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Set-up

Suppose solution y of stochastic differential equation in R
N given

by

yt = y0 +

∫ t

0
V0(yτ ) dτ +

d∑

i=1

∫ t

0
Vi (yτ ) dWi (τ)

where

◮ (W1, . . .Wd) standard Wiener process,

◮ smooth vector fields Vi =
∑N

j=1 V
j
i ∂yj on R

N , i = 0, . . . , d ,

◮ initial condition y0 ∈ R
N .

For notational convenience, W0(τ) = τ .
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Accuracy: Problem

Background: Solutions only in exceptional cases given explicitly.
Typically, approximations are based on the stochastic Taylor
expansion, truncated to include the necessary terms to achieve the
desired order (e.g. Euler scheme, Milstein scheme).

Question: Are there other series such that any truncation
generates an approximation that is always at least as accurate as
the corresponding truncated stochastic Taylor series, independent
of the vector fields and to all orders?

We will call such approximations efficient integrators.

Algebraic Structure of Stochastic Expansions and Efficient Simulation, SSSC2012: ICMAT, November 5–9, 2012



Itô’s Lemma for Stratonovich Integrals

Itô’s Lemma: Suppose f smooth. Then

f (yt) =f (y0) + +

d∑

i=0

∫ t

0

N∑

j=1

V j
i (yτ )∂yj f (yτ )

︸ ︷︷ ︸

=Vi◦f ◦yτ

dWi (τ)

=f (y0) +

d∑

i=0

∫ t

0
Vi ◦ f ◦ yτ dWi (τ) ,

where

Vi ◦ f =

N∑

j=1

V j
i ∂yj f .
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Stochastic Taylor Series (Stratonovich Form)

yt = y0 +
d∑

i=0

∫ t

0
dWi (τ)Vi ◦ y0 +

d∑

i ,j=0

∫ t

0
Wi (τ) dWj(τ)

︸ ︷︷ ︸

=Jij (t)

Vi ◦ Vj ◦ y0

+ · · · =
∑

w

Jw (t)Vw ◦ y0,

where w = (a1, . . . , an) word from alphabet {0, 1, . . . , d}
(including the empty word),

Vw = Va1 ◦ Va2 ◦ . . . ◦ Van ,

and

Vi ◦ Vj =
N∑

k=1

V k
i ∂ykVj .

Stochastic Taylor flow (Lyons’ signature)

ϕt =
∑

w

JwVw .
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Principal Idea
◮ Suppose f is invertible function with real series expansion

f (x) =
∞∑

k=0

ck x
k (ck constant).

Construct new series

ψt = f (ϕt) ≡
∞∑

k=0

ck ϕ
k
t .

◮ Truncate to finite series ψ̂t .
◮ New approximation to flow map and to solution yt

ϕ̂t = f −1(ψ̂t), ŷt = ϕ̂t ◦ y0.

◮ Mean-square error in this approximation

‖(ϕt − ϕ̂t) ◦ y0‖
2
L2 .

Aim: Find f , equivalently (ck)k , such that error is smaller than
error for corresponding truncated Taylor series expansion.
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Exponential Lie Series

Example: f = logarithmic function:

ϕt = exp (ψt) ,

where

ψt = lnϕt =
d∑

i=0

Ji (t)Vi +
∑

i<j

1
2(Jij − Jji )(t)[Vi ,Vj ] + · · · .

exponential Lie series, Chen-Strichartz formula

(Magnus 1954, Chen 1957, Strichartz 1987 ...)
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Accuracy: Exponential Lie Series

Theorem:

A (modified) exponential Lie series of order 1
2 , order 1 and order 11

2
is more accurate in the mean-square sense than the corresponding
truncated Taylor series, if the diffusion vector fields V1, . . . , Vd

commute. They do not need to commute with the drift vector
field V0.

(Castell & Gaines 1995, Malham & W. 2008)

Remark: Counterexample for non-commuting vector fields (Lord,
Malham & W. 2008).
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Sinhlog Series

Theorem:

The solution series constructed by taking the hyperbolic sine of
the logarithm of the stochastic Taylor flow-map,

ψt = sinh log(ϕt),

when truncated, generates an approximation,

ϕ̂t = exp sinh−1(ψ̂t) ≡ ψ̂t +

√

id+ ψ̂2
t ,

that is for all vector fields always at least as accurate as the corre-
sponding truncated stochastic Taylor series expansion in the mean-
square sense. (Malham & W. 2009)
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Principal Idea

◮ Stochastic Taylor flow

ϕt =
∑

w

JwVw .

f (ϕt) =
∞∑

k=0

ck ϕ
k
t =

∑

w

F (w)Vw

(after rearrangement).

◮ Composition of vector fields is concatenation product,

Vw1 ◦ Vw2 = Vw1w2 .

Itó’s Product Formula: Multiplication of multiple Wiener
integrals is a shuffle product. e.g.

J12J34 = J1234 + J1324 + J3124 + J1342 + J3142 + J3412.

Shuffle product JuJv 7→ u xxy v .
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Hopf Algebra Structure - Recoding the Signature
◮ Representation of stochastic Taylor flow as

ϕt =
∑

w

w ⊗ w

in Hopf algebra given by tensor product of (algebras of) real
series of words with shuffle product on left and concatenation
product on right.

◮ Given f (x) =
∑∞

k=0 ckx
k ,

f (ϕt) =
∑

k≥0

ck

(
∑

w

w ⊗ w

)k

=
∑

w

(
∞∑

k=0

ck
∑

w=u1...uk

u1 xxy . . . xxy uk

)

︸ ︷︷ ︸

=F (w)

⊗w .
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Convolution Shuffle Algebra

◮ Convolution algebra of linear endomorphisms of Hopf algebra
(with shuffle product)

K1 ⋆ K2(w) =
∑

vv ′=w

K1(v) xxyK2(v
′).

◮ Representation

f (ϕt) =
∑

w

F (w)⊗ w ,

where F is the linear endomorphism

F =
∑

k

ck id
⋆k =: f ⋆(id).

Important: Action of f encoded by linear endomorphism
f ⋆(id).

Algebraic Structure of Stochastic Expansions and Efficient Simulation, SSSC2012: ICMAT, November 5–9, 2012



Generalization
◮ Construction through expansion about ǫ ∈ R

f ⋆(X ) =

∞∑

k=0

(X − ǫ ν)⋆k ,

where ν is the unit in the convolution shuffle algebra (ν sends
non-empty words to 0 and the empty word to itself).

◮ For an endomorphism X define the sinhlog endomorphism by

sinhlog⋆(X ) =
1

2

(
X − X ⋆(−1)

)
.

Thus

sinhlog⋆(id) =
1

2

(
id− id

⋆(−1)
)
=

1

2

(
id− S

)
,

where

S ◦ (a1 . . . an) = (−1)nan . . . a1

is the antipode (signed reverse).
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Sinhlog Endomorphism

◮ Series representation

sinhlog⋆(id) = J − 1
2J

⋆2 + 1
2J

⋆3 − · · ·+ (−1)k+1 1
2J

⋆k + · · · ,

where J := ν − id (augmented ideal projector).

◮ The compositional inverse of sinhlog⋆ is given by

sinhlog−1(X ) = X +
(
X ⋆2 + ν

)⋆(1/2)
.

◮ Similar, the coshlog endomorphism is

coshlog⋆(X ) =
1

2

(
X + X ⋆(−1)

)
.
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Sinhlog Series

On computational interval [tn, tn+1]:

sinhlog(ϕt) =
d∑

i=0

Ji (tn, tn+1)Vi +
d∑

i ,j=0

1
2

(
Jij − Jji

)
(tn, tn+1)Vij

+
d∑

i ,k,k=0

1
2

(
Jijk + Jkji

)
(tn, tn+1)Vijk + . . .
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Inner Product of Endomorphism
◮ Measure accuracy by mean-square error: for stochastic

processes Xt =
∑

u X (u)Vu(y0) and Yt =
∑

v Y (v)Vv (y0)

〈Xt ,Yt〉 = E
[
X †
t Yt

]
=
∑

u,v

V †
u (y0)E

[
X (u)Y (v)

]
Vv (y0),

where † denotes matrix transpose.
◮ Corresponding inner product for endomorphisms X and Y :

◮ Write X (w) =
∑

u Xw ,uu with real-valued coefficients Xw ,u.
Define matrix

X =
(
Xw ,u

)

w ,u
.

◮ Define matrix W =
(
Ww ,u

)

w ,u
, where Ww ,u = E

[
w xxy u

]
.

◮ Define matrix V =
(
Vw ,u

)

w ,u
, where Vw ,u = V †

wVu (inner

product).

〈X ,Y 〉 := tr
(
XWY† V†

)
.

◮ Note that the definition of the inner product depends on the
V; all our subsequent results hold independently of V.
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Orthogonality of Sinhlog and Coshlog
◮ id = sinhlog⋆(id) + coshlog⋆(id)
◮ For any n, consider the restriction of the following

endomorphisms on the subspace Sn generated by words of
length n. Then
1.
〈
|S |, |S |

〉
= 〈S , S〉 = 〈id, id〉;

2. 〈sinhlog⋆(id), coshlog⋆(id)〉 = 0;
3. ‖id‖2 = ‖sinhlog⋆(id)‖2 + ‖coshlog⋆(id)‖2.

◮ Proof is based on the following identity (see Malham & W.
2009): For any pair u, v , we have
E [JuJv ] = E (u xxy v) ≡ E

(
(|S |◦u) xxy (|S |◦v)

)
= E [J|S |◦uJ|S |◦v ].

◮ This implies property 1.
◮ Property 2 follows using the bilinearity of the inner product:

〈sinhlog⋆(id), coshlog⋆(id)〉 = 〈
1

2
(id− S),

1

2
(id+ S)〉

=
1

4

(
〈id, id〉 − 〈S , S〉

)
= 0.

◮ Property 3 now immediate.
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Construction of Stochastic Approximations

◮ Function f with formal power series given;

◮ corresponding endomorphism f ⋆(id);

◮ truncate to include only words up to length n, denote this

ΠS≤n
◦ f ⋆(id);

◮ Apply compositional inverse

f −1 ◦ πS≤n
◦ f ⋆(id);

◮ error in approximation

id− f −1 ◦ πS≤n
◦ f ⋆(id);

◮ measure error in norm defined on endomorphisms.

◮ compare with error in corresponding truncated Taylor
approximation

id− id ◦ πS≤n
◦ id;
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Efficiency

A numerical approximation to the solution of an SDE is an efficient
integrator if it generates a strong numerical integration scheme
that is more accurate in the mean square sense than the
corresponding truncated stochastic Taylor integration scheme of
the same order (according to word length), independent of the
governing vector fields and to all orders.
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Efficiency of Sinhlog Integrator
Theorem:

The integrator based on the sinhlog endomorphism is efficient.

Idea of Proof:

◮ Define

P :=πS≤n
◦ sinhlog⋆(id)

Q :=πS≥n+1
◦ sinhlog⋆(id),

where πS≥n+1
is projector on space generated by words of

length n + 1 or more.
◮ Error in approximation

sinhlog−1◦(P+Q)−sinhlog−1◦P = Q+1
2

(
P⋆Q+Q⋆P

)
+O

(
Q⋆2

)
.

Leading order term Q ◦ πSn+1 .
◮ Leading order term in truncated Taylor series is id ◦ πSn+1 , and

‖id ◦ πSn+1‖ = ‖Q ◦ πSn+1‖+ ‖coshlog⋆(id) ◦ πSn+1‖

> ‖Q ◦ πSn+1‖.
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New Class of Integrators

Define the class of endomorphisms

f ⋆(X ; ǫ) = 1
2(X − ǫX ⋆(−1)).

for any ǫ ∈ R.

◮ f ⋆(id,+1) is the sinhlog endomorphism;

◮ f ⋆(id,−1) is the coshlog endomorphism.

Compositional inverse of f ⋆(X ; ǫ) is

f −1(X ; ǫ) = X +
(
X ⋆2 + ǫ ν

)⋆(1/2)
.
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Optimality of Sinhlog Integrator

Theorem:

For every ǫ > 0 the class of integrators f ⋆(id; ǫ) is efficient. When
ǫ = 1, the error of the integrator f ⋆(id; 1) realizes its smallest pos-
sible value compared to the error of the corresponding stochastic
Taylor integrator.
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Coshlog Integrator

The coshlog endomorphism does not generate an efficient
integrator.
The compositional inverse of the coshlog endomorphism is

coshlog−1(X ) = X +
(
X ⋆2 − ν

)⋆ 1
2 .

Define as before

P :=πS≤n
◦ coshlog⋆(id)

Q :=πS≥n+1
◦ coshlog⋆(id)

Error in approximation

coshlog−1 ◦(P+Q)−coshlog−1 ◦P = Q+(J⋆(−1) ◦πS≤n
)⋆Q+ . . . .

J⋆(−1) exists formally, but introduces terms of same order as
remained in integrator: thus there is a from of order reduction.
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Example 1: Linear 2× 2 System

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−4

−5.4

−5.3

−5.2

−5.1

−5

−4.9

−4.8

time

lo
g 10

(g
lo

ba
l e

rr
or

)
Number of sampled paths=10000

 

 
Sinh−Log
Stochastic Taylor
Magnus
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Example 1: Error

2.5 2.52 2.54 2.56 2.58 2.6 2.62

x 10
−5

−5.37

−5.365

−5.36

−5.355

−5.35

−5.345

time

lo
g 10

(g
lo

ba
l e

rr
or

)
Number of sampled paths=10000

 

 

Sinh−Log
Stochastic Taylor
Magnus
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Example 1: Difference between Error and Stochastic Taylor
Error

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−4

−1

0

1

2

3

4

5
x 10

−7

time

di
ffe

re
nc

e 
of

 g
lo

ba
l e

rr
or

s
Number of sampled paths=10000

 

 
Sinh−Log
Exponential Lie
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Example 2: Global Error

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6
−1.5

−1

−0.5

0

0.5

1

log
10

(stepsize)

lo
g 10

(g
lo

ba
l e

rr
or

)
Number of sampled paths=10000

 

 
Stochastic Taylor 1.5
Sinh−Log 1.5
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Conclusion

◮ Natural connection between stochastic approximations and
convolution algebra of endomorphisms on Hopf shuffle algebra
of words.

◮ Algebraic abstraction enables new class of efficient integrators.

◮ Within this class, the sinhlog integrator is optimal, that is the
error of the integrator realizes its smallest value when
compared with the error of the corresponding truncated
stochastic Taylor integrator in the mean-square sense.

◮ Generalization to SDEs driven by Lévy processes and
semimartingale algebra.
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Future Directions

◮ Algebraic structure of BSDEs?

◮ Algebraic structure of SPDEs?
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Ebrahimi-Fard, K., Lundervold, A., Malham, S.J.A.,
Munthe–Kaas, H. and Wiese, A. 2012 Algebraic structure of
stochastic expansions and efficient simulation, Proc. R. Soc. A.
Lord, G., Malham, S.J.A. & Wiese, A. 2008 Efficient strong
integrators for linear stochastic systems, SIAM J. Numer.
Anal. 46(6), 2892–2919.
Malham, S.J.A., Wiese, A. 2009 Stochastic expansions and
Hopf algebras. Proc. R. Soc. A 465, 3729–3749.

Algebraic Structure of Stochastic Expansions and Efficient Simulation, SSSC2012: ICMAT, November 5–9, 2012



References

Magnus, W. 1954 On the exponential solution of differential
equations for a linear operator. Comm. Pure Appl. Math. 7,
649–673.
Reutenauer, C. 1993 Free Lie algebras, London Mathematical
Society Monographs New Series 7, Oxford Science Publications

Algebraic Structure of Stochastic Expansions and Efficient Simulation, SSSC2012: ICMAT, November 5–9, 2012


	Introduction
	Principal Idea
	Exponential Lie Series
	Sinhlog Series
	Hopf Algebra Structures
	Sinhlog and the optimal efficient integrator
	Numerical Simulations
	Conclusion
	References

