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Abstract: We prove the existence of global solutions to a coupled system of Navier–
Stokes, and reaction-diffusion equations (for temperature and mass fraction) with pre-
scribed front data on an infinite vertical strip or tube. This system models a one-step
exothermic chemical reaction. The heat release induced volume expansion is accounted
for via the Boussinesq approximation. The solutions are time dependent moving fronts in
the presence of fluid convection. In the general setting, the fronts are subject to intensive
Rayleigh-Taylor and thermal-diffusive instabilities. Various physical quantities, such as
fluid velocity, temperature, and front speed, can grow in time. We show that the growth
is at mosteO(t) for large timet by constructing a nonlinear functional on the temperature
and mass fraction components. These results hold for arbitrary order reactions in two
space dimensions and for quadratic and cubic reactions in three space dimensions. In
the absence of any thermal-diffusive instability (unit Lewis number), and with weak
fluid coupling, we construct a class of fronts moving through shear flows. Although the
front speeds may oscillate in time, we show that they are uniformly bounded for large
t. The front equation shows the generic time-dependent nature of the front speeds and
the straining effect of the flow field.

1. Introduction

We study the existence of global solutions to the following Boussinesq combustion
system on the infinite tube� := {(x, y) ∈ 6 × R}, where6 ⊂ Rd−1 is an open,
bounded, simply connected domain with smooth boundary∂6 = 6/6, outward normal
n̂, andd = 2, 3 is our spatial dimension:
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∂tψ + u · ∇ψ = 1ψ − ψf (θ), (1.1a)

∂tθ + u · ∇θ = `1θ + ψf (θ), (1.1b)

∂tu + u · ∇u = ν1u − ∇p + σθe, (1.1c)

∇ · u = 0. (1.1d)

Physically we interpret:u(x, y, t) : � × R → Rd as the fluid velocity;p(x, y, t) : � ×
R → R the pressure;ψ(x, y, t) : � × R → R the concentration of the reactant in a
one-step irreversible exothermic reaction;θ(x, y, t) : � × R → R the temperature of
the reactant-product mixture;ν the normalised fluid viscosity or Prandtl number;` the
Lewis number;σ the Rayleigh number;e denotes the unit vertical direction opposite
to the propagation direction of flame (aligned with they direction). For convenience
we shall writeθ := (ψ, θ) : � × R → R2, i.e. the 2-tuple of reactant concentration and
temperature. We assume non-homogeneous boundary conditions which allow front type
initial data to be prescribed (for our main resultsb∗ ≡ 0):

∂n̂ψ = 0, ∂n̂θ = 0, u = 0, on∂6 × R × R+,
ψ → 0, θ → 1, u → b∗, asy → +∞,
ψ → 1, θ → 0, u → b∗, asy → −∞.

(1.2)

We will suppose for somem ∈ N,

f (θ) =

{
θm, θ > 0,
0, θ ≤ 0.

(1.3)

System (1.1) models the vertical movement of flame fronts. Thermal volume expansion
of the fluid due to the irreversible exothermic combustion reaction is accounted for by
the Overbeck-Boussinesq approximation [10, 28]. The nonlinear chemical reaction term
ψf (θ) usually takes the Arrhenius formψf (θ) exp{−E/Rθ}, or its normalised version
ψf (θ) exp{(θ−1)/(1 +χ(θ−1))ε}, wheref (θ) is usually of the form (1.3) thoughm is
not always a positive integer (in general). The constantE is the activation energy,R is the
universal gas constant,χ ∈ (0, 1) is the thermal expansion coefficient andε > 0 is the
reciprocal of the Zel’dovich number (see Buckmaster and Ludford [8] or Berestycki and
Larrouturou [2]). Since the supremum of exp{−E/Rθ} over� × R is always bounded,
the inclusion of this factor in the chemical nonlinearity would not affect any of our
proofs. Consequently we neglect this exponential factor and for simplicity, choosef to
be a power nonlinearity.

This simple chemical nonlinearity also arises in isothermal autocatalytic chemical
reactions of the formA +mB → (m + 1)B, wherem is the order of reaction, andψ, θ
are the concentrations of reactantA and autocatalystB respectively. The rate of reaction
is thus given bykψθm, where the constant enthalpyk can be scaled out of the system. In
this case the temperature remains fixed, yet the density of theA andB mixture increases
with the reaction resulting in a change of fluid velocity. Thus chemical feedback plays
the role of thermal feedback and system (1.1) then governs the dynamics of the moving
concentration fronts in the presence of fluid convection.

Billingham, King, Merkin, Metcalf, Needham, and Scott [6, 39, 40] studied the au-
tocatalytic reaction-diffusion system (1.1a), (1.1b), neglecting hydrodynamical effects.
They proved existence and uniqueness results for an associated boundary value problem
and studied the development of travelling fronts of chemical reaction. See also Focant
and Gallay [18] for a recent study of existence of traveling fronts in the quadratic-cubic



Global Solutions to Reactive Boussinesq System on Infinite Domain 289

case and their stability wheǹis near one. The passively convected version of the non-
isothermal system was considered by Berestycki, Larrouturou and Roquejoffre [3, 48]
in an infinite tube, and they proved the linear and nonlinear stability of travelling front
solutions. Manley, Marion and Temam [34, 36] examined system (1.1) on a finite tube
in the case of a multi-component reaction and with slightly different boundary condi-
tions. They proved the global existence (d = 2, 3) of suitable weak solutions uniformly
bounded (d = 2) in time. Further, their estimates for the Hausdorff dimension of the uni-
versal attractor indicated that for long tubes, hydrodynamical effects make a significant
contribution to the complexity of the flow. Crucial to their proofs was the assumption of
a bounded nonlinear reaction term.

We are interested in studying the full system (1.1) on unbounded domains while al-
lowing for unbounded chemical nonlinearities. The attractor dimension results of Man-
ley, Marion and Temam [34, 36] indicate the importance of studying this system when
the vertical domain size is much larger than the typical length scale associated with the
front width. The infinite cylindrical domain is the natural setting for examining the long
time behaviour of travelling front solutions and especially for the irreversible reactions.
Numerical simulations (Patnaik and Kailasanath [45], Zhu and Xin [62]) have shown
that moving fronts of system (1.1) are subject to both Rayleigh-Taylor (upward fronts)
and thermal diffusive instabilities. The Rayleigh-Taylor instability from theσθe term is
due to heavier (cold) fluid lying above the lighter (hot) fluid. It leads to bubble formation
on the front and growth of fluid energy and vorticity. The thermal-diffusive instability
due to` 6= 1 can cause chaotic front oscillation (` > 1) or formations of cellular front
structures (̀ < 1) [51, 39]. As a result, the maximum temperature can grow in time.
Last, but not least, for high Reynolds numbers (smallν) the fluid flow can become highly
irregular, which in turn wrinkles the front and may induce front acceleration. In [62],
power growth in time of maximum vorticity and temperature is numerically observed
(d = 2,ν = 0.005,` = 0.1 or 10). Majda and Souganidis [33] studied front acceleration
(front speed ofO(tp), p > 0), in a prescribed (passive) random shear flow of Hölder
regularity. All this evidence suggests that in general, one should not expect the front
speed to be uniformly bounded in time, instead a power growth may well happen.

Our first result implies an exponential boundeO(t) on the front speeds for fronts
in a two dimensional infinite vertical strip (for all orders of reactionm) or in a three
dimensional infinite vertical tube (form ∈ {1, 2, 3}). We treat only the one-step reaction
case, as the analysis of the multi-component case is practically identical. We prove the
existence of global weak solutions (d = 2, 3) to (1.1). In the two dimensional case
we prove uniqueness for a class of slightly more regular weak solutions as well as the
existence of strong, smooth solutions for smooth initial data. Our sharpest norm upper
bounds of solutions grow with time, so we are unable to discuss attractors. The growing
bounds may be interpreted as the enhancement of instabilities in the system due to the
unbounded chemical nonlinearities and unbounded domains. If� = 6 × 3, |3| < ∞,
i.e. a bounded strip or tube, we can considerably improve our growth estimates. The
details however will be presented elsewhere.

Our second result concerns fronts in a reduced system when` = 1,σ is small,ν > 2π.
The fluid flows are laminar, the Rayleigh-Taylor effect is minimal, and the thermal-
diffusive effect is absent. We construct a class of front solutions near the known passive
fronts in smooth shear flows. The time dependent front speeds are proved to be uniformly
bounded in time. Passive fronts in shear flows on infinite cylindrical domains have been
studied at length by Berestycki, Larrouturou, Lions, Nirenberg and Roquejoffre [2, 3,
48, 4, 5], regarding the existence and stability of travelling front solutions. Similar issues
on passive fronts in periodic flow fields have also been well studied by Papanicolaou,
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Xin, and Zhu, [43, 56–59]. The passive fronts in these cases all propagate with constant
speeds. However, with fluid coupling turned on, front speed is no longer constant as we
will see from the front equation arising in the course of the proof.

2. Global Weak Solutions and Growth Estimates

2.1. Notation and Statement of Main Result.We denote〈ϕ〉 :=
∫

�
ϕdxdy for Lebesgue

measurable functionsϕ : � → R. For q ∈ [1,∞), n ∈ N, Lq(�; Rd) andHn(�; Rd)
are the usual Lebesgue and Sobolev spaces ofRd-valued functions, equipped with the
norm and inner product

‖ϕ‖q
Lq(�;Rd) :=

d∑
i=1

〈|ϕi|q〉,

(ϕ,φ)Hn(�;Rd) :=
d∑

i=1

∑
|α|≤n

〈DαϕiD
αφi〉.

Since� has a smooth boundary, an equivalent norm onHn(�; Rd) is

‖ϕ‖2
Hn(�;Rd) = ‖ϕ‖2

L2(�;Rd) +
∑
|α|=n

‖Dαϕ‖2
L2(�;Rd).

The non-reflexive spaceL∞(�; Rd) is equipped with the usual sup-norm. We adopt the
notationLq := Lq(�; R2) for R2-valued functions defined on� ⊂ Rd. We will often
use the Gagliardo–Nirenberg inequality: for allϕ ∈ H1(�), q ∈ [2,∞) whend = 2 and
q ∈ [2, 6] whend = 3

‖ϕ‖Lq ≤ c ‖∇ϕ‖
d
2 − d

q

L2(�;Rd)‖ϕ‖1− d
2 + d

q

L2 + c(�)‖ϕ‖L2. (2.1)

The last term on the right-hand side of (2.1) is zero whenϕ ∈ H1
0(�). Also, we shall

use the interpolation inequality [19, 31]: forϕ ∈ Lr(�) ∩Lp(�), 1 ≤ p ≤ q ≤ r ≤ ∞,
µ ∈ [0, 1] and 1/q = µ/p + (1− µ)/r

‖ϕ‖Lq ≤ ‖ϕ‖µ
Lp‖ϕ‖1−µ

Lr . (2.2)

The Poincaŕe inequality establishes the equivalence of the norm‖ϕ‖H1(�) and semi-norm
‖∇ϕ‖L2(�;Rd) onH1

0(�): for ϕ ∈ H1
0(�)

‖ϕ‖L2 ≤ c(6)‖∇ϕ‖L2(�;Rd). (2.3)

For a given Hilbert spaceX with inner product (·, ·)X, we shall use〈·, ·〉X×X′ to denote
the bilinear form establishing the duality betweenX and its dualX′. For two topological
vector spacesX andY, the notationX ↪→ Y shall indicate that a continuous embedding
exists fromX into Y and we shall useX ↪→↪→ Y when the embedding is compact.
Given a Banach spaceY, we shall useLp

loc([0,∞); Y) to denote the space of measurable
functions from [0,∞) toY such that‖·‖Y ∈ Lp

loc([0,∞)). The notations w- Y and w∗- Y
are used to denoteY endowed with its weak and weak-star topologies respectively. By
C([0,∞); w- X) we indicate the space of functions continuous from [0,∞) into w- X.
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With D := {v ∈ C∞
0 (�; Rd) : ∇ · v = 0}, we specifyH to be the closure

of D in L2(�; Rd) and V to be the closure ofD in H1(�; Rd). Since there exists
TC : {v ∈ L2(�; Rd) : ∇ · v ∈ L2(�)} → {v|∂� ∈ H− 1

2 (∂�; Rd)}, a continu-
ous linear trace operator such thatTC(v) = v · n̂|∂� for smoothv, we have the standard
characterisations [14, 32]

H = {v ∈ L2(�; Rd) : ∇ · v = 0, TC(v) = 0},
V = {v ∈ H1

0(�; Rd) : ∇ · v = 0}.

By the Riesz representation theorem we can identifyH ≡ H′ which is our pivot space and
then, using the inequalities above, we establish the Gelfand triple [56]V ↪→ H ↪→ V′,
where each space is dense in the one which follows. We useP to represent the Leray-
Hodge orthogonal projection onto divergence free functionsP : L2(�; Rd) → H. In the
standard fashion we define the linear Stokes operatorA = −P1 : D(A) → H, where
D(A) = H2(�; Rd) ∩ V.

Further, withE := {ϕ ∈ C∞
0 (Rd) restricted to� : ∂n̂ϕ = 0 on ∂6 × R} and

W := {ϕ ∈ H1(�) : ‖ϕ‖2
H1(�) + ‖1ϕ‖2

L2(�), we specifyW to be the closure ofE in

W . Since there existTD : H1(�) → H
1
2 (∂�) ⊂ L2(∂�) andTN : W → H− 1

2 (∂�),
continuous linear trace operators such thatTD(ϕ) = ϕ|∂� andTN (ϕ) = ∂n̂ϕ|∂� for
smoothϕ, we can characterise [15, 56]

W = {ϕ ∈ H1(�); 1ϕ ∈ L2(�) : ∂n̂ϕ = 0 on∂6 × R},

We will also need Green’s theorem, which by density arguments, holds forϕ ∈ W and
v ∈ H1(�):

〈∇v · ∇ϕ〉 + 〈v1ϕ〉 = 〈TD(v), TN (ϕ)〉
H

1
2 (∂�)×H− 1

2 (∂�)
. (2.4)

Supposeφ ∈ C∞
0 (R; [0,∞)) satisfies

∫
R φ(y) dy = 1. Setψ̃(y) =

∫∞
y−ys

φ(s)ds and

θ̃(y) =
∫ y

−∞ φ(s)ds, whereys is a finite constant which we can choose to be zero. Thus

θ̃ = (ψ̃, θ̃) ∈ [0, 1]2 is smooth, satisfies the boundary conditions (1.2) andψ̃ · θ̃ has
compact support inR. As in Heywood [22], we assume thatb∗ can be continued as a
function into�, b ∈ H2

loc(�; Rd), for which there exists a scalar distributionq(x, y)
such thatf = ν1b − b · ∇b − ∇q ∈ L2(�; Rd). This is trivial whenb∗ ≡ 0, which
we assumethroughout the rest of this section. (However, with slight modifications to
our proofs equivalent to those in Heywood [22], our results can include the case when
f has finite Dirichlet integral – for example, when6 is a disk of radiusr0, a natural
choice forb∗ would be a Hagan-Poiseuille flow,b∗(x) = ∂y p̃ · (|x|2 − r2

0)e/4ν for some
prescribed pressure gradient∂y p̃.)

We linearly decompose our solutions intoθ = θ̃ + θ̂. For initial data (θin,uin)
satisfying the boundary conditions (1.2), our initial boundary value problem now takes
the form:
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∂tψ̂ + u · ∇ψ = 1ψ − ψf (θ), in � × R+, (2.5a)

∂tθ̂ + u · ∇θ = `1θ + ψf (θ), in � × R+, (2.5b)

∂tu + u · ∇u = ν1u − ∇p + σθ̂e, in � × R+, (2.5c)

∇ · u = 0, in � × R+, (2.5d)

(∂n̂θ̂,u) = 0, on∂6 × R × R+, (2.5e)

(θ̂,u) → 0, as|y| → ∞, (2.5f)

θ̂(x, y, 0) = θ̂
in

(x, y) = θin − θ̃, in �, (2.5g)

u(x, y, 0) = uin(x, y). (2.5h)

The termθ̃e is the gradient of a scalar function sop is now the modified pressure.

Definition 2.1. For given initial data(θ̂in,uin) ∈ Lq(�) × H, for all q ∈ [1,∞), which
satisfyψ̂in ∈ [−1, 1] and θ̂in ∈ [−1,∞) for a.e.(x, y) ∈ �, a global weak solution of
(2.5) indicates measurable functions

θ̂ ∈ L∞
loc([0,∞); Lq) ∩ L2

loc([0,∞);H1(�; R2)) ∩ C([0,∞); L2), (2.6a)

u ∈ L∞
loc([0,∞); H) ∩ L2

loc([0,∞); V) ∩ C([0,∞); w- H), (2.6b)

for everyq ∈ [1,∞) whend = 2 and everyq ∈ [1, 6] whend = 3, such thatψ̂ ∈ [−1, 1]
andθ̂ ≥ −1, a.e. in�, for everyt ∈ [0,∞), and which for all(ϕ,v) ∈ C∞([0,∞); E×
D) and[t0, t1] ⊂ [0,∞) satisfy

∫ t1

t0

〈ψ̂∂tϕ + ψ1ϕ + ψu·∇ϕ− ψf (θ)ϕ〉 dt = 〈ψ̂(t1)ϕ(t1)〉 − 〈ψ̂(t0)ϕ(t0)〉,
(2.7a)∫ t1

t0

〈θ̂∂tϕ + `θ1ϕ + θu·∇ϕ + ψf (θ)ϕ〉 dt = 〈θ̂(t1)ϕ(t1)〉 − 〈θ̂(t0)ϕ(t0)〉, (2.7b)∫ t1

t0

〈u·∂tv + νu·1v + u ⊗ u : ∇v + σθ̂ve〉 dt = 〈u(t1)v(t1)〉 − 〈u(t0)v(t0)〉,
(2.7c)

and

(θ̂(0),u(0)) = (θ̂in,uin). (2.8)

Remark 2.1.Since for these weak solutions, (θ̂,u) ∈ C([0,∞); L2 × w- H), the initial
condition (2.8) is satisfied in this sense.

Theorem 2.1. Supposeψin ∈ [0, 1], θin ∈ [0,∞) for a.e.(x, y) ∈ �. If (θ̂in,uin) ∈
Lq × H for everyq ∈ [1,∞), then there exists a global weak solution to(2.5) for all
m ∈ N whend = 2 and form = 1, 2 or 3 whend = 3. Moreover, ast → ∞ there is a
positive constantc such that

‖θ̂(t)‖Lq , ‖u(t)‖H = O(ect) (2.9)

for all q ∈ [1,∞) if d = 2 andq ∈ [1, 6] if d = 3.
Whend = 2, if (θ̂in,uin) ∈ Hn(�; R2) × (V ∩ Hn(�; R2)) for everyn ∈ N, then

there exists a unique global classical solution to(2.5).
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2.2. Existence of Weak Solutions (d = 2, 3). We shall prove this result through a series of
lemmas. We provide a-priori estimates for an associated system – the Leray regularised
form of (2.5), with renormalised chemical nonlinearities (θδ = θ̃ + θ̂δ)

∂tψ̂δ + uδ · ∇ψδ = 1ψδ − ψδf (θδ)e−δθδ , in � × R+, (2.10a)

∂tθ̂δ + uδ · ∇θδ = `1θδ + ψδf (θδ)e−δθδ , in � × R+, (2.10b)

∂tuδ + wδ · ∇uδ = ν1uδ − ∇pδ + σθ̂δe, in � × R+, (2.10c)

∇ · uδ = 0, in � × R+, (2.10d)

(∂n̂θ̂δ,uδ) = 0, on∂6 × R × R+, (2.10e)

(θ̂δ,uδ) → 0, as|y| → ∞, (2.10f)

θ̂δ(0) = θ̂in
δ = Jδ ∗ θ̂in, in �, (2.10g)

uδ(0) = uin
δ = Jδ ∗ uin, in �. (2.10h)

For δ > 0, let Jδ ∈ C∞
0 (Rd) be a Friedrichs mollifier [1] with support onBδ(x, y),

the ball of radiusδ, centered at (x, y). We definewδ(ξ) = (Jδ ∗ uδ)(ξ) =
∫

Rd Jδ(ξ −
η)ūδ(η) dη, i.e. the mollification ofuδ, whereūδ is the zero extension ofuδ outside
�. We recall the usual mollifiers properties: ifv ∈ Lq(�; Rd), q ∈ [1,∞), then‖Jδ ∗
v‖Lq ≤ ‖v‖Lq and limδ→0+ ‖Jδ ∗ v − v‖Lq = 0.

For everyδ > 0, we know that a unique classical solution exists to (2.10) for the
given initial data, at least on some interval [0, Tδ], Tδ > 0. We remark that since the
polynomial functionf (·) is Lipschitz continuous and the nonlinear reaction terms are also
bounded for this approximate system, then such an existence result on a finite domain
follows classically via a Faedo-Galerkin method, projecting initially onto the firstN
eigen-functions of the appropriate elliptic operators on a smooth bounded boundary say
of vertical diameterN (see for example Heywood [22]). Norm estimates can be shown
to be independent of the domain size considered and the result follows by considering
the limitN → ∞. Our a-priori Lebesgue and Sobolev norm estimates on (θ̂δ,uδ) will
verify that such a solution exists on [0,∞), i.e. the interval of existence is independent of
δ. We will then eventually consider the limitδ → 0+. The following preliminary lemma
is an extension of the usual parabolic maximum principles (see Smoller [52] and Marion
[36]).

Lemma 2.1. If ψin ∈ [0, 1], θin ∈ [0,∞) a.e. in�, thenψδ ∈ [0, 1], θδ ≥ 0, everywhere
in � × [0, Tδ].

Proof. Consider the inner product of (2.10a) withψ− := max{0,−ψδ} in L2(�),

‖ψ−(t)‖2
L2 + 2

∫ t

0
‖∇ψ−‖2

L2(�;Rd)ds ≤ ‖ψ−(0)‖2
L2.

Analogous estimates follow forθ− := max{0,−θδ} andψ+ := max{0, ψδ − 1}. �

We now establish the main estimates we require to prove the existence of weak solutions
for d = 2, 3. The phrase “uniformly bounded” is considered to be with respect to our
regularising parameterδ > 0. We shall usec andc(·) to denote a generic finite positive
constant which might depend on the argument indicated, but which does not depend on
the regularisation parameter.



294 S. Malham, J. Xin

Lemma 2.2. If (θ̂in,uin) ∈ L2 × H, then the set{θ̂δ,uδ} is uniformly bounded in
L∞

loc([0,∞); L2 × H) ∩ L2
loc([0,∞);H1(�; R2) × V), and in fact

‖θ̂δ(t)‖L2, ‖uδ(t)‖H,

∫ t

0
‖θ̂δ(s)‖H1(�;R2)ds = O(ect).

Proof. Motivated by the work of Masuda [37], Haraux and Youkana [20], Collet and Xin
[12] and Bricmont, Kupiainen and Xin [7] on reaction-diffusion systems, we consider
a simple nonlinear functional that allows us to take advantage of the interaction of the
chemical nonlinearities. As in Collet and Xin [12], forF ∈ C2(R2; [0,∞)), we use
(2.5a)–(2.5b) to derive

d
dt

〈F (ψ̂δ, θ̂δ)〉 + 〈Q(∇θ̂δ)〉

= 〈∇ · (F1∇ψ̂δ + `F2∇θ̂δ − uδF )〉
+ 〈F11ψ̃ + `F21θ̃〉 − 〈F1uδ · ∇ψ̃ + F2uδ · ∇θ̃〉
− 〈(F1 − F2)ψδf (θδ)e−δθδ〉, (2.11)

where

Q(∇θ̂δ) = F11|∇ψ̂δ|2 + (1 + `)F12∇ψ̂δ · ∇θ̂δ + `F22|∇θ̂δ|2. (2.12)

HereF1 andF2 are the partial derivatives ofF with respect to its first and second
arguments. We would like to choose anF (ψ̂δ, θ̂δ) which satisfies:

F11F22 > (1 + `)2F 2
12/4`, for all ψ̂δ ∈ [−1, 1], θ̂δ ∈ [−1,∞),

(2.13a)

F1 − F2 > 0, for all ψ̂δ ∈ [0, 1], θ̂δ ∈ [0,∞). (2.13b)

We impose (2.13a) to ensure the quadratic form (2.12) is non-negative and condi-
tion (2.13b) to partially help control the nonlinear terms.

Step 1.We show that the following inequality holds for the mean-square reactant con-
centration and temperature:

d
dt

〈F (ψ̂δ, θ̂δ)〉 + c(`)
(
‖∇ψ̂δ‖2

L2(�;Rd) + ‖∇θ̂δ‖2
L2(�;Rd)

)
≤ c
(
‖θ̂δ‖2

L2 + ‖uδ‖2
H + `2 + 1

)
. (2.14)

We assumeF to be the quadratic formF (ψ̂δ, θ̂δ) := αψ̂2
δ + βψ̂δ θ̂δ + γθ̂2

δ. Note that for
arbitrary (α, β, γ) ∈ R3

+ and (ε1, ε2) ∈ R2
+ we can estimate

F (θ̂δ) ≥
(
α− βε1

2

)
ψ̂2

δ +
(
γ − β

2ε1

)
θ̂2

δ,

Q(∇θ̂δ) ≥
(

2α− (1 + `)βε2

2

)
|∇ψ̂δ|2 +

(
2γ`− (1 + `)β

2ε2

)
|∇θ̂δ|2.

Condition (2.13b) is satisfied provided we choose

2α− β = k1 > 0 and β − 2γ = k2 > 0. (2.15)
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For a givenγ > 0, we can always chooseβ large enough so thatk2 > 0 and thenε1 and
ε2 large enough so thatγ > β/2ε1 and 2γ` > (1 + `)β/2ε2. Finally we can chooseα
sufficiently large (but finite) such thatk1 > 0,α > βε1/2 and 2α > (1 + `)βε2/2 and
thus we guarantee (2.15) and hence (2.13b) as well as (2.13a). In (2.11) we bound the
linear convection and diffusion terms using the Hölder and Young inequalities:

|〈F11ψ̃ + `F21θ̃〉| + |〈F1uδ · ∇ψ̃ + F2uδ · ∇θ̃〉|

≤ c

(∫
6×2

|uδ · e|2ρ(y) dxdy +
∫

6×2

|θ̂δ|2ρ(y) dxdy + `2 + 1

)
,

where2 = supp{∂yψ̃} = supp{∂yθ̃}, ρ(y) = max{|∂yψ̃|, |∂y θ̃|, |∂2
yψ̃|, |∂2

y θ̃|}. Using
(2.13b) we estimate the nonlinear term

〈
(
k1ψ̂δ + k2θ̂δ

)
ψδf (θδ)e−δθδ〉 ≥ −

∫
�K

|−k1|ψ̂δ| + k2θ̂δ|ψδf (θδ) dxdy

−
∫

�−
|k1ψ̂δ − k2|θ̂δ||ψδf (θδ) dxdy − c

≥ − c
(
‖θ̂δ‖2

L2 + 1
)
, (2.16)

where�K = {(x, y) ∈ � : ψ̂δ ∈ [−1, 0], θ̂δ ∈ [0,K = 2k1/k2]} and�− = {(x, y) ∈
� : ψ̂δ ∈ [0, 1], θ̂δ ∈ [−1, 0]} and we have made use of the fact thatψ̃ · θ̃m has compact
support. Combining these last two inequalities yields (2.14).

Step 2.We establish the following energy inequality:

d
dt

‖uδ‖2
H + 2ν‖uδ‖2

V ≤ ‖uδ‖2
H + σ2‖θ̂δ‖2

L2. (2.17)

This inequality follows by considering the inner product of (2.10c) withuδ in H,

1
2

d
dt

‖uδ‖2
H + ν‖uδ‖2

V = σ(uδ, θ̂δe)H,

and then using the Ḧolder and Young inequalities to estimate

σ(uδ, θ̂δe)H ≤ σ‖uδ‖H‖θ̂δ‖L2 ≤ 1
2
‖uδ‖2

H +
σ2

2
‖θ̂δ‖2

L2.

Combine the inequalities in Steps 1 and 2 and apply the Grönwall inequality, noting
that by the usual mollifier properties‖uin

δ ‖H ≤ ‖uin‖H and ‖θ̂in
δ ‖L2 ≤ ‖θ̂in‖L2, to

establish the norm growth estimates. �

We are now in a position to estimate theLq(�)-norms of the mass-fraction and temper-
ature fields and in particularL1 estimates which indicate the growth rates of the reacting
fronts.

Lemma 2.3. If, in addition to the assumptions of Lemma 2.2, we assumeθ̂in
δ ∈ Lq, for

all q ∈ [1,∞), then{θ̂δ} is uniformly bounded inL∞
loc([0,∞); Lq) for everyq ∈ [1,∞)

whend = 2 and q ∈ [2, 6] whend = 3, and: ‖θ̂(t)‖Lq = O(ect). We can extend this
estimate to includeq ∈ [1, 2) whend = 3, provided we additionally assumem ∈
{1, . . . , 6}.
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Proof. Step 1.We establish that if̂θin
δ ∈ Lq for someq ∈ [2,∞) when d = 2 or

someq ∈ [2, 6] whend = 3, thenθ̂δ lies inL∞
loc([0,∞); Lq), which follows from the

inequality: for anyn ∈ N,

‖θ̂δ(t)‖L2n ≤ ‖θ̂δ(0)‖L2n + ct + c
∫ t

0
‖θ̂δ(s)‖1/n

L2 + ‖uδ(s)‖L2n(�;Rd) ds. (2.18)

For n ∈ N, let F be the polynomialF (ψ̂δ, θ̂δ) :=
∑2n

k=0αkψ̂
2n−k
δ θ̂k

δ , whereαk,
k = 0, 1, . . . , 2n are positive constants. We can choose theαk so thatF satisfies the
conditions (2.13) and also thatF ≥ cψ̂2n

δ + cθ̂2n
δ , for all ψ̂δ ∈ [−1, 1], θ̂δ ∈ [−1,∞),

to ensure〈F 〉 is a positive definite functional – we provide a proof in the appendix
(analogous to the quadratic case). Using (2.11), since there existsA ∈ R such that for
all θ̂δ > A, F1 − F2 > 0, then with�A = {(x, y) ∈ � : ψ̂δ ∈ [−1, 1], θ̂δ ∈ [−1, A]}:

d
dt

〈F 〉 ≤c
∫

�A

(
|θ̂δ|2n−1

)
ψδf (θδ)dxdy + c

(
‖uδ‖L2n(�;Rd) + 1

)∑
i=1,2

‖Fi‖
L

2n
2n−1 (�)

≤ c

∫
�A

(
|θ̂δ|2n−1

)
ψ̃ · θ̃m dxdy + c(A)

(∫
�A

|θ̂δ|2 dxdy

) 1
2n

〈F 〉1− 1
2n

+ c
(
‖uδ‖L2n(�;Rd) + 1

)
〈F 〉1− 1

2n .

We have used that‖∇θ̃‖L∞ ≤ c, ‖∇θ̃‖L2n(�;Rd+2) ≤ c and‖1θ̃‖L2n ≤ c. Now using
thatψ̃ · θ̃m has compact support the last inequality becomes

d
dt

(
〈F 〉 1

2n

)
≤ c(A)

(∫
�A

|θ̂δ|2 dxdy

) 1
2n

+ c
(
‖uδ‖L2n(�;Rd) + 1

)
,

which yields (2.18) after integration in time. If we use the Gagliardo–Nirenberg inequal-
ity (2.1) to estimate theL2n-norm on velocity field in (2.18) we must restrict ourselves
to n = 1, 2 or 3 whend = 3. IntermediateLq-estimates follow from (2.2).

Step 2.If θ̂in
δ ∈ L1 and providedψδf (θδ) ∈ L1(�), then{θ̂δ} is uniformly bounded in

L∞
loc([0,∞); Lq(�)) for everyq ∈ [1, 2). In particular, by Step 1, the latter assumption

here is true for allm ∈ N whend = 2, but whend = 3, we are restricted to reactions for
whichm ∈ {1, . . . , 6}.

As in Constantin and Fefferman [13], considerF (ξ) =
∫ ξ

0 (ξ − η)φ(η)dη ∈ C2(R),
where:φ(ξ) ≥ 0, for all ξ ∈ R; φ → 0 asξ → 0; φ(ξ) = 0, for all ξ > ρ0 and∫ ρ0

0 φ(ξ) dξ = 1. HenceF ′(ξ) =
∫ ξ

0 φ(η) dη ∈ [0, 1] andF ′′(ξ) = φ(ξ) ≥ 0. We form
the estimate (9 := {(x, y) ∈ � : |ψ̂δ| > ρ0})

d
dt

∫
9

F (|ψ̂δ|)dxdy +
∫

9

F ′′(|ψ̂δ|)|∇|ψ̂δ||2dxdy

≤
∫

�

|ψδf (θδ)| + |uδ · ∇ψ̃| + |1ψ̃| dxdy.

Taking the limit asρ0 → 0, we get

d
dt

‖ψ̂δ‖L1(�) ≤ ‖ψδf (θδ)‖L1(�) + c‖uδ‖H + c.
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Now use that‖ψδf (θδ)‖L1(�) ≤ c
(
1 +‖ψ̂δ‖L1(�) +‖θ̂δ‖L1(�) +

∑m
k=2 ‖θ̂δ‖k

Lk(�)

)
, where,

by step 1, the last term on the right-hand side here is uniformly bounded for everym ∈ N
whend = 2, but only form ∈ {1, . . . , 6} whend = 3. We can derive an analogous
estimate for‖θ̂δ‖L1(�). Adding the two estimates together, using Lemma 2.2 and the
interpolation inequality (2.2), the result follows.

Consider the following weak form of our regularised system (2.10), for all (ϕ,v) ∈
C∞([0,∞); E × D) and [t0, t1] ⊂ [0,∞),∫ t1

t0
〈ψ̂δ∂tϕ + ψδ1ϕ + ψδuδ ·∇ϕ− ψδf (θδ)e−δθδϕ〉 dt = 〈ψ̂δ(t)ϕ(t)〉|t1

t0
, (2.19a)∫ t1

t0
〈θ̂δ∂tϕ + `θδ1ϕ + θδuδ ·∇ϕ + ψδf (θδ)e−δθδϕ〉 dt = 〈θ̂δ(t)ϕ(t)〉|t1

t0
, (2.19b)∫ t1

t0
〈uδ ·∂tv + νuδ ·1v + wδ ⊗ uδ : ∇v + σθ̂δve〉 dt = 〈uδ(t)v(t)〉|t1

t0
. (2.19c)

From Lemmas 2.2 and 2.3, there exists a subsequence{θ̂δ,uδ} (which we label by the
same subscript) such that for allq ∈ [1,∞) whend = 2 andq ∈ [2, 6] whend = 3, as
δ → 0+,

θ̂δ → θ̂ in w∗- L∞
loc([0,∞); w- Lq) ∩ w- L2

loc([0,∞); w- H1(�; R2)),
uδ → u in w∗- L∞

loc([0,∞); w- H) ∩ w- L2
loc([0,∞); w- V).

(2.20)

Convergence of the linear terms in (2.19) to the appropriate terms in (2.7) follows
from (2.20). By standard results we can deduce from (2.19c) that{∂tuδ} is uniformly
bounded inL4/d

loc ([0,∞); V′). The Aubin-Lions theorem [14, 54] for Bochner spaces
(based on the Rellich-Kondrachov compact imbedding) implies

{φ ∈ L2
loc([0,∞);H1(�)) : ∂tφ ∈ L

4/d
loc ([0,∞);H1(�)′)}

↪→↪→ L2
loc([0,∞);L2

loc(�)), (2.21)

where the target space is equipped with the strong topology. Hence{uδ} is relatively
compact inL2

loc([0,∞);L2(BR)) for anyR ∈ (0,∞). So uδ → u strongly in both
L2

loc([0,∞);L2(supp{v})) andL2
loc([0,∞);L2(supp{ϕ})), which together witĥθδ → θ̂

weakly inL2
loc([0,∞);L2(supp{ϕ})), is sufficient to establish the convergence of the

nonlinear convective terms in our weak formulation since∫ t1

t0

〈∇ϕ · (uδθ̂δ − uθ̂)〉 dt ≤
∫ t1

t0

‖uδ − u‖H‖θ̂δ‖L2‖∇ϕ‖L∞(�;Rd) dt

+

∣∣∣∣∫ t1

t0

〈u · ∇ϕ(θ̂δ − θ̂)〉 dt

∣∣∣∣ .
By applying Green’s theorem we can establish that

‖`1θ̂δ + uδ · ∇θ̂δ‖H1(�)′ ≤ sup
‖ϕ‖H1=1

{
`|〈ϕ1θ̂δ〉| + |〈ϕuδ · ∇θ̂δ〉|

}
= sup

‖ϕ‖H1=1

{
`|〈∇ϕ · ∇θ̂δ〉| + |〈∇ϕ · uδ θ̂δ〉|

}
≤ `‖∇θ̂δ‖L2(�) + ‖uδ‖L4(�;Rd)‖θ̂δ‖L4(�).
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Using the conclusions of Lemma 2.3 and recalling thatψ̃ · θ̃ has compact support, we
know that{ψδf (θδ)e−δθδ} is uniformly bounded inL∞

loc([0,∞);L2(�)) provided we
assumem = 1, 2 or 3 whend = 3 (no assumption whend = 2). Hence∂tθ̂δ = `1θδ −
uδ ·∇θδ +ψδf (θδ)e−δθδ ∈ L2

loc([0,∞);H1(�)′) for d = 2, 3. Analogous estimates hold
for ∂tψ̂δ. By employing the compact embedding (2.21) we can establish thatθ̂δ → θ̂
strongly inL2

loc([0,∞);L2(supp{ϕ})). We can now guarantee the convergence of the
nonlinear reaction terms in (2.19) to the appropriate terms in (2.7) by, for example, using
the identity∫ t1

t0

〈
ϕ
(
ψδf (θδ)e−δθδ − ψf (θ)

)〉
dt

≡
∫ t1

t0

〈
ϕ
(

(ψδ − ψ)f (θδ)e−δθδ + ψ
(
f (θδ)e−δθδ − f (θ)

))〉
dt,

and noting that strong convergence ofψ̂δ → ψ̂ in L2
loc([0,∞);L2(supp{ϕ})) and weak

convergence off (θδ) → f (θ) in L2
loc([0,∞);L2(supp{ϕ})) is sufficient to ensure the

right-hand side converges to zero.
By choosingv ∈ D independent of time, thatu ∈ C([0,∞); w- H) follows from

(2.7) and thatD is dense inH. Further, from the embedding

{φ ∈ L2
loc([0,∞);H1(�)) : ∂tφ ∈ L2

loc([0,∞);H1(�)′)} ↪→ C([0,∞);L2(�)),

we deduce that̂θ ∈ C([0,∞); L2) after taking the limitδ → 0+. This last embedding
also implies that whend = 2, we haveu ∈ C([0,∞); H).

2.3. Stronger Solutions (d = 2). We prove uniqueness for slightly more regular solutions
and then show that classical solutions exist provided we assume our initial data is smooth.

Lemma 2.4. Whend = 2, for initial data θ̂in ∈ H1(�; R2) anduin ∈ H, weak solu-
tions also satisfŷθ ∈ L∞

loc([0,∞);H1(�; R2)) ∩ L2
loc([0,∞); W2) and this additional

regularity is sufficient to establish uniqueness.

Proof. Consider the inner product of (2.10b) with−1θ̂δ in L2(�),

d
dt

‖∇θ̂δ‖2
L2 + 2`‖1θ̂δ‖2

L2 ≤ c‖1θ̂δ‖L2

(
‖∇θ̂δ‖L4‖uδ‖L4 + ‖ψδf (θδ)e−δθδ‖L2

+ ‖u‖H + ‖∇θ̂δ‖L2 + ` + 1
)
.

Using the Gagliardo–Nirenberg and Young inequalities, for arbitraryσ > 0,

‖1θ̂δ‖L2‖∇θ̂δ‖L4‖uδ‖L4 ≤ σ‖1θ̂δ‖2
L2 +

c

σ
‖∇θ̂δ‖2

L2‖uδ‖
8

4−d

L4 .

Also note from the Gagliardo–Nirenberg inequality and Lemma 2.2 that‖uδ‖
8

4−d

L4 lies
in L1

loc([0,∞)) whend = 2. Hence noting regularity already established, forming an
analogous estimate for‖∇ψδ(t)‖L2, integrating with respect to time and considering the
limit δ → 0+, the regularity result follows.

We know [54] that forϕ ∈ C([0,∞);L2(�)), d
dt‖ϕ‖2

L2 = 2(ϕ, ∂tϕ)L2, in the scalar
distribution sense on compact subsets of [0,∞). Let (θ1,u1) and (θ2,u2) be two weak
solutions to our system (2.7) with the same initial data (θ̂in,uin) ∈ H1(�; R2) × H. Set
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θ̄ = θ2 − θ1 andū = u2 − u1. SinceE is dense inW we can chooseϕ = θ̂ in (2.7b)
and use Green’s theorem to form

1
2
‖θ̄(t1)‖2

L2 − 1
2
‖θ̄(t0)‖2

L2 + `
∫ t1

t0

‖∇θ̄‖2
L2dt

=
∫ t1

t0

〈∇θ̄ · (u2θ2 − u1θ1)〉 dt +
∫ t1

t0

〈θ̄(ψ2f (θ2) − ψ1f (θ1))〉 dt,

where

〈∇θ̄ · (u2θ2 − u1θ1)〉 ≤ ‖∇θ̄‖L2

(
‖ū‖L4‖θ̂2‖L4 + ‖θ̄‖L4‖u1‖L4

)
+ c‖∇θ̄‖L2

(
‖ū‖H + ‖θ̄‖L2

)
.

We can estimate〈θ̄(ψ2f (θ2) − ψ1f (θ1))〉 in a similiar fashion. Using the Gagliardo–
Nirenberg and Young inequalities, forming analogous estimates forψ̄ andū and adding
them together and choosingt0 = 0, the result follows. �

Lemma 2.5. If (θ̂in,uin) ∈ W2 × (H2(�; R2) ∩ V), thenθ̂ lies inL∞
loc([0,∞); W2).

Proof. Consider theL2(�)-inner product of the time derivative of (2.10b) with∂tθ̂δ,

1
2

d
dt

‖∂tθ̂δ‖2
L2 + `‖∇(∂tθ̂δ)‖2

L2 ≤ ‖∂tθ̂δ‖L4‖∂tψ̂δ‖L2‖θ̂δ‖m
L4m + ‖∂tθ̂δ‖L2‖∂tψ̂δ‖L2

+ c‖∂tθ̂δ‖2
L4‖ψδf

′(θδ)‖L2 + δc‖∂tθ̂δ‖2
L4‖ψδf (θδ)‖L2

+ ‖∂tθ̂δ‖L4‖∇θ̂δ‖L4‖∂tuδ‖H + c‖∂tθ̂δ‖L2‖∂tuδ‖H.

We can obtain analogous estimates for∂tψ̂δ and∂tuδ. Using the Gagliardo–Nirenberg
and Young inequalities and the regularity already established, add the inequalities
for ∂tψ̂δ, ∂tθ̂δ and ∂tuδ, integrate with respect to time, and note from (2.10) that
limt1→0+ ‖(∂tθ̂δ, ∂tuδ)(t1)‖L2×H ≤ c ‖(θ̂in

δ ,u
in
δ )‖W2×(H2(�;R2)∩V).

From (2.10b) and the regularity already established, it follows that`1θ̂δ = g, where
g = ∂tθ̂δ + uδ · ∇θδ − ψδf (θδ)e−δθδ − `1θ̃ ∈ L∞

loc([0,∞);L2(�)). An analogous
estimate forψ̂δ follows. Then take the limitδ → 0+. �

Finally, we deduce from standard estimates thatu lies inL∞
loc([0,∞); V ∩H2(�; R2)).

That all components of̂θ andu lie in C∞(� × R+), when the initial data is smooth,
follows from the standard elliptic estimates in Constantin and Foias [14], p. 26, and
Temam [54], pp. 302–3, as well as estimates for passively convected reaction-diffusion
systems found in Smoller [52] or Gilbarg and Trudinger [19]. The proof of Theorem 2.1
is complete.

3. Front Solutions to a System with Unit Lewis Number (d = 2)

3.1. Orientation and Statement of Results.Let us consider the front solutions of the
following simpler system:

ut + u · ∇xu = −∇xp + ν1xu + εT x̂2 + f (x), ∇x · u = 0, (3.1)

Tt + u · ∇xT = 1xT + g(T ), (3.2)
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where we denote byT the temperature;x = (x1, x2) ∈ � ≡ (0, 2π) × R1; f (x) =
(0, sinx1), a shearing force;g(T ) = T (1−T )(T−µ),µ ∈ (0, 1

2), the bistable nonlinearity.
The other notations are the same as before except thatε is now the Rayleigh number.
System (3.1)-(3.2) is the unit Lewis number case of the original system studied in early
sections. The identityψ + θ = 1 makes possible the reduction of the chemistry part to
the temperature equation.

Our goal is to find an asymptotic regime where the structures of front solutions can
be explicitly demonstrated, and the front speeds are uniformly bounded in time. Since
the main issue is to deal with the fluid coupling, we choose the technically simpler
bistable nonlinearity for the reaction termg in (3.2). Takingg as the combustion type
nonlinearity of Arrhenius form with ignition temperature cutoff would require working
in weighted function spaces, and only produce similar results. In the same spirit, we
choose a special shear forcing function forf (x), which was proposed by Kolmogorov
for studying two dimensional turbulence, see [38, 50] and references therein.

The boundary conditions for system (3.1)-(3.2) are:

u|x1=0,2π = 0, ∀ x2, (3.3)

Tx1|x1=0,2π = 0, ∀ x2, (3.4)

respectively the no slip boundary condition for velocityu and the adiabatic boundary
condition for temperatureT .

Whenε = 0, Eq. (3.1) decouples from (3.2), and a simple stationary solution is:

u0 = (0, ν−1 sinx1), (3.5)

with pressurep0 = 0. Foru = u0, Eq. (3.2) admits traveling front solutions of the form
T = T0(x1, x2 − c0t) ≡ T0(y, s), y = x1, s = x2 − c0t, andT0 satisfies the elliptic
equation:

1y,sT0 + (ν−1 siny + c0)T0,s + g(T0) = 0, (3.6)

for (y, s) ∈ (0, 2π) ×R1, with the boundary conditions:

T0(y,−∞) = 0, T0(y,+∞) = 1, max
y∈[0,2π]

T0(y, 0) =
1
2
, T0,y(y, s)|y=0,2π = 0. (3.7)

Existence, uniqueness, and asymptotic stability of such traveling fronts are studied at
length in a series of papers by Berestycki, Larrouturou, Nirenberg, and Roquejoffre, see
[4, 5, 3], and [48]. The linearised operator aroundT0(see Subsect. 3.2 for details) has an
eigenfunctionT0,s(x1, x2) for the simple eigenvalue zero onL2(�), and itsL2 adjoint
operator also has an eigenfunction corresponding to the simple eigenvalue zero, which
we denote byT ?

0,s. TheL2 orthogonal complement ofT ?
0,s is denoted byW .

Now let us consider front solutions to system (3.1)-(3.2) (ε 6= 0) of the form:

u = u0 + εu1(t, x, ε), (3.8)

p = εp1(t, x, ε), (3.9)

T = T0(x1, x2 − c(t, ε)) + εT1(t, x, ε), (3.10)

c(t, ε) = c0t + εc1(t, ε). (3.11)

We will show that forε small enough, (3.8)-(3.11) are valid for allt ≥ 0, with u1,
p1, T1 uniformly bounded in proper norms, and|c1| ≤ O(t), ast → +∞. Substituting
(3.8)–(3.11) into (3.1)–(3.2), and using Eq. (3.6), we have:
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u1,t + u0 · ∇u1 + u1 · ∇u0 + εu1 · ∇u1 = −∇p1 + ν1u1 + T0x̂2 + εT1x̂2, (3.12)

∇ · u1 = 0, (3.13)

T1,t + u0 · ∇T1 + u1 · ∇T0 + εu1 · ∇T1 − c′1(t, ε)T0,s = 1T1 + g′(T0)T1 + εN (T1, ε),
(3.14)

where

εN (T1, ε) =
g(T0 + εT1) − g(T0)

ε
− g′(T0)T1, (3.15)

and soN (T1, ε) contains quadratic and cubic terms inT1. The prime onc denotes the
time derivative. The boundary conditions foru1 andT1 are:

u1|x1=0,2π = 0, T1,x1|x1=0,2π = 0. (3.16)

Let us introduce some notations for this section. For any open subsetG ∈ R2 and
measurable vector functionu(x) = (u1(x), u2(x)), define:

||u||2G =
∑
i=1,2

∫
G

u2
i (x)dx, L2(G) = {u : ||u||G < +∞},

||∇u||2G =
∑

i,j=1,2

∫
G

|ui,xj
|2dx, H1(G) = {u : ||u||2G + ||∇u||2G < +∞},

||D2u||2G =
∑

i,j,k=1,2

∫
G

|ui,xj ,xk
|2dx, H2(G) = {u : ||D2u||G < +∞},

D(G) = {u ∈ C∞
0 (G) : ∇ · u = 0},

J(G) = closure ofD(G) in the norm||u||G,
J0(G) = closure ofD(G) in the normH1(G),
H1

0(G) = closure ofC∞
0 (G) in the normH1(G).

It is well known that the orthogonal complement ofJ(G) in L2(G) is:

J⊥ ≡ {u : u = ∇p, for some p∈ H1
loc(G), with ∇p ∈ L2

loc(G)}.

Let P be the orthogonal projection fromL2(G) to J(G), then the Stokes operator is:

−A = P1, (3.17)

with domain of definitionD(A) = H2(G) ∩ J0. If G is bounded,∂G is C3, thenA :
D(A) → J(G) is one to one and onto. Moreover,A−1 exists, is completely continuous,
and symmetric. The eigenfunctions ofA, denoted byal(x), l = 1, 2, · · · , with eigenvalues
λl, i.e,Aal = λla

l, are orthogonal and complete inJ0(G).
The main result of the section is:
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Theorem 3.1. Letu1(0, x) ∈ J0(�), T1(0, x) ∈ H1(�) ∩W , c1(0, ε) = 0. Let< T0 >
be the integral average ofT0(x1, x2) overx1 ∈ [0, 2π], and so< T0 > is a bounded
smooth function ofx2. Then there exists a positive numberε0 depending on theH1 norms
of u1(0, x) andT1(0, x), andν, such that ifν > 2π, ε ∈ (0, ε0), system (3.12)-(3.14)
admits unique solutionsu1 = u1(t, x, ε), T1 = T1(t, x, ε), c1 = c1(t, ε), p1 = p1(t, x, ε)
on (0,+∞) × �, which satisfy:

u1 ∈ L∞((0,+∞); J0) ∩ C([0,+∞); J0) ∩ C1((0,+∞); J0), (3.18)

u1,t, D
2
xu1,∇p1− < T0 > x̂2 ∈ L2

loc((0,+∞);L2(�)), (3.19)

T1 ∈ L∞((0,+∞);H1 ∩W ) ∩ C([0,+∞);H1 ∩W ) ∩ C1((0,+∞);H1 ∩W ), (3.20)

c1 ∈ C1[0,+∞), (3.21)

limt→0 ||u1 − u1(0, x)||H1 = limt→0 ||T1 − T1(0, x)||H1 = 0. (3.22)

Moreover, the following estimates hold:

||u1||H1 + ||T1||H1 + |c′1| ≤ C, ∀t ≥ 0, (3.23)

for some positive constantC, depending on theH1 norm of initial datau1(0, x),T1(0, x),
andν. The front solutions to system (3.1)-( 3.2) are then given by (3.8)-(3.11).

Remark 3.1.The solutions satisfying (3.18)–(3.22) are strong solutions. Front structures
are seen from (3.8)-(3.11). The theorem does not specify the asymptotic behaviour of
c′1 ast → +∞, whether it converges to a constant or it is oscillatory in time. Numerical
simulations ([45, 62]) indicate that for downward propagating fronts, the front speeds
tend to nearly constant values, while for upward propagating fronts, front speeds tend
to oscillate in time due to the Rayleigh-Taylor instability induced byε. Without the
constraint onν andε, we do not expect that front solutions and their speeds will remain
bounded in time. Power growth int is observed for vorticity field, and front shape can
evolve into a bubble like structure for an upward moving front, [62].

Remark 3.2.The condition thatT1 ∈ W is not a restriction on the initial data. If it is not
inW , one can always shiftT0 in x2 by a suitable constant, or change the initial position
for c, so that the newT1 belongs toW .

The idea of proof is to seek energy estimates onu1, and spectral-semigroup type esti-
mates forT1 as often used in stability analysis for traveling waves in reaction-diffusion
equations. Combining the two types of estimates, we show that theH1 norm of bothu1
andT1 are bounded for all time. The conditionν > 2π comes up in the energy inequality
for controlling the convective terms with the dissipative termν1u1. The basic ingredi-
ent for the energy estimate is the Poincaré inequality available when no slip boundary
condition is imposed onu1. If we impose periodic boundary condition instead, then due
to unboundedness of our domain�, Poincaŕe inequality no longer holds. It seems that
one has to come up with a different approach for analyzing solutions.

The proof of the theorem is organised as follows. In Subsect. 3.2, we consider
solutions to Eqs. (3.12)-(3.13) with a given forcing term inL∞((0, t0);L2(�)), for any
t0 > 0, and derive energy inequalities. These inequalites are along the line of those in
Constantin and Foias [14]. To handle unbounded domains, we estimate the nonlinear
terms differently using inequalities on the Stokes operator as given in Heywood [22].
In Subsect. 3.3, we present estimates based on the analytical semigroup generated by
the linearised reaction-diffusion operator around the basic traveling frontT0. That the
linearised operator is sectorial and so a generator of the analytical semigroup follows
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from the works of Berestycki, Larrouturou, and Roquejoffre, see [3, 48], and references
therein. The nonlinear termu1 ·∇T1 is handled with an inequality in Kozono and Ogawa
[27] for bounding convective terms in unbounded domains with fractional powers of
differential operators. In Subsect. 3.4, we complete the proof by combining the above
estimates and show the existence of global strong solutions uniformly bounded inH1

norms for all time.

3.2. Solutions to a Forced Navier–Stokes Equation.We discuss the strong solutions to
the following forced Navier–Stokes equation:

vt + u0 · ∇v + v · ∇u0 + εv · ∇v = −∇p + ν1v + F (t, x), (3.24)

∇ · v = 0, x ∈ � = (0, 1) ×R1, (3.25)

v|t=0 = v0(x) ∈ J0(�), v|∂� = 0, (3.26)

where the forcing functionF (t, x) ∈ L∞((0, t0);L2(�)), for anyt0 > 0.
Following Heywood [22], we first consider (3.24)-(3.26) on any bounded domain

with at leastC3 smooth boundary, then approximate� with an enlarging sequence
of such domains. They can be domains enclosed by two parallel straight lines, with
distance 2π apart, on the left and right, and twoC∞ curves on the top and bottom that
connect to the straight lines withC∞ smoothness. We will derive estimates on solutions
that are independent of thex2 diameter of these approximate domains, then pass to the
limit. Since the approximate domains and� itself have width 2π in thex1 direction, the
Poincaŕe inequality:

||u||L2 ≤ 2π||∇u||L2, ∀ u ∈ H1
0 , (3.27)

holds.
For any bounded domain, still denoted by�, thenth Galerkin approximate solution

is:

vn(x) =
n∑

k=1

ckna
k(x), (3.28)

with ckn = ckn(t), andvn satisfies:∫
�

(vn
t + εvn · ∇vn + u0 · ∇vn + vn · ∇u0 − ν1vn) · al(x)dx =

∫
�

F · aldx,
(3.29)

or

(vn, al)t + ε(vn · ∇vn, al) + (u0 · ∇vn, al) + (vn · ∇u0, a
l) − ν(1vn, al) = (F, al),

(3.30)

wherel = 1, 2, · · · , n, (·, ·) is the usualL2 inner product. System (3.29) or (3.30) is an
ODE system forckn(t), k = 1, 2, · · · , n with quadratic nonlinearities. In the following,
we skip the superscriptn on v. Multiply (3.29) by cln and summing overl gives the
identity:

1
2
d

dt
||v||22 + (v · ∇u0, v) + ν||∇v||22 = (F, v). (3.31)

Poincaŕe inequality (3.27) implies that:
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(v · ∇u0, v) + ν||∇v||22 ≥ −ν−1||v||22 +
ν

(2π)2
||v||22 = δ||v||22,

with δ ≡ (2π)−2ν − ν−1 > 0. It follows that

||v||2,t ≤ −δ||v||2 + ||F ||2, (3.32)

or

sup
t∈[0,t0]

||v||2(t) ≤ ||v(0)||2 +C(t) sup
t∈[0,t0]

||F ||2, ∀ t ≥ 0, (3.33)

whereC(t) is a bounded smooth function int ≥ 0,C(0) = 0,C(t) ≤ 1
δ

. Since

||vn||22 =
n∑

k=1

c2
kn(t),

(3.33) implies the existence of smooth solutions of the ODE system (3.30) for all time.
Multiplying λlcln to both sides of (3.30), and summing overl gives:

1
2
d

dt
||∇v||22 + ν||P1v||22 = ε(v · ∇v, P1v) + (u0 · ∇v, P1v)

+ (v · ∇u0, P1v) − (F, P1v). (3.34)

The terms on the right hand side of (3.34) are estimated below. By the Cauchy-Schwartz
and Gagliardo–Nirenberg inequalities, we have:

R1 ≡ |(v · ∇v, P1v)| ≤ ||v||4||∇v||4||P1v||2
≤ ||v||

1
2
2 ||∇v||

1
2
2 ||∇v||

1
2
2 ||D2v||

1
2
2 ||P1v||2.

Recall that (see Lemma 1 of [22] for the three dimensional case):

||D2u||2 ≤ C(||P1u||2 + ||∇u||2), (3.35)

whereC depends only on smoothness (at leastC3) of the boundary. It follows that:

R1 ≤ C||v||
1
2
2 ||∇v||2(||Av||2 + ||∇v||2)

1
2 ||Av||2

≤ C||v||
1
2
2 ||∇v||2||Av||

3
2
2 +C||v||

1
2
2 ||∇v||

3
2
2 ||Av||2,

and by Young’s inequality:

R1 ≤1
4
Cα−4||v||22||∇v||42 +

3
4
Cα

4
3 ||Av||22 + 2ν−1C2||v||2||∇v||32 +

ν

8
||Av||22

≤1
4
α−4C||v||22||∇v||42 + 4πν−1C2||∇v||42 + (

3
4
Cα

4
3 +

ν

8
)||Av||22, (using (3.27))

=C(4−1α−4||v||22 + 4πν−1C2)||∇v||42 + (
3
4
Cα

4
3 +

ν

8
)||Av||22, (3.36)

for some constantα to be chosen. The other three terms are bounded as:

R2 ≡ |(u0 · ∇v, P1v)| ≤ |u0|∞||∇v||2||Av||2
≤ 2ν−1|u0|2∞||∇v||22 +

ν

8
||Av||22, (3.37)
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R3 ≡ |(v · ∇u0, P1v)| ≤ |∇u0|∞||v||2||Av||2
≤ 2ν−1|∇u0|2∞||v||22 +

ν

8
||Av||22, (3.38)

|(F, P1v)| ≤ ||F ||2||Av||2 ≤ ν−1||F ||22 +
ν

4
||Av||22. (3.39)

Here and in the rest of this section,| · |∞ denotes theL∞ norm.
Combining (3.34)-(3.39) and choosing 6Cα

4
3 = ν, we have (with C denoting a

generic constant independent ofν, and skipping the subscript 2 for theL2 norm):

1
2
d

dt
||∇v||2 +

ν

4
||Av||2 ≤ εC(ν−3||v||2 + ν−1)||∇v||4

+ 2ν−1|u0|2∞||∇v||2 + 2ν−1|∇u0|2∞||v||2 + ν−1||F ||2.

Substituting (3.33) and (3.27), and denoting supt∈[0,t0] || · ||2 by || · ||∞, we continue:

1
2
d

dt
||∇v||2 +

ν

4
||Av||2 ≤ εC(ν−3||v(0)||2 + ν−3δ−2||F ||2∞ + ν−1)||∇v||4

+ Cν−3||∇v||2 + ν−1||F ||2∞. (3.40)

It follows from (3.31) and (3.27) that:

1
2
d

dt
||v||2 + (2π)2δ||∇v||2 ≤ ||F || · ||v||, (3.41)

or
1
2
d

dt
||v||2 + 2π2δ||∇v||2 +

1
2
δ||v||2 ≤ 1

2δ
||F ||2 +

δ

2
||v||2,

or

1
2
d

dt
||v||2 + 2π2δ||∇v||2 ≤ 1

2δ
||F ||2. (3.42)

Integrating (3.42) and using (3.33) to get:

2π2δ

∫ t+τ

t

||∇v||2(s)ds ≤ ||v(0)||2 +
1

δ2 ||F ||2∞ +
1
2δ

||F ||2∞τ,

assumingt0 ≥ t + τ . Thus,∫ t+τ

t

||∇v||2(s)ds ≤ Cδ−1(||v(0)||2 + δ−1||F ||2∞(τ + δ−1)), (3.43)

with constantC independent ofν andδ.
It follows from (3.43) that the Lebesque measure

|{s ∈ [t, t + τ ] : ||∇v|| ≥ ρ}| ≤ Cρ−2δ−1(||v(0)||2 + δ−1||F ||2∞(τ + δ−1)).

Chooseρ =
√

2√
τ

√
Cδ−1(δ||v(0)||2 + ||F ||∞(δ−1 + τ ))1/2, then

|{s ∈ [t, t + τ ] : ||∇v|| ≥ ρ}| ≤ τ

2
, (3.44)
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and thus∃ t1 ∈ [t, t + τ ] such that

||∇v||2(t1) ≤ Cτ−1δ−2(δ||v(0)||2 + ||F ||2∞(δ−1 + τ )). (3.45)

Multiplying (3.40) by:

I ≡ exp

{
−
∫ t

t1

εC(ν−3||v(0)||2 + ν−3δ−2||F ||2∞ + ν−1)||∇v||2ds− (t− t1)Cν−3

}
,

where the constantC is twice that in (3.40), to obtain:

d

dt
[||∇v||2I] ≤ 2

ν
||F ||2∞I. (3.46)

Integrating (3.46) on [t1, t] to get:

||∇v||2(t) ≤ ||∇v(t1)||2I−1 +
2
ν

||F ||2∞(t− t1)I−1. (3.47)

Let t1 ∈ [t − τ, t], t ≥ τ ≥ 0, such that (3.45) holds. In view of (3.43) and (3.45), we
have from (3.47):

||∇v||2(t) ≤ [Cτ−1δ−2(δ||v(0)||2 + ||F ||2∞(δ−1 + τ )) + 2ν−1||F ||2∞τ ]×

exp{Cε(ν−3||v(0)||2 + ν−3δ−2||F ||2∞ + ν−1)×

δ−1(||v(0)||2 + δ−1||F ||2∞(τ + δ−1)) +Cτν−3}. (3.48)

Fix τ = δ−2, then fort ≥ τ , we have:

||∇v||2(t) ≤ C(δ||v(0)||2 + ||F ||2∞(δ−1 + δ−2) + ν−1δ−2||F ||2∞)×

exp{Cεδ−1(ν−3||v(0)||2 + ν−3δ−2||F ||2∞ + ν−1)×

(||v(0)||2 + δ−2(1 + δ−1)||F ||2∞) +Cδ−2ν−3}, (3.49)

while for t ∈ [0, τ ], we sett1 = 0 in (3.47) to have:

||∇v||2(t) ≤ (||∇v(0)||2 + 2δ−2ν−1||F ||2∞)×

exp{Cεδ−1(ν−3||v(0)||2 + ν−3δ−2||F ||2∞ + ν−1)×

(||v(0)||2 + δ−1||F ||2∞(δ−1 + δ−2)) +Cδ−2ν−3}. (3.50)

Combining (3.49) and (3.50), we obtain the estimates on||∇v||(t) for t ∈ [0, t0], uni-
formly in t0 > 0:

||∇v||2(t) ≤ B1 ·B2, (3.51)

where
B1 = C(||v(0)||2δ + ||F ||2∞(δ−1 + δ−2 + ν−1δ−2) + ||∇v(0)||2),

andB2 is:
exp{Cεδ−1(ν−3||v(0)||2 + ν−3δ−2||F ||2∞ + ν−1)×
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(||v(0)||2 + δ−1(δ−1 + δ−2)||F ||2∞) +Cδ−2ν−3},
whereC is a positive constant independent ofν, δ, andt0.

Notice that estimates (3.33) and (3.51) hold for the approximate Galerkin solutions
independent of thex2 diameters of the approximate domains. Using (3.33), (3.51) and
(3.35) in (3.40), it is straightforward to obtain the bounds:∫ t

0
||D2v||2(s)ds ≤ L(t),

∫ t

0
||vt||2(s)ds ≤ L(t), (3.52)

for some continuous functionL of t, independent of the approximate solutions and
domains.

Passing ton → ∞ in (3.29) in a standard way(see [22]), we see that the limiting vec-
tor functionv is a unique strong solution to the system (3.24) and (3.25). Summarizing,
we have:

Proposition 3.1. Letv(0) ∈ J0(�), andF ∈ L∞([0, t0]; L2(�)), for somet0 > 0. Then
if ν > 2π, there is a unique solutionv(t, x), p(t, x) to system (3.24) and (3.25) such
that:

v ∈ C((0, t0); J0(�)); vt, D
2v ∈ L2((0, t0);L2(�)). (3.53)

Moreover,v attains initial data continuously inL2, andv satisfies the estimates (3.33),
(3.51), (3.52). Ift0 = +∞, then (3.33) and (3.51) hold uniformly int ≥ 0.

3.3. Estimates on a Reaction-Diffusion Equation.We consider the reaction-diffusion
equation (3.14) forT1 with velocityu1 a given function as described in Proposition 3.1.
As usual, we introduce the moving frame coordinateξ = x2 − c(t, ε), x1 = x1, t = t.
Equation (3.14) becomes:

T1,t − c0T1,ξ − 1T1 − g′(T0(x1, ξ))T1 + u0 · ∇T1

= εc′1(t, ε)T1,ξ − u1 · ∇T0 + c′1T0,s − εu1 · ∇T1 + εN (T0, T1, ε) ≡ F1. (3.54)

Define the operatorL:

(−L)T1 = 1T1 + c0T1,ξ − u0 · ∇T1 + g′(T0(x1, ξ))T1, (3.55)

with domain of definitionD(L) = {T1 ∈ H2(�) : T1,x1|∂� = 0}. The operatorL
has a simple eigenvalue corresponding to the positive eigenfunctionT0,s, thanks to the
monotonicity of the wave profileT0,s > 0. For the bistable nonlinearityg, the arguments
in [3] and [48] apply without using weighted spaces, and we have the following:

Lemma 3.1. The operatorL is sectorial [21] onL2(�) with zero Neumann boundary
condition; the spectrum ofL stays inside a sector strictly in the right half plane except
for a simple eigenvalue at zero corresponding to the eigenfunctionT0,s(x1, ξ). Operator
L is invertible on the subspace:

W ≡ {u ∈ L2(�) : (u, T ?
0,s) = 0, ux1|∂� = 0}, (3.56)

whereT ?
0,s is the positive nullfunction of the adjoint operatorL? in L2(�) such that

(T0,s, T
?
0,s) = 1. Moreover, the estimate:

||L−1u||H2 ≤ Cγ ||u||, ∀ u ∈ W, (3.57)

for constantCγ depending only onγ, the distance from the sector to the left half plane.
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Lemma 3.1 implies thatL is a generator of an analytical semigroup onW , and the usual
fractional powers of (−L) are well-defined, [21]. Equation (3.54) can be expressed as:

T1,t = −LT1 + F1(T1, c1, ε), (3.58)

and will be solved forT1 ∈ W for all t ≥ 0. For any given initial dataT1(0) ∈ W , let
us write (3.58) into the related integral equation:

T1(t) = e−LtT1(0) +
∫ t

0
e−(t−s)LF1(T1, c1, ε)(s)ds, (3.59)

where we impose the condition:

(F1, T
?
0,s) = 0, ∀ s ≥ 0, (3.60)

so that formula (3.59) provides bounded solutions for all time. In view of (3.54), we
have:

c′1 = (εu1 · ∇T1 + u1 · ∇T0 − εc′1T1,ξ − εN (T0, T1, ε), T
?
0,s). (3.61)

It follows from (3.58)-(3.61) thatT1 ∈ W for all t ≥ 0. The front equation (3.61) forc1
is a nonlocal equation and the termsu1 · ∇T1 andu1 · ∇T0 reflect the strain effects of
the fluid flows. In the passive case,ε = 0,u1 as a perturbation of the steady stateu0 will
decay to zero whent → ∞ if ν > 2π (see (3.32) withF = 0). Hence (3.61) implies
that the front speed approaches an asymptotic constant value.

Now let us make a-priori estimates on solutions of the integral equation (3.59) in the
spaceL∞((0, t0);W ∩H1(�)) along with (3.61). Define:

mα(t0) = sup
t∈(0,t0)

||LαT1(t)||, (3.62)

for all T1 ∈ W , α ∈ [0, 1
2], t0 > 0. First we note that

sup
t∈[0,t0]

||e−LtLαT1(0)|| ≤ ||LαT1(0)|| ≤ C||T1(0)||H1,

where we use the fact that ifT1 ∈ W , LαT1 ∈ W . By (3.60) and (3.61), we rewriteF1
as:

F1 = P2(εc′1T1,ξ) + P2(−u1 · ∇T0) + P2(−εu1 · ∇T1) + εP2N, (3.63)

whereP2 ≡ Id − P1, andP1u ≡ (u, T ?
0,s)T0,s, i.e.P2 is the projection fromL2(�) to

W .
ApplyingLα, α ∈ [0, 1

2], to (3.59), we have:

||LαT1||2 ≤ ||Lαe−LtT1(0)||2 +
∫ t

0
||Lα+δ′

e−L(t−s)L−δ′
F1||2(s)ds,

≤ C||T1(0)||H1 +
∫ t

0
(t− s)−(α+δ′

)e−γ(t−s)||L−δ′
F1||(s)ds, (3.64)

whereδ′ ∈ (0, 1
2), F1 = F1(T1, c

′
1, ε). By (3.63), we have:
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||L−δ′
F1|| ≤ ε|c′1|Cγ,δ′ ||T1,ξ|| + ||∇T0||∞Cγ,δ′ ||u1||

+ ε||L−δ′
P2(u1 · ∇T1)|| + εCγ,δ′ ||N ||, (3.65)

for some positive constantCγ,δ′ depending only onγ andδ′.
We estimate:

||L−δ′
P2(u1 · ∇T1)||

= ||L−δ′
(L + γ)δ

′
(L + γ)−δ

′
P2(u1 · ∇T1)||

≤ ||L−δ′
(L + γ)δ

′
||(L2(W )→L2(W ))||(L + γ)−δ

′
P2(u1 · ∇T1)||

≤ Cγ,δ′ ||(L + γ)−δ
′
P2(u1 · ∇T1)||

≤ Cγ,δ′ ||(L + δ′)−δ
′
(−1 + γ)δ

′
||(L2(�)→L2(�))||(−1 + γ)−δ

′
P2(u1 · ∇T1)||

≤ Cγ,δ′ ||(−1 + γ)−δ
′
P2(u1 · ∇T1)||

≤ Cγ,δ′ ||(−1 + γ)−δ
′
u1 · ∇T1 − (u1 · ∇T1, T

?
0,s)(−1 + γ)−δ

′
T0,s||

≤ Cγ,δ′ ||(−1 + γ)−δ
′
(u1 · ∇T1)|| +Cγ,δ′ ||u1|| · ||∇T1||. (3.66)

By Lemma 2.1 of Kozono and Ogawa, [27], forδ′ ∈ (0, 1
2), we have:

||(−1 + γ)−δ
′
(u1 · ∇T1)|| ≤ Cδ′ ||(−1)

1
2 −δ′

u1|| · ||(−1)
1
2T1||,

≤ Cδ′ ||∇T1||(||(−1)
1
2u1|| + ||u1||),

≤ Cδ′ ||∇T1||(||∇u1|| + ||u1||), (3.67)

for some constantCδ′ depending onδ′. It follows from (3.66) and (3.67) that:

||L−δ′
P2(u1 · ∇T1)|| ≤ Cγ,δ′ ||u1||H1 · ||∇T1||. (3.68)

Noticing that|N | ≤ C((T1)2 + (T1)3), forC independent ofT1. Then the Gagliardo–
Nirenberg inequality shows that:

||T 2
1 ||2 = ||T1||24 ≤ C||T1||2||∇T1||2,

||T 3
1 || = ||T1||36 ≤ C||T1||2||∇T1||22. (3.69)

Inequality (3.65) implies that

||L−δ′
F1|| ≤ ε|c′1|Cγ,δ′ ||T1,ξ|| + ||∇T0||∞Cγ,δ′ ||u1||

+εCγ,δ′ ||u1||H1 · ||∇T1|| + εCγ,δ′ (||T1|| · ||∇T1|| + ||∇T1||2||T1||). (3.70)

Now, chooseα = 0, 1
2, δ′ ∈ (0, 1

2), we have from (3.64), (3.65) and (3.70) that:

m 1
2

+m0 ≤ C||T1(0)||H1 +Cγ,δ′ [ε|c′1|∞m 1
2

+ ||∇T0||∞||u1||∞ + ε(||u1||∞m 1
2
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+||∇u1||∞m 1
2

+m 1
2
m0 +m2

1
2
m0)] sup

t∈[0,t0]

∫ t

0
((t− s)−δ

′
+ (t− s)−δ

′− 1
2 )e−γ(t−s)ds,

(3.71)

where || · ||∞ = supt∈[0,t0] || · ||, |c′|∞ = supt∈[0,t0] |c′|; constantsC andCγ,δ′ are
independent oft0.

LettingM = m 1
2

+m0, and lumping all the constants depending onγ, δ′, we get:

M ≤ C||T1(0)||H1 + εC(|c′1|M + (||u1||∞ + ||∇u1||∞)M +M2 +M3) +C||u1||∞,
(3.72)

whereC depends onγ, δ′ only. We get from (3.61) that

|c′1| ≤ ε||T ?
0,s||∞||u1|| · ||∇T1|| +C||u1|| + ε|c′1| · ||T1,ξ||

+ εC(||T1||2 + ||T1|| · ||T1||24),

or

|c′1|∞ ≤ εC||u1||∞M +C||u1|| + ε|c′1|∞M + εC(M2 +M3). (3.73)

It is straightforward to verify that for small timet0, the mapping defined by the right
hand side of (3.59) onT1 is a contraction inL∞((0, t0);W ∩H1), which yields a unique
mild solution. Parabolic regularity [46], then shows that it is a strong solution. We will
consider long time solutions to (3.59) along with the Navier–Stokes equation in the next
subsection. We summarise the above into:

Proposition 3.2. The integral equation (3.59) along with (3.61) has a strong solution
for t ∈ [0, t0], if t0 is small enough. Moreover, the estimates (3.72) and (3.73) hold for
the solution.

3.4. Uniformly Bounded Solutions of the System.We turn to the solutions of system
(3.12)-(3.15). Equation (3.12) can be written as:

u1,t + u0·∇u1 + u1·∇u0 + εu1·∇u1 = −∇p̃1 + ν1u1 + (T0− < T0 >)x̂2 + εT1x̂2,
(3.74)

where

< T0 >=< T0 > (x2) =
1

2π

∫ 2π

0
T0(x1, x2)dx1,

p̃1 = p1 −
∫ x2

0
< T0 > dx2.

It is obvious thatT0− < T0 > ∈ L∞((0,∞), L2(�)). In the moving frame coordinate,
(x1, ξ, t), system (3.12)-(3.14) becomes:

u1,t − c′u1,ξ + u0 · ∇u1 + u1 · ∇u0 + εu1 · ∇u1 =

− ∇p̃1 + ν1u1 + (T0− < T0 >)x̂2 + εT1x̂2, (3.75)

∇ · u1 = 0, (3.76)

T1,t − c0T1,ξ − 1T1 − g′(T0(ξ, x1))T1 + u0 · ∇T1 = F1. (3.77)
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Notice that the estimates (3.33) and (3.51) in Subsect. 3.2 remain the same in the moving
frame coordinate for (3.75). Let us make an a-priori estimate of solutions to system
(3.75)-(3.77) with initial datau1(0) ∈ J0(�), T1(0) ∈ W ∩H1(�). Define:

|u|∞ ≡ sup
0<t<t0

(||u||2 + ||∇u||2),

for anyt0 > 0, and|c′|∞ = sup0<t<t0
|c′|.

Let us consider (3.75)-(3.77) in the space

V = {(u, T, c) ∈ L∞((0, t0), J0 ×H1) × C1[0, t0] : |u|∞ + |T |∞ + |c′|∞ < ∞}.

The constantC below depends only onν, γ, andδ′. By Propositions 3.1 and 3.2, we
have:

|u1|2∞ ≤ ||u1(0)||2 +C(|T0− < T0 > |∞ + ε|T1|∞)2

+C[||u1(0)||2 + (|T0− < T0 > |∞ + ε|T1|∞)2 + ||∇u1(0)||2]×

exp{εC(||u1(0)||2 + (|T0− < T0 > |∞ + ε|T1|∞)2 + 1)2}, (3.78)

and

|T1|∞ ≤ C|T1(0)|H1 + εC(|c′1|∞|T1|∞
+|u1|∞|T1|∞ + |T1|2∞ + |T1|3∞) +C|u1|∞, (3.79)

and

|c′1|∞ ≤ εC|u1|∞|T1|∞ +C|u1|∞ + ε|c′1|∞|T1|∞ + εC(|T1|2∞ + |T1|3∞). (3.80)

Taking the square root of (3.78) yields:

|u1|∞ ≤ ||u1(0)||H1 +C|T0− < T0 > |∞ + εC|T1|∞+

C(||u1(0)||H1 + |T0− < T0 > |∞ + ε|T1|∞)×

exp{εC(1 + ||u1(0)||2 + (|T0− < T0 > |∞ + ε|T1|∞)2)2}. (3.81)

SetK ≡ |u1|∞ + |T1|∞. To get rid of the last term on the right hand side of (3.79),
let us multiply (3.81) byC + 1 and add the resulting inequality to (3.79) to find:

K ≤ C||u1(0)||H1 +C|T0− < T0 > |∞ + εCK

+C(||u1(0)||H1 + |T0− < T0 > |∞ + εK)×
exp{εC(1 + ||u1(0)||2 + (|T0− < T0 > |∞ + εK)2)2}

+C||T1(0)||H1 + εC(K2 +K3 + |c′1|∞K), (3.82)

where

|c′1|∞ ≤ εCK2 +CK + ε|c′1|∞K + εC(K2 +K3). (3.83)

The above estimates onK remain the same for small time, and we can use the contraction
mapping principle to construct local in time mild solutionsu1, T1, c1 in the spaceV
for some pressure ˜p1. Standard regularity results for Navier–Stokes equations ([22])
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and parabolic equations ([46]) then imply that the mild solutions are actually strong
solutions. In particular, if in the definition ofK or norm| · |∞, we replacet0 by t andt
by τ , thenK as a function oft is continuous fort ∈ [0, t0).

Proof of Theorem 3.1.Assume thatK = K(t) ≤ A0, for t ∈ [0, t0), wheret0 is a positive
time ensured by local existence, andA0 is a constant to be properly chosen below (3.90).
In particular,A0 is independent ofε, A0 > 0, εA0 <

1
2. We will show by a continuity

argument thatK(t) ≤ A0 for all t ≥ 0 if ε is small enough.
We have from such a choice ofA0 andε that:

|c′1|∞ ≤ C[εK2 +K + εK3], (3.84)

which implies via (3.82) that

K ≤ C||u1(0)||H1 +C|T0− < T0 > |∞ +CεK +C||T1(0)||H1

+C(||u1(0)||H1 + |T0− < T0 > |∞ + εK) exp{εC(1 + ||u1(0)||2

+ |T0− < T0 > |2∞ + ε2K2)2} + εC(K2 +K4)

or

K ≤ C||u1(0)||H1 +C|T0− < T0 > |∞ +C||T1(0)||H1 +
1
2
Cε +

Cε

2
K2

+C(||u1(0)||H1 + |T0− < T0 > |∞ + εK) exp{εC(1 + ||u1(0)||2

+|T0− < T0 > |2∞ + ε2K2)2} + εC(K2 +K4), (3.85)

K ≤ C||u1(0)||H1 +C|T0− < T0 > |∞ +C||T1(0)||H1 +
1
2
Cε +C(||u1(0)||H1+

|T0− < T0 > |∞ + εA0) exp{εC(1 + ||u1(0)||2 + |T0− < T0 > |2∞ + ε2A2
0)2}

+εC(1 +A2
0)K2

≡ K0 + εC(1 +A2
0)K2. (3.86)

SinceK is continuous int, it follows from (3.86) that if

4K0εC(1 +A2
0) < 1, (3.87)

then

K ≤ 2K0, for t ∈ (0, t0), (3.88)

if K(0) ≤ 2K0, which is true by our choice ofK0 with C ≥ 1. To be consistent with
our assumption ofA0, we have also:

2K0 ≤ A0. (3.89)

Now we choose:

A0 = 4[C||u1(0)||H1 +C|T0− < T0 > |∞ +C||T1(0)||H1

+C(||u0||H1 + |T0− < T0 > |∞)]. (3.90)
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Then there existsε0, depending only onC = C(ν, γ, δ′), ||u1(0)||H1, T0, ||T1(0)||H1,
such that ifε ∈ (0, ε0):

K0 ≤ A0

2
,

4K0εC(1 +A2
0) ≤ 2A0εC(1 +A2

0) < 1,

with C ≥ 1, which implies that:

εA0 <
1
2
.

Inequality (3.84) implies that

|c′1|∞ ≤ CA0 + ε0CA
2
0 + ε0A

3
0. (3.91)

Since the above bounds onK andc′ are independent oft0, they are valid for allt ≥ 0
by continuity . The rest of the theorem follows from standard regularity results for
Navier–Stokes equations [22] and semilinear parabolic equations [46]. We finish the
proof. �

Appendix

We would like to choose theαk so thatF (ξ, η) is a positive function satisfying (2.13).
Condition (2.13b) will be satisfied provided

(2n− k)αk > (k + 1)αk+1, ∀ k = 0, 1, . . . , 2n− 1. (3.92)

Further let us supposeα2n−2 is large enough so that (λ = (1 + `)2/4`)

4nα2n−2α2n > λ(2n− 1)α2
2n−1. (3.93)

Now consider condition (2.13a):

2n(2n− 1)α0ξ
2n−2

(
2n−2∑
k=0

(k + 1)(k + 2)αk+2ξ
2n−2−kηk

)
+(

2n−2∑
k=1

(2n− k)(2n− k − 1)αkξ
2n−2−kηk

)(
2n−2∑
k=0

(k + 1)(k + 2)αk+2ξ
2n−2−kηk

)

> λ(2n− 1)

(
2n−2∑
k=0

(2n− k − 1)(k + 1)αk+1ξ
2n−2−kηk

)2

.

We can write this in the shorthand form

α0B1(α2, . . . , α2n, 2n(2n− 1)α2nr
2n−2)

+B2(α1, . . . , α2n, 4n(2n− 1)α2n−2α2nr
4n−4)

> λ(2n− 1)B3(α1, . . . , α2n−1, (2n− 1)2α2
2n−1r

4n−4),

where each of theBi (i = 1, 2, 3) are the obvious polynomials where their last argument
indicates the highest order term inr ≡ η/ξ. For the moment let us assumeB1 ≥ 0
for all ξ ∈ [−1, 1], η ≥ −1. We show this is true below. Then, there existsR ∈ R+
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independent ofα0, such that for all|r| > R,B2 > λ(2n−1)B3 (using condition (3.93)),
i.e. such that (2.13a) is satisfied. Now suppose|r| ≤ R, then we can clearly chooseα0
large enough to guarantee condition (2.13a).

Let k′ denote all odd integers 0< k′ < 2n. Then

F (ξ, η) ≥
[
α0 −

∑
k′

(
1 − k′

2n

)
αk′

ε

]
ξ2n +

[
α2n −

∑
k′

(
k′

2n

)
ε

2n
k′ −1αk′

]
η2n

+
∑
k′
αk′

[(
1 − k′

2n

)
ξ2n

ε
+
k′

2n
ε

2n
k′ −1η2n

]
+
∑
k′
αk′ξ2n−k′

ηk′

≥
[
α0 −

∑
k′

(
1 − k′

2n

)
αk′

ε

]
ξ2n +

[
α2n −

∑
k′

k′

2n
ε

2n
k′ −1αk′

]
η2n

= c1ξ
2n + c2η

2n, (3.94)

where we chooseε small enough such thatc2 > 0 and then chooseα0 large enough so
thatc1 > 0. Now recall that we need to demonstrate that for allξ ∈ [−1, 1], η ≥ −1,
B1 =

∑2n−2
k=0 (k+1)(k+2)αk+2ξ

2n−2−kηk ≥ 0. This is clear from an identical argument to
that in (3.94), choosingα2 large enough. We can easily choose theαk (k = 0, 1, . . . , 2n)
such that the conditions (3.92), (3.93) andα0, α2 large enough are met.
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