the cylinder of radius a (normal to the planes).

(b) Hereafter further assume that h� a and further that

ρUh2 � aµ

where µ = ρν is the first coefficient of viscosity. Using these assumptions, show

that the Navier–Stokes equations for an incompressible homogeneous fluid reduce

to the system of equations

µ
∂2u

∂z2
=
∂p

∂x
,

µ
∂2v

∂z2
=
∂p

∂y
,

∂p

∂z
= 0,

for a steady flow, where p = p(x, y, z) is the pressure.

(c) We define the vertically averaged velocity components (u, v)T =
(
u(x, y), v(x, y)

)T
for the flow in part (b) by

(
u(x, y), v(x, y)

)T
:=

1

h

∫ h

0

(
u(x, y), v(x, y)

)T
dz.

Show that the vertically averaged velocity field u = (u, v)T is both incompressible

and irrotational.

(d) What is an appropriate boundary condition for u on the cylinder?

Exercise (Boundary layer theory: axisymmetric flow) In an axisymmetric flow the veloc-

ity components corresponding to cylindrical polar coordinates (r, θ, z) are (ur, uθ, uz)T.

If ur = −αr/2 and uz = αz, where α is a constant, verify that the continuity equation

is satisfied. If the swirl velocity uθ is assumed independent of z, show that the vorticity

has the form ω =
(
0, 0, ω(r, t)

)T
.

(a) At t = 0 the vorticity is given by ω = ω0f(r), where ω0 is a constant. Verify from

the dynamical inviscid vorticity equation that at a later time t,

ω = ω0 exp(αt)f
(
r exp(αt/2)

)
,

and interpret this result in terms of stretching of material lines.
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(b) Consider now steady viscous flow. Write down the governing equation for ω and

show that it is satisfied by

ω = ω0 exp(−αr2/4ν).

Why is a steady state possible in this case but not in (a)? What is the dominant

physical balance in the flow?

Exercise (Boundary layer theory: rigid wall) Seek similarity solutions of the boundary

layer equation

ψxψxy − ψxψyy = UUx + νψyyy

in the form ψ = U(x)δ(x)f(η) where η = y/δ(x). Show that f satisfies the equation

f ′′′ + αff ′′ + β
(
1− (f ′)2) = 0,

and explain why α and β must be constants. Give α and β in terms of U(x) and

δ(x), and hence determine the possible forms of U(x) and δ(x). State the boundary

conditions on f if there is a rigid wall at y = 0 and an outer flow with velocity U(x)

as y →∞.

A Multivariable calculus identities

We provide here some useful multivariable calculus identities. Here φ and ψ are generic scalars,
and u and v are generic vectors.

1. ∇× u = det

 i j k
∂/∂x ∂/∂y ∂/∂z
u v w

 =


∂w
∂y
− ∂v
∂z

∂u
∂z
− ∂w

∂x
∂v
∂x
− ∂u

∂y

.

2. ∇ · (∇φ) = ∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
.

3. ∇× (∇φ) ≡ 0.
4. ∇ · (∇× u) ≡ 0.
5. ∇× (∇× u) = ∇(∇ · u)−∇2u.
6. ∇(φψ) = φ∇ψ + ψ∇φ.
7. ∇(u · v) = (u · ∇)v + (v · ∇)u+ u× (∇× v) + v × (∇× u).
8. ∇ · (φu) = φ(∇ · u) + u · ∇φ.
9. ∇ · (u× v) = v · (∇× u)− u · (∇× v).

10. ∇× (φu) = φ∇× u+∇φ× u.
11. ∇× (u× v) = u (∇ · v)− v (∇ · u) + (v · ∇)u− (u · ∇)v.

B Navier–Stokes equations in cylindrical polar coordinates

The incompressible Navier–Stokes equations in cylindrical polar coordinates (r, θ, z) with the
velocity field u = (ur, uθ, uz)T are

∂ur

∂t
+ (u · ∇)ur −

u2θ
r

= −
1

ρ

∂p

∂r
+ ν

(
∆ur −

ur

r2
−

2

r2
∂uθ

∂θ

)
+ fr,

∂uθ

∂t
+ (u · ∇)uθ +

uruθ

r
= −

1

ρr

∂p

∂θ
+ ν

(
∆uθ +

2

r2
∂ur

∂θ
−
uθ

r2

)
+ fθ,

∂uz

∂t
+ (u · ∇)uz = −

1

ρ

∂p

∂z
+ ν∆uz + fz ,
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where p = p(r, θ, z, t) is the pressure, ρ is the mass density and f = (fr, fθ, fz)T is the body
force per unit mass. Here we also have

u · ∇ = ur
∂

∂r
+
uθ

r

∂

∂θ
+ uz

∂

∂z

and

∆ =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
+

∂2

∂z2

Further the gradient operator and the divergence of a vector field u are given in cylindrical
coordinates, respectively, by

∇ =

 ∂
∂r

1
r
∂
∂θ
∂
∂z


and

∇ · u =
1

r

∂

∂r
(rur) +

1

r

∂uθ

∂θ
+
∂uz

∂z
.

In cylindrical coordinates ∇× u is given by

∇× u =

ωrωθ
ωz

 =

 1
r
∂uz
∂θ
− ∂uθ

∂z
∂ur
∂z
− ∂uz

∂r
1
r
∂
∂r

(ruθ)− 1
r
∂ur
∂θ

 .

Lastly the diagonal components of the deformation matrix D are

Drr =
∂ur

∂r
, Dθθ =

1

r

∂uθ

∂θ
+
ur

r
and Dzz =

∂uz

∂z
,

while the off-diagonal components are given by

2Drθ = r
∂

∂r

(uθ
r

)
+

1

r

∂ur

∂θ
, 2Drz =

∂ur

∂z
+
∂uz

∂r
and 2Dθz =

1

r

∂uz

∂θ
+
∂uθ

∂z
.

C Navier–Stokes equations in spherical polar coordinates

The incompressible Navier–Stokes equations in spherical polar coordinates (r, θ, ϕ) with the
velocity field u = (ur, uθ, uϕ)T are (note θ is the angle to the south-north pole axis and ϕ is
the azimuthal angle)

∂ur

∂t
+ (u · ∇)ur −

u2θ
r
−
u2ϕ

r
= −

1

ρ

∂p

∂r

+ ν

(
∆ur − 2

ur

r2
−

2

r2 sin θ

∂

∂θ
(uθ sin θ)−

2

r2 sin θ

∂uϕ

∂ϕ

)
+ fr,

∂uθ

∂t
+ (u · ∇)uθ +

uruθ

r
−
u2ϕ cos θ

r sin θ
= −

1

ρr

∂p

∂θ

+ ν

(
∆uθ +

2

r2
∂ur

∂θ
−

uθ

r2 sin2 θ
− 2

cos θ

r2 sin2 θ

∂uϕ

∂ϕ

)
+ fθ,

∂uϕ

∂t
+ (u · ∇)uϕ +

uruϕ

r
+
uθuϕ cos θ

r sin θ
= −

1

ρr sin θ

∂p

∂ϕ

+ ν

(
∆uϕ +

2

r2 sin θ

∂ur

∂ϕ
+

2 cos θ

r2 sin2 θ

∂uθ

∂ϕ
−

uϕ

r2 sin2 θ

)
+ fz ,

where p = p(r, θ, ϕ, t) is the pressure, ρ is the mass density and f = (fr, fθ, fϕ)T is the body
force per unit mass. Here we also have

u · ∇ = ur
∂

∂r
+
uθ

r

∂

∂θ
+

uϕ

r sin θ

∂

∂ϕ
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and

∆ =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
.

Further the gradient operator and the divergence of a vector field u are given in spherical
coordinates, respectively, by

∇ =


∂
∂r

1
r
∂
∂θ

1
r sin θ

∂
∂ϕ


and

∇ · u =
1

r2
∂

∂r
(r2ur) +

1

r sin θ

∂

∂θ
(sin θ uθ) +

1

r sin θ

∂uϕ

∂ϕ
.

In spherical coordinates ∇× u is given by

∇× u =

ωrωθ
ωϕ

 =


1

r sin θ
∂
∂θ

(sin θuϕ)− ∂uθ
∂ϕ

1
r sin θ

∂ur
∂ϕ
− 1
r
∂
∂r

(ruϕ)
1
r
∂
∂r

(ruθ)− 1
r
∂ur
∂θ

 .

Lastly the diagonal components of the deformation matrix D are

Drr =
∂ur

∂r
, Dθθ =

1

r

∂uθ

∂θ
+
ur

r
and Dϕϕ =

1

r sin θ

∂uϕ

∂ϕ
+
ur

r
+
uθ cot θ

r
,

while the off-diagonal components are given by

2Drθ = r
∂

∂r

(uθ
r

)
+

1

r

∂ur

∂θ
, 2Drϕ =

1

r sin θ

∂ur

∂ϕ
+ r

∂

∂r

(uϕ
r

)
and

2Dθϕ =
sin θ

r

∂

∂θ

( uϕ

sin θ

)
+

1

r sin θ

∂uθ

∂ϕ
.

D Ideal fluid flow and conservation of energy

We show that an ideal flow that conserves energy is necessarily incompressible. We have derived
two conservation laws thus far, first, conservation of mass,

∂ρ

∂t
+∇ · (ρu) = 0,

and second, balance of momentum,

ρ
Du

Dt
= −∇p+ ρf .

If we are in three dimensional space so d = 3, we have four equations, but five unknowns—
namely u, p and ρ. We cannot specify the fluid motion completely without specifying one more
condition.

Definition 10 (Kinetic energy) The kinetic energy of the fluid in the region Ω ⊆ D is

E := 1
2

∫
Ω
ρ |u|2 dV.
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The rate of change of the kinetic energy, using the Transport Theorem, is given by

dE

dt
=

d

dt

(
1
2

∫
Ωt

ρ |u|2 dV

)
= 1

2

∫
Ωt

ρ
D|u|2

Dt
dV

= 1
2

∫
Ωt

ρ
D

Dt
(u · u) dV

=

∫
Ωt

ρu ·
Du

Dt
dV

=

∫
Ωt

u ·
(
ρ

Du

Dt

)
dV.

Here we assume that all the energy is kinetic. The principal of conservation of energy states
(from Chorin and Marsden, page 13):

the rate of change of kinetic energy in a portion of fluid equals the rate at which the
pressure and body forces do work.

In other words we have

dE

dt
= −

∫
∂Ωt

pu · n dS +

∫
Ωt

ρu · f dV.

We compare this with our expression above for the rate of change of the kinetic energy. Equat-
ing the two expressions, using Euler’s equation of motion, and noticing that the body force
term immediately cancels, we get ∫

∂Ωt

pu · n dS =

∫
Ωt

u · ∇p dV

⇔
∫
Ωt

∇ · (up) dV =

∫
Ωt

u · ∇p dV

⇔
∫
Ωt

u · ∇p+ (∇ · u) p dV =

∫
Ωt

u · ∇p dV

⇔
∫
Ωt

(∇ · u) p dV = 0.

Since Ω and therefore Ωt is arbitrary we see that the assumption that all the energy is kinetic
implies

∇ · u = 0.

Hence our third conservation law, conservation of energy has lead to the equation of state,
∇ · u = 0, i.e. that an ideal flow is incompressible.

Hence the Euler equations for a homogeneous incompressible flow in D are

∂u

∂t
+ u · ∇u = −

1

ρ
∇p+ f ,

∇ · u = 0,

together with the boundary condition on ∂D which is u · n = 0.

E Isentropic flows

A compressible flow is isentropic if there is a function π, called the enthalpy, such that

∇π =
1

ρ
∇p.
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The Euler equations for an isentropic flow are thus

∂u

∂t
+ u · ∇u = −∇π + f

∂ρ

∂t
+∇ · (ρu) = 0,

in D, and on ∂D, u · n = 0 (or matching normal velocities if the boundary is moving).
For compressible ideal gas flow, the pressure is often proportional to ργ , for some constant

γ > 1, i.e.
p = C ργ ,

for some constant C. This is a special case of an isentropic flow, and is an example of an
equation of state. In fact we can actually compute

π =

∫ ρ p′(z)

z
dz =

γ C ργ

γ − 1
,

and the internal energy (see Chorin and Marsden, pages 14 and 15)

ε = π − (p/ρ) =
C ργ

γ − 1
.
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