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Abstract. We are attempting to show that Schubert cycles, and in particular,

special Schubert cycles underpin linear spectral parameter space. First we
review Riccati flows on the Grassmannian and introduce a new shifted Riccati
flow using Schur complements. Second we consider the tautological spectral
sphere bundle and explain how it can be punctured by Schubert cycles. We

then suggest some new numerical approaches to spectral location using this
idea. Thirdly we consider a practical example that was driven by, but at the
same time has also helped conceive, some of the theory/ideas above.

1. Riccati flows

1.1. Projection of linear Stiefel flows. Suppose we are given a linear non-
autonomous vector field V (x, Y ) = A(x) Y for (x, Y ) ∈ R × V(n, k), where V(n, k)
is the Stiefel manifold of k-frames in C

n centred at the origin. Projecting this flow
onto a chosen coordinate patch Uii ⊂ Gr(n, k) of the Grassmannian identified by ii,
we obtain the following Riccati flow in the coordinate chart variables ŷ ∈ C

(n−k)×k:

ŷ′ = c(x) + d(x)ŷ − ŷa(x) − ŷb(x)ŷ,

where a, b, c and d denote the ii × ii, ii × ii◦, ii◦ × ii and ii◦ × ii◦ submatrices of A,
respectively. Here we can think of decomposing Y = yii◦u, where u ∈ GL(k) is a
given rank k submatrix of Y ∈ V(n, k) ∼= C

n×k, and yii◦ is a matrix whose iith rows
are the identity matrix and whose remaining rows can be identified with the local
coordinate chart variables.

1.2. Spectral matching. Consider the linear spectral problem on R:

Y ′ = A(x; λ) Y

We assume there exists a subdomain Ω ⊆ C containing the right-half complex plane,
such that for λ ∈ Ω there exists exponential dichotomies on R

− and R
+ with the

same Morse index k in each case. Let Y −(x; λ) ∈ V(n, k) denote the matrix whose
columns are solutions to the spectral problem and which span the unstable manifold
section at x ∈ [−∞, +∞). Let Y +(x; λ) ∈ V(n, n − k) denote the matrix whose
columns are the solutions which span the stable manifold section at x ∈ (−∞, +∞].

The values of spectral parameter λ ∈ Ω for which the columns of Y − and
columns of Y + are linearly dependent on R are isolated pure-point eigenvalues.
The Evans function D(λ) is the measure of the degree linear dependence between
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2 V. LEDOUX AND S.J.A. MALHAM

the two basis sets Y − and Y +, i.e. of the degree of transversal intersection between
the unstable and stable manifolds (see Alexander, Gardner and Jones [1]):

D(λ) := e−
R

x

0
TrA(ξ;λ) dξ det

(

Y −(x; λ) Y +(x; λ)
)

.

It is analytic in Ω. In practice we drop the non-zero, scalar exponential prefactor
and evaluate the Evans function at a matching point x∗.

1.3. Modified Riccati flows. Practical integration along the Grassmannian
means that the evaluation point x∗ can be any real value; we might as well take
x∗ = +∞. With this in mind we shall define a matching function as follows. Let
us fix a flag, for the moment let us use the opposite flag E

′
•, and study the linear

Stiefel flow projected on the Grassmannian; and in particular how it might percolate
through the disjoint cell decomposition of Gr(n, k). The top cell in this instance is

(

Ik

y

)

⇔
(

Ik ỹ
)

.

To match with the more usual row spanning notation for subspace representation,
we will take the top cell to have the representation shown on the right. Note that
we use ã to denote the transpose of a. We know that y satisfies the Riccati equation
y′ = c + dy − ya − yby; for the top cell with respect to E

′
• we have ii = {1, . . . , k}.

Hence ỹ satisfies

ỹ′ = c̃ + ỹd̃ − ãỹ − ỹb̃ỹ.

For the integration from left to right we use the opposite flag E
′
•. For the far-field

data at x = +∞, we use the standard flag E•. If B(λ) := ỹ+(+∞; λ), we define
the matching matrix to be

(

Ik ỹ(x; λ)
B(λ) In−k

)

=

(

Ik − ỹ(x; λ)B(λ) ỹ(x; λ)
O In−k

)(

Ik O
−B(λ) In−k

)−1

.

Since the matching condition is the determinant of this matrix, we are motivated
to define

ŷ(x; λ) := ỹ(x; λ)B(λ) − Ik,

which is minus the Schur complement of In−k within the matching matrix; see
Meyer [13, p. 475]. Hence ỹ = (ŷ + Ik)B∗, where B∗ := B†(BB†)−1. The resulting
modified Riccati flow for ŷ is

ŷ′ = ĉ + d̂ŷ − ŷâ − ŷb̂ŷ.

where

ĉ = c̃B + B∗d̃B − ã − B∗b̃,

d̂ = B∗d̃B − b∗b̃,

â = ã + B∗b̃,

b̂ = B∗b̃.

Definition 1 (Matching function and condition). We define the determinantal
matching function to be det ŷ(x; λ). An isolated pure-point eigenvalue corresponds

to the condition det ŷ(+∞; λ) = 0.
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1.4. Spectral shooting problem. In the context of the above, the goal in spec-

tral shooting is as follows. Starting with the data ŷ(−∞; λ) := ỹ(−∞; λ)B(λ)− Ik,
we integrate forward with respect to x to compute ŷ(+∞; λ). Where the deter-
minant of this square matrix is zero in Ω, corresponds to an isolated pure-point
eigenvalue. Several issues immediately raise their head as follows:

(1) Infinite integration range: The integration range is infinite since x ∈ R.
We resolve this immediately using the ‘tanh’ transformation trick shown
in Alexander, Gardner and Jones [1]. So from here-on, keeping this trans-
formation in mind, and with our practical hats on, we will assume that our
actual longitudinal domain is x ∈ [−L,+L] for some large value L > 0.

(2) Riccati singularities: There are likely to be singularities in the modified
Riccati flow for ŷ as we integrate from x = −L to x = +L. How can we
account for these and do they have any special significance? Most of the
rest of this manuscript is devoted to addressing this issue.

(3) Further reduction: Can we decompose the flow further? For example can
we perform QR on ŷ and follow the corresponding fibred flow?

2. Augmented unstable bundle

Let us adjust our perspective somewhat and align ourselves with the picture
in Alexander, Gardner and Jones. For the region Ω in the complex plane to the
right of the essential spectrum, a more general goal would be: for a given simple
closed contour K ∈ Ω, determine the number of zeros of the Evans function D(λ)
inside the coutour (assume that no zeros lie on the contour). Hence our domain is
(x,λ) ∈ [−L, L] × K; and integrating we can determine Y −(x; λ) throughout the
domain. Actually we would like to think of this construction as a flow on a complex
fibre bundle over the base space S

2, the fibres of the bundle being Gr(n, k). Indeed,
if K◦ denotes the subregion of Ω strictly inside K, the base space is

B =
(

{−L}× K◦
)

∪
(

[−L, L] × K
)

∪
(

{+L}× K◦
) ∼= S

2.

Associated with every point (x,λ) ∈ B we have a solution in Gr(n, k) to the linear
spectral problem. Indeed this generalized Gauss map G : B → Gr(n, k) is given by

(x,λ) +→











Y −(−L; λ), if x = −L, λ ∈ K◦,

Y −(x; λ), if x ∈ (−L, L), λ ∈ K,

Y +(+L; λ), if x = +L, λ ∈ K◦.

We have been deliberately rapid and loose with this construction and some care
in the interpretation is required; see Alexander, Gardner and Jones [1] for more
details. As you expect, Y −(x; λ) represents the k-dimensional subspace section at
x ∈ [−L, L) associated with the unstable subspace of x = −L, for each λ. On the
other hand, Y +(+L; λ) represents the k-dimensional subspace section at x = +L
associated with the unstable subspace of x = +L.

Hence we have a fibre bundle E → B whose fibres are Gr(n, k). Details of how
to pull this back to the universal subbundle can be found on p. 178 in Alexander,
Gardner and Jones. Details of how to determine the first Chern number of this
bundle over B ∼= S

2, using the gluing or clutching map and the determinantal
bundle can be found on p. 189. We want to come to the Chern characteristic
classes from another angle; we begin to pursue this next.


















































































4 V. LEDOUX AND S.J.A. MALHAM

3. Matching/intersecting

Consider our spectral problem Y ′ = A(x; λ) Y on [−L,+L] × Ω. Pick a sim-
ple closed curve K ⊆ Ω. Our task is to start with the initial data ŷ(−L; λ) =
ỹ(−L; λ)B(λ) − Ik. Then we integrate the modified Riccati equation forward with
respect to x for each λ ∈ K. We thus compute ŷ(x; λ) for all (x,λ) ∈ (−L, L)×K.
Then if there are no singularities in ŷ(x; λ) for any (x,λ) ∈ (−L, L) × K, we com-
pute the image of det ŷ(+L; λ) for each λ ∈ K. The number of times this image
winds round the origin counts the number of zeros of det ŷ(+L; λ) inside K, and
thus the number of isolated pure-point eigenvalues inside K.

However in practice, in the integration process of the Riccati equation, a sin-
gularity may have crept inside K. This would of course affect the argument prin-
ciple for the image of det ŷ(+L; λ). We can account for this though, as follows.
With a slight abuse of notation let det ŷ(x; K) denote the section of the image of
det ŷ(+L; λ) for each x ∈ [−L,+L], as λ traces through K. If we compute and fol-
low det ŷ(x; K) as x varies from −L to +L we can in principle detect if any isolated
zeros or poles enter or leave [−L,+L]×K. For the sake of argument, suppose that
det ŷ(−L; K) does not contain any zeros or poles. If we thus count the isolated
zeros and poles entering and leaving (−L,+L] × K, we can work out the number
of eigenvalues inside [−L,+L] × K.

We come to the question of what a zero or singularity of det ŷ(x; λ) is, or maybe
more precisely, how are they manifested through ŷ? Recall ŷ := ỹB(λ) − Ik and

det ŷ(x; λ) = − det

(

−ŷ(x; λ) ỹ(x; λ)
O In−k

)

= det

(

Ik ỹ(x; λ)
B(λ) In−k

)

.

Hence if one or more components of ŷ become singular then so do the corresponding
components of ỹ. Also if det ŷ becomes zero then the rows in the matching matrix
(on the right) become linearly dependent. Let us examine zeros of det ŷ first. We
now have two natural parallel perspectives for finding eigenvalues, we can look for:

(1) appropriate intersections of
(

Ik ỹ(x; λ)
)

with
(

B(λ) In−k

)

; or
(2) vanishing of the determinant det ŷ.

Note that
(

Ik ỹ(x; λ)
)

lies in the top cell C{1,...,k}(E
′
•) and corresponds to the vari-

ety X0(E
′
•). Also

(

B(λ) In−k

)

lies in the top cell C{1,...,k}(E•) with corresponding
variety X0(E•). They both belong to the Schubert cycle σ0. To compute the prod-
uct σ0 · σ0 we need to compute the intersection between the varieties X0(E

′
•) and

X0(E•). From Pieri’s formula to compute this intersection, we need to fill the k by
(n − k) rectangle with the two partitions from each variety. In this case we get a
completely empty k by (n − k) rectangle, and the intersection is zero. Thus the
only mechanism for there to be a non-zero intersection is if either

(

Ik ỹ(x; λ)
)

or
(

B(λ) In−k

)

change into appropriate cycles—or at least enter appropriate cycles
as x becomes large.

Some further remarks are, the:

(1) larger n × n determinants above are independent of the flags chosen.
(2) smaller k × k determinant is independent of the flags chosen.
(3) condition that det ŷ vanish is equivalent to demanding f34 = 0; and this

corresponds to the variety and thus cycle of co-dimension one, σ0,1.
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4. Schubert cycles or “states”

To motivate the use of Schubert cycles here we will use the special case of the
Grassmannian Gr(4, 2). Most of what we say generalizes to Gr(n, k) for any finite
pair k ! n. From the last section, we see that we are interested in mechanisms for
cycle or state changes. Indeed if we are integrating ŷ(x; λ) or equivalently ỹ(x; λ)
there are two mechanisms that can instigate a cycle/state change:

(1) Singular components: If one or more components of ŷ(x; λ) or ỹ(x; λ)
become singular, then

(

Ik ỹ(x; λ)
)

changes cell, variety and cycle.
(2) Vanishing components: If one or more components of ŷ(x; λ) or ỹ(x; λ)

become zero, then
(

Ik ỹ(x; λ)
)

may change cell, variety and cycle.

4.1. Singular components. Let first consider an example in detail, before we
enumerate all the possibilities for Gr(4, 2). Suppose a 2-plane Y is in the top cell
C{1,2}(E

′
•) in Gr(4, 2) and thus given by

(

1 0 y11 y12

0 1 y21 y22

)

.

Let us suppose as we are integrating the Riccati equation governing y, and that one
component appears to becoming large. Suppose that for x = x∗− ε with 0 < ε , 1
we appear to have the scaling y11 ∼ z11/ε as ε → 0. Here we suppose z11, y12, y21

and y22 are all strictly of order unity as ε → 0; see Hinch [9, p. 6]. Then a rank 2
transformation of the 2-plane Y to itself given by diag{ε, 1}, generates

(

ε 0 z11 εy12

0 1 y21 y22

)

→
(

0 0 z11 0
0 1 y21 y22

)

,

as ε → 0. We perform three elementary row operations (eros). First we swap the
rows; which is a rank 2 transformation generated by the matrix with zeros on the
diagonal and ones off the diagonal. Second we normalize the z11 to one; this is
achieved by a rank 2 transformation generated by diag{1, z−1

11 }. This generates
(

0 1 y21 y22

0 0 1 0

)

.

Third we perform the elementary row operation consisting of the rank 2 transfor-
mation generated by the matrix

(

1 −y21

0 1

)

which generates
(

0 1 0 y22

0 0 1 0

)

,

which lies in Cjj(E
′
•) with jj = {2, 3}. However, importantly one of the cell compo-

nents is zero, and we might ask ourselves which cycle/state this solution is now in?
Let Eij ∈ GL(4) represent the elementary matrix constructed by swapping columns
i and j of the matrix I4; see Meyer [13, p. 131]. Then right multiplication of the
matrix above by E34 generates

(

0 1 y22 0
0 0 0 1

)

,

which lies in Cjj(F•) with jj = {2, 4}. Here F• is the flag obtained from E
′
• by

swapping the third and fourth ordinates. Since a Schubert cycle is invariant to


















































































6 V. LEDOUX AND S.J.A. MALHAM

GL(n) translates, the varieties indicated by the last two matrices are in the same
Schubert cycle or state, namely σµ with µ = {1, 2}.

To be completely comprehensive, let us view the same situation in terms of
Plücker coordinates. The procedure above, up to the rank 4 transformations, can
be viewed as the following sequence of operations, starting with the Plücker em-
bedding,

Y +→
{

f12(Y ), f13(Y ), f14(Y ), f23(Y ), f24(Y ), f34(Y )
}

,

and finishing with the projection onto the Plücker quadrics. We get:
(

1 0 z11/ε y12

0 1 y21 y22

)

+→
{

1, y21, y22,−z11/ε,−y12, z11y22/ε − y12y21

}

scale−→
{

ε, εy21, εy22,−z11,−εy12, z11y22 − εy12y21

}

ε→0−→
{

0, 0, 0,−z11, 0, z11y22

}

normz−→
{

0, 0, 0, 1, 0,−y22

}

proj−→
(

0 1 0 y22

0 0 1 0

)

.

The final rank 4 transformation, swapping columns 3 and 4, reveals the Schubert
cycle to be σ12.

Now let us enumerate all the possibilities for Gr(n, k). Suppose a 2-plane Y is
in the top cell C{1,2}(E

′
•) in Gr(4, 2) and thus given by

(

1 0 y11 y12

0 1 y21 y22

)

.

Again let us suppose we are integrating the Riccati equation governing y, and that
one component appears to becoming large, in particular yij ∼ zij/ε as ε → 0, with
all the other remaining components and zij all strictly of order unity as ε → 0.
Then a rank 2 transformations of the 2-plane Y to itself, followed by a GL(4)
transformation taking E

′
• to another complete flag F•, yields for k -= i and $ -= j:

(

0 1 yk$ 0
0 0 0 1

)

∈ σ1,2.

Now let us suppose any two pairs of the four possible components become singular
as ε → 0. For the cases when yi1 and yi2 become singular, after a series of rank 2
transformations followed by a GL(4) transformation we get

(

0 1 0 ∗
0 0 1 ∗

)

∈ σ1,1.

For the cases when yij and yji become singular, after a series of rank 2 transforma-
tions followed by a GL(4) transformation we get

(

0 0 1 0
0 0 0 1

)

∈ σ0,0.

This last case is also the result if any combination of three terms become singular
simultaneously. The last case we have not considered is the case when y1j and y2j

become singular simultaneously. In this case using the Plücker coordinates is more
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illuminating. Let us consider the case j = 2, the case j = 1 is analogous. Then as
above, we see that

(

1 0 y11 z12/ε
0 1 y21 z22/ε

)

+→
{

1, y21, z22/epsilon,−y11,−z12/ε, y11z22/ε − z12y21/ε
}

scale−→
{

ε, εy21, z22,−εy11,−z12, y11z22 − z12y21

}

ε→0−→
{

0, 0, z22, 0,−z12, y11z22 − z12y21

}

normz−→
{

0, 0, 1, 0,−z12/z22, y11 − z12y21/z22

}

proj−→
(

1 −z12/z22 y11 − z12y21/z22 0
0 0 0 1

)

.

We see that this belongs to the Schubert cycle σ0,2. One question we are left
with is: can the cycle/state σ0,1 be realized from the top cell through one or more
components becoming singular? Or perhaps from a lower cell? Note that in all
the cases above the GL(4) transformations involved were all products of matrices
Eij ∈ GL(4).

4.2. Vanishing components. As above, suppose that a 2-plane Y is in the top
cell C{1,2}(E

′
•) in Gr(4, 2) and given by

(

1 0 y11 y12

0 1 y21 y22

)

.

Let us suppose as we are integrating the Riccati equation governing y, and that
one or more components appear to become vanishingly small.

First let us consider the case that in Y , fleetingly, only one component, yij → 0
as ε → 0. Then by a series of rank 2 transformations and rank 4 transformations
of the form Eij ∈ GL(4) generate

(

1 ∗ 0 ∗
0 0 1 ∗

)

∈ σ0,1.

Now consider the case when yi1 and yi2 become zero, then after some transforma-
tions, we arrive at

(

1 ∗ ∗ 0
0 0 0 1

)

∈ σ0,2.

If y1j and y2j become zero, then after some transformations, we arrive at
(

0 1 0 ∗
0 0 1 ∗

)

∈ σ1,1.

If any three terms become simultaneously zero we will get
(

0 1 ∗ 0
0 0 0 1

)

∈ σ1,2.

We left the two trickiest cases to last. Consider the case y11 → 0 and y22 → 0
as ε → 0. First let us start in the top cell C1,2(E

′
•) and thus variety X0,0(E

′
•) =

{Y : f12 = 1}, and take y11 → 0 so that we get
(

1 0 0 y12

0 1 y21 y22

)

.
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A row swap, which is a rank 2 transformation, followed by two column swaps, which
are rank 4 transformations, generates

(

1 y21 0 y22

0 0 1 y12

)

.

This lies in X0,1(F•) for some flag F•. Indeed it is precisely X0,1(F•) = {Y ∈
Gr(4, 2) : f12(Y ) = 0}. We see that f34(Y ) ≡ y22. Further recall the Plücker
relation f12f34 − f13f24 + f14f23 = 0. We see that setting y22 = 0 does not change
the cell or variety. A similar argument applies to the case y12 → 0 and y21 → 0.

Hence we conclude that, as we integrate ŷ, components becoming singular
necessarily precipitate a change of cycle/state, while components becoming zero,
might do so.

5. Stability of parabolic travelling waves

5.1. Parabolic systems. We start with some general remarks about computing
the stability of travelling wave solutions to semilinear parabolic partial differential
equations. Consider the parabolic system:

∂tU = D ∂xxU − c̄ ∂xU + F (U),

where D is a diagonal matrix of positive diffusion coefficients. We suppose we are
in a frame of reference travelling to the right with speed c̄, which coincides with the
speed of the travelling waves whose stability we wish to study. Linearizing about the
travelling wave Ū(x), the stability problem expressed in the form Y ′ = A(x; λ) Y
has coefficient matrix

A(x; λ) =

(

O I
D−1

(

λI − dF (Ū)
)

−c̄ D−1

)

.

In this coefficient matrix, denote the top left, right and lower left, right blocks a,
b, c and d. We notice that a = O and b = I in particular, and that the only
non-autonomous block is c = c(x). If we write down the Riccati flow in the top cell
of the Grassmannian we would have

y′ = c(x) + dy − y2.

Since d = −c̄ D−1 is constant we can always rescale y to obtain a modified Riccati
equation similar to that above with the linear term missing. Rather nicely, the
non-autonomous part c(x) is present as a purely additive non-homogeneous term;
and therein lies all the essential structural-determining information.

5.2. Autocatalytic waves. We study travelling waves in a model of autocatal-
ysis in an infinitely extended medium

ut = δuxx + c̄ ux − uvm,

vt = vxx + c̄ vx + uvm.

Here u(x, t) is the concentration of the reactant and v(x, t) is the concentration
of the autocatalyst. We suppose (u, v) approaches the stable homogeneous steady
state (0, 1) as x → −∞, and the unstable homogeneous steady state (1, 0) as x →
+∞. The diffusion parameter δ is the ratio of the diffusivity of the reactant to that
of the autocatalyst and m is the order of the autocatalytic reaction. The speed of the
co-moving reference frame is c̄. The system is globally well-posed for smooth initial
data and any finite δ > 0 and m " 1. We know that a unique heteroclinic connection
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between the unstable and stable homogeneous steady states exists for wavespeeds
c̄ " cmin. The unique travelling wave for c̄ = cmin converges exponentially to the
homogeneous steady states and is computed by a simple shooting algorithm. The
stability of the travelling wave of velocity c̄ can be deduced from the location of the
spectrum of the eigenvalue problem Y ′ = A(x; λ)Y , where

A(x; λ) =









0 0 1 0
0 0 0 1

λ/δ + v̄m/δ mūv̄m−1/δ −c̄/δ 0
−v̄m λ − mūv̄m−1 0 −c̄









,

where ū and v̄ represent the travelling wave solution. The pulsating instability
occurs when δ < 1 is sufficiently small and m is sufficiently large. For δ fixed and
m increasing, a complex conjugate pair of eigenvalues crosses into the right-half
λ-plane signifying the onset of instability via a Hopf bifurcation.

5.3. Grassmannian. For this problem the Grassmannian is Gr(4, 2) and we
define the Evans function slightly differently than above. In the coefficient matrix
A(x; λ) above denote the top left, right and lower left, right blocks a, b, c and d.
The matching condition is

det

(

I2 I2

y(x; λ) B(λ)

)

= − det
(

ŷ
)

= 0

where ŷ := y − B(λ) and B(λ) := y+(+∞; λ). The modified Riccati flow for ŷ is

ŷ′ = ĉ + d̂ŷ − ŷâ − ŷbŷ.

where

ĉ = c + dB − Ba − BbB,

d̂ = d − Bb,

â = a + bB.

Note that B(λ) = y+(+∞; λ) is in fact stationary solution of the modified Riccati
flow for large x, hence we have that

lim
x→∞

ĉ = 0.

Further note that for the autocatalytic problem, a = 0 and d = −c̄ diag{δ−1, 1}.
Explicitly,

B(λ) = − 1
2

((

c̄ +
√

c̄2 + 4δλ
)

/δ 0

0 c̄ +
√

c̄2 + 4λ

)

.

5.4. Far-field behaviour. By the far-field behaviour, we mean the behaviour
of the solutions to the Riccati equation for ŷ above as x → +∞. Note that for large
x the Riccati system has the following form (recall ĉ(x) → 0 as x → +∞):

ŷ′ = (d − B)ŷ − ŷB − ŷ2.
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Indeed, using that d and B are diagonal matrices we get, explicitly:

y′
11 = (d1 − B1)y11 − B1y11 − y2

11 − y12y21,

y′
12 = (d1 − B1)y12 − B2y12 − (y11 + y22)y12,

y′
21 = (d2 − B2)y21 − B1y21 − (y11 + y22)y21,

y′
22 = (d2 − B2)y22 − B2y22 − y2

22 − y12y21.

We know from Schneider [17, Theorem 2’] that this autonomous Riccati system has
a unique sink as x → +∞. In other words, for each λ, there is a unique asymptotic
state ŷ+(λ) as x → +∞.

5.5. Far-field stationary solutions. If we look for stationary solutions to the
modified Riccati flow as x → +∞ we arrive at the algebraic system of equations:

(d − B)ŷ − ŷB − ŷ2 = 0,

or, componentwise,

(d1 − 2B1)y11 − y2
11 − y12y21 = 0,

y12(d1 − B1 − B2 − y11 − y22) = 0,

y21(d2 − B2 − B1 − y11 − y22) = 0,

(d2 − 2B2)y22 − y2
22 − y12y21 = 0.

Explicitly, collecting results for the diagonal matrices d and B from above,

B1 = − 1
2

(

c̄ +
√

c̄2 + 4δλ
)

/δ,

B2 = − 1
2

(

c̄ +
√

c̄2 + 4λ
)

,

d1 − B1 = 1
2

(

−c̄ +
√

c̄2 + 4δλ
)

/δ,

d2 − B2 = 1
2

(

−c̄ +
√

c̄2 + 4λ
)

.

5.6. Simulations and observations. For values of λ ∈ Ω we integrated the
Riccati system for ŷ from x = −L to x = +L. In Figures 1 and 2 we plotted the
Riccati solution components for four significant λ values (λ = 0 is naturally an
eigenvalue).
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Figure 1. Entries ŷ for (left) λ = 0 (right) λ -= eigenvalue.
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Figure 2. Entries ŷ for (left) λ close to the eigenvalue (right) singularity.

In Figure 3 we considered values of λ in the top right quadrant as shown. For
each value of λ we integrated the Riccati system for ŷ from x = −L to x = +L.
As integration proceeded, for most values of λ, the solution components of ŷ(x) all
remained bounded for all x ∈ [−L,+L]. However for some values of lambda, at
one value x% ∈ [−L,+L], some components of ŷ(x) became singular. In particular,
in the three-space [−L,+L] × K◦ where K◦ is the λ-quadrant shown, there is
a one-dimensional curve where some components of ŷ(x) become singular. This
singularity locus spirals into the eigenvalue as x → ∞. We show in Figure 3 the
projection of this singularity locus onto {+L} × K◦. If we were to perform an
analogous plot for when det ŷ is small there would be a similar one-dimensional
zero locus curve in [−L,+L] × K◦ converging towards the eigenvalues as x → ∞;
except that it does not spiral as much singularity locus.

0 0.01 0.02 0.03 0.04 0.05
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.0156 0.0158 0.016 0.0162 0.0164 0.0166 0.0168 0.017
0.09

0.0905

0.091

0.0915

0.092

0.0925

0.093

0.0935

0.094

0.0945

Figure 3. Maximum value in ŷ from dark blue (< 5) to red (sin-
gularity). The X-axis shows the real part of λ, the Y-axis is the
imaginary part. The red stars/dots appear for those λ-values where
ŷ became infinite in the matlab-code (possibly some red stars/dots
do not represent a singularity but really large values near the singu-
larity: values > 21024 give infinite values in matlab). The pink star
appears where the Evans function det ŷ is minimal (=eigenvalue),
at the tip of the red curve. There is a singular one-dimensional
curve in (−L, L) × K◦ that spirals into the eigenvalue. What is
shown is the projection onto {+L}× K◦.
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Our first important observation, yet to be proved analytically, is that for all λ
in the quadrant shown, y12(x; λ) → 0 as x → +∞. If we substitute this fact into
the system of quadratic algebraic equations for the far-field stationary solutions
above, then assuming that y11 and y22 are non-zero, we deduce that y21 = 0 and
y11 = d1−2B1 and y22 = d2−2B2. These values match with all the final values for
these components with one exception; we assume this represents the unique sink
solution for x → +∞. The exception is of course the eigenvalue. For the eigenvalue,
since det ŷ(+L; λ) = 0, we believe the far-field ansatz for the eigenfunction to be

ŷ(x; λ) ∼
(

d1 − 2B1 0
y21 0

)

,

as x → +∞. Direct substitution into the modified Riccati equation as x → +∞
yields that for some constant C̃0 -= 0,

y21 = C̃0 exp
(

(d2 − B2 − d1 + B1) x
)

.

A second set of important observations concerning the nature of the singularities
are noteworthy. Firstly, y11 and y12 are never singular. The singularites in y21 and
y22 only appear once the travelling front has been traversed; in fact well beyond
that juncture. Since for large x we observe y12 ≈ 0, we can deduce that the far-field
equation governing y22 decouples from the other components and satisfies

y′
22 = (d2 − 2B2)y22 − y2

22.

If, once past the travelling front, y22 becomes negative, then it must become
singular—this could potentially be used as an eigenvalue determining criterion.
Indeed, the singularity is a simple pole with repsect to x. Looking at the analogous
equation for y21 for large x, we soon see that that must also have a simple pole
simultaneously.

A third important observation combines the last two. Recall the discussion in
Section 4 on Schubert cycles. Note that the asymptotic ansatz for the eigensolution
means that it belongs to the Schubert cycle σ0,2. On the other hand, the singular
ansatz just described drops us from the top cycle σ0,0 into the cycle σ0,2! Hence
we conjecture the following.

Conjecture 1. The singular and zero loci are the same curve, perhaps the

same closed curve, closed off at “infinity”. If λ∗ is the eigenvalue, we do know they

meet at {+L}× {λ∗}, the question is how they closed off in the left-half λ-plane.

6. Sphere punctures

In this section we are extremely speculative. We state goals/scenarios we would
like to see.

(1) Dissecting the spectral space: Do the loci of cycle changes determine the
whole spectral space [−L, L] × Ω?

(2) Cohomology of the spectral space: Another way to view this last statement,
do the loci dissect the spectral space into closed sets, such that each point
inside is homotopic to the characteristic state identifying the closed set?

(3) Punctures of the spectral sphere: since the base space B ∼= S
2, all we need

to do, is to look for where the lower dimensional cycle loci puncture the
sphere and count the total?
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(4) Reparameterizing the spectral sphere: can we reparameterise the spectral
sphere and coordinatize it in a favourable way in order to efficiently locate
these subcycle punctures?

Let us try to address these with the following comments, suggestions and ob-
servations.

So singular and zero loci curves of det ŷ(x; λ) are the same Schu-
bert cycle; they indicate an eigenvalue if they meet at x = +∞.
For the autocatalytic problem for the physical parameters cho-
sen, there’s one loci curve in the upper λ-plane and one in the
lower. Indeed even these may be connected. In any case, let us
suppose we are considering a parabolic problem for which the
linear stability operator is sectorial. Let K◦ denote the minimal
subset of the upper-right λ-quadrant containing the upper half
of the sector where the spectrum may lie—the finite subregion
that includes intervals of the real and imaginary axes starting at
the origin.

For the three-space [−L,+L] × K◦ ∼= D
3, we know a loci

curve enters across the imaginary axis for some value x = x∗.
Let us follow that curve as x increases to +∞. It will lead us to
an eigenvalue. Denote the loci curve in D

3 by $ = $(x,λ). The
whole of the space D

3\$ is homotopic to the trivial state. We
can ignore it.

Hence here is a suggested numerical procedure. Integrate
the modified Riccati equation for values of λ on the imaginary
axis, within the sectorial interval. Scan for when a loci punc-
tures/crosses the axis. Follow the curve corresponding to $ ig-
noring everything else; for the autocatalysis problem this means
follow the curve given by the state/cycle σ0,2.

The question: is this possible? How can we follow such a
curve? Does this give a more efficient way to determine instabil-

ity?
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These notes are a summary write of work completed during the summer of 2009. For one month in that 
summer Veerle Ledoux came to visit SJAM at Heriot-Watt. Our goal had been to try to make the direct 
connection between singularities in the Riccati equation which seemed to converge to eigenvalues in the far 
field limit, that Veerle had observed numerically. We explored a lot of analytical and numerical avenues. Indeed 
Veerle completed vast amounts of numerical work and simulations that are not included above (she has them 
recorded somewhere). The analytical avenues are mainly what is recorded here. And as we were quite new to all 
the required algebraic geometry, some naivety in our analysis should be forgiven on the part of the reader. We've 
tried to indicate which parts should be ignored (because they're essentially not correct---with hindsight and 
now more understanding). However we refer to this manuscript in other papers quite a bit as it is the first place 
where we first properly wrote down the Riccati singularity and eigenvalues connection result in some form of 
manuscript (together with a lot of open ended avenues, conjectures and musings). So please treat with care, 
though at the same time enjoy some (sometimes way-out) ideas/suggestions.... 


