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Introduction

We outline briefly here the principal results from functional analysis required for the

nonlinear analysis of solutions to partial differential equations. The concepts and state-

ments provided are not meant to be exhaustive, but are intended to be a minimum

set of tools with which most of the basic results concerning the existence, uniqueness

and regularity of solutions can be proved. We assume the reader has a rough notion

of Lebesgue measure and integrability. We state results without proof as most of them

can be found in standard texts; for example Evans [2].

1 Function spaces

We introduce spaces of continuous and continuously differentiable functions as well

as Lebesgue and Sobolev spaces for functions. Throughout assume that Ω ⊂ Rd is a

bounded domain of dimension d > 1. The generalized partial derivative operator ∂α of

order m = |α| is defined as

∂α :=
∂α1+···+αd

∂xα1
1 · · · ∂xαd

d

,

where α = (α1, . . . , αd) is a multi-index with α1 + · · ·+ αd = m.

1.1 Continuous differentiability

Definition 1 (Continuously differentiable functions) For any non-negative integer m,

Cm(Ω) denotes the space of all functions whose partial derivatives, up to and including

order m, are all continuous on Ω.
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Example 1 The spaces C0(Ω) = C(Ω) and C1(Ω) denote the spaces of continuous

functions and continuously differentiable functions, respectively, on Ω. The space

C∞(Ω) :=

∞\
m=0

Cm(Ω),

denotes the space of smooth functions on Ω.

Remark 1 We shall denote by Cm
0 (Ω) the subspace of Cm(Ω) of functions which have

compact support in Ω.

The subset of functions of Cm(Ω) which are bounded and uniformly continuous on

Ω can be uniquely extended to the closure Ω of Ω. We shall use Cm`
Ω

´
to denote

the space of functions whose partial derivatives, up to and including order m, are all

bounded and uniformly continuous on Ω. This is a Banach space with norm

‖f‖Cm(Ω)
:= max

06|α|6m
sup
x∈Ω

|∂αf(x)|.

Remark 2 If V is a vector space, we shall use C(Ω; V ) to denote the space of continuous

functions whose image lies in V . For example, f ∈ Rn lies in the space of vector valued

continuous functions if each component of f is in C(Ω; R) and we write f ∈ C(Ω; Rn).

When the image space is clear from the context we will simply write C(Ω).

1.2 Lebesgue integrability

Definition 2 (Lebesgue integrable functions) For any real number p > 0, the Lebesgue

space Lp(Ω) is the space of equivalence classes of p-integrable functions on Ω (in the

Lebesgue sense), i.e. it is the set of all Lebesgue measurable functions f defined on Ω

for which the following functional is finite:

‖f‖Lp(Ω) :=

„Z
Ω
|f |p dx

«1/p

.

Remark 3 If we are interested in Rd-valued functions then we use |f |p in the right-

hand side in the definition above, where |f | denotes the Euclidean norm/length of

f ∈ Rn; and denote the space Lp(Ω; Rn) unless the image space is obvious from the

context and we simply write Lp(Ω).

Remark 4 Note that we identify functions that differ on a set of Lebesgue measure

zero, hence this is a space of equivalence classes of Lebesgue measurable functions. For

example, if one function differs from another at only a finite number of points in Ω, we

will consider them to be the same function, and the same for any other function that

differs from it on a set of Lebesgue measure zero on Ω. Indeed from this perspective

Lebesgue integrable functions need only be defined almost everywhere on Ω, meaning

everywhere except on a set of Lebesgue measure zero.

Example 2 Suppose Ω = [0, 1] and f = f(x) takes the values 1 if x is irrational in [0, 1]

and 0 if x is rational. The infimum and supremum processes that are used to define the

Riemann integral do not converge for this function and so it is not defined. However

the Lebesgue integral is defined and takes the value 1. Here we could use f̂(x) ≡ 1 on

[0, 1] as the representative of the class of functions (all differing from f̂ on [0, 1] on a

set of Lebesgue measure zero) with this property.
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Remark 5 In practice as we shall see, when we compute estimates we rarely need

to keep tabs on this subtlety. Most of the time we can assume the functions we are

computing with are smooth, and then use density arguments (see the next lemma) in

the final steps to then relax this assumption.

Lemma 1 For 1 6 p < ∞, the spaces C0(Ω) and C∞
0 (Ω) are both dense in Lp(Ω).

Hence it is always possible to find a smooth function arbitrarily close to an Lp function

in the Lp-norm, at least for 1 6 p < ∞. For the limit p →∞ though, we must be more

careful.

Definition 3 (Bounded functions) A measurable function f on Ω is essentially bounded

if there exists a constant K such that |f(x)| 6 K almost everywhere on Ω. The greatest

lower bound of such constants is called the essential supremum of |f | on Ω which we

write as ess supx∈Ω |f(x)|. Then L∞(Ω) is the vector space consisting of all functions

f for which the norm ‖f‖L∞(Ω) := ess supx∈Ω |f(x)| is finite.

Remark 6 The spaces C(Ω), C0(Ω) and C∞
0 (Ω) are proper subspaces of L∞.

Definition 4 (Inner product) The space of square integrable functions L2(Ω; Rn) is an

inner product space, indeed it is a separable Hilbert space, with inner product

〈f , g〉 :=

Z
Ω

f · g dx.

1.3 Sobolev spaces

Definition 5 (Local integrability) A function f defined almost everywhere on Ω is

locally Lp-integrable on Ω provided f ∈ Lp(D) for every measurable D such that

D ⊆ Ω and D is compact in Rd. We write f ∈ Lp
loc(Ω).

Definition 6 (Weak derivatives) Let f and h be two locally L1-integrable functions

on Ω. We call h = ∂αf the (partial) weak derivative of f provided h satisfies, for every

ϕ ∈ C∞
0 (Ω), Z

Ω
f(x) ∂αϕ(x) dx = (−1)|α|

Z
Ω

h(x)ϕ(x) dx.

We now define vector subspaces of Lp(Ω) spaces where we additionally demand that

their weak derivatives are also Lp-integrable.

Definition 7 (Sobolev space) For any 1 6 p 6 ∞, the vector subspace of Lp(Ω)

functions given by

Wm,p(Ω) :=
˘
f ∈ Lp(Ω) : ∂αf ∈ Lp(Ω), ∀α : 0 6 |α| 6 m

¯
is the Sobolev space of Lp(Ω) functions whose weak derivatives up to order m are also

Lp(Ω) functions.
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The Sobolev space Wm,p(Ω) is a Banach space with norm

‖f‖W m,p(Ω) :=

„ X
06|α|6m

‖∂αf‖p
Lp(Ω)

«1/p

,

for 1 6 p < ∞ and

‖f‖W m,∞(Ω) := max
06|α|6m

‖∂αf‖L∞(Ω).

For 1 6 p < ∞, Meyers and Serrin proved that Wm,p(Ω) is the completion of the set

{f ∈ Cm(Ω) : ‖f‖W m,p(Ω) < ∞} with respect to the norm ‖ · ‖W m,p(Ω).

Lemma 2 (Sobolev Hilbert spaces) The Sobolev space Hm(Ω) := Wm,2(Ω) is a sep-

arable Hilbert space with inner product

〈f, g〉Hm(Ω) :=
X

06|α|6m

〈∂αf, ∂αg〉L2(Ω).

Remark 7 Often in estimates for evolutionary partial differential equations we will

want to separate the time regularity of solutions from spatial regularity. If V is a

vector space, we have already seen the notation such as L2(Ω; V ) which denotes the

space of functions whose image lies in V that are square integrable from Ω into V . For

example if V = Rn, then L2(Ω; Rn) denotes the space of vector valued functions, each

of whose n components are themselves square-integrable. Typically we want to use this

notation as follows. If [0, T ] represents a time interval of interest for some T > 0 and

Ω ⊆ Rd is the spatial domain, then we might want to show that the solution lies in

C
`
[0, T ]; L2(Ω; Rn)

´
.

This is the space of functions f = f(x, t) on Ω × [0, T ] that are square-integrable in

space on Ω and continuous in time on [0, T ]. In other words, for such functions the

quantity

‖f(·, t)‖L2(Ω;Rn)

is continuous in time. As another example consider the space of functions f lying in

L2`
[0, T ]; H1(Ω; Rn)

´
.

Such functions satisfy the conditionZ T

0
‖f(·, t)‖2H1(Ω;Rn) dt < ∞.

2 Embeddings

The goal here is to understand the relative structure underlying all of the function

spaces we saw in the last section. For example, a function that lies in L∞(Ω) is in Lp(Ω)

for any 1 6 p < ∞. As another example, the Sobolev space of functions W 1,2(Ω), i.e.

the space of functions which themselves as well as their derivatives are L2-integrable,

are also naturally Lp-integrable for any 2 6 p 6 2d/(d − 2). These are examples of

function space embeddings.
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Definition 8 (Embedding) Suppose V and H are two function spaces. We say that V

is embedded in H and write

V ↪→ H

if the following holds:

1. V is a vector subspace of H;

2. The identity map id: V → H given by id: f 7→ f is continuous, i.e. for all f ∈ V

and some positive constant c, we have:

‖f‖H 6 c ‖f‖V .

Example 3 Hence from our discussion above we would write L∞(Ω) ↪→ Lp(Ω) and

W 1,2(Ω) ↪→ Lp(Ω). We also have the natural sequence, for any p > p′ then

Lp(Ω) ↪→ Lp′(Ω).

Remark 8 Establishing such embeddings gives us the overall picture of the relation-

ships between the function spaces. The definition above shows the inequality ‖f‖V 6
c‖f‖H naturally mediates the embedding. Hence most of the work involved in estab-

lishing such embeddings revolves around proving/using such inequalities.

2.1 Fundamental inequalities

We first outline some simple inequalities as well as some more sophisticated functional

and interpolation inequalities that are often useful in practice when computing esti-

mates and establishing function space embeddings. For convenience we will call a pair

(p, q) of real numbers, where p > 1 and q > 1, a conjugate pair if they satisfy

1

p
+

1

q
= 1.

Lemma 3 (Young’s inequality) For any a > 0, b > 0, ε > 0 and conjugate pair (p, q)

with 1 < p < ∞, we have

ab 6
1

p
(aε)p +

1

q

“ b

ε

”q
.

Theorem 1 (Hölder’s inequality) For any conjugate pair (p, q) suppose that f ∈ Lp(Ω)

and g ∈ Lq(Ω). Then fg ∈ L1(Ω) and we haveZ
Ω

˛̨
f(x) g(x)

˛̨
dx 6 ‖f‖Lp(Ω)‖g‖Lq(Ω).

Recall that Hm(Ω) ≡ Wm,2(Ω). Further we shall use the notation Hm
0 (Ω) and

Wm,p
0 (Ω) to denote the subspaces of functions of Hm(Ω) and Wm,p(Ω), respectively,

that have compact support. Indeed for example, we can also think of Wm,p
0 (Ω) as the

closure of C∞
0 (Ω) in Wm,p(Ω). We have the following important theorem that is a

natural consequence of the fundamental theorem of calculus; see Evans [2, p. 275]. We

shall denote the average of f over Ω by

〈f〉 :=
`
vol(Ω)

´−1
Z

Ω
f dx.
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Theorem 2 (Poincaré’s inequality) Suppose Ω is connected and has a C1 boundary

∂Ω. Assume that 1 6 p 6 ∞. Then for any f ∈ W 1,p(Ω) there exists a constant

c = c(d, p, Ω) such that ‚‚f − 〈f〉
‚‚

Lp(Ω)
6 c ‖∇f‖Lp(Ω).

Example 4 For functions with mean zero, we can deduce that W 1,p(Ω) ↪→ Lp(Ω).

Theorem 3 (Sobolev–Gagliardo–Nirenberg inequality) For all f ∈ H1(Ω) we have for

some constant c = c(Ω):

‖f‖Lp(Ω) 6 c ‖∇f‖a
L2(Ω)‖f‖

1−a
L2(Ω),

where a = d(p− 2)/2p and 2 6 p 6 2d/(d− 2).

This is an example of an interpolation inequality and a special case of the more general

Gagliardo–Nirenberg inequalities. In particular, it tells us that under the conditions

stated W 1,2(Ω) ↪→ Lp(Ω).

2.2 Compact embeddings

Definition 9 (Compact operator) Let A : V → H be an operator from the vector

space V to the vector space H. Then A is said to be compact if A(U) is precompact

(meaning that the image set A(U) is compact) in H whenever U is bounded in V . If

A is continuous and compact, then it is said to be completely continuous.

Remark 9 Any compact linear operator is completely continuous.

Definition 10 (Compact embedding) If V ↪→ H and the identity operator id : V → H

in the embedding is compact, we say that V is compactly embedded in H and write

V ↪→↪→ H.

Example 5 (Rellich–Kondrachov theorem) Assume that the boundary ∂Ω is C1. Then

for any d > 2 and 1 6 p < 2d/(d− 2) we have (see Evans [2, p. 272])

W 1,2(Ω) ↪→↪→ Lp(Ω).

Remark 10 The significance of such a compact embedding is as follows. Suppose we

have established that a sequence {fn}n>1 ⊂ V is bounded. Then we can deduce that

there is a subsequence {fnk}k>1 ⊂ {fn}n>1 ⊂ V and an f ∈ V such that fnk converges

weakly to f , written fnk ⇀ f . This means that for every bounded linear functional f∗

on V then f∗(fnk ) → f∗(f). However, since V is compactly embedded in H, we can

deduce that fnk converges strongly to f in H.

Remark 11 Compact embeddings are extremely important for proving the existence

of solutions to nonlinear partial differential equations. For example for the incompress-

ible Navier–Stokes equations, to prove the existence of Leray weak solutions, we would

typically start by considering an associated system, perturbed from the incompressible

Navier–Stokes equations themselves, for which we already know existence. Suppose the

perturbation parameter is δ and the limit δ → 0 recovers the Navier–Stokes equations.
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Typical perturbations are to: use Galerkin projection onto a finite number (∼ 1/δ) of

spatial modes; smooth/mollify the advecting velocity (with the smoothness parameter-

ized by δ) or to add hyperviscosity (parameterized by δ). We would then prove Sobolev

norm bounds uniform in δ, and try to establish the correct convergence in the limit

δ → 0. As you might expect, the nonlinear terms involve the most work. The following

compact embedding (there are several variant approaches) is sufficient to establish the

appropriate convergence:

L∞`
[0, T ]; L2(Ω)

´
∩L2`

[0, T ]; H1(Ω)
´
∩W 1, 4

d
`
[0, T ]; H−1(Ω)

´
↪→↪→ L2`

[0, T ]; L2(Ω)
´
.
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