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Abstract: We prove the existence of global solutions to a coupled system of Navier—
Stokes, and reaction-diffusion equations (for temperature and mass fraction) with pre-
scribed front data on an infinite vertical strip or tube. This system models a one-step
exothermic chemical reaction. The heat release induced volume expansion is accounted
forvia the Boussinesq approximation. The solutions are time dependent moving frontsin
the presence of fluid convection. In the general setting, the fronts are subject to intensive
Rayleigh-Taylor and thermal-diffusive instabilities. Various physical quantities, such as
fluid velocity, temperature, and front speed, can grow in time. We show that the growth
is at most©® for large timet by constructing a nonlinear functional on the temperature
and mass fraction components. These results hold for arbitrary order reactions in two
space dimensions and for quadratic and cubic reactions in three space dimensions. In
the absence of any thermal-diffusive instability (unit Lewis number), and with weak
fluid coupling, we construct a class of fronts moving through shear flows. Although the
front speeds may oscillate in time, we show that they are uniformly bounded for large
t. The front equation shows the generic time-dependent nature of the front speeds and
the straining effect of the flow field.

1. Introduction

We study the existence of global solutions to the following Boussinesq combustion
system on the infinite tub® := {(z,y) € T x R}, wherex c R¢"1is an open,
bounded, simply connected domain with smooth boun@ary /%, outward normal

n, andd = 2, 3 is our spatial dimension:
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O+ - Vb = A — 1 (0), (L1a)
Of+u - VO =LA+ f(0), (1.1b)
du+tu-Vu=vAu— Vp+obe, (1.1¢)
V- -u=0. (1.1d)

Physically we interpretu(z, v, t): Q x R — R? as the fluid velocityp(x, y, t): Q x

R — R the pressurey(z,y,t): 2 x R — R the concentration of the reactant in a
one-step irreversible exothermic reactidfr, y,t): Q2 x R — R the temperature of

the reactant-product mixture;the normalised fluid viscosity or Prandtl numbéthe

Lewis number;s the Rayleigh numbere denotes the unit vertical direction opposite

to the propagation direction of flame (aligned with thelirection). For convenience

we shall write := (1, 0): Q@ x R — R?, i.e. the 2-tuple of reactant concentration and
temperature. We assume non-homogeneous boundary conditions which allow front type
initial data to be prescribed (for our main resuits= 0):

920 =0,0,0=0, u=0, ondT x R x R,,
v —0, § -1 u—>b", asy— +oo, 1.2)
Yv—1 6—0, u—>b", asy— —oco.

We will suppose for some: € N,

o= 178

System (1.1) models the vertical movement of flame fronts. Thermal volume expansion
of the fluid due to the irreversible exothermic combustion reaction is accounted for by
the Overbeck-Boussinesq approximation [10, 28]. The nonlinear chemical reaction term
¥ f(9) usually takes the Arrhenius forgyf (9) exp{—&/RH}, or its normalised version

P f(0)exp{(d —1)/(1+x(0 — 1))e}, wheref(0) is usually of the form (1.3) thoughu is

not always a positive integer (in general). The consfasthe activation energy? is the
universal gas constany, € (0, 1) is the thermal expansion coefficient and- 0 is the
reciprocal of the Zel'dovich number (see Buckmaster and Ludford [8] or Berestycki and
Larrouturou [2]). Since the supremum of €xpS /R6} overQ x R is always bounded,

the inclusion of this factor in the chemical nonlinearity would not affect any of our
proofs. Consequently we neglect this exponential factor and for simplicity, chfotmse

be a power nonlinearity.

This simple chemical nonlinearity also arises in isothermal autocatalytic chemical
reactions of the formd + mB — (m + 1)B, wherem is the order of reaction, angd, 0
are the concentrations of reactahénd autocatalysB respectively. The rate of reaction
is thus given byt 6™, where the constant enthalpyan be scaled out of the system. In
this case the temperature remains fixed, yet the density of #rel B mixture increases
with the reaction resulting in a change of fluid velocity. Thus chemical feedback plays
the role of thermal feedback and system (1.1) then governs the dynamics of the moving
concentration fronts in the presence of fluid convection.

Billingham, King, Merkin, Metcalf, Needham, and Scott [6, 39, 40] studied the au-
tocatalytic reaction-diffusion system (1.1a), (1.1b), neglecting hydrodynamical effects.
They proved existence and uniqueness results for an associated boundary value problem
and studied the development of travelling fronts of chemical reaction. See also Focant
and Gallay [18] for a recent study of existence of traveling fronts in the quadratic-cubic
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case and their stability whehis near one. The passively convected version of the non-
isothermal system was considered by Berestycki, Larrouturou and Roquejoffre [3, 48]
in an infinite tube, and they proved the linear and nonlinear stability of travelling front
solutions. Manley, Marion and Temam [34, 36] examined system (1.1) on a finite tube
in the case of a multi-component reaction and with slightly different boundary condi-
tions. They proved the global existenee 2, 3) of suitable weak solutions uniformly
boundedd = 2) intime. Further, their estimates for the Hausdorff dimension of the uni-
versal attractor indicated that for long tubes, hydrodynamical effects make a significant
contribution to the complexity of the flow. Crucial to their proofs was the assumption of
a bounded nonlinear reaction term.

We are interested in studying the full system (1.1) on unbounded domains while al-
lowing for unbounded chemical nonlinearities. The attractor dimension results of Man-
ley, Marion and Temam [34, 36] indicate the importance of studying this system when
the vertical domain size is much larger than the typical length scale associated with the
front width. The infinite cylindrical domain is the natural setting for examining the long
time behaviour of travelling front solutions and especially for the irreversible reactions.
Numerical simulations (Patnaik and Kailasanath [45], Zhu and Xin [62]) have shown
that moving fronts of system (1.1) are subject to both Rayleigh-Taylor (upward fronts)
and thermal diffusive instabilities. The Rayleigh-Taylor instability fromdife term is
due to heavier (cold) fluid lying above the lighter (hot) fluid. It leads to bubble formation
on the front and growth of fluid energy and vorticity. The thermal-diffusive instability
due tof # 1 can cause chaotic front oscillatiofit 1) or formations of cellular front
structures { < 1) [51, 39]. As a result, the maximum temperature can grow in time.
Last, but not least, for high Reynolds numbers (smpgthe fluid flow can become highly
irregular, which in turn wrinkles the front and may induce front acceleration. In [62],
power growth in time of maximum vorticity and temperature is numerically observed
(d=2,v=0.005,¢ = 0.1 or 10). Majda and Souganidis [33] studied front acceleration
(front speed ofO(t?), p > 0), in a prescribed (passive) random shear flow ofddr
regularity. All this evidence suggests that in general, one should not expect the front
speed to be uniformly bounded in time, instead a power growth may well happen.

Our first result implies an exponential bouaf® on the front speeds for fronts
in a two dimensional infinite vertical strip (for all orders of reactian or in a three
dimensional infinite vertical tube (fen € {1, 2, 3}). We treat only the one-step reaction
case, as the analysis of the multi-component case is practically identical. We prove the
existence of global weak solutiond & 2,3) to (1.1). In the two dimensional case
we prove uniqueness for a class of slightly more regular weak solutions as well as the
existence of strong, smooth solutions for smooth initial data. Our sharpest norm upper
bounds of solutions grow with time, so we are unable to discuss attractors. The growing
bounds may be interpreted as the enhancement of instabilities in the system due to the
unbounded chemical nonlinearities and unbounded domaifis=I x A, |A| < oo,

i.e. a bounded strip or tube, we can considerably improve our growth estimates. The
details however will be presented elsewhere.

Our second result concerns fronts in areduced system fvhdno is small,y > 27.

The fluid flows are laminar, the Rayleigh-Taylor effect is minimal, and the thermal-
diffusive effect is absent. We construct a class of front solutions near the known passive
fronts in smooth shear flows. The time dependent front speeds are proved to be uniformly
bounded in time. Passive fronts in shear flows on infinite cylindrical domains have been
studied at length by Berestycki, Larrouturou, Lions, Nirenberg and Roquejoffre [2, 3,
48, 4, 5], regarding the existence and stability of travelling front solutions. Similar issues
on passive fronts in periodic flow fields have also been well studied by Papanicolaou,
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Xin, and Zhu, [43, 56-59]. The passive fronts in these cases all propagate with constant
speeds. However, with fluid coupling turned on, front speed is no longer constant as we
will see from the front equation arising in the course of the proof.

2. Global Weak Solutions and Growth Estimates

2.1. Notation and Statement of Main Resiflte denotgp) := [, ¢ dedy for Lebesgue
measurable functiong: @ — R. Forq € [1,00), n € N, L4(22;R%) and H*(Q; R?)
are the usual Lebesgue and Sobolev spac&s‘afalued functions, equipped with the
norm and inner product

d

||L10H%q(Q;Rd) = Z<|¢l|q>v

i=1

d
(P B r@rny = Y > (D¥0iD*¢).

i=1 |a|<n

SinceQ has a smooth boundary, an equivalent nornfBH($2; R?) is

||<P||§{n(sz;Rd) = ||90||2L2(Q;Rd) + Z ||D(¥§OHZL?(Q;1R‘1)'

le|=n

The non-reflexive spack™(2; R?) is equipped with the usual sup-norm. We adopt the
notationlLY := L9(2; R?) for R?-valued functions defined o2 ¢ R?. We will often
use the Gagliardo—Nirenberg inequality: forale H*(Q), ¢ € [2, o) whend = 2 and

q € [2,6]whend =3

d
1-g+

d_d
lollze < IVl innn ol + @l e (2.2)

<

The last term on the right-hand side of (2.1) is zero whea H(<2). Also, we shall
use the interpolation inequality [19, 31]: fere L"(Q)NLP(R),1<p <qg <71 < 00,
pef0,1]and Yg=p/p+ 1 — p)/r

1—
lellce < llelzalleliz-". (2.2)

The Poincag inequality establishes the equivalence of the napify; o) and semi-norm
IV ol Laara) ON H(2): for ¢ € Hg(S2)

lelle < c(D)V el L arey- (2.3)

For a given Hilbert spack with inner product { -)x, we shall us€-, -)xxx/ to denote
the bilinear form establishing the duality betwe&and its duaK’. For two topological
vector spaceX andY, the notatiorX — Y shall indicate that a continuous embedding
exists fromX into Y and we shall us& —< Y when the embedding is compact.
Given a Banach spadg we shall usd.? ([0, co); Y) to denote the space of measurable

loc

functions from [0 co) to Y such that]- ||y € L{.([0, 00)). The notations wY and w- Y
are used to denof# endowed with its weak and weak-star topologies respectively. By

C([0, o0); w- X) we indicate the space of functions continuous fronof) into w- X.
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With D = {v € C§°(QR?) : V - v = 0}, we specifyH to be the closure
of D in L2(Q;R%) andV to be the closure ob in HY(Q;R?). Since there exists
Te t {v € LAQRY) : Vv € LAQ)} — {vlse € H 2(0Q;RY)}, a continu-
ous linear trace operator such that(v) = v - n|sq for smoothv, we have the standard
characterisations [14, 32]

H={ve QR : V- -v=0, To(v) =0},
V={veH}(ZRY: V- -v=0}

By the Riesz representation theorem we can idefiify H’ whichis our pivot space and
then, using the inequalities above, we establish the Gelfand tripléy[56] H — V',
where each space is dense in the one which follows. WéPuserepresent the Leray-
Hodge orthogonal projection onto divergence free functibnd.?(22; RY) — H. In the
standard fashion we define the linear Stokes opetdter—PA: D(A) — H, where
D(A) = HX(Q;R) N V.

Further, WithE = {p € C§°(RY) restricted toQ2 : dap = 0 ondXT x R} and
W= {p € HY(Q) : l¢l5nq) * 180172, We specifyW to be the closure df in

W. Since there exisT, : HY(Q) — H#(0Q) C LX0) andTy : W — H~#(9R),
continuous linear trace operators such tha{y) = ¢|se andTn(p) = daploq for
smoothyp, we can characterise [15, 56]

W = {p € HY(Q); Ap € L*(Q) : 49 = 00ndT x R},

We will also need Green’s theorem, which by density arguments, holds bV and
v e HY(Q):

(Vv Vo) +(vAp) = (Tp(v), In(p)) (2.4

H300)xH309)

Supposep € Cg°(R; [0, c0)) satisfies|, ¢(y) dy = 1. Sety(y) = f;fys ¢(s)ds and
§(y) = _[foo ¢(s)ds, wherey; is a finite constant which we can choose to be zero. Thus
0= (12,5) € [0, 1% is smooth, satisfies the boundary conditions (1.2) and has
compact support iiR. As in Heywood [22], we assume th&t can be continued as a
function into2, b € HZ(Q;RY), for which there exists a scalar distributigf, y)
such thatf = vAb — b- Vb — Vq € L3(Q;R?). This is trivial whenb* = 0, which

we assumehroughout the rest of this section. (However, with slight modifications to
our proofs equivalent to those in Heywood [22], our results can include the case when
f has finite Dirichlet integral — for example, whéhis a disk of radius, a natural
choice forb™ would be a Hagan-Poisedille flow; () = 8,5 - (|z|2 — r3)e/4v for some
prescribed pressure gradighp.)

We linearly decompose our solutions info= 6 + 8. For initial data ", ™)
satisfying the boundary conditions (1.2), our initial boundary value problem now takes
the form:
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b +u - Vip = A — o f(6), inQ xR, (2.5a)
9,0 +u - VO =LAG+1pf(0), inQ xR, (2.5b)
du+u-Vu=vAu—Vp+ crée, in Q2 x R,, (2.5¢)
V-u=0, inQ xR, (2.5d)
(0,6, u) =0, ondx x R x R,, (2.5€)
6,u) — 0, as|y| — oo, (2.5)
B(z,y,0)=8"(z,y) = 0™ — B, inQ, (2.50)
w(zx,y,0) = u"(x, ). (2.5h)

The termfe is the gradient of a scalar function gds now the modified pressure.
Definition 2.1. For given initial data(6™, u'") € L9(Q) x H, for all ¢ € [1, o), which
satisfyy)™ € [—1,1] andd™ € [—1, o) for a.e.(x, y) € Q, a global weak solution of
(2.5)indicates measurable functions
0 € Lix([0,00); L7) N Li([0, 00); H(2:R?) N C([0,00);L7),  (2.6a)
u € Lig([0, 00); H) N Le([0, 00); V) N C([0, 00); w- H), (2.6b)
for everyq € [1, o) whend = 2and every; € [1, 6] whend = 3, such tha&/? €[-1,1]

andd > —1, a.e. inQ, for everyt € [0, o), and which for all(p, v) € C*°([0, 00); E x
D) and[to, t1] C [0, o) satisfy

/ (D0rp+ b Ap+ - Vo — §f(0)g) dt = ((t)p(tr)) — (Do) (i), o7
to fa

t1 . ~ ~
/ (000 +LOAp + 0u-V o+ f(0)p) dt = (0(t1)@(t1)) — (O(to)p(to)), (2.7D)
t

0

/t1<u~8tv tru-Avtu®u: Vo + Uéve> dt = (u(tr)v(tr)) — (u(to)v(to)),
to (2.7¢)

and
(6(0), w(0)) = @™, u'™"). (2.8)

Remark 2.1.Since for these weak solutions), ) € C([0, c0); L2 x w- H), the initial
condition (2.8) is satisfied in this sense.

Theorem 2.1. Suppose)™ € [0,1], #™ € [0, c0) for a.e.(z,y) € Q. If (O™, u™) €
L7 x H for everyg € [1,00), then there exists a global weak solution(®5) for all
m € Nwhend = 2and form = 1,2 or 3whend = 3. Moreover, ag — oo there is a
positive constant such that

18() ||, [[u@)][m = Oe™) (2.9)

forall g € [1,00)if d =2andq € [1,6]if d = 3.
Whend = 2, if (8™, u"") € H*(Q;R?) x (VN H™(Q;R?)) for everyn € N, then
there exists a unique global classical solution(205).
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2.2. Existence of Weak Solutions< 2, 3). We shall prove this result through a series of
lemmas. We provide a-priori estimates for an associated system — the Leray regularised

form of (2.5), with renormalised chemical nonlinearitiés € 0+ @5)

Bybs +us - Vibs = Abs — s f(05)e %%, inQ xR, (2.10a)
0105 +us - VOs = LAOs + Vs f(05)e %%,  inQ xR, (2.10b)
dyus +ws - Vus = vAug — Vps + abse, in Q2 xR, (2.10c)
V-us=0, inQ xR, (2.10d)

(0705, us) =0, ondT x R x R,,  (2.10e)

(65, us) — O, asly| — oo, (2.10f)

050) =60 = Js « 6™, in €, (2.10g)

us(0) =ul = J5 « u™, in Q. (2.10h)

Fors > 0, letJ; € C§°(RY) be a Friedrichs mollifier [1] with support oB;(z, y),
the ball of radius), centered at«, y). We definews(§) = (Js5 * us)(€) = [zu J5(€ —
n)us(n) dn, i.e. the mollification ofus, whereus is the zero extension afs outside
Q. We recall the usual mollifiers propertieszife L9(Q2;R9), ¢ € [1, 00), then||J5 *
v||pe < ||v]|Le and lims_g+ ||Js * v — ||« = 0.

For everyy > 0, we know that a unique classical solution exists to (2.10) for the
given initial data, at least on some interval JQ], 75 > 0. We remark that since the
polynomial functionf(-) is Lipschitz continuous and the nonlinear reaction terms are also
bounded for this approximate system, then such an existence result on a finite domain
follows classically via a Faedo-Galerkin method, projecting initially onto the fifst
eigen-functions of the appropriate elliptic operators on a smooth bounded boundary say
of vertical diametetV (see for example Heywood [22]). Norm estimates can be shown
to be independent of the domain size considered and the result follows by considering
the limit N — oo. Our a-priori Lebesgue and Sobolev norm estimate9gmys) will
verify that such a solution exists on [&), i.e. the interval of existence is independent of
0. We will then eventually consider the limit— 0*. The following preliminary lemma
is an extension of the usual parabolic maximum principles (see Smoller [52] and Marion
[36]).

Lemma 2.1. If " € [0, 1], 0™ € [0, 00) a.e.ing2, themys € [0, 1], 65 > O, everywhere
in Q x [0, T].

Proof. Consider the inner product of (2.10a) with := max{0, —;} in L?(2),

t
[~ ()12 + 2 /0 190 [2agumards < [0 O]

Analogous estimates follow fdr := max{0, —6s} andy" := max{0, ©5 — 1}. O

We now establish the main estimates we require to prove the existence of weak solutions
for d = 2, 3. The phrase “uniformly bounded” is considered to be with respect to our
regularising parameter> 0. We shall use andc(-) to denote a generic finite positive
constant which might depend on the argument indicated, but which does not depend on
the regularisation parameter.
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Lemma 2.2. If (", u") € L2 x H, then the se{fs,us} is uniformly bounded in
L2 ([0, 00); L2 x H) N L2 ([0, 00); HY(2; R?) x V), and in fact

loc

t
1050z [us(e) s /O 165(5) sz ds = O(e).

Proof. Motivated by the work of Masuda [37], Haraux and Youkana [20], Collet and Xin
[12] and Bricmont, Kupiainen and Xin [7] on reaction-diffusion systems, we consider
a simple nonlinear functional that allows us to take advantage of the interaction of the
chemical nonlinearities. As in Collet and Xin [12], fét € C?(R?;[0, 00)), we use
(2.5a)—(2.5b) to derive

& (P, 0) +(Q(0))

=(V - (F1V s + LF5 V05 — usF))
+ (FLAD + (R A0) — (Frus - Vi + Fous - V)
— ((Fy — Fa)ihs f(Bs)e %), (2.11)
where
Q(V0s) = Fup|Vips|? + (1 +0) F1oVas - Vs + LFy| V5|2, (2.12)

Here F; and F, are the partial derivativgs 9?“ with respect to its first and second
arguments. We would like to choose &i(s, 65) which satisfies:

FiiFo, > (L+0?2F% 40, forall gy € [-1,1], 05 € [—1, ),
(2.13a)

F,— F,>0, foralls € [0,1], 05 € [0, ). (2.13b)

We impose (2.13a) to ensure the quadratic form (2.12) is non-negative and condi-
tion (2.13b) to partially help control the nonlinear terms.

Step 1.We show that the following inequality holds for the mean-square reactant con-
centration and temperature:

d " A A A
57 (F@3,00) + O (I Vs o0y + 19 05l|Z2(0,00)

< c(]|05)12 + lus |3 + 2 +1). (2.14)

We assumé to be the quadratic forn'(s, 6s) := a2 + Bs05 +v62. Note that for
arbitrary ¢, 5,7) € R%and €1, ¢2) € R? we can estimate

F(85) > (a - %)% + (7 - zﬁgl)éﬁ’
_a +7?5€2 V652

Q(VEy) > (20

)Ivis + (206 - L300

Condition (2.13b) is satisfied provided we choose

20— 3=k >0 and B—-2y=k,>0. (2.15)
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For a giverry > 0, we can always choogklarge enough so thay > 0 and therz; and

e large enough so that > (/21 and 2y¢ > (1 + ¢)3/2¢,. Finally we can choose
sufficiently large (but finite) such thag > 0, > fe1/2 and 2v > (1 +{)[e/2 and

thus we guarantee (2.15) and hence (2.13b) as well as (2.13a). In (2.11) we bound the
linear convection and diffusion terms using théléer and Young inequalities:

{FLAD + LR AD) | + |(Frus - Vi + Fous - V)|
<c (/ lus - e|?p(y) dady +/ |@5\2p(y) dady + 2 + 1) ,
X0 X0

where® = supd(dy} = supddyf}, p(y) = max{|d, v, 19,0, |02¢],1620]}. Using
(2.13b) we estimate the nonlinear term

((katbs + kals) s f(05)e %) > — / |—ka|ts| + koBs|1s f (05) dady
QK

- / knbs — k|05 |[40s £ (05) daedy — ¢
Q_
> — c(]|8s][2: + 1), (2.16)

whereQy = {(z,y) € Q: Us € [-1,0], 65 € [0, K = 2Ky /ko]} andQ_ = {(x,y) €
Q: s € [0,1], 65 € [—1,0]} and we have made use of the fact thaf™ has compact
support. Combining these last two inequalities yields (2.14).

Step 2.We establish the following energy inequality:
&HUJHEI + 2v]lus|f < Jlusl|f + 0216513 (2.17)

This inequality follows by considering the inner product of (2.10c) wighin H,

1d
2dt

and then using the &lder and Young inequalities to estimate

sl + vllus|f = o(us, fse)u,

R o 1 o2
o(us, 0s€)m < ollus|lul|fs]| L2 < élluaHﬁ + 7||05||%z-

Combine the inequalities in Steps 1 and 2 and apply tlie@all inequality, noting
that by the usual mollifier propertiggu? ||z < ||u™|m andHG'”HLz < 16", to
establish the norm growth estimates. [

We are now in a position to estimate th&(2)-norms of the mass-fraction and temper-
ature fields and in particuldr® estimates which indicate the growth rates of the reacting
fronts.

Lemma 2.3. If, in addition to the assumptions of Lemma 2.2, we assflifne L4, for
all ¢ € [1, 0), then{ég} is uniformly bounded iL.2([0, oo); L) for everyq € [1, o0)
whend = 2 andq € [2,6] whend = 3, and: ||9(t)||Lq = O(e). We can extend this
estimate to includey € [1,2) whend = 3, provided we additionally assume €

1,...,6}.
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Proof. Step 1.We establish that iﬁi“ € L for someq € [2,00) whend = 2 or

someg € [2,6] whend = 3, thend; lies in Lx([0, 00); L9), which follows from the
inequality: for anyn € N,

185(t)][12 < [|85(0))

t
Lon ot ¥ / 185(s) 155" + [l (5) | 2n (@pry ds. (2.18)
0

Forn € N, let F be the polynomialf'(i)s, 65) := S a7, cth2" %%, whereay,
k =0,1,...,2n are positive constants. We can choosedheso thatF satisfies the
conditions (2.13) and also that > c)2" + ¢f2", for all 5 € [—1,1], b5 € [—1, ),
to ensure(F') is a positive definite functional — we provide a proof in the appendix
(analogous to the quadratic case). Using (2.11), since there eiist& such that for
allds > A, F; — F» > 0, then withQ 4 = {(x,y) € Q: s € [-1,1], 05 € [-1, A]}:

“1(Q)

d
(P <e [ (85 s s0dady e (Jusl e + 1) I,
=1,2

N .. i A 1
SC/ (|05|2n—1)1/)'0m dxdy + c¢(A) (/ 06|2dmdy> <F>1_ﬁ
Qa Qn

1— L
+ ¢ ([|lus|| o (@pray + 1) (F)™ 2.

We have used thdiV ||~ < c, \|V0||L2,L(Q ra2) < € and||A8|[;z» < ¢. Now using
thate - ™ has compact support the last inequality becomes

G () < ([ BsPaedy) e (sl o +2).
Qa

which yields (2.18) after integration in time. If we use the Gagliardo—Nirenberg inequal-
ity (2.1) to estimate thé2"-norm on velocity field in (2.18) we must restrict ourselves
ton =1, 2 or 3whend = 3. Intermediatd.?-estimates follow from (2.2).

Step 2.1f 8" e 1! and provided); f(65) € L*(2), then{6;} is uniformly bounded in

IOC([0 00); ]LQ(Q)) for everyq € [1,2). In particular, by Step 1, the latter assumption
here is true for alln € N whend = 2, but whend = 3, we are restricted to reactions for
whichm € {1,... ,6}.

As in Constantin and Fefferman [13], considg(¢) = fof(f — n)¢(n)dn € CAR),
where:¢(§) > 0, forall £ € R; ¢ — 0asé — 0; ¢(€) = 0, for all £ > pg and

2" $(§)d¢ = 1. HenceF"(¢) = [5 ¢(n) dy € [0,1] and F'(¢) = ¢(¢) > 0. We form
the estimateV := {(x,y) € Q: |[¢¥5| > po})
d - -
G || Fshdady+ | F0DIV 15| Pdacty
< [ s 05) + fus - 3] + A7) dedy.
Q

Taking the limit aspo — 0, we get

d -
&‘W&HD(Q) < s fO0s)l ey * cllus|lu +c.
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Now use thaflvs f(05)l| ) < c(1+(1¥sll L@ + 105 ]| L) + 25z 196115 1 ) » Where,

by step 1, the last term on the right-hand side here is uniformly bounded forrevery
whend = 2, but only form € {1,...,6} whend = 3. We can derive an analogous
estimate for||95HL1(9). Adding the two estimates together, using Lemma 2.2 and the
interpolation inequality (2.2), the result follows.

Consider the following weak form of our regularised system (2.10), foralb) €
C*([0, ¢); E x D) and [, t1] C [0, 00),

[iabsOs + s A+ hsus- Vo — s f(0s)e 0 o) dt = (Ds(t)p(t))];:,  (2.19a)
JiXbs0p + 005 A0 + O5us- Vo + 15 f (05)e 2% ) dt = (O5(t)p(t)),2,  (2.19D)
f;](u(; 00 + vus- Av + ws @ ug: Vo +olsve) dt = (us(t)v(t)) z; (2.19c¢)

From Lemmas 2.2 and 2.3, there exists a subseqt{eérgqm(;} (which we label by the
same subscript) such that for alke [1, c0) whend = 2 andq € [2, 6] whend = 3, as
6 — 0,

05 — 0 inw*- L2([0, co); w- L) N w- L2 ([0, 00); w- HL(S2; R?)),

loc
us — u inW*- LX([0, oo); w- H) N'w- LZ ([0, 00); w- V). (2.20)
Convergence of the linear terms in (2.19) to the appropriate terms in (2.7) follows
from (2.20). By standard results we can deduce from (2.19c){thai; } is uniformly
bounded in Lﬁ)/cd([o, 00); V). The Aubin-Lions theorem [14, 54] for Bochner spaces
(based on the Rellich-Kondrachov compact imbedding) implies

{6 € L2410, 00); H{(RQ)): 8:¢ € Lt ([0, 00); HY(R)')}

loc

e L2 ([0, 00); L)), (2.21)

where the target space is equipped with the strong topology. Hangeis relatively
compact inL2 ([0, oc); L?(Bg)) for any R € (0,00). Sous — u strongly in both
L2([0, c0); L¥(supg(v})) andL2 ([0, o0); LA(supp¢})), which together witt9; — 6
weakly in L2 ([0, oo); L*(supp{¢})), is sufficient to establish the convergence of the
nonlinear convective terms in our weak formulation since

t1 R
llws — wllull0s2[[ Vel Lo @ira) dE

/ " (V- sy — ud)) dit < /

to to

+

/tl<u V(05 — 0)) dt‘ .

to
By applying Green'’s theorem we can establish that
16AGs + s - V05| ey < sup 1{5|<90A95>| +[(pus - V5)|}
el g1=

= sup {fl(VwVéaH+|<V<P'"6‘§5>|}

llell ga=1

<[ VOs|| L2 + lus|| Laray |65 La)-
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Using the conclusions of Lemma 2.3 and recalling that) has compact support, we
know that{s f(0s)e =%} is uniformly bounded in22([0, oc); L%($2)) provided we
assumen = 1,2 or 3 whend = 3 (no assumption wheth = 2). Henced, 05 = (Afs —

us- Vs +¢5f(95)e—596 € L2 ([0, o00); HY(R)') for d = 2, 3. Analogous estimates hold

for 0, l/),; By employmg the compact embedding (2.21) we can establisifthat 6
strongly in L2 ([0, o0); L?(supp{¢})). We can now guarantee the convergence of the
nonlinear reaction terms in (2.19) to the appropriate terms in (2.7) by, for example, using
the identity

[ (etwssone —use)) a

to

=/ Lo (W — 5B + (70 — 50)) ) e

to

and noting that strong convergence¢gf—> ¢ in L2 ([0, oc); L3(supp{¢})) and weak
convergence of (65) — f() in L2 ([0, c0); L?(supp{})) is sufficient to ensure the
right-hand side converges to zero.

By choosingv € D independent of time, that € C(]0, oo); w- H) follows from
(2.7) and thaD is dense irH. Further, from the embedding

{6 € L0, 00); HY(R)): 816 € Lie([0, 00); HY(R))} — C([0, 00); LX),

we deduce thafl € C([0, 00); IL?) after taking the limity — 0°. This last embedding
also implies that wherd = 2, we haveu € C([0, co); H).

2.3. Stronger Solutiong/(= 2). We prove uniqueness for slightly more regular solutions
and then show that classical solutions exist provided we assume our initial data is smooth.

Lemma 2.4. Whend = 2, for initial data 6" € HY(Q;R?) andu™ € H, weak solu-
tions also satisfy) € L2([0, cc); HY(2;R?)) N Li,([0, 00); W?) and this additional
regularity is sufficient to establish uniqueness.

Proof. Consider the inner product of (2.10b) withAds in L3(Q),

d - A - - .
&HV%HEﬁZ@HA@aH%z < ¢ Absl 2 (11 Vs sl [uas e + [[905.f (B5)e ™% | 2
+ [l + V85l + €+ 2).

Using the Gagliardo—Nirenberg and Young inequalities, for arbitsary 0,

~ ~ ~ c ~ £
| AOs]| 2|V 05 | e l|ws | s < ol ABs|172 + ;\\V95||2Lz||u6||24d~

Also note from the Gagliardo—Nirenberg inequality and Lemma 2.2|thal ;, T lies

in Lt ([0, 0)) whend = 2. Hence noting regularity already established, forming an
analogous estimate f§iV 5 (¢) ||z, integrating with respect to time and considering the
limit 6 — 0, the regularity result follows.

We know [54] that forp € C([0, 00); L(R2)), dtH(pH = 2(p, Or) 12, in the scalar
distribution sense on compact subsets oB). Let (01, ul) and @, uy) be two weak

solutions to our system (2.7) with the same initial d#®8,@™) € H(Q; R?) x H. Set
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0= 6, — 01 andu = uy — uy. SincekE is dense itW we can choose = 0 in (2.7b)
and use Green’s theorem to form

vy 2 1~ 2 " N2
SO — 510003 +¢ [ |02
to

t1

t1 _ _
. / (V0 (sl — usfy) dit + / (0062 (602) — daf O0) dt,

to to

where

(V0 (uab = wi60)) < || V0]lz(l[ullue|Ball e + 110 elluallre)
+cl| V0l (lulls + 6] 22).

We can estimate9_(¢2f(92) — 11 f(61))) in a similiar fashion. Using the Gagliardo—
Nirenberg and Young inequalities, forming analogous estimates &mdu and adding
them together and choosing= 0, the result follows. [

Lemma 2.5. If (9", u") € W2 x (H2(2; R N'V), thend lies in Li2([0, oo); W2).
Proof. Consider the ?(Q)-inner product of the time derivative of (2.10b) with¥;,

1d

E&Hatéalliz +UV(@05) 172 < (104051 sl10v s | 21105 ]| o + 110085 L2 | Ot | 2

+ )| 040512205 F(85) || 2 + 3¢)|BB5]|2 4|05 £ (85) | 12
+1|0¢0]| 14| V O |1 || O w11 + ]| 905 | 2 || O] 1.

We can obtain analogous estimateséfgﬁg ando,us. Using the Gagliardo—Nirenberg
and Young inequalities and the regularity already established, add the inequalities
for dyibs, c’)téé and d:us, integrate with respect to time, and note from (2.10) that
lime, o [[(8:05, Orus)(tr)[Lexm < ¢ [[(05, ug)llwex mrera)w)- .

From (2.10b) and the regularity already established, it follows#hat = g, where
g = 0,05 + us - Vs — s f(05)e %% — 1AG € L2([0, o0); L3(S2)). An analogous
estimate fonZ(; follows. Then take the limit — 0. O

Finally, we deduce from standard estimates thdies in L2 ([0, 0o); V N H?(Q; R?)).

That all components o andw lie in C>(Q x R,), when the initial data is smooth,
follows from the standard elliptic estimates in Constantin and Foias [14], p. 26, and
Temam [54], pp. 302-3, as well as estimates for passively convected reaction-diffusion
systems found in Smoller [52] or Gilbarg and Trudinger [19]. The proof of Theorem 2.1

is complete.

3. Front Solutions to a System with Unit Lewis Number @ = 2)

3.1. Orientation and Statement of Resultset us consider the front solutions of the
following simpler system:
up+u-Veu=—Vep+tvAgu+elTTo+ f(x), Viy-u=0, (3.2)
Ty +u-V,T=AT+g(T), 3.2)
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where we denote by the temperaturer = (r1,22) € Q = (0,27) x RY; f(x) =

(0, sinzy), ashearing forcey(T) = T(1—T)(T— ), i1 € (O, %), the bistable nonlinearity.

The other notations are the same as before except tkatow the Rayleigh number.
System (3.1)-(3.2) is the unit Lewis number case of the original system studied in early
sections. The identity + 6 = 1 makes possible the reduction of the chemistry part to
the temperature equation.

Our goal is to find an asymptotic regime where the structures of front solutions can
be explicitly demonstrated, and the front speeds are uniformly bounded in time. Since
the main issue is to deal with the fluid coupling, we choose the technically simpler
bistable nonlinearity for the reaction tergmin (3.2). Takingg as the combustion type
nonlinearity of Arrhenius form with ignition temperature cutoff would require working
in weighted function spaces, and only produce similar results. In the same spirit, we
choose a special shear forcing function fgr), which was proposed by Kolmogorov
for studying two dimensional turbulence, see [38, 50] and references therein.

The boundary conditions for system (3.1)-(3.2) are:

u|ml=O,2‘n’ = Oa v X2, (33)
T’L‘1|f1,'1:0,27r = 03 V I27 (34)

respectively the no slip boundary condition for velocityand the adiabatic boundary
condition for temperaturé'.
Whene = 0, Eq. (3.1) decouples from (3.2), and a simple stationary solution is:

uo = (0, v~ 1sinzy), (3.5

with pressurey = 0. Foru = ug, Eqg. (3.2) admits traveling front solutions of the form
T = To(xy, z2 — cot) = To(y,s), y = x1, s = x2 — cot, and Ty satisfies the elliptic
equation:

Ay,sT'O + (V_l Siny + CO)TO,S + g(TO) = 07 (36)

for (y, s) € (0,27) x R%, with the boundary conditions:
1

To(y, —o0) = 0, To(y, +o0) = 1, max To(y,0) = 5, To.4(y, 8)|y=0,2= = 0. (3.7)
y€[0,27] 2

Existence, uniqueness, and asymptotic stability of such traveling fronts are studied at
length in a series of papers by Berestycki, Larrouturou, Nirenberg, and Roquejoffre, see
[4,5, 3], and [48]. The linearised operator arouiysee Subsect. 3.2 for details) has an
eigenfunctionly s(z1, z2) for the simple eigenvalue zero dif($2), and itsZ? adjoint
operator also has an eigenfunction corresponding to the simple eigenvalue zero, which
we denote byl .. The L? orthogonal complement iy is denoted byV'.

Now let us consider front solutions to system (3.1)-(3¢2y Q) of the form:

u = ug + euy(t, x, €), (3.8)
p = epa(t, z,€), (3.9
T = To(z1, x2 — c(t,€)) + €Ta(t, x, €), (3.10)
c(t, €) = cot + ec(t, €). (3.12)

We will show that fore small enough, (3.8)-(3.11) are valid for all> 0, with ug,
p1, Th uniformly bounded in proper norms, afd| < O(t), ast — +oo. Substituting
(3.8)—-(3.11) into (3.1)—(3.2), and using Eq. (3.6), we have:
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urs +ug - Vug +ug - Vug +eug - Vug = —Vpy + vAug +Tods + €114, (3.12)
V-u1 =0, (3.13)
Tyt +ug-VTi+ug - VIg+euy - VIi — ci(t, €)Tos = ATy + g’ (To)Th + eN(Th, €),

(3.14)

where

N1y, = LTI gy, (3.15)

and soN (11, €) contains quadratic and cubic termsTin The prime onc denotes the
time derivative. The boundary conditions for and7; are:

U1|g=027 =0, Thg]z=02+ = 0. (3.16)

Let us introduce some notations for this section. For any open sGbsefz? and
measurable vector functiar(x) = (ui(x), uz(x)), define:

ullz = 3 /G WB(@)dr, LAG) = {u |ul < +oo},

i=1,2

IVullZ = /Glui,lezdl‘, HYG) = {u: [[ul[& +[|Vul[&; < +oo},

i,j=1,2
D2z = Y / s, [Pz, H(G) = {u: || D]l < +o0},
i, k=127 G
D(G) ={u e C§(G): V-u=0},
J(G) = closure of D(G) in the norm||ul|¢,
Jo(G) = closure ofD(G) in the normH*(G),
H3(G) = closure ofC§°(G) in the normH(G).
It is well known that the orthogonal complement.iG) in L?(G) is:
J*+ = {u:u=Vp,for some pc Hi,o(G), with Vp € LZ(G)}.
Let P be the orthogonal projection froi?(G) to J(G), then the Stokes operator is:
—A = PA, (3.17)

with domain of definitionD(A4) = H?(G) N Jo. If G is bounded)G is C3, then A :

301

D(A) — J(G) is one to one and onto. Moreovet; * exists, is completely continuous,

and symmetric. The eigenfunctionséfdenoted by!(x),1 = 1,2, - - -, with eigenvalues
A\, i.e, Aa! = \;a!, are orthogonal and complete.ig(G).
The main result of the section is:
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Theorem 3.1. Letu(0, x) € Jo(R), T1(0,2) € HY(Q) N W, c1(0,¢) = 0. Let< T >
be the integral average dfy(x1, x2) overz; € [0, 2x], and so< Ty > is a bounded
smooth function of,. Then there exists a positive numbegdepending on th&l* norms
of u1(0, z) and T1(0, z), and v, such that ifv > 2, € € (0, ¢p), System (3.12)-(3.14)
admits unique solutions; = us(t, x,€), T1 = T1(t, z,€), c1 = c1(t, €), p1 = pa(t, x,¢€)
on (0, +o00) x €2, which satisfy:

ug € L((0, +00); Jo) N C([0, +o0); Jo) N CH((0, +00); Jo), (3.18)

UL ¢, Df:ul, Vp]_— <Tp> [%2 S leoc((O, +OO); Lz(Q)), (319)

Ty € L*((0, +o0); HX N W) N C([0, +o0); H N W) N CY((0, +oc); H: N W), (3.20)
c1 € CY0, +o0), (3.21)

im0 |Ju1 — u1(0, 2)[| g2 = limy—o |[T1 — T2(0, 2)|| 2 = 0. (3.22)

Moreover, the following estimates hold:
[uall s + || T2l g2 + |ch] < €, V¢ =0, (3.23)

for some positive consta@t, depending on th&* norm of initial datawu, (0, z), 71(0, x),
andv. The front solutions to system (3.1)-( 3.2) are then given by (3.8)-(3.11).

Remark 3.1.The solutions satisfying (3.18)—(3.22) are strong solutions. Front structures
are seen from (3.8)-(3.11). The theorem does not specify the asymptotic behaviour of
¢} ast — +oo, whether it converges to a constant or it is oscillatory in time. Numerical
simulations ([45, 62]) indicate that for downward propagating fronts, the front speeds
tend to nearly constant values, while for upward propagating fronts, front speeds tend
to oscillate in time due to the Rayleigh-Taylor instability inducedebyVithout the
constraint onv ande, we do not expect that front solutions and their speeds will remain
bounded in time. Power growth inis observed for vorticity field, and front shape can
evolve into a bubble like structure for an upward moving front, [62].

Remark 3.2.The condition thaf;, € W is not a restriction on the initial data. If it is not
in W, one can always shiffy in x, by a suitable constant, or change the initial position
for ¢, so that the neW; belongs taV.

The idea of proof is to seek energy estimatesignand spectral-semigroup type esti-
mates forT; as often used in stability analysis for traveling waves in reaction-diffusion
equations. Combining the two types of estimates, we show thaf theorm of bothu,
and7; are bounded for all time. The conditior> 27 comes up in the energy inequality
for controlling the convective terms with the dissipative terau,. The basic ingredi-
ent for the energy estimate is the Poircarequality available when no slip boundary
condition is imposed on; . If we impose periodic boundary condition instead, then due
to unboundedness of our doma Poincaé inequality no longer holds. It seems that
one has to come up with a different approach for analyzing solutions.

The proof of the theorem is organised as follows. In Subsect. 3.2, we consider
solutions to Egs. (3.12)-(3.13) with a given forcing ternit? ((0, to); L?(2)), for any
to > 0, and derive energy inequalities. These inequalites are along the line of those in
Constantin and Foias [14]. To handle unbounded domains, we estimate the nonlinear
terms differently using inequalities on the Stokes operator as given in Heywood [22].
In Subsect. 3.3, we present estimates based on the analytical semigroup generated by
the linearised reaction-diffusion operator around the basic traveling Tiprithat the
linearised operator is sectorial and so a generator of the analytical semigroup follows
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from the works of Berestycki, Larrouturou, and Roquejoffre, see [3, 48], and references
therein. The nonlinear termy - V717 is handled with an inequality in Kozono and Ogawa
[27] for bounding convective terms in unbounded domains with fractional powers of
differential operators. In Subsect. 3.4, we complete the proof by combining the above
estimates and show the existence of global strong solutions uniformly bound&d in
norms for all time.

3.2. Solutions to a Forced Navier—Stokes Equati@ve discuss the strong solutions to
the following forced Navier—Stokes equation:

v +ug- Votou-Vug+ev-Vou=—Vp+vAv+ F(t, ), (3.24)
V-v=0, zeQ=(01) xR}, (3.25)
vli=0 = vo(z) € Jo(R), vlaa =0, (3.26)

where the forcing functiod'(¢, z) € L>((0, t0); L(R2)), for anyty > 0.

Following Heywood [22], we first consider (3.24)-(3.26) on any bounded domain
with at leastC® smooth boundary, then approxima@ewith an enlarging sequence
of such domains. They can be domains enclosed by two parallel straight lines, with
distance 2 apart, on the left and right, and twi@™> curves on the top and bottom that
connect to the straight lines witti>> smoothness. We will derive estimates on solutions
that are independent of the diameter of these approximate domains, then pass to the
limit. Since the approximate domains afadtself have width 2 in thez; direction, the
Poincag inequality:

lull 2 < 2n[|Vull2, ¥ u € Hg, (3.27)
holds.
For any bounded domain, still denoted@ythen!" Galerkin approximate solution
is:
0"(2) =) crna’ (@), (3.28)
k=1

with ¢, = cpn(t), ando™ satisfies:
/(vf +ev™ - Vo' +ug - Vo + 0™ - Vug — vAv™) - al(x)dx = / F-addx,
Q Q (3.29)
or

(,Una al)t + E(Un : ana al) + (UO : ana al) + (Un : VUO, al) - V(AU”, al) = (F7 al)»
(3.30)

wherel = 1,2,--- ,n, (-,-) is the usual.? inner product. System (3.29) or (3.30) is an
ODE system foey., (t), k = 1,2, - - - , n with quadratic nonlinearities. In the following,
we skip the superscript onv. Multiply (3.29) by ¢;,, and summing over gives the
identity:
1d
2dt
Poincaé inequality (3.27) implies that:

HUH%+(1}-Vuo,v)+u||VvH§:(F,v). (3.31)
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(v - Vug, v) +v[| Vo] |3 > —v Yol 5 + ﬁllvl\z = 8] [v]3,
with 6 = (2r)~2v — v~1 > 0. It follows that
[v]l2.e < =dllv]l2 + [ F]l2, (3:32)
or
sup |[[v[|2(t) < [lv(O)[|2+ C(¢) sup [[F|l2, ¥ t=0, (3.33)

t€[0,to] t€[0,to]

whereC(t) is a bounded smooth function#r> 0, C(0) = 0,C(¢) < % Since

[o"[5 =" (),
k=1
(3.33) implies the existence of smooth solutions of the ODE system (3.30) for all time.
Multiplying A;¢;,, to both sides of (3.30), and summing ovVeyives:
1d

5 dtHVvH% +v||PAv|[5 = e(v - Vo, PAv) + (ug - Vv, PAv)

+ (v - Vug, PAv) — (F, PAv). (3.34)

The terms on the right hand side of (3.34) are estimated below. By the Cauchy-Schwartz
and Gagliardo—Nirenberg inequalities, we have:

Ry = |(v- Vo, PAv)| < |[v]|a][Vol[a|| PAv|2
1 1 1 1
< [10l1311V0l1311V0l13]| D20l 13| PAv]L2.
Recall that (see Lemma 1 of [22] for the three dimensional case):
1 D?ull2 < O(|[PAull2 +[[Vul2), (3.35)
whereC depends only on smoothness (at le@2} of the boundary. It follows that:
1
Ry < C|p[ 31V oll2(][Av]|2 + [|Voll2)? ]| Av]|2
1 3 1 3
< CllI3[[Vollof[Av][3 + Cllv] I3[V ][Av]|2,
and by Young’s inequality:
1., 3 4 _ v
Ry <5 Ca” |l Bl|Vol[3 + 7Cas || Av] 5+ 2072C2fol[2l | Vol + gl Av 3
1 3 .
<0~ ClJo3|[Voll3 + 4rv 7 C?|Vol[3 + (3 Cad + D)l Avl]3,  (using (3.27))
3
=C(@4~ o™ lol 3 + 4mv 1O Vo3 + (G0’ + D)1 Av]l3, (3:36)

for some constant to be chosen. The other three terms are bounded as:
Ra = |(uo - Vv, PAV)| < [up|eo || Vv |2]| Av] 2
< 20 uol% | [Vol[3 + 514w, (337)
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Rz = |(v - Vg, PAV)| < [Vuo|os|[v][2]|Av][2
14
< 207 VuolZ vl + gl AvI2, (3.38)

_ v
|(F, PAv)| < [[F][a]| Av]|2 < v=HIF[+ 7| Av] 3. (3:39)

Here and in the rest of this sectidn,|., denotes thé.>° norm.

Combining (3.34)-(3.39) and choosingj)ﬁz"st = v, we have (with C denoting a
generic constant independentigfand skipping the subscript 2 for tdé norm):

3 Vel + 211 Av]2 < ol + v Vol
+ 20 YuofZ, ||Vl + 20 VuolZ | o] 2+ | FI 2.

Substituting (3.33) and (3.27), and denoting, sy, || - |[2 by || - ||, we continue:

2L IIV0l + 21140l P < OO + v IR + 07l

+ Cv 73| Vol 2+ v Y| FI 2, (3.40)
It follows from (3.31) and (3.27) that:

3l + @S vel2 < 1FI- ol (3.41)
or
2,92 2, 2 2, 2
2l + 281702+ S0l < ol FIP + 5ol
or
Lol + 252811Vl < 1P (3.42)

2 dt
Integrating (3.42) and using (3.33) to get:

-2

t+T
207 [ [0l s)ds < 0O + S5 1F11 + 55 1Pl
assumingg > t + 7. Thus,
t+T
/ Vol B(s)ds < C6 ()2 +5 Y FIEG+67Y),  (3.43)
t

with constantC' independent of andJ.
It follows from (3.43) that the Lebesque measure

[{s €t t+71 [|Voll = p}| < Cp 25 H(|[0(O)]]* + 6~ H|F||% (7 +57H).

Choosep = Y2v/C5 (5[ [u(O)|2 + || || (6~* +7))*/2, then

(s €Lt t+ 710 [[Vol| 2}l < 5, (3.44)
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and thusd ¢, € [¢,t + 7] such that

Vol (t) < CT71672(5][0(O)|* + || FI|3. (6~ + 7). (3.45)
Multiplying (3.40) by:

t
1= exp{ — [ IR + o2 2 I+ Vel — - mcﬂ} ,

t1
where the constardt is twice that in (3.40), to obtain:
d 2 2 2
— < - . .
SlIVelPn < Z|F|RT (3.46)
Integrating (3.46) ontf, ¢] to get:

2
Vo[ [20) < [[Ve)[P17H +

|F||2(t — t) I~ (3.47)

Lett; € [t — 7,t], t > 7 > 0, such that (3.45) holds. In view of (3.43) and (3.45), we
have from (3.47):

V0l 2()) < [C77 16 2(@][0O)] 2 + || FI[3. (671 + 7)) + 20| P2 ]

exp{Ce(v3|[u(O)||? + v~ 35 2|| F|[5, + v 1)

STH([v(O)P+ 5| A (r+ 67 ) + Crv 3} (3.48)
Fix 7 = 62, then fort > 7, we have:
Vo[ |2(t) < CO|[)][ + || F|2 (67 + 072 + 17262 F||2)x

exp{Ces (w3 ||w(O)]|> +v 36 2||F| 5, +v )X

(lv)]|>+ 5 4L+ H||FI|Z) +Cs 23, (3.49)
while for ¢ € [0, 7], we sett; = 0in (3.47) to have:
IVol2(1) < (IVuO)|? + 252 1| F|[3,) %
exp{Ces (w2 ||w(O)]|> + v 36 2||F|5, + v )X

()| + 6| F||3 (6 +672) + Co 23 (3.50)

Combining (3.49) and (3.50), we obtain the estimate$|®m||(¢) for ¢ € [0, to], uni-
formly in ¢tg > O:

IVo||%(t) < By - B, (3.51)

where
By = C(|[v(0)|[26 + || F| 2. (6 + 672+~ 167%) + || Vu(0)| ),

andB; is:
exp{Ced (2 [[u(0)]|> + v 36| F|[5 +vH)x
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() + 870~ + 5 A)IFI[5) + Co 23},
whereC' is a positive constant independentof, andty.
Notice that estimates (3.33) and (3.51) hold for the approximate Galerkin solutions
independent of the, diameters of the approximate domains. Using (3.33), (3.51) and
(3.35) in (3.40), it is straightforward to obtain the bounds:

/ t | D?0]|*(s)ds < L(t), / t [|oe][(s)ds < L(t), (3.52)
0 0

for some continuous functiol of ¢, independent of the approximate solutions and
domains.

Passingta — ooin (3.29) in a standard way(see [22]), we see that the limiting vec-
tor functionw is a unique strong solution to the system (3.24) and (3.25). Summarizing,
we have:

Proposition 3.1. Letv(0) € Jo(2), andF € L>=([0, to]; L?(R2)), for some > 0. Then
if v > 2m, there is a unique solution(t, ), p(¢, ) to system (3.24) and (3.25) such
that:

v € C((0,t0); Jo(R)); ve, D*v € L*((0, to); L*(2)). (3.53)
Moreover,v attains initial data continuously ii?, andv satisfies the estimates (3.33),
(3.51), (3.52). Ity = +o0, then (3.33) and (3.51) hold uniformly in> 0.

3.3. Estimates on a Reaction-Diffusion EquatidiVe consider the reaction-diffusion
equation (3.14) foff; with velocity u; a given function as described in Proposition 3.1.
As usual, we introduce the moving frame coordingte x, — c(t, €), 1 = x1,t = t.
Equation (3.14) becomes:

Thi — coTre — ATy — g'(To(xa, £))T1 + uo - VI

= €Ci(t, G)T]_;g —uy-Vip+ C;_TO,S —euy - VI + EN(TQ, 11, 6) = Fi. (354)
Define the operatak:
(—L)T1 = ATy + coTr ¢ — uo - VT1 + g'(To(z1, €)1, (3.55)
with domain of definitionD(L) = {T1 € H*Q) : Ti,|oe = 0}. The operatorL
has a simple eigenvalue corresponding to the positive eigenfurifgjgrthanks to the

monotonicity of the wave profilép ; > 0. For the bistable nonlinearity the arguments
in [3] and [48] apply without using weighted spaces, and we have the following:

Lemma 3.1. The operatorL is sectorial [21] onL?(2) with zero Neumann boundary
condition; the spectrum df stays inside a sector strictly in the right half plane except
for a simple eigenvalue at zero corresponding to the eigenfun@tgf, £). Operator

L is invertible on the subspace:

W = {u e LAQ) : (u,T5,) = 0,us |og = O}, (3.56)

whereTg , is the positive nullfunction of the adjoint operatér in L?(Q) such that
(T0’57T0*75) = 1. Moreover, the estimate:

1L 42 < Crllull, YueW, (3.57)

for constantCy depending only on, the distance from the sector to the left half plane.
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Lemma 3.1 implies thal is a generator of an analytical semigroupl&n and the usual

fractional powers of £ L) are well-defined, [21]. Equation (3.54) can be expressed as:
Ty = —LT1 + Fi(T1, c1,€), (3.58)

and will be solved fofl; € W for all t > 0. For any given initial datd}(0) € W, let

us write (3.58) into the related integral equation:

t
T(t) = e_LtT1(0)+/ e I R(TY, e, €)(s)ds, (3.59)
0

where we impose the condition:
(F1,T3,) =0, V5>0, (3.60)

so that formula (3.59) provides bounded solutions for all time. In view of (3.54), we
have:

C& = (eul -VT11+ug-Vip— ECQTLg — EN(T(), T]_, 6), TO*,S) (361)

It follows from (3.58)-(3.61) thai; € W for all ¢t > 0. The front equation (3.61) fef
is a nonlocal equation and the terms- V131 anduy - V1 reflect the strain effects of
the fluid flows. In the passive cases 0, u; as a perturbation of the steady stagewill
decay to zero wheh — oo if v > 27 (see (3.32) with# = 0). Hence (3.61) implies
that the front speed approaches an asymptotic constant value.

Now let us make a-priori estimates on solutions of the integral equation (3.59) in the
spacel>((0, to); W N H(£)) along with (3.61). Define:

ma(to) = sup |[LTa(1)]], (3.62)
t€(0,to)

forall 7y € W, a € [0, 3], to > 0. First we note that

sup |le” " LTy(0)]| < ||IL*T(0)]| < C||T1(0)]| 2,
t€[0,to]

where we use the fact thaty € W, L*T; € W. By (3.60) and (3.61), we rewritg;
as:

Fi= Pz(GCS_T]_’E) + Pz(—ul . VTo) + Pz(—eul . VT]_) + €P2N, (363)

whereP, = Id — P, andPiu = (u, T&S)TQS, i.e. P is the projection fromL?($2) to
w.
Applying L*, « € [0, 3], to (3.59), we have:

t !
IL*T]2 < ||L*e M T1(0)||2 +/ Lo e M= [0 B [|(s)dss,
0

t ! !
< O||T4(0)]| g2 + / (t — 5)@* 0V L0 Fy||(s)ds, (3.64)
0

wheres’ € (0, 3), 1 = Fi(T4, ¢}, €). By (3.63), we have:
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1270 Fall < el 4IC, 51Tl |+ 19Tl ooy g |
+el|L70 Po(us - VT)|| +€C., 5[N], (3.65)

for some positive constalﬂl7 s’ depending only ory andy’.
We estimate:

||L_6/P2(u1 - V)|
= 1L (L + )% (L+7)0 Pofus - V1Y)
<L L+ gewy— ey 1L +7) ™0 Pofus - V)|
< O, gL+ Pofun - VI)|
<Oyl + )0 (—a+y) |(z2(@)—ra@pl[(—A + )% Pauy - VT)l|
<O, gli(=a+9) "0 Pour - VIY)|
< O ll=a+7) ug VT1 — (ur - VI3, T )~ A +9) 0 T, |
< Cy gll=8+9)7 (- VI + € gl - IV T3] (3.66)
By Lemma 2.1 of Kozono and Ogawa, [27], f8r€ (0, 3), we have:
(=2 +7)70 (s - V|| < Cyrll(=A)3 0 ual| - [(—2)3 73],

< Oy [|VTL||([(— ) 2ug]| + [Jua]]),
< Cg/||[VT|(|[ V|| + | |ua]]), (3.67)

for some constant’s: depending o’ It follows from (3.66) and (3.67) that:
1270 Potus - VT2)|| < €., g sl [ - | VT (3.68)

Noticing that| N'| < C((T1)?+ (T1)%), for C independent of ;. Then the Gagliardo—
Nirenberg inequality shows that:
1212 = |Tal13 < CIITall2| VT |2,
1771 = ITal13 < CIITallo| VT4 13- (3.69)

Inequality (3.65) implies that

1270 Rl < el IC,, 11 The
+eCy gollusl [ - IV + €Cy o (1T [V T3]+ (VT PIT). - (3.70)

|+ [IVTol[ecCy [l

Now, choosex =0, 3,4’ € (0, 3), we have from (3.64), (3.65) and (3.70) that:

my +mo < CI[TiO) |1 + Oy g lelelloemy + 1V Tl sl + e[ fa o
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#{|Vual|somy +mymo+mime)] sup / ((t— )"0+ (t —5)70 "E)e V¢t gs,

z 2 2 t€[0,to] JO (3.71)

where|| - || = SUR ¢ (0,1,] (|10, 10 = SUR (0,1,] |c'|; constantsC' and 0%5/ are
independent ofy.
Letting M = my +mo, and lumping all the constants dependingyoid’, we get:

M < C||Ti(0)|| g2 + eC(lch| M + ([Juallo + [Vl [sc) M + M2 + MZ) + C||u |,

(3.72)
whereC depends ory, ¢’ only. We get from (3.61) that
el < ellTg s llocluall - [[VTa| + Clua]| +€|cy| - || T1el]
+ eC(||Ta| ? + || Tl | - || T3] 13),
or
|choo < €C|ua||ooM + C||us|| + €|c)| oo M + eC(M? + M?3). (3.73)

It is straightforward to verify that for small tim&, the mapping defined by the right
hand side of (3.59) offi; is a contraction ir.>°((0, to); W N H*), which yields a unique

mild solution. Parabolic regularity [46], then shows that it is a strong solution. We will
consider long time solutions to (3.59) along with the Navier—Stokes equation in the next
subsection. We summarise the above into:

Proposition 3.2. The integral equation (3.59) along with (3.61) has a strong solution
fort € [0, to], if to is small enough. Moreover, the estimates (3.72) and (3.73) hold for
the solution.

3.4. Uniformly Bounded Solutions of the SysteWe turn to the solutions of system
(3.12)-(3.15). Equation (3.12) can be written as:

Uy + ug-Vuy +ur-Vug + eur-Vug = —Vﬁl +vAug + (To— < Ty >)(f2 + ET]_"%z,
(3.74)

where X
1 7T
< Ty>=< To> (12) = / To(a, 22)day,
27T 0
T2
P1=p1— / < Ty > dxy.
Jo

It is obvious thaflp— < Ty > € L>°((0, 00), L?(2)). In the moving frame coordinate,
(z1,&,t), system (3.12)-(3.14) becomes:

ugy — uge +ug - Vug +ug - Vug + eug - Vug =
— Vp~1 +vAug + (TQ— < Ty >)§L‘2 + €T1§L‘2, (3.75)

V- ug =0, (3.76)

Ty — coThe — ATy — ¢’ (To(€, x1)) Ty +uo - VI1 = Fi. (3.77)
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Notice that the estimates (3.33) and (3.51) in Subsect. 3.2 remain the same in the moving
frame coordinate for (3.75). Let us make an a-priori estimate of solutions to system
(3.75)-(3.77) with initial data:;(0) € Jo(S2), T1(0) € W N HY(R). Define:

[ulose = sup ([Jullz +[|Vull2),
O<t<to

foranyto > 0, and|c’| = SUR 4, €]
Let us consider (3.75)-(3.77) in the space

V ={(u,T,c) € L*((0,%0), Jo x H) x CH[0,to]: |u|oc +|T|oc +|¢/|oc < 00}

The constantC below depends only on, v, andé’. By Propositions 3.1 and 3.2, we
have:
us |2, < [[ua(Q)[? + C(|To— < To > [o + €[Ti] o)’

+OTJua(0)][* + (1 To— < To > [oc + €|T1|o0)? + || Vua (0)] 7]

exp{eC(|[ua(O)[[* + (ITo— < To > oo + €|T1|oc)? + 1F}, (3.78)
and
T1]oo < C|T1(0)| g1 + €C(|¢h | oo | T 00
g |oo | Taloo + |Ta[3 +[T1[3) + Clua oo, (3.79)
and

‘C/l‘oo < €Clua|oo|Thfoo + Cluaos + €|C§L|OO‘T1|OO + €C(|Tl|ic + |T1|2o) (3.80)
Taking the square root of (3.78) yields:
lutloo < [[ua(O)|[g2 + C|To— < To > |0 + €C|T1[oo+

C(l[ua Q) 2 + [To— < To > |oo + €[T1]00) X

exp{eC(1 +||u1(0)] |2+ (|To— < To > |oo + €|T1|s0)D)?}. (3.81)

SetK = |ui|eo + |T1|0o- TO get rid of the last term on the right hand side of (3.79),
let us multiply (3.81) byC' + 1 and add the resulting inequality to (3.79) to find:

K < Cllug0)|| g2 + C|To— < To > |00 +eCK
+C([|ua(0)|| g + [To— < To > |oo + €K) X
exp{eC(L +[[ua(0)|]* + (To— < To > |oo + €K)?)?}

+C||T1(0)|| 2 + eC(K2 + K3+ |c]| oo K), (3.82)
where
|ch]oo < €CK?+ CK +€|ch|oo K + eC(K? + K3). (3.83)

The above estimates dfiremain the same for small time, and we can use the contraction
mapping principle to construct local in time mild solutioas 11, ¢; in the spacéd”
for some pressurg;” Standard regularity results for Navier—Stokes equations ([22])
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and parabolic equations ([46]) then imply that the mild solutions are actually strong
solutions. In particular, if in the definition df or norm| - |, we replaceg by ¢ andt¢
by 7, thenK as a function of is continuous for € [0, ).

Proof of Theorem 3.JAssume thak = K (t) < Ao, fort € [0, tp), wheretg is a positive
time ensured by local existence, afiglis a constant to be properly chosen below (3.90).
In particular,Ag is independent of, Ap > 0,eA4p < % We will show by a continuity
argument thaf<(t) < Ag for all ¢ > 0 if e is small enough.

We have from such a choice dfy ande that:

|c)loe < CleK? + K +eK2, (3.84)
which implies via (3.82) that

K< CHul(O)HHl +C|To— < To > |oo + CeK + C||T1(0)|| g2
+ C(|[ua(0)|| g1+ [To— < To > |oo + €K) exp{eC(L +||ua(0)[|?
+|To— < To > |2+ K%)?} +eC(K? + K*)

or

1 C
K < Ol[us(O)]|s + C|To— < To > | + C|IT0) |1 + 5Ce + {KZ
+C(|[ua(0)]| g1 + | To— < To > |oo + €K) eXp{eC(L + [|ua (0)[|?
+HTo— < Tp > |2 + K22} + eC(K? + K*), (3.85)
1
K < Cllua0)|| g2 + C|To— < To > |0 + C||T1(0)|[ 2 + St C(lluaO)[ 2+
|To— < To > |oo + €Ag) exp{eC(1 + [|u1(0)||? + |To— < To > |2 + €243)%}
+eC(1+A2)K?
= Ko +eC(1+ A3 K?. (3.86)
SinceK is continuous in, it follows from (3.86) that if
AKoeC(1+ A3) < 1, (3.87)
then
K < 2Ky, for t e (0,tp), (3.88)

if K(0) < 2Ky, which is true by our choice ok, with C > 1. To be consistent with
our assumption ofiy, we have also:

2Ky < Ap. (3.89)
Now we choose:

Ao = 4[Cllur Q)| 12 + C|To— < To > |0 + C||T2(0)]| 2
+C(|uol| g2 + | To— < To > |)]-  (3.90)
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Then there existsy, depending only o’ = C(v,~, "), ||u1(0)|| g1, To, ||T1(0)|| z1,
such that ife € (0, ¢g):

A
KO§?07

4KoeC(1+A3) < 2A0eC(1+ Ad) < 1,
with C' > 1, which implies that:

1
GAO < 5
Inequality (3.84) implies that
|choe < CAg +eaCAF + 0 Aj. (3.91)

Since the above bounds dfi andc’ are independent af, they are valid for alt > 0

by continuity . The rest of the theorem follows from standard regularity results for
Navier—Stokes equations [22] and semilinear parabolic equations [46]. We finish the
proof. O

Appendix

We would like to choose tha;, so thatF'(¢,n) is a positive function satisfying (2.13).
Condition (2.13b) will be satisfied provided

@2n —k)ay > (k+LDag+1, VE=0,1,... ,2n — 1. (3.92)
Further let us suppose,, _» is large enough so thak (= (1 +¢)?/4¢)
Ao, 200, > MN2n — 1)a3, ;. (3.93)

Now consider condition (2.13a):

k=0

2n—2
2n(2n — oot ( S (kD) + 2)ak+252"—2-’€n’“) +

2n—2 2n—2
( > @n—k)@2n—k- 1)ak£2"—2—’“n’“> ( > (k+ D+ 2)0%+2§2n_2_k77k>

k=1 prd
2n—2 2

> A2n —1) (Z @n—k—-1)(k+ 1)ak+1£2n2knk> .

k=0
We can write this in the shorthand form
aoBi(ag, ..., az, 2n(2n — L)oo, r?"2)
+ Bz(al, cee Q2 4n(2n — 1)a2n—2012n7"4n_4)
> A2n — 1)Bsz(ag, ... ,az,_1,(2n — ]_)2&%”_17447174)7

where each of th®; (i = 1, 2, 3) are the obvious polynomials where their last argument
indicates the highest order termiin= 7/£. For the moment let us assuni > 0
forall ¢ € [-1,1], n > —1. We show this is true below. Then, there exiBts R,
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independent ofy, such that for allr| > R, B, > A(2n— 1)B3 (using condition (3.93)),
i.e. such that (2.13a) is satisfied. Now suppps$e< R, then we can clearly choosg
large enough to guarantee condition (2.13a).

Let &’ denote all odd integersQ k' < 2n. Then

E\ ag K\ z_ n
F(,n) > ao—Z(l—le>§ 52""' Oézn—z<2n)€i’ lak' 772'

% %
K 52“ k' 2 1,2 2n—k' Kk’
+ 1 — =— ) >—+ —ew | + S ETT
;ak K 2n) e T ;O"‘g g
K (6774 2 k' o 1 2,
> _ 1-— n 4 n — v & , n
2 oo 32 (1 7)€ faa = e e
= 162" + ", (3.94)

where we choose small enough such that > 0 and then choosey large enough so
thatc; > 0. Now recall that we need to demonstrate that focadl [—1, 1], n > —1,

By = Y21 2 (k+1) (k+2)ags262n~2-Fpk > 0. Thisis clear from anidentical argumentto
thatin (3.94), choosing, large enough. We can easily choosedhdk = 0,1,... ,2n)

such that the conditions (3.92), (3.93) amg] a» large enough are met.
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