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Abstract.

We use Magnus methods to compute the Evans function for spectral problems as
arise when determining the linear stability of travelling wave solutions to reaction-
diffusion and related partial differential equations. In a typical application scenario, we
need to repeatedly sample the solution to a system of linear non-autonomous ordinary
differential equations for different values of one or more parameters as we detect and
locate the zeros of the Evans function in the right half of the complex plane.
In this situation, a substantial portion of the computational effort—the numerical

evaluation of the iterated integrals which appear in the Magnus series—can be per-
formed independent of the parameters and hence needs to be done only once. More
importantly, for any given tolerance Magnus integrators possess lower bounds on the
step size which are uniform across large regions of parameter space and which can be
estimated a priori. We demonstrate, analytically as well as through numerical experi-
ment, that these features render Magnus integrators extremely robust and, depending
on the regime of interest, efficient in comparison with standard ODE solvers.

AMS subject classification: 65F20.
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1 Introduction

We seek efficient numerical methods for solving a low-dimensional system of
linear non-autonomous ordinary differential equations many times for different
values of one or more parameters that appear in the equation. More specifically,
we consider

(1.1) Ẏ = A(t, λ)Y , Y (0) = Y0 ,
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where Y (t) ∈ Cn, and A is a time-dependent n×n matrix that depends linearly
on a parameter vector λ ∈ Cp,

(1.2) A(t, λ) = A0(t) +

p
∑

k=1

λk Ak(t) .

In the following, we will always take p 6 2. Extensions to a larger number of pa-
rameters are straightforward in principle, but the computational complexity of
our approach scales unfavourably with p, so that larger values are of no practical
interest. Differential equations of this type arise, in particular, when evaluating
the Evans function—the discriminant of a spectral problem that is associated
with the linear stability of systems of reaction-diffusion partial differential equa-
tions.
In the most direct approach, we could integrate the system from 0 to some

final time T for each value of λ we wish to sample. If we need to sample only
in a small neighbourhood of parameter space, efficiency could be increased by
using continuity arguments. Often however, we need to cover a wide range of
parameter values. Worse, the behaviour of the solution, e.g. the stiffness of the
problem, is not known in advance and may change significantly as λ varies.
We therefore try to formulate the problem in a way that a substantial portion

of the computational effort can be done independent of the parameters. For a
Runge–Kutta scheme, for example, the Ak(t) can be evaluated and the stages
can be combined in a precomputation step, so that each Runge–Kutta time step
can be written as the multiplication of a vector with a matrix-valued polynomial
in λ. Relatively more work can be put into the precomputation step when
using methods based on Neumann or Magnus expansions, as both involve nested
commutators and time integrals which can be evaluated independent of λ. On
the other hand, Magnus integration involves a relatively expensive computation
of a matrix exponential at each time step. We thus ask whether Neumann or
Magnus integrators allow significantly longer time steps than Runge–Kutta, so
that such additional expenses pay off.
For Neumann integrators the answer is clearly negative. In fact, Runge–Kutta

methods can be interpreted as truncated Neumann expansions with a particular
choice of quadrature; precomputing these integrals to higher order than nec-
essary does not significantly reduce error. Nonetheless, the Neumann series is
conceptually important, and the derivation of the Magnus series can be easily
implemented on a computer algebra system by taking the formal logarithm of
the Neumann series.
Magnus integrators, on the other hand, are well known for their superior sta-

bility and applicability to solving stiff problems [19, 20]. The main point of
this paper is to demonstrate, by computing leading order error terms as well
as by numerical examples, that their behaviour is uniform and predictable, in
the sense that error control can be made part of the precomputation step, over
bounded regions of parameter space. In particular, it is easy to find situations
where Runge–Kutta methods may perform arbitrarily poorly in comparison.
Our work generalizes a scheme proposed by Moan [30] for Sturm–Liouville
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problems which was recently extended by Jódar and Marletta [26] and Greenberg
and Marletta [15] to non-selfadjoint Sturm–Liouville problems. We consider the
eigenvalue problem for arbitrary elliptic operators in one-dimension, providing:

1. a treatment of the multi-parameter case (useful, for example, for deter-
mining linear stability of planar waves and pulses);

2. formal error analysis which shows that errors are nearly uniform over large
regions in parameter space, and opens up the possibility for a priori step-
size control and adaptivity;

3. detailed analysis of the nearly autonomous regime;

4. cost comparison with classical precomputation schemes.

Numerical schemes based on the Magnus expansion received a lot of attention
due to their preservation of Lie group symmetries—see Iserles and Nørsett [24],
Munthe-Kaas and Owren [33], and references cited therein. More generally, Neu-
mann and Magnus methods have been applied in spectral theory, Hamiltonian
systems, symplectic and unitary integration, control theory, stochastic systems,
and quantum chemistry; see Blanes et al. [8] for an extensive list of applications.
For recent progress on high order Magnus schemes see Iserles and Nørsett [24],
Munthe-Kaas and Owren [33], and Blanes, Casas and Ros [7].
The numerical solution of Sturm–Liouville problems is usually done by finite

differencing, variational methods such as finite elements, shooting via scaled
Prüfer methods or Pruess-type methods (see, for example, Pryce [36]). The first
two methods only deliver a finite spectrum. Scaled Prüfer methods can suffer
from initial value stiffness problems, though there are methods that can help with
this—none better than the Magnus methods we advocate here. Pruess methods
approximate the coefficients of the problem by piece-wise constant approxima-
tions, solving the problem analytically on the piece-wise constant intervals. They
circumvent the problems mentioned thus far but are only second order unless
Richardson extrapolation approximations or other modifications are made. Mag-
nus methods are the natural extension of these ideas—see Moan [30], Jódar and
Marletta [26], Chanane [9], and Greenberg and Marletta [15], who also provide
comparisons with traditional approaches.
The Evans function is now a standard tool in non-selfadjoint spectral the-

ory for calculating unstable eigenvalues of linear differential operators. Recent
applications have included the detection of instabilities analytically and numer-
ically in nerve impulses by Alexander, Gardner, and Jones [1], high activation
energy combustion by Terman [40], solitary waves by Pego and Weinstein [35],
multi-bump pulses by Sandstede [38], boundary layer interactions with compli-
ant surfaces by Allen and Bridges [2] and travelling wave solutions to neural field
equations by Coombes and Owen [11].
Our paper is organized as follows. In Section 2 we review the Neumann and

Magnus series solutions to systems of linear ordinary differential equations. In
Section 3 we set up the precomputation procedure for both Neumann and Mag-
nus integrators. We explicitly analyze and compare the local truncation errors
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of each of the methods in Section 4 and contrast their relative efficiencies and
accuracies. We perform some numerical experiments in Section 5 confirming
these results. Section 6 introduces the Evans function and sets up our numerical
method in this context. We demonstrate the practical advantages of the Magnus
method by calculating the onset of the well-known pulsating instability for a sys-
tem of reaction-diffusion equations modelling autocatalysis. Lastly, in Section 7,
we outline extensions and refinements of our method for future development.

2 Neumann and Magnus expansions

Disregarding any parameter dependence for the moment, consider the initial
value problem in C∞(R;Cn×n) for the flow-map or fundamental matrix S(t) of
(1.1),

(2.1) Ṡ = A(t)S , S(0) = I ,

where the matrix of coefficients A(t) ∈ C∞(R;Cn×n). If A(t) belongs to an
Abelian Lie algebra, the solution is

(2.2) S(t) = exp

∫ t

0

A(τ) dτ .

For the general case, there are several fundamental solution expansions. Here
we focus on Neumann and Magnus series, though the Fer expansion is another
important example (see Iserles, Munthe-Kaas, Nørsett and Zanna [23], for ex-
ample).
The integral form of the initial value problem (2.1) is

(2.3) S(t)−
∫ t

0

A(τ)S(τ) dτ = I

or, more abstractly,

(2.4) (I− K) ◦ S = I ,

where K is the integral operator defined by

(2.5)
(
K ◦ F

)
(t) ≡

∫ t

0

A(τ)F (τ) dτ ,

for any F ∈ L1
loc(R;Cn×n). We can formally write the solution to (2.3) as the

Neumann series

S(t) = (I− K)−1 ◦ I
= (I + K + K2 + K3 + . . . ) ◦ I

= I +

∫ t

0

A(τ) dτ +

∫ t

0

A(τ1)

∫ τ1

0

A(τ2) dτ2 dτ1 + . . . ,(2.6)
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which converges provided
∫ t

0
‖A(τ)‖dτ <∞. (This method of successive approx-

imation for integral equations is also known as the Peano-Baker series, matrizant,
Feynman-Dyson path ordered exponential, or Chen–Fleiss series [34, 3, 13, 10,
37]).
The Magnus series is the logarithm of the Neumann series (2.6). If we use

p = (p1, . . . , p`p) ∈ N`p to denote a multi-index of length `p,

σ(t) = lnS(t)

(2.7)

= K ◦ I +
(
K2 ◦ I − 1

2
(K ◦ I)2

)

+

(

K3 ◦ I − 1

2

(
(K2 ◦ I)(K ◦ I) + (K ◦ I)(K2 ◦ I)

)
+

1

3
(K ◦ I)3

)

+ . . .

=
∞∑

n=1

∑

p∈Q(n)

(−1)1+`p

`p
(Kp1 ◦ I) . . . (Kp`p ◦ I)

=

∞∑

n=1

sn ,

where

(2.8) sn ≡
∑

p∈Q(n)

(−1)1+`p

`p
(Kp1 ◦ I) . . . (Kp`p ◦ I) .

and Q(n) is the set of partitions of n—including all possible permutations of
each partition (in particular if p ∈ Q(n) then p1 + · · · + p`p = n). This form
of the Magnus expansion does not contain any commutators, and thus obscures
the geometric structure but does allow us to enumerate the corresponding terms
in the Magnus expansion simply and conveniently. Each of the sn contains only
terms with n multiples of A and must coincide with terms of the same order in
the usual form for the Magnus expansion—see Magnus [29], Bialynicki-Birula,
Mielnik and Plebanski [5] or Iserles and Nørsett [24]. For example,

s1 = K ◦ I =

∫ t

0

A(τ) dτ ,(2.9)

s2 = K2 ◦ I − 1

2
(K ◦ I)2 = −1

2

∫ t

0

[
∫ τ1

0

A(τ2) dτ2, A(τ1)
]
dτ1 ,(2.10)

and so forth.
The Magnus expansion converges in the Euclidean 2-norm provided

(2.11)

∫ t

0

‖A(τ)‖dτ <
r0

ν
,

where

(2.12) r0 =

∫ 2π

0

(
2 + 1

2τ(1− cot( 1
2τ))

)−1
dτ = 2.173737 . . .
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and ν ≤ 2 is the smallest constant such that

(2.13) ‖[A1, A2]‖ ≤ ν ‖A1‖ ‖A2‖ ,

for any two elements A1 and A2 in the underlying Lie algebra (see for example
Moan [31]). Taking the crudest case ν = 2 we get

(2.14)

∫ t

0

‖A(τ)‖dτ < 1.08686 . . . .

Hence, a Magnus-based integrator appears to have an inherent time-step restric-
tion. However, Hochbruck and Lubich [19] have shown that Magnus integrators
perform well in situations where the stiffness of the system originates from the
time-independent part of the coefficient matrix. Further, by factoring out the
flow of the time-independent part of the coefficient matrix, Iserles [20] and De-
gani and Schiff [12] introduced a right correction Magnus series which has a
uniform radius of convergence and uniformly bounded global errors as stiffness
is increased. We will comment on such methods in more detail in §5.3.

3 Integrators for systems with parameters

3.1 Neumann integrators

We now turn to the problem stated in the introduction—the construction of
integrators for systems whose coefficient matrix A(t) depends linearly on two
parameters λ and µ. The fundamental matrix then solves

(3.1) Ṡ =
(
A0(t) + λA1(t) + µA2(t)

)
S , S(0) = I .

We define the integral operators K0, K1 and K2 corresponding to A0, A1 and A2

by

K ◦ F (t) = (K0 + λK1 + µK2) ◦ F (t)

≡
∫ t

0

(
A0(τ) + λA1(τ) + µA2(τ)

)
F (τ) dτ .(3.2)

The solution S(t;λ, µ) is the limit as N →∞ of the Neumann partial sum

(3.3) Sneu
N (t;λ, µ) =

N∑

n=0

Kn ◦ I .

To give an explicit formula in terms of powers of λ and µ, we use

(3.4) P(j, k, n) = Permutations{0, . . . , 0
︸ ︷︷ ︸

n−k

, 1, . . . , 1
︸ ︷︷ ︸

j

, 2, . . . , 2
︸ ︷︷ ︸

k−j

}
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to denote the set of permutations of multi-indices α = (α1, . . . , αn) and note
that

Kn ◦ I = (K0 + λK1 + µK2)
n ◦ I(3.5)

=
n∑

k=0

k∑

j=0

(
∑

α∈P(j,k,n)

Kα1
◦ · · · ◦ Kαn

◦ I
)

λj µk−j

≡
n∑

k=0

k∑

j=0

Γj,k,n(t)λ
j µk−j ,

where

(3.6) Γj,k,n(t) ≡
∑

α∈P(j,k,n)

Kα1
◦ · · · ◦ Kαn

◦ I .

Substituting (3.5) into (3.3) and reversing the order of the summations we get

Sneu
N (t;λ, µ) =

N∑

n=0

n∑

k=0

k∑

j=0

Γj,k,n(t)λ
j µk−j(3.7)

=

N∑

k=0

k∑

j=0

ΛN
j,k(t)λ

j µk−j ,

where the coefficients of the expansion are thus given by

(3.8) ΛN
j,k(t) =

N∑

n=k

Γj,k,n(t) =

N∑

n=k

∑

α∈P(j,k,n)

Kα1
◦ · · · ◦ Kαn

◦ I .

For t ¿ 1, Kn ◦ I = O(tn) and the partial sum Sneu
N (t;λ, µ) is an O(tN+1)

approximation to S(t;λ, µ). Therefore, although we know that the Neumann
series has an infinite radius of convergence, we are forced to take sufficiently small
time steps to achieve high accuracy with an expansion (3.7) of reasonably small
order. In other words, we must compute the truncated flow-map Sneu

N (t;λ, µ)
for each of M successive subintervals [tm−1, tm] of [t0, t].
Letting Sneu

N (tm−1, tm;λ, µ) denote the truncated Neumann flow-map evalu-
ated at t = tm with SN (tm−1, tm−1;λ, µ) = I, and ΛN

j,k(tm−1, tm) the corre-
sponding coefficients, we write out the final Neumann approximation to the
fundamental matrix as

(3.9) Sneu(t0, t;λ, µ) ≡ Sneu
N (tM−1, tM ;λ, µ) ◦ · · · ◦ Sneu

N (t0, t1;λ, µ) ◦ I .

To efficiently sample parameter space, we can now precompute the complete
set of coefficients

{ΛN
j,k(tm−1, tm) : j = 0, . . . , k; k = 0, . . . , N ;m = 1, . . . ,M} .
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The evaluation of Sneu(t0, t;λ, µ) for any given pair of parameter values then
reduces to the evaluation of a partially factorized polynomial. Note that (3.7) is
simply a special regrouping of the terms that appear in a direct implementation
of an Nth order Neumann integrator. Results and error bounds must therefore
coincide.

3.2 Magnus integrators

We construct the corresponding Magnus method by truncating (2.7), defining

(3.10) σN (t;λ, µ) =
N∑

n=1

sn .

If we use S(p, k) to denote the set of multi-indices γ = (γ1, . . . , γ`p) such that

(3.11) S(p, k) = {γ ∈ Z`p : γ1 + · · ·+ γ`p = k, 0 6 γi 6 pi, ∀ i = 1, . . . , `p} ,

then substituting (3.5) into (3.10), we find

σN (t;λ, µ)

=
N∑

n=1

n∑

k=0

k∑

j=0

λj µk−j
∑

p∈Q(n)

(−1)1+`p

`p

∑

γ∈S(p,k)

∑

β∈S(γ,j)

Γβ1,γ1,p1
. . .Γβ`p ,γ`p ,p`p

=
N∑

k=0

k∑

j=0

ΩN
j,k(t)λ

j µk−j ,

where the coefficients ΩN
j,k(t) are given by

ΩN
j,k(t) =

N∑

n=max{k,1}

∑

p∈Q(n)

(−1)1+`p

`p

∑

γ∈S(p,k)

∑

β∈S(γ,j)

Γβ1,γ1,p1
. . .Γβ`p ,γ`p ,p`p

.

As for the Neumann integrator, we have to keep the time step small, so that
we compute the exponential of σN (t;λ, µ) over successive subintervals. Let
σN (tm−1, tm;λ, µ) denote the truncated Magnus expansion evaluated at t = tm
with σN (tm−1, tm−1;λ, µ) = O, the zero matrix, and ΩN

j,k(tm−1, tm) the corre-
sponding coefficients. The Magnus approximation to the fundamental matrix is
then given by

(3.12) Smag(t0, t;λ, µ) ≡ exp
(
σN (tM−1, tM ;λ, µ)

)
◦· · ·◦exp

(
σN (t0, t1;λ, µ)

)
◦I .

Hence we precompute the complete set of coefficients

(3.13) {ΩN
j,k(tm−1, tm) : k = 0, . . . , N ; j = 0, . . . , k;m = 1, . . . ,M} .

Then, for given values of λ and µ, each factor in (3.12) can be computed by
evaluating a matrix valued polynomial in λ and µ and matrix exponentiation.
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We finally remark that the coefficient matrix has often special structure that
can significantly reduce the degree of the Magnus solution polynomial. For
example, the coefficients of higher degree terms in λ also contain high powers of
the matrix A1(t) when decomposing A(t, λ) = A0(t)+λA1(t). However, A1(t) is
typically sparse and nilpotent of index two or three. This observation was used
by Moan [30] to construct high order Magnus integrators for Sturm-Liouville
problems containing only linear and quadratic polynomials in λ (also see more
recent work in this direction by Jódar and Marletta [26] and Chanane [9]).

4 Error analysis

4.1 Local truncation error estimates

We now compute the leading order terms of the series truncation error. We
are not concerned with quadrature error, as all integrals can be evaluated in the
precomputation step to any accuracy without impacting the asymptotics of the
computational expense when the number of evaluations of different values of the
parameters is large.
On the interval [t, t + h], since Kn ◦ I = O(hn), the truncated Neumann

flow-map Sneu
N (h) is a local O(hN+1) approximation to S(h), and hence yields a

numerical method of order N . To estimate the local truncation error we proceed
as follows. Expanding A(t+ h) in powers of h,

(4.1) A(t+ h) = a0 + a1h+ a2h
2 + . . . ,

and substituting this Taylor series expansion for A(t+ h) into Kn ◦ I gives

(4.2) Kn ◦ I =
∞∑

k=0

∑

q∈T (k,n)

hn+k aq1 · · · aqn
(qn + 1)(qn + qn−1 + 2) · · · (k + n)

,

where T (k, n) is the set of compositions of k into n parts. For example

K ◦ I = a0 h+ a1
h2

2
+ a2

h3

3
+O(h4) ,(4.3)

K2 ◦ I = a2
0

h2

2
+ (a0a1 + 2a1a0)

h3

6
+ (2a0a2 + 3a2

1 + 6a2a0)
h4

24
+O(h5) .

(4.4)

Hence, the truncated Neumann expansion SN (h) has the local truncation error

(4.5) Eneu
N ≡ S(h)−

N∑

n=0

Kn ◦ I =
aN+1
0

(N + 1)!
hN+1 +O(hN+2) .

Determining the order of the Magnus expansion is more involved. It is well-
known that the Magnus integrator with only the leading order term is of global
order 2, for N ≥ 2 the Magnus integrator up to terms with N nested integrals
is of order N + 2 when N is even, N + 1 when N is odd [24, 23].
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Table 4.1: Leading order terms (factor × leading coefficient) and the first three
next order terms (factor × next order coefficient × h) in the Taylor series ex-
pansion of the sn. We use the notation [·, ·, . . . , ·, ·] ≡ [·, [·, . . . , [·, ·] . . .]].

term factor leading coefficient next order coefficient

s2
h3

3!
1
6 3 [a1, a0] −3 [a0, a2]

s3
h5

5!
1
6 2 [a0, a0, a2] 3 [a0, a0, a3]

+3 [a1, a1, a0] +5 [a2, a1, a0]
−[a0, a1, a2]

s4
h5

5!
1
6 [a0, a0, a0, a1] [a0, a0, a0, a2]

−[a0, a1, a1, a0]

s5
h7

7!
1
6 −2 [a0, a0, a0, a0, a2] · · ·

+[a0, a0, a1, a1, a0]
−4 [a1, a0, a0, a1, a0]

s6
h7

7!
1
6 −[a0, a0, a0, a0, a0, a1] · · ·

s7
h9

9!
9
30 2 [a0, a0, a0, a0, a0, a0, a2] · · ·

+3 [a0, a0, a0, a0, a1, a1, a0]
−5 [a0, a0, a1, a0, a0, a1, a0]
+5 [a1, a0, a0, a0, a0, a1, a0]

s8
h9

9!
1
10 3 [a0, a0, a0, a0, a0, a0, a0, a1] · · ·

s9
h11

11!
1
6 −10 [a0, a0, a0, a0, a0, a0, a0, a0, a2] · · ·

+89 [a0, a0, a0, a0, a0, a0, a1, a1, a0]
−145 [a0, a0, a0, a0, a1, a0, a0, a1, a0]
+71 [a0, a0, a1, a0, a0, a0, a0, a1, a0]
−30 [a1, a0, a0, a0, a0, a0, a0, a1, a0]

s10
h11

11!
1
6 −5 [a0, a0, a0, a0, a0, a0, a0, a0, a0, a1] · · ·
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We derive explicit leading order error terms for Magnus schemes up to order 10.
From (2.7), the exact solution to our original initial value problem (2.1) on the
interval [t, t+ h] is

(4.6) S(h) = exp

( ∞∑

n=1

sn

)

with corresponding truncation

(4.7) Smag
N (h) = exp

(
σN (h)

)
.

Let RN (h) denote the remainder

(4.8) RN (h) ≡ σ(h)− σN (h) =

∞∑

n=N+1

sn(h) .

Then the local N -term truncation error reads

Emag
N ≡ S(h)− Smag

N (h)(4.9)

= exp
(
σ(h)

)
− exp

(
σN (h)

)

= exp
(
σN (h) +RN (h)

)
− exp

(
σN (h)

)

= RN (h) +O
(
hRN (h)

)
.

In the last step we have used that s1 ≡ K ◦ I = O(h) and assumed that the
sn for all n > 2 are of similar or higher order. Indeed, substituting the Taylor
expansion (4.2) into (2.8), we obtain

(4.10) sn =

∞∑

k=0

(
∑

p∈Q(n)

(−1)1+`p

`p

∑

q∈T (k,`p)

Jq1,p1
. . . Jq`p ,p`p

)

hn+k ,

where

(4.11) Jq,p ≡
∑

r∈T (q,p)

ar1 . . . arp
(rp + 1)(rp + rp−1 + 2) . . . (q + p)

,

and for n > 1, the terms corresponding to k = 0 in (4.10) are zero—they only
contain commutators of a0.
Table 4.1 summarizes the leading order in (4.10) for n = 1, . . . , 10. We con-

clude that

(4.12) sN =

{

O(hN+2), N odd ,

O(hN+1), N even ,

and so the corresponding local error is

(4.13) Emag
N =

{

sN+1 +O(hN+3), N odd ,

sN+1 + sN+2 +O(hN+4), N even .
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Note that if a0 ≡ A(t) 6= 0 the local truncation error Emag
1 is proportional at

leading order to at most the first derivative of the coefficient matrix A. Even
more importantly, leading order truncation errors for all higher order schemes
are proportional to at most the second derivative of A. Higher derivatives will
appear when the integrals are solved by numerical quadrature of matching order.
If A(t+h) = O(hα) at some point t and for some α > 0, these statements should
be modified accordingly (in particular the local truncation errors gain higher
order). Similar improvements will also occur if one or more commutators of A
and its derivatives are trivial (and these properties should be exploited).
Finally, since the solution of the Magnus integrator is already in exponential

form, it is unconditionally stable and therefore not subject to potentially severe
time step restrictions [23]. This feature will become important when performing
Nyquist plots of the Evans function.
Runge–Kutta methods, on the other hand, are Neumann expansions with an

appropriate choice of quadrature; all expressions for the local truncation error are
consequently more complicated. For reference, we quote a typical estimate for
fixed-step explicit Runge–Kutta schemes of order N with q stages from Hairer,
Nørsett and Wanner [16],

Erk
N ≡ ‖S(t, t+ h)− Srk‖

(4.14)

6 hN+1

(

1
(N+1)! max

τ∈[0,1]
‖S(N+1)(t, t+ τh)‖+ 1

N !

q
∑

i=1

|bi| max
τ∈[0,1]

‖k(N)
i (τh)‖

)

,

where we employ the standard notation ki for the stages and bi for their corre-
sponding weights. In fact for both explicit and implicit Runge–Kutta methods,
the local truncation error is proportional to the (N + 1)th derivative of the so-
lution. Using that Ṡ = A(t)S, we see that the local truncation error for Nth
order Runge–Kutta schemes not only involves aN+1

0 , but is also proportional to
each ai for 1 6 i 6 N .

4.2 Operation counts

To complete the picture, we compare the computational expense for a single
time step of each scheme. We make use of precomputation to the extent pos-
sible and disregard the precomputation effort as the number of evaluations for
different values of the parameters becomes large.
As before n denotes the size of the system and p = 1, 2 the number of param-

eters. In each case we need to evaluate a polynomial in p variables with matrix
coefficients of size n×n followed by a matrix-vector multiplication. When p = 1,
using Horner’s method to evaluate polynomial of degree N with n × n matrix
coefficients requires Nn2 multiplications and Nn2 additions, i.e. a total of 2Nn2

complex flops. When p = 2, we must evaluate a polynomial of degree N in two
parameters λ and µ; the coefficient of λk is a polynomial of degree N − k in
µ and so evaluation by Horner’s method requires 1

2N(N + 3)n2 multiplications
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Table 4.2: Operation counts for a single time step of different fourth order
precomputation schemes.

Integrator p Flops p Flops
Neumann 10n2 30n2

Magnus 1 6n2 + 5n3 2 14n2 + 5n3

Runge–Kutta 10n2 16n2

and 1
2N(N + 3)n2 additions, i.e. N(N + 3)n2 complex flops (preconditioning of

the coefficients can give small improvements for polynomials of degree N > 4
[28]).
In the case of a Magnus integrator, we additionally have to compute a matrix

exponential at each time step. Iserles and Zanna [25] have recently developed
methods which are efficient and guaranteed to map into the Lie group. For
a generic matrix, the computational cost is approximately 5n3 flops. For large
systems, Krylov subspace methods must be used to reduce the O(n3) complexity.
See also Moler and Van Loan [32] for a survey on numerical exponentiation.
The dominant terms in the operation count for a single time step for fourth

order schemes are summarized in Table 4.2. Note that in the case of two pa-
rameters, using the natural factorization provided by the Runge–Kutta stages
is more efficient than applying Horner’s method.
Thusfar we have not mentioned implicit schemes. For the linear ODE systems

considered here, we need to solve a linear algebraic system for the stage coeffi-
cients at each step. Unfortunately the complexity of the solution formula scales
very unfavourably with the system size—as the cube of the product of the num-
ber of stages and the ODE system size—whereas the 5n3 pricetag for Magnus is
independent of the order of the scheme. However low order implicit schemes do
compete with Magnus schemes. For example, for the 2–stage Gauss–Legendre or
3–stage Lobatto–IIIC fourth order implicit Runge–Kutta methods, solving the
linear algebraic system requires 8

3n
3 and 9n3 flops, respectively.

5 Numerical experiments

5.1 A toy problem: a modified Airy equation

To compare Magnus and Runge–Kutta integrators, we consider as a first test
problem the modified Airy equation

(5.1) Y ′ = A(t, λ)Y , with Y (0) =

(
1
1
2

)

,

where

(5.2) A(t, λ) = A0(t) + λA1(t)
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Figure 5.1: Global error as a function of the number of steps for the modified
Airy test problem with λ = 1 at time t = 10. The solution computed with 211

steps was used as the reference comparison.

with

(5.3) A0(t) =

(
0 1
−t2 0

)

and A1(t) =

(
0 1
−1 0

)

.

The quadratic time dependence is chosen to expose the worst-case cubic error
growth as the parameter λ is increased.
Figure 5.1 compares the error of different schemes relative to a highly resolved

reference computation. The integrals that appear in the Magnus series were
evaluated analytically. The fourth order Runge–Kutta is the standard one, where

k1 = A(tn)un(5.4)

k2 = A(tn+1/2)
(
un + 1

2 h k1

)

k3 = A(tn+1/2)
(
un + 1

2 h k2

)

k4 = A(tn+1)
(
un + h k3

)

un+1 = un + 1
6 h
(
k1 + 2 (k2 + k3) + k4

)
.

We also included for comparison, the error for the fourth order Lobatto–IIIC
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Figure 5.2: Global error as a function of λ on the interval [0, 10] with 213 time
steps. A reference line of slope 5 is shown for comparison.

implicit Runge–Kutta method

k1 = A(tn)
(
un + h ( 1

6 k1 − 1
3 k2 +

1
6 k3)

)
(5.5)

k2 = A(tn+1/2)
(
un + h ( 1

6 k1 +
5
12 k2 − 1

12 k3)
)

k3 = A(tn+1)
(
un + h ( 1

6 k1 +
2
3 k2 +

1
6 k3

)

un+1 = un + 1
6 h
(
k1 + 4 k2 + k3

)
,

and the Gauss-Legendre implicit Runge–Kutta method

k1 = A(tn+1/2−
√

3/6)
(
un + h ( 1

4 k1 + ( 1
4 −

√
3

6 ) k2)
)

(5.6)

k2 = A(tn+1/2+
√

3/6)
(
un + h (( 1

4 +
√

3
6 ) k1 +

1
4 k2)

)

un+1 = un + 1
2 h
(
k1 + k2

)
.

Magnus integrators clearly excel for this type of highly oscillatory problem:
their error is at least three orders of magnitude smaller than that of a Runge–
Kutta method of the same order.

5.2 Behaviour for large λ

The advantage of the Magnus integrator becomes even more pronounced when
λ is increased, i.e. when the system is made more stiff with the time dependence
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of the vector field left unchanged. For our modified Airy equation (5.1), we have

(5.7) a0 =

(
0 1 + λ

−(t2 + λ) 0

)

, a1 =

(
0 0
−2t 0

)

, and a2 =

(
0 0
−1 0

)

,

so that the local truncation error for the fourth order Magnus method from
(4.13) reads

Emag
2 =

h5

720
(2 [a0, [a0, a2]] + 3 [a1, [a1, a0]] + [a0, [a0, [a0, a1]]]) +O(h6)

(5.8)

=
h5

720
4(1 + λ)

(
2t(1 + λ)(t2 + λ) (1 + λ)
−5t2 + λ −2t(1 + λ)(t2 + λ)

)

+O(h6) .

Hence, Emag
2 grows cubically with λ while the local truncation error for the

fourth order Neumann or explicit Runge–Kutta method is proportional to a5
0,

so that Eneu
4 and Erk

4 grow quintically with λ. These different scalings can be
seen in Figure 5.2—though notice that when λ is small all the schemes scale
markedly better than expected. This is because on the interval [0, 10] there are
many zeros of the solution, the number of which increases with λ. Hence as a
function of λ, we might expect the global error to scale better than the local
error.
Using the convergence criterion (2.14), since ‖A1‖ = 1 and hλ À 1, the

Magnus series should no longer be convergent when log λ ≈ 2.9. The ‘spike’ that
is observed in Figure 5.2 occurs slightly beyond this value at log λ ≈ 3.3. However
this may be accounted for in a slightly smaller value for the commutator constant
ν in this system (we examine these points in more detail and the behaviour for
larger values of log λ in §5.3).
For all the numerical simulations in this section, we evaluated the integrals in

the truncated Magnus expansions exactly. This is relatively straightforward for
polynomial coefficient problems. However, for more general equations we might
need to use numerical quadrature to evaluate the Magnus expansion and this
may complicate the form of the local truncation error Emag

2 . Since our focus
later on will be on precomputation schemes we have assumed that the terms in
the Magnus expansion will be evaluated to sufficient accuracy so that when the
coefficient matrix A1 is constant, the local truncation error Emag

2 will still be
dominated by [a0, [a0, [a0, a2]]] and hence λ3.

5.3 Behaviour for very large λ

As λ becomes very large, a number of interesting effects set in. Although this is
not the regime of interest for our application to eigenvalue problems coming from
linear stability analysis for reaction-diffusion partial differential equation, we
briefly describe the phenomenology, argue that the Magnus integrator remains
robust in this regime, and finally point out a better factorization of the flow map
that should be applied if this regime is the main focus of interest. A detailed
analysis is provided in Appendix A.
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Figure 5.3: Global error as a function of λ for the modified Airy test problem
solved with a fourth order Magnus scheme on the interval [0, 1] with 512 time
steps. Two reference lines of slopes 1 and 3 are shown for comparison.

For λ very large, local truncation error analysis is inappropriate, as Figure 5.3
demonstrates. We can identify several distinct asymptotic regimes. In the first
region, where hλ ¿ 1, we see the expected cubic growth in the global error.
This is the regime where the crude convergence condition (2.14) is satisfied.
The second region, where h2λ ¿ 1 ¿ hλ, the constant part of the coefficient

matrix begins to dominantly determine the form of the solution. In this region,
we observe order reduction—the Magnus integrator no longer performs as a
fourth order scheme. This is clearly seen in Figure 5.4, which shows our Magnus
integrator behaving more like a second order integrator.
The third region, where h4λ¿ 1¿ h2λ, the scheme behaves as a fourth order

Magnus integrator again, the error being linear in λ. Although the higher order
terms in the local truncation error would appear to scale very unfavourably with
λ, the remarkably good behaviour of the Magnus integrator can be explained by
looking primarily at the large λ asymptotics, rather than the small h limit.
A careful WKBJ analysis, the details of which are given in Appendix A, reveals

that the exact flow-map S(h) over the interval [t, t+ h] behaves like

(5.9) S(h) ∼ exp (ha0) exp (σ̃(t, h))

as λ→∞, where a0 is the constant part in the series expansion of the coefficient
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Figure 5.4: Demonstration of order reduction when log λ ≈ 5. The plots show
the global error of the fourth order Magnus integrator as a function of the number
of steps for the modified Airy test problem on the interval [0, 1] for different fixed
values of λ. Two reference lines of slopes −2 and −4 are shown for comparison.

matrix A(t+ h, λ) defined in (5.7) and σ̃(t, h) is given by

σ̃(t, h) = 1
2

(

th2 +
h3

3

)(
0 1
−1 0

)

− th

2ν

(
cos 2µh sin 2µh
sin 2µh − cos 2µh

)

+
t

2ν2

((
sin 2µh 1− cos 2µh

1− cos 2µh − sin 2µh

))

+O
(
h2

ν

)

+O
(

h

ν2

)

.

Using this asymptotic form we can show that indeed

(5.10) Eglobal = O
(
h4λ

)
+O

(
h2
)
+O

(
h

λ

)

+O
(

1

λ2

)

for h4λ ¿ 1 ≈ hλ, where the O(h2) term is responsible for the behaviour
observed in the regime h2λ ¿ 1 ¿ hλ and the O

(
h4λ

)
term responsible for

that in h4λ ¿ 1 ¿ h2λ. For λ À h−4, all accuracy is lost. However, when
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hλ ≈ 1 the O(h2), O(h/ν) and O(1/ν2) terms are all significant and produce
the spiking behaviour observed in that regime.
In the large λ regime, the asymptotic form of the solution provided by (5.9)

suggests a different numerical scheme, which has been exploited very successfully
by Iserles [20] and Degani and Schiff [12]. Decomposing the coefficient matrix
A(t+ h, λ) into its natural constant and varying parts,

(5.11) A(t+ h, λ) = a0 + â(t, h) ,

we concurrently isolate the part of the coefficient matrix, namely a0 responsible
for the frequency oscillations—recall that a0 has pure imaginary eigenvalues
scaling linearly with λ. We can then factorize the flow map in the form

(5.12) S(h) = exp(a0h)Ŝ(h) ,

where the rescaled fundamental solution Ŝ(h) satisfies the differential equation

(5.13) Ŝ′ = exp(−a0h)â(t, h) exp(a0h)Ŝ .

The new coefficient matrix exp(−a0h)â(t, h) exp(a0h) is uniformly bounded in λ,
as are the rescaled solution Ŝ(h) and correspondingly the radius of convergence
of its Magnus series.

6 The Evans function

6.1 Linear stability of travelling waves

Linear non-autonomous differential equations with parameters arise when con-
structing the spectrum of a linear elliptic sectorial operator. Such operators are,
for example, associated with the problem of linear stability of steady travelling
wave solutions to parabolic semilinear systems of partial differential equations

(6.1) Ut = BUξξ + cUξ + F (U) ,

where U : R × R+ → Rn has prescribed boundary conditions U(ξ, · ) → U± as
ξ → ±∞. B is a constant positive diagonal matrix and F is a smooth bounded
function on Rn. The system is written in a frame of reference travelling in the
positive x-direction with constant speed c, so that ξ = x− ct.
A travelling wave is simply a steady state solution of (6.1) or, in the language

of dynamical systems, a homoclinic or heteroclinic orbit of the corresponding
steady state ordinary differential equation. Thus, existence of travelling waves
can often be shown by topological arguments even when a closed form expression
is not available.
To analyze the linear stability of a travelling wave Uc(ξ), we look for pertur-

bations of the form

(6.2) U(ξ, t) = Uc(ξ) + Û(ξ)eλt ,
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and linearize (6.1) about Uc. We say that the travelling wave is linearly stable
if no part of the spectrum of the linearized right hand side,

(6.3) L = B∂ξξ + c I∂ξ +DF (Uc(ξ))

endowed with homogeneous Dirichlet boundary conditions at ξ = ±∞, is con-
tained in the right complex half–plane. The spectrum of L generally consists
of the pure point spectrum—isolated eigenvalues of finite multiplicity—and the
essential spectrum. The essential spectrum is contained within the parabolic
curves of the continuous spectrum [18]. In many cases the essential spectrum
can be shown to be contained in the left-half complex plane and hence does
not contribute to linear instability. The task at hand is then to determine the
location of the pure point spectrum within a sufficiently large semi-circle in the
right-half plane centred at the origin.
As the travelling wave is translation invariant, zero is an eigenvalue of L.

More generally, we seek values of λ for which there exist non-trivial solutions
Û : R→ Cn to the ordinary differential eigenvalue problem

(6.4) L Û(ξ) = λ Û(ξ) ,

which vanish as ξ → ±∞. Setting Y = (Û , Ûξ), we can write (6.4) as

(6.5) Y ′ = A(ξ, λ)Y ,

where A(ξ, λ) ∈ C2n×2n is the matrix of coefficients

A(ξ, λ) =

(
O I

B−1
(
λ−DF (Uc(ξ))

)
−cB−1

)

.(6.6)

6.2 The Evans function as a Wronskian

We assume that to the right of the essential spectrum the limiting matrices
A±(λ) = limξ→±∞A(ξ, λ) have k and 2n − k eigenvalues with strictly positive
and negative real part, respectively. In other words, there is a k-dimensional
subspace of solutions which decay exponentially fast to zero as ξ → −∞, and
also a (2n−k)-dimensional subspace of solutions which decay exponentially fast
to zero as ξ → +∞. The values of λ for which these subspaces have a non-trivial
transverse intersection are the eigenvalues of the linear operator L.
The eigenvalue problem (6.5) induces an initial value problem on the exterior

power
∧k C2n,

(6.7a) Y ′− = A(k)(ξ, λ)Y− , lim
ξ→−∞

Y−(ξ) = V−(λ) ,

representing the subspace of solutions to (6.5) which decay exponentially to the

left, and a final value problem on
∧2n−k C2n,

(6.7b) Y ′+ = A(2n−k)(ξ, λ)Y+ , lim
ξ→∞

Y+(ξ) = V+(λ) ,



Numerical evaluation of the Evans function 21

representing the subspace of solutions to (6.5) which decay exponentially to the
right. The initial value V−(λ) is the eigenvector corresponding the the simple
eigenvalue µ−(λ) with the largest positive real part of the limiting induced coeffi-
cient matrix A(k)(−∞, λ); the final value V+(λ) is the eigenvector corresponding
to the simple eigenvalue µ+(λ) with largest negative real part of the limiting
induced coefficient matrix A(2n−k)(∞, λ).
The two subspaces intersect transversally if and only if the Wronskian deter-

minant Y+ ∧ Y− vanishes. Alexander, Gardner, and Jones [1] define the Evans

function D : C→
∧2n C2n ∼= C as the ξ-independent Wronskian

(6.8) D(λ) = e−
∫
ξ

0
TrA(τ,λ)dτ

(
Y+(ξ;λ) ∧ Y−(ξ;λ)

)
.

The Evans function is analytic for λ strictly to the right of the essential spectrum.
Its zeros correspond to eigenvalues of the linear operator L where the order of
each zero determines the algebraic multiplicity of the eigenvalue. In research on
Sturm-Liouville problems the Evans function is also known as the miss-distance
function. For details see Evans [14], Pryce [36] and Alexander, Gardner and
Jones [1].

6.3 Numerical evaluation

To evaluate the Evans function numerically, we first truncate the infinite ξ-
domain to a suitably chosen interval [ξ−0 , ξ+

0 ]. On this interval, we compute,
using simple or multiple shooting, the travelling wave to any required accuracy.
To avoid integrating exponentially growing solutions in (6.7) which complicate

error control when locating the zeros of the Evans function and may lead to
floating point overflows, we re-scale

(6.9) Y±(ξ;λ) = W±(ξ;λ) e
µ±(λ)(ξ−ξ±0 ) .

The rescaled variables W±(ξ;λ) solve (6.7) with modified coefficient matrices
A(k)(ξ, λ)− µ−(λ)I and A(2n−k)(ξ, λ)− µ+(λ)I, respectively.
For each value of λ, we numerically solve the equations for W± up to a mid-

point ξ∗ ∈ [ξ−0 , ξ+
0 ] chosen to minimize integration error. It is then usually

sufficient to simply evaluate W+ ∧W− rather than D(λ) as the zeros of the two
expressions coincide.
To determine the stability of the travelling wave, we can compute D′(λ)/D(λ)

along the imaginary axis and use the argument principle to determine the number
zeros of the Evans function in the right-half plane, and consequently the number
of unstable eigenvalues of L. This requires sampling the Evans function for a
widespread and sufficiently dense set of points along the imaginary axis.

6.4 Precomputation

Note that the coefficient matrices of the original as well as the induced spectral
problem depend linearly on λ. We are therefore in the situation where each
step of a one-step method can be written as multiplication with a matrix-valued
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polynomial in λ or—in case of the Magnus method—the exponential of a matrix-
valued polynomial in λ.
Precomputing the coefficients can substantially increase efficiency if the Evans

function must be evaluated many times with different λ. However, factoring out
the exponential growth as in (6.9) substantially reduces the efficiency of precom-
putation as the dependence of µ± on λ is generally non-polynomial, so that µ±
would have to enter as a second parameter. However the favourable stability
properties of Magnus methods mean that in practice we can simply divide the
solution matrix over each subinterval by the appropriate scalar rescaling factor,
as this approximation leaves the location of the zeros invariant. (Choosing to
rescale in this way over longer intervals may incur floating point representation
problems.)
In particular, for a Magnus method we would

1. Precompute the complete set of coefficients (3.13) for each of the intervals
[ξ−0 , ξ∗] and [ξ∗, ξ

+
0 ].

2. Evaluate, for each value of λ,

W±(ξ∗;λ) ≈
(

eσN (ξ±
M−1

,ξ±
M

;λ)

eµ±(λ)(ξ±
M
−ξ±

M−1
)

)

◦ · · · ◦
(

eσN (ξ±0 ,ξ±1 ;λ)

eµ±(λ)(ξ±1 −ξ
±

0 )

)

◦ V±(λ) .

3. Using these approximations compute W+ ∧W−.

We may also wish to change some other physical parameters in the system.
However, since the effort of precomputation increases sharply with the number
of parameters and the shape of the travelling wave may depend on these param-
eters, too, this is best done by recomputing the set of coefficients, or possibly by
fixing λ and varying another parameter.

6.5 Pulsating fronts in autocatalysis

As a specific nontrivial example, we study travelling waves in a model of
autocatalysis in a medium of infinite extent,

∂tU1 = δ ∂ξξU1 + c ∂ξU1 − U1U
m
2 ,(6.10a)

∂tU2 = ∂ξξU2 + c ∂ξU2 + U1U
m
2 .(6.10b)

The fields U1(ξ, t) and U2(ξ, t) are the concentrations of the reactant and auto-
catalyst, respectively. We suppose (U1, U2) approaches the stable homogeneous
steady state (0, 1) as ξ → −∞, and the unstable homogeneous steady state (1, 0)
as ξ → +∞. The diffusion parameter δ is the ratio of the diffusivity of the reac-
tant to that of the autocatalyst and m is the order of the autocatalytic reaction.
This system is globally well-posed for smooth initial data, and any finite δ > 0
and m > 1.
Travelling wave solutions satisfy an autonomous nonlinear ordinary differential

eigenvalue problem for the wavespeed c. Billingham and Needham [6] proved
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that, modulo translation, a unique heteroclinic connection between the homoge-
neous steady states U−c = (0, 1) as ξ → −∞ and U+

c = (1, 0) as ξ → +∞ exists
for all wave speeds c ∈ [cmin,∞). Here we are interested in the stability of the
exponentially decaying travelling wave of minimum speed cmin. It is the unique
heteroclinic connection which lies simultaneously in the one dimensional unsta-
ble manifold of U−c and the two dimensional stable manifold of U+

c . Figure 6.1
shows the travelling wave computed by a simple shooting algorithm.
The linear operator L associated with small perturbations about Uc = (u, v)

satisfies all properties previously assumed. The matrix of the corresponding first
order eigenvalue problem is

(6.11) A(ξ, λ) =







0 0 1 0
0 0 0 1

λ/δ + vm/δ muvm−1/δ −c/δ 0
−vm λ−muvm−1 0 −c







.

As in Allen and Bridges [2], we identify
∧2 C4 ∼= C6 and write the resulting

induced coefficient matrix in the form

(6.12) A(2)(ξ, λ) = A
(2)
0 (ξ) + λA

(2)
1 ,

where

A
(2)
0 (ξ) =











0 0 1 −1 0 0
muvm−1/δ −c/δ 0 0 0 0
−muvm−1 0 −c 0 0 1
−vm/δ 0 0 −c/δ 0 −1

vm 0 0 0 −c 0
0 vm vm/δ muvm−1 muvm−1/δ −c(1 + δ)/δ











and

A
(2)
1 =











0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
−1/δ 0 0 0 0 0
0 0 0 0 0 0
0 0 1/δ −1 0 0











A so-called pulsating instability occurs when δ < 1 is sufficiently small and m
is sufficiently large. For δ fixed and m increasing, a complex conjugate pair of
eigenvalues crosses into the right-half λ-plane signifying the onset of instability
via a Hopf bifurcation [4]. Figure 6.2 clearly shows the onset of this instability
as m is increased from 8 to 9 and δ = 0.1.

6.6 Comparing Magnus and Runge–Kutta integrators

When detecting and locating the unstable eigenvalues, we particularly need to
sample the Evans function along the imaginary λ-axis as explained in Section 6.3
(the symmetry properties of the Evans function about the real λ-axis mean that
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The bottom curve is w = v′.

-0.04 0 0.04

-0.1

0

0.1

-0.04 0 0.04

-0.1

0

0.1

m=8

-0.04 0 0.04

-0.1

0

0.1

-0.04 0 0.04

-0.1

0

0.1

m=9

Figure 6.2: Zero contours lines of the real and imaginary parts of the Evans
function for problem (6.10) with δ = 0.1 and m = 8 (left) and m = 9 (right).
Solid lines correspond to zero contours of ReD(λ), dashed lines to ImD(λ).
Hence, the Evans function is zero where the lines intersect. We see that a com-
plex-conjugate pair of eigenvalues crosses into the right-half plane as m increases,
indicating the onset of instability. Note that due to translational invariance, the
origin is always an eigenvalue. Also note that there is a branch cut along part of
the negative real axis and the zero contour of ImD(λ) there should be ignored
(a sign-changing jump occurs).
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evaluation is only required along the positive imaginary axis). In the case that
zeros in the right half plane are detected, we may want to localize the region of
integration and finally use root finding methods to determine the exact location.
Note that if A(2)(ξ + h, λ) has an expansion of the form

(6.13) A(2)(ξ + h, λ) = â0 + â1h+ â2h
2 + . . . ,

then the structure of A
(2)
0 (ξ) and nilpotency of A

(2)
1 of degree 2, imply that

[â1, A
(2)
1 ] = 0 ,

[â2, A
(2)
1 ] = 0 ,

[A
(2)
1 , [A

(2)
1 , [A

(2)
0 (ξ), â1]]] ≡ 0 .

So that in particular, the terms [â0, [â0, â2]] and [â0, [â0, [â0, â1]]] in the local
truncation error (4.13) only grow linearly with |λ|, while the term [â1, [â1, â0]]
is independent of |λ|. Hence for h|λ| ¿ 1 the local truncation error only grows
linearly rather than cubically with |λ|—in fact the global error in Figure 6.4
scales slightly better than linearly with |λ|.
There are two regimes that can present difficulties for the numerical scheme.

First, when λ is large along the positive imaginary axis, the system has eigenval-
ues with large negative real part, so that integrators that are not A-stable will
eventually lose stability. Second, in the presence of higher bound states or in the
vicinity of the essential spectrum, the system develops eigenvalues with a large
imaginary, or even positive component. This regime taxes both accuracy and
stability of the integrator. We will now see how the Magnus integrator performs
in each of these two regimes.

6.7 Comparison for large |λ|
When λ is purely imaginary but large in magnitude, RK4 becomes unstable—

its domain of stability is shown in Figure 6.3. In fact, the magnitude of the
dominant eigenvalue of maximum magnitude of the system grows like

√
y for

large λ = iy, and either explicit Magnus or an implicit numerical integrator of
finite difference type must be used. We thus compare the performance of the
Magnus integrator with Lobatto–IIIC and Gauss-Legendre of the same order.
Figure 6.4 shows that the Magnus integrator is doing quite well, although its
errors are an order of magnitude above the other two. This case is the “boring”
regime—the solution is large in magnitude, but almost constant; traditional in-
tegrators do well in this case, and are clearly cheaper, too. (We also remark that
Allen and Bridges [2] have shown that Gauss-Legendre can be made even more
efficient by taking advantage of the block matrix structure of this system.) For
even larger values of |λ| there is an efficient order 1/|λ| asymptotic approxima-
tion (see (B.4) in Appendix B) which will give an error of order 10−n when |λ|
is larger than 10n.
For larger values of |λ|—where the graph is roughly flat, higher order terms

in the expansion become important and reduction of order is occurring. When
|λ| is larger still, the global error in Figure 6.4 grows like |λ|3/2.
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Figure 6.3: The closed regions of the complex λ-plane where all the eigenvalues
of the coefficient matrices A(2)(+∞, λ) − µ+(λ)I (scaled by the steplength fac-
tor −h) lie in the region of absolute stability of RK4 (on the left δ = 0.1 and
h = 17/128, on the right δ = 0.005 and h = 17/1024). The longer boundary
to the bottom, right and top in these plots indicates where one of the eigen-
values becomes too large in magnitude. The indented boundary on the left
indicates where the real part of one of the eigenvalues becomes positive (and
where the Gauss-Legendre method becomes unstable—it lies just to the left of
the right–hand boundary of the essential spectrum).

6.8 Comparison near the essential spectrum

In the second important regime Magnus integrators not only do well, but
outperform Lobatto–IIIC and Gauss–Legendre by a clear margin. Since our
eigenvalue problem has no apparent higher bound states, we compare all three
integrators as λ traverses into the indented boundary in the right-hand plot
in Figure 6.3. Figure 6.5 shows that the Magnus integrator not only scales
extremely robustly throughout, but outperforms the two implicit schemes as we
move inside the essential spectrum.
The robustness of the Magnus methods should make it widely applicable to

spectral problems. For example, the eigenvalues of the coefficient matrix may
change magnitude and their real parts may change sign as ξ varies in the interval
of integration. Explicit and also implicit Runge-Kutta methods will not work
reliably without adaptive stepsize control, whereas Magnus integrators remain
unaffected by such variations. We expect that this is important when deter-
mining stability of multi-bump pulses, multi-phase travelling fronts or when
computing higher bound states of coupled Schrödinger operators.

7 Conclusions and outlook

We have compared standard Runge–Kutta schemes with a Magnus integrator
of the same order for the task of numerical evaluation of the Evans function. We
found that, on the one hand, precomputation alone does not position the Magnus
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Figure 6.4: Numerical error when computing the Evans function D(iy) for
δ = 0.1 and m = 8.3 along the imaginary axis using fourth order Magnus,
Lobatto–IIIC and Gauss-Legendre methods. The top set were computed with
128 steps, so h = 17/128 for [ξ∗, ξ

+
0 ] = [−7, 10], whilst the bottom set correspond

to 512 steps, h = 17/512. A typical Nyquist plot would have y range from 10−4

to 106. In the lower set of plots, for log λ > 6 the coefficient matrix of the
linear system of equations to be solved at each step for the Gauss-Legendre and
Lobatto–IIIC becomes ill–conditioned.

integrator ahead of Runge–Kutta methods. Although the Magnus integrator
may be more accurate for a given step size, the cost of exponentiation will
dominate the computational expense in many situations.
On the other hand, Magnus integrators are extremely robust. Their perfor-

mance remains uniformly good across regimes where the equations become stiff
and, correspondingly, Runge–Kutta methods fare arbitrarily poorly. The dis-
tinct advantages of Magnus integrators are

1. Unconditional stability,

2. Superior performance in highly oscillatory regimes,

3. Possibility of a priori stepsize control.

Items 2 and 3 reflect that error bounds for Magnus methods depend only on
low order derivatives of the matrix A, not—as for Runge–Kutta schemes—on
derivatives of the solution (e.g., for a Runge–Kutta method of order N the
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Figure 6.5: Global error as a function of the number of steps computed for
different values of λ = x + i over the interval [ξ∗, ξ

+
0 ] = [−7, 10] with δ = 0.005

and m = 12. We compare the fourth order Magnus (¦), Lobatto–IIIC (∗) and
Gauss–Legendre (¤). As x decreases, the real part of one of the eigenvalues of
A(2)(+∞, λ) − µ+(λ)I becomes positive and as we move further to the left we
begin see the Magnus integrator outperform both of the implicit schemes.

error effectively depends on N + 1 derivatives of A). Therefore, performance
and, correspondingly, the choice of optimal step size remain uniform over any
bounded region of parameter space. Moreover, while stepsize control for Runge–
Kutta is crucial to ensure stability, performance of Magnus methods is relatively
insensitive to the choice of step sizes—in the problems we studied performance
with optimal step size control remains within a factor 2 from performance with
equidistant partition.
Since much of the performance balance hinges on the efficiency of matrix

exponentiation which we did not attempt to explicitly optimize, we cannot yet
state a quantitative cross-over point for Runge–Kutta vs. Magnus. However, we
believe that Magnus integrators could become method of choice for this type of
problem due to their robust and predictable behaviour.
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Further progress may be made in the following directions: Evaluation of the
semi-infinite exponential tails by analytically computable Magnus steps, the
combination of the Magnus series with an operator splitting approach, so that
some of the matrix exponentials can also be precomputed, and the use of expan-
sions with respect to model parameters as a tool for proving properties of the
Evans function. Finally, the use of Neumann series integrators has very recently
proved successful for certain large, highly oscillatory systems—see Iserles [21]—
and implications for systems with parameters remain to be explored.

A Appendix: WKBJ analysis for the modified Airy equation

A.1 WKBJ solution

Setting ν = 1 + λ, we decompose the coefficient matrix for the modified Airy
equation (5.1) as

(A.1) A(t+ h, ν) = a0(t, ν) + â(t, h) ,

where

(A.2) a0(t, ν) =

(
0 ν

1− ν − t2 0

)

and â(t, h) =

(
0 0

−2th− h2 0

)

.

The eigenvalues of a0 are

(A.3) µ± = ±iν
√

1 +
t2 − 1

ν
≡ ±iµ ,

and the change of coordinates that diagonalizes a0 has the asymptotic form

X =
1√
2

(
1 1
i −i

)

+
t2 − 1

4
√
2ν

(
−1 −1
i −i

)

+
(t2 − 1)2

32
√
2ν2

(
3 3
−5i 5i

)

+O
(

1

ν3

)

,

(A.4a)

X−1 =
1√
2

(
1 −i
1 i

)

− t2 − 1

4
√
2ν

(
−1 −i
−1 i

)

− (t2 − 1)2

32
√
2ν2

(
1 7i
1 −7i

)

+O
(

1

ν3

)

,

(A.4b)

when ν is large; we write D = X−1a0X = diag{iµ,−iµ}. Following Iserles [20]
and Jódar and Marletta [26], we factorize the flow map in the form

(A.5) S(h) = X exp(Dh) S̃(h) ,

The rescaled flow-map S̃ must satisfy the initial value problem

(A.6) S̃′ = Ã(t, h) S̃ , S̃(0) = X−1 ,

where

Ã(t, h) = exp(−Dh)X−1 â(t, h)X exp(Dh)(A.7)

= 1
2 i(2th+ h2)

(

1− t2 − 1

2ν

)((
1 e−2iµh

−e2iµh −1

)

+O
(

h

ν2

))

.
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Computing the first term of the Magnus series for S̃, we find, using the Riemann–
Lebesgue Lemma, that

s̃1 =

∫ h

0

Ã(t, h1) dh1(A.8)

= 1
2 i

(

th2 +
h3

3

)(
1 0
0 −1

)

− th

2ν

(
0 e−2iµh

e2iµh 0

)

+
it

4ν2

(
0 e−2iµh − 1

−(e2iµh − 1) 0

)

+O
(
h2

ν

)

+O
(

h

ν2

)

.

All higher order terms in the Magnus series are are O
(
h2ν−1

)
. Reverting to the

original flow map, we find

S(h) = X exp(Dh) exp

(

s̃1 +O
(
h2

ν

))

X−1(A.9)

= X exp(Dh)X−1X exp

(

s̃1 +O
(
h2

ν

))

X−1

= exp(a0h) exp

(

Xs̃1X
−1 +O

(
h2

ν

))

= exp(a0h) exp(σ̃(t, h)) ,

where

σ̃(t, h) = 1
2

(

th2 +
h3

3

)(
0 1
−1 0

)

− th

2ν

(
cos 2µh sin 2µh
sin 2µh − cos 2µh

)

+
t

2ν2

((
sin 2µh 1− cos 2µh

1− cos 2µh − sin 2µh

))

+O
(
h2

ν

)

+O
(

h

ν2

)

.

This yields the asymptotic formula (5.9) quoted in the main text.

A.2 Fourth order Magnus asymptotic form

The fourth order Magnus integrator takes the explicit form

(A.10) Smag
4 = exp(s1 + s2) ,

where

(A.11) s1 + s2 = h

(
ν H2 ν

1− ν − t2 −H1 −ν H2

)

with

(A.12) H1 ≡ th+
h2

3
and H2 ≡

th2

6
+

h3

12
.
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The eigenvalues of the matrix s1 + s2 are

µmag
± = ±iνh

(

1 +
t2 − 1

ν

) 1
2
(

1 +
H1

t2 − 1 + ν
− ν H2

2

t2 − 1 + ν

) 1
2

(A.13)

= hµ±

(

1 + 1
2

H1

ν
− 1

2 H2
2 +O

(
h4

ν

)

+O
(

h

ν2

)

+O(h8)

)

= ±ih
(
µ+ 1

2 H1 − 1
2ν H2

2

)
+O

(
h2

ν

)

+O(h5) ,

≡ ±iµmag ,(A.14)

where we suppose that h ¿ 1, ν À 1 with 1/ν = O(h) and, in the last step,
we have used that µ± = ±iν +O(1). Writing Dmag = diag{iµmag,−iµmag} and
comparing with (A.8), we obtain

Dmag = Dh+ s̃1 − 1
2 iνhH

2
2

(
1 0
0 −1

)

+
th

2ν

(
0 e−2iµh

e2iµh 0

)

(A.15)

− it

4ν2

(
0 e−2iµh − 1

−(e2iµh − 1) 0

)

+O
(
h2

ν

)

+O
(

h

ν2

)

+O(h5) .

The change of variables that diagonalizes s1 + s2 can be written in the non-
normalized asymptotic form

Xmag =X − H2√
2

(
0 0
1 1

)

+
1√
2

H1

4ν

(
−1 −1
i −i

)

(A.16a)

+O
(
h4
)
+O

(
h2

ν

)

+O
(

h

ν2

)

+O
(

1

ν3

)

,

(Xmag)
−1

=X−1 + i
H2√
2

(
−1 0
1 0

)

+
1√
2

H1

4ν

(
1 i
1 −i

)

(A.16b)

+O
(
h4
)
+O

(
h2

ν

)

+O
(

h

ν2

)

+O
(

1

ν3

)

.

Hence,

Smag
4 (h) = exp(s1 + s2)(A.17)

= Xmag exp (Dmag) (Xmag)
−1

= X exp (Dmag)X−1 +H2 sin(µmag)

(
1 0
0 −1

)

− H1

ν
sin(µmag)

(
0 1
1 0

)

+O
(
h4
)
+O

(
h2

ν

)

+O
(

h

ν2

)

+O
(

1

ν3

)

.
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A.3 Local asymptotic error estimate for the fourth order Magnus scheme

We compare exact solution in its WKBJ asymptotic form—the first line of
equation (A.9)—with the asymptotic expression for the fourth order Magnus
scheme,

S(h)− Smag
4 (h) = X exp(Dh) exp

(

s̃1 +O
(
h2

ν

))

X−1 − Smag
4 (h)

(A.18)

= X

[

exp(Dh) exp

(

s̃1 +O
(
h2

ν

))

− exp (Dmag)

]

X−1

−H2 sin(µmag)

(
1 0
0 −1

)

+
H1

ν
sin(µmag)

(
0 1
1 0

)

+O
(
h4
)
+O

(
h2

ν

)

+O
(

h

ν2

)

+O
(

1

ν3

)

.

The first term on the right can be written as

(A.19) X exp (Dmag)

[

exp (Dh−Dmag) exp

(

s̃1 +O
(
h2

ν

))

− I

]

X−1 ,

so that, by expanding the two exponentials inside the square bracket, and using
the expression for Dmag from (A.15),

Eloc ≡ S(h)− Smag
4 (h)(A.20)

= Eloc
1 + Eloc

2 + Eloc
3 + Eloc

4 +O(h5) +O
(
h2

ν

)

+O
(

h

ν2

)

+O
(

1

ν3

)

+O
(
νh7

)
+O

(
ν2h10

)
,

where

Eloc
1 ≡ − 1

2νhH
2
2

(
sinµmag − cosµmag

cosµmag sinµmag

)

Eloc
2 ≡ −H2 sin(µmag)

(
1 0
0 −1

)

Eloc
3 ≡ H1

ν
sin(µmag)

(
0 1
1 0

)

− th

2ν

(
cos(2µh− µmag) sin(2µh− µmag)
sin(2µh− µmag) − cos(2µh− µmag)

)

Eloc
4 ≡ it

4ν2

(
sin(µmag − 2µh)− sinµmag cos(µmag − 2µh)− cosµmag

cos(µmag − 2µh)− cosµmag − sin(µmag − 2µh) + sinµmag

)

.

Hence, Eloc
1 = O(νh5) is the dominant error term in the regime h5ν ¿ 1 ¿

h3ν; Eloc
2 = O(h2) is the dominant error term in the regime h3ν ¿ 1 ¿ hν.

Figure A.1 shows that these leading order error terms are good error indicators
even across the transitions between the different asymptotic regimes.
The last two error terms, E loc

3 = O(h/ν) and Eloc
4 = O(1/ν2) become signifi-

cant in comparison with E loc
2 when hν ≈ 1 and contribute to the global error in

this regime.
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Figure A.1: Local error indicators for the toy modified Airy equation in three
different asymptotic regimes. When hν ¿ 1, the error is dominated by the local
truncation error. When h3ν ¿ 1 ¿ hν, the error is dominated by E loc

2 ; for
h5ν ¿ 1 ¿ h3ν it is dominated by Eloc

1 . The bottom graph shows the actual
computed error for comparison. The graphs for E loc

1 and Eloc
2 are shifted up by

3 units for better legibility; the actual curves lie on top of each other for large
stretches. Parameters are t = 0.5 and h = 1/512.

A.4 Global error

In the regime h3ν ¿ 1¿ hν, for example where order reduction is observed,
the local error is dominated by

(A.21) Eloc
2 = −H2 sin(µmag)

(
1 0
0 −1

)

= O(h2) ,

while the global error is also of order h2; see Figure 5.4. Since E2 is varying slowly
relative to the oscillatory solution, local error contributions partially cancel out
over many solution periods. This is made explicit in the following.
Let Y (t) ≡ S(s, t)Y (s), h = T/N , and tn = nh, so that

(A.22) S(0, T ) =
0∏

n=N−1

S(tn, tn+1) ,
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with a corresponding expression for Smag. Hence,

Eglobal = S(0, T )− Smag(0, T )

=
n=0∏

N−1

(
Smag(tn, tn+1) + Eloc(tn, tn+1)

)
− Smag(0, T )

=

N−1∑

n=0

Smag(tn+1, T )E(tn, tn+1)S
mag(0, tn) +O

(
‖Eloc‖2/h

)
.(A.23)

In the following we derive the explicit leading order asymptotics for the global
error. First, recall that

(A.24) Smag = Xmag exp(Dmag) (Xmag)
−1

.

Moreover, Xmag and (Xmag)−1 as defined by (A.16) are functions of t, which
satisfy

(A.25)
(
Xmag(tn+1)

)−1
Xmag(tn) = I +O

(
h3
)
+O

(
h2

ν

)

+O
(

h

ν2

)

.

We use this observation to conclude that

Smag(0, T ) =

0∏

n=N−1

Smag(tn, tn+1)

=
0∏

n=N−1

Xmag(tn) exp
(
Dmag(tn)

)
(Xmag(tn))

−1

= Xmag(tN−1) exp
(
Dmag(0, T )

)
(Xmag(0))

−1

+O(h2) +O
(
h

ν

)

+O
(

1

ν2

)

= X0 exp
(
Dmag(0, T )

)
X−1

0 +O(h2) +O
(
1

ν

)

,(A.26)

where

(A.27) Dmag(0, T ) ≡
N−1∑

n=0

D(tn) ,

and we replaced, consistent to the order shown, Xmag(tN−1) and (Xmag(0))
−1

by

(A.28) X0 =
1√
2

(
1 1
i −i

)

and X−1
0 =

1√
2

(
1 −i
1 i

)

.
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We now plug (A.26) back into (A.23),

(A.29) Eglobal = X0

[N−1∑

n=0

exp
(
Dmag(tn+1, T )

)
X−1

0 Eloc(tn, tn+1)X0

· exp
(
Dmag(0, tn)

)
]

X−1
0 +O

(
‖Eloc‖2/h

)
+O

(
νh3
)
+O

(
h2

ν

)

.

This formula is now used to compute, for each of the components of the local
error, its corresponding contribution to the global error. For E loc

1 we see that

(A.30) Eglobal
1 = 1

2 iνhX0

(
N−1∑

n=0

H2
2 (tn)

(
exp(iαn) 0

0 − exp(−iαn)

))

X−1
0 ,

where (recall tj = jh)

αn =

N−1∑

j=0

µmag(tj)

=

N−1∑

j=0

(

νh− 1
2h(t

2
j − 1) + 1

2 tjh
2 +O(h3) +O

(
h

ν

))

= νh(N − 1)− 1
2h

3 (N − 1)N(2N − 1)

6
+ 1

2h
3 (N − 1)N

2
+O(h2) +O

(
1

ν

)

= (ν + 1
2 )T − 1

6T
3 +O(h2) +O

(
1

ν

)

.

Inserting this into (A.30), we find

(A.31) Eglobal
1 = − 1

216
νh4T 3

(
sinαn − cosαn

cosαn sinαn

)

+O(h5) .

Similarly, plugging in the expression for E loc
2 into (A.29), we obtain

(A.32) Eglobal
2 =

N−1∑

n=0

H2(tn) sin
(
µmag(tn)

)
(
− cosσn sinσn

sinσn cosσn

)

,

where

σn =

N−1∑

j=n+1

µmag(tj)−
n−1∑

j=0

µmag(tj)(A.33)

= (ν + 1
2 )(T − 2tn)− 1

6T
3 + 1

3 t
3
n + 1

2 t
2
nh+O(h2) +O

(
1

ν

)

.(A.34)

To compute the asymptotic behaviour of Eglobal
2 , note that

sin
(
µmag(t)

)
= sin

(
νh+ 1

2h(t
2 − 1) +O(h2)

)

= sin
(
νh
)
+ cos

(
νh
)
sin
(

1
2h(t

2 − 1)
)
+O(h) ,(A.35)
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and therefore

h
N−1∑

n=0

tn sin
(
µmag(tn)

)
exp
(
±iσn

)

= sin
(
νh
)
∫ T

0

τ exp
(
(ν + 1

2 )(T − 2τ)− 1
6T

3 + 1
3τ

3 + 1
2τ

2h+O(h2)
)
dτ

+ cos
(
νh
)
∫ T

0

τ sin
(

1
2h(τ

2 − 1)
)
·

· exp
(
(ν + 1

2 )(T − 2τ)− 1
6T

3 + 1
3τ

3 + 1
2τ

2h+O(h2)
)
dτ +O(h) ,

where, consistent with the order of the approximation, we have replaced the sum
in (A.32) with an integral, and each integral is of the form

(A.36) e±i(ν+
1
2 )T− 1

6T
3

∫ T

0

g(t) e∓2iντ dt ,

with g(t) a continuous function. By the Riemann–Lebesgue lemma, this expres-
sion is of order 1/ν. This proves that

(A.37) Eglobal
2 = O

(
h2
)
+O

(
h

ν

)

.

Similar arguments yield the global error contributions corresponding to the
local error components Eloc

3 and Eloc
4

Eglobal
3 =

1

ν

N−1∑

n=0

H1(tn) sin
(
µmag(tn)

)
(
sinσn cosσn

cosσn − sinσn

)

+
h

2ν

N−1∑

n=0

tn

(
− cosβn sinβn
sinβn cosβn

)

= O
(

1

ν2

)

+O
(
h

ν

)

,

where βn ≡ σn − 2µh+ µmag(tn) and

Eglobal
4 = − 1

4ν2

N−1∑

n=0

tn

(
sinβn − sin γn cosβn − cos γn
cosβn − cos γn − sinβn + sin γn

)

= O
(

1

hν2

)

+O
(

1

ν2

)

,

where γn = σn + µmag(tn).
In Figure A.2 we compare the global error components above against the

numerically computed error.
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Figure A.2: Global error indicators for the toy modified Airy equation in three
different asymptotic regimes. When h4ν ¿ 1¿ h2ν, the error is dominated by
Eglobal

1 ; for h2ν ¿ 1 ¿ hν it is dominated by Eglobal
2 . When hν = ord(1) then

the global error terms Eglobal
3 and Eglobal

4 are similar in magnitude to Eglobal
2 .

The bottom graph shows the actual computed error for comparison. The graphs
for Eglobal

i , i = 1, . . . , 4 are shifted up by 3 units for better legibility; the actual
curves lie on top of each other for large stretches. Parameters are t = 1 and
h = 1/512.

B Appendix: Asymptotic approximations for Evans function

We can derive asymptotic approximations valid for large |λ| for solutions to
the eigenvalue problem (6.4). Rescaling z =

√

|λ| ξ, we find that the new
fundamental matrix S(z, λ) satisfies the system

(B.1) S′ = Ã(z, λ)S ,

where

Ã(z, λ) =

(
O I

B−1
(
Iei argλ −DF

(
Uc(z/

√

|λ|)
)
/|λ|

)
−cB−1/

√

|λ|

)

.(B.2)

In the limit |λ| → ∞, Ã(z, λ) approaches the constant coefficient matrix

A∞ =

(
O I

ei argλB−1 O

)

.(B.3)
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In particular, when λ → i∞, we can show that the Evans function is given by
the determinant of the eigenvectors of A∞. More explicitly, D̃(iy) → −4i

√
δ as

y → +∞; see, for example, Sandstede [38]. Further, S(z, λ) has an asymptotic
expansion of the form

(B.4) S(z, λ) = exp(zA∞) +
S1(z)

|λ| 12
+

S2(z)

|λ| +O
(

1

|λ| 32

)

,

where

(B.5) S1(z) = z exp(zA∞) · dexp−zA∞(Ã1) ,

and S2(z) satisfies the differential equation

(B.6) S′2 = A∞S2 + Ã1S1 + Ã2(z) exp(zA∞) ,

and where Ã1 and Ã2(z) are the coefficients of 1/|λ| 12 and 1/|λ| in the expansion
of Ã(z, λ):

(B.7) Ã1 =

(
O O
O −cB−1

)

and Ã2(z) =

(
O O

−DF (Uc(z/
√

|λ|))
)

O

)

.

We can solve (B.6) through the variation of constants formula, but evaluation
of S2(z) will require knowledge of Ã2(z) and hence numerical evaluation of the
travelling wave Uc. This means that effective analytical estimates for S(z, λ)
incur an order 1/|λ| error.
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