Numerical evaluation of the Evans function

Simon J.A. Malham
Collaborators: Nairo Aparicio, Marcel Oliver \& Jitse Niesen

Dundee: March 7th 2006

Outline

1 Evans function
2 Numerical computation
3 Exterior product spaces
4 Numerical methods
5 Examples

Outline

1 Evans function
2 Numerical computation
3 Exterior product spaces
4 Numerical methods
5 Examples
Take home message:
For non-selfadjoint stiff problems, the Evans function method, which is a shooting \& matching technique, is the most accurate or even the only approach.

Miss distance function

Consider the Sturm-Liouville problem on $[a, b]$:

$$
-u^{\prime \prime}+q(x) u=\lambda u
$$

with boundary conditions $u(a)=u(b)=0$,

Miss distance function

Consider the Sturm-Liouville problem on $[a, b]$:

$$
-u^{\prime \prime}+q(x) u=\lambda u
$$

with boundary conditions $u(a)=u(b)=0$, i.e.

$$
y^{\prime}=A(x, \lambda) y, \quad \text { where } \quad A(x, \lambda)=\left(\begin{array}{cc}
0 & 1 \tag{*}\\
q(x)-\lambda & 0
\end{array}\right)
$$

with boundary conditions $y_{1}(a)=y_{1}(b)=0$.

Miss distance function

Consider the Sturm-Liouville problem on $[a, b]$:

$$
-u^{\prime \prime}+q(x) u=\lambda u
$$

with boundary conditions $u(a)=u(b)=0$, i.e.

$$
y^{\prime}=A(x, \lambda) y, \quad \text { where } \quad A(x, \lambda)=\left(\begin{array}{cc}
0 & 1 \tag{*}\\
q(x)-\lambda & 0
\end{array}\right)
$$

with boundary conditions $y_{1}(a)=y_{1}(b)=0$.
Denote by $y^{-}(x)$ the solution of $\left(^{*}\right)$ with $y^{-}(a)=\binom{0}{1}$.
The miss-distance function is

$$
D(\lambda)=y_{1}^{-}(b)
$$

Eigenvalues correspond to zeros of the miss-distance function.

The matching point ξ

$$
\begin{equation*}
y^{\prime}=A(x, \lambda) y, \quad y_{1}(a)=y_{1}(b)=0 \tag{*}
\end{equation*}
$$

Denote by $y^{-}(x)$ the solution of $\left(^{*}\right)$ with $y^{-}(a)=\binom{0}{1}$.
Denote by $y^{+}(x)$ the solution of $\left({ }^{*}\right)$ with $y^{+}(b)=\binom{0}{1}$.
The SLP $\left({ }^{*}\right)$ has a solution if y^{+}is a multiple of y^{-}.

The matching point ξ

$$
\begin{equation*}
y^{\prime}=A(x, \lambda) y, \quad y_{1}(a)=y_{1}(b)=0 \tag{*}
\end{equation*}
$$

Denote by $y^{-}(x)$ the solution of $\left(^{*}\right)$ with $y^{-}(a)=\binom{0}{1}$.
Denote by $y^{+}(x)$ the solution of $\left(^{*}\right)$ with $y^{+}(b)=\binom{0}{1}$.
The SLP $\left({ }^{*}\right)$ has a solution if y^{+}is a multiple of y^{-}.
The miss-distance function, evaluated at $\xi \in[a, b]$ is

$$
D(\lambda)=\operatorname{det}\left(\begin{array}{ll}
y_{1}^{-}(\xi) & y_{1}^{+}(\xi) \\
y_{2}^{-}(\xi) & y_{2}^{+}(\xi)
\end{array}\right)
$$

For $\xi=b$, we get $D(\lambda)=y_{1}^{-}(b)$, as before.

General spectral problems

For $x \in \mathbb{R}$ consider

$$
y^{\prime}=A(x, \lambda) y
$$

with $y(x) \in \mathbb{C}^{n}$.
We assume there is a region $\Omega \subset \mathbb{C}$ such that for all $\lambda \in \Omega$:

- $A(x, \lambda) \rightarrow A^{ \pm}(\lambda)$ as $x \rightarrow \pm \infty$;
- $A^{ \pm}(\lambda)$ are hyperbolic;
- $A^{-}(\lambda)$ has k unstable eigenvalues $\mu_{1}^{-}, \ldots, \mu_{k}^{-}$, with corresponding eigenvectors $v_{1}^{-}, \ldots, v_{k}^{-}$;
- $A^{+}(\lambda)$ has $n-k$ unstable eigenvalues $\mu_{1}^{+}, \ldots, \mu_{n-k}^{+}$, with corresponding eigenvectors $v_{1}^{+}, \ldots, v_{n-k}^{+}$.

General spectral problems II

Hence there exist:

- k solutions: $y_{i}^{-}(x) \sim \mathrm{e}^{\mu_{i}^{-} \times} v_{i}^{-}$as $x \rightarrow-\infty$.
- $n-k$ solutions: $y_{i}^{+}(x) \sim \mathrm{e}^{\mu_{i}^{+}} x v_{i}^{+}$as $x \rightarrow+\infty$.

General spectral problems II

Hence there exist:

- k solutions: $y_{i}^{-}(x) \sim \mathrm{e}^{\mu_{i}^{-} x} v_{i}^{-}$as $x \rightarrow-\infty$.
- $n-k$ solutions: $y_{i}^{+}(x) \sim \mathrm{e}^{\mu_{i}^{+}} x v_{i}^{+}$as $x \rightarrow+\infty$.

The Evans function is defined by

$$
D(\lambda)=\operatorname{det}\left(y_{1}^{-}(\xi) \cdots y_{k}^{-}(\xi) y_{1}^{+}(\xi) \cdots y_{n-k}^{+}(\xi)\right) .
$$

It is analytic in Ω and its zeros correspond to eigenvalues.
(Evans '75; Alexander, Gardner \& Jones '90; Sandstede '02)

Outline

1 Evans function
2 Numerical computation
3 Exterior product spaces
4 Numerical methods
5 Examples

Computing the Evans function numerically

$$
D(\lambda)=\operatorname{det}\left(y_{1}^{-}(\xi) \cdots y_{k}^{-}(\xi) y_{1}^{+}(\xi) \cdots y_{n-k}^{+}(\xi)\right) .
$$

Basic numerical computation:

- Compute the unstable eigenvectors $v_{1}^{-}, \ldots, v_{k}^{-}$of A^{-}.
- For $i=1, \ldots, k$, solve $y^{\prime}=A(x, \lambda) y$ with initial condition $y(-L)=v_{i}^{-}$(where L is large) to get $y_{i}^{-}(\xi)$.
- Compute $y_{i}^{+}(\xi)$ similarly, and calculate the determinant.

Computing the Evans function numerically

$$
D(\lambda)=\operatorname{det}\left(y_{1}^{-}(\xi) \cdots y_{k}^{-}(\xi) y_{1}^{+}(\xi) \cdots y_{n-k}^{+}(\xi)\right) .
$$

Basic numerical computation:

- Compute the unstable eigenvectors $v_{1}^{-}, \ldots, v_{k}^{-}$of A^{-}.
- For $i=1, \ldots, k$, solve $y^{\prime}=A(x, \lambda)$ y with initial condition $y(-L)=v_{i}^{-}$(where L is large) to get $y_{i}^{-}(\xi)$.
- Compute $y_{i}^{+}(\xi)$ similarly, and calculate the determinant.

The Evans function is analytic, so we can use the argument principle to count the number of eigenvalues in a given region. (Evans \& Faroe '77)
Use Newton's method to solve $D(\lambda)=0$ and locate eigenvalues. (Pego, Smereka \& Weinstein '93)

Spectrum structure

Problems

- Unstable space \Rightarrow for example y_{i}^{-}grow with rate μ_{i}^{-}.

Solution: Rescale: write $y_{i}^{-}=\mathrm{e}^{\mu_{i}^{-} \times} u_{i}^{-}$and solve

$$
u^{\prime}=\left(A(x, \lambda)-\mu_{i}^{-} I\right) u
$$

with $u_{i}(x) \rightarrow v_{i}^{-}$as $x \rightarrow-\infty$.

- Eigenvectors $v_{i}^{ \pm}$must be analytic functions of λ.

Solution: Kato's algorithm.

- If $\operatorname{Re} \mu_{1}^{-}>\operatorname{Re} \mu_{2}^{-}$, then u_{1}^{-}can be computed accurately, but when computing u_{2}^{-}any errors in the u_{1}^{-}direction dominate the u_{2}^{-}solution.
Solution: Do not look at the y_{i}^{-}individually, but look at the subspace $S=\operatorname{span}\left\{y_{1}^{-}, \ldots, y_{k}^{-}\right\}$and lift the equation $y^{\prime}=A(x, \lambda) y$ to $S^{\prime}=\ell(A(x, \lambda)) S$.

Outline

1 Evans function
2 Numerical computation
3 Exterior product spaces
4 Numerical methods
5 Examples

Evans function

For $v_{i} \in \mathbb{C}^{n}$:

$$
\operatorname{det}\left(v_{1} \cdots v_{n}\right) \equiv v_{1} \wedge \cdots \wedge v_{n}
$$

Hence Evans function

$$
D(\lambda) \equiv \mathrm{e}^{-\int_{0}^{\xi} \operatorname{Tr} A(x, \lambda) \mathrm{d} x}(\underbrace{y_{1}^{-} \wedge \cdots \wedge y_{k}^{-}}_{\mathbf{w}^{-}(\xi, \lambda)} \wedge \underbrace{y_{1}^{+} \wedge \cdots \wedge y_{n-k}^{+}}_{\mathbf{w}^{+}(\xi, \lambda)}) .
$$

Prefactor ensures ξ-independence, from Abel's theorem.

Exterior product of a vector space

Let V be a vector space with basis e_{1}, \ldots, e_{n}.
The exterior product space $\Lambda^{k}(V)$ is a vector space with basis

$$
\left\{e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}: 1 \leq i_{1} \leq \cdots \leq i_{k} \leq n\right\}
$$

For example, $\Lambda^{2}\left(\mathbb{C}^{4}\right)$ is six dimensional with basis

$$
e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{1} \wedge e_{4}, e_{2} \wedge e_{3}, e_{2} \wedge e_{4}, e_{3} \wedge e_{4}
$$

The Grassmannian manifold $G_{k}(V)$ is the set of k-dimensional subspaces of V. We consider the identification

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\} \in G_{k}(V) \leftrightarrow v_{1} \wedge \ldots \wedge v_{k} \in \Lambda^{k}(V)
$$

The Grassmannian manifold

We can embed $G_{k}(V)$ in $\Lambda^{k}(V)$, or to be precise, $\mathbb{P}\left(\Lambda^{k}(V)\right)$.
A form $w \in \Lambda^{k}(V)$ is decomposable if it can be written as $w=v_{1} \wedge \ldots \wedge v_{k}$ with $v_{i} \in V$.

Only decomposable forms correspond to subspaces.
Consider for example $\Lambda^{2}\left(\mathbb{C}^{4}\right)$. The form
$S_{1} e_{1} \wedge e_{2}+S_{2} e_{1} \wedge e_{3}+S_{3} e_{1} \wedge e_{4}+S_{4} e_{2} \wedge e_{3}+S_{5} e_{2} \wedge e_{4}+S_{6} e_{3} \wedge e_{4}$
is decomposable iff

$$
S_{1} S_{6}-S_{2} S_{5}+S_{3} S_{4}=0
$$

Lifting the differential equation

A linear differential equation on V

$$
\begin{equation*}
y^{\prime}=A(x) y \tag{}
\end{equation*}
$$

induces an equation on $\Lambda^{k}(V)$:

$$
w^{\prime}=\ell(A(x)) w
$$

For example with $k=2$ and $V=\mathbb{C}^{n}$.
If y_{1} and y_{2} solve $\left({ }^{*}\right)$ then $w=y_{1} \wedge y_{2}$ solves (\dagger).

Outline

1 Evans function
2 Numerical computation
3 Exterior product spaces
4 Numerical methods
5 Examples

Computing the Evans function II

Now basic numerical computation:

- Compute the unstable eigenvectors $v_{1}^{-}, \ldots, v_{k}^{-}$of A^{-}.
- Lift the equation to $\Lambda^{k}\left(\mathbb{C}^{n}\right): w^{\prime}=\ell(A(x, \lambda)) w$; and rescale $w(x)=\mathrm{e}^{\left(\mu_{1}^{-}+\cdots+\mu_{k}^{-}\right) x} u(x)$ to solve

$$
u^{\prime}=\left(\ell(A(x, \lambda))-\left(\mu_{1}^{-}+\cdots+\mu_{k}^{-}\right) I\right) u
$$

with initial condition $u(-L)=v_{1}^{-} \wedge \cdots \wedge v_{k}^{-}$(where L is large) to get $w^{-}(\xi)$.

- Compute $w^{+}(\xi)$ similarly, and evaluate

$$
D(\lambda)=w^{-} \wedge w^{+} .
$$

(Bridges '99; Brin '00; Afendikov \& Bridges '01)
Same as Compound matrix method.
(Davey '79; Ng \& Reid '79)

Magnus series

We need to solve the linear differential equation

$$
y^{\prime}=A(x) y
$$

Solution

$$
y(x)=\exp (\sigma(x)) y(0)
$$

where

$$
\sigma(x)=\int_{0}^{x} A(\xi) \mathrm{d} \xi+\frac{1}{2} \int_{0}^{x} \int_{0}^{\xi_{1}}\left[A\left(\xi_{1}\right), A\left(\xi_{2}\right)\right] \mathrm{d} \xi_{2} \mathrm{~d} \xi_{1}+\cdots .
$$

Converges if $\int_{0}^{x}\|A(\xi)\| \mathrm{d} \xi<\pi$.
(Moan \& Niesen '06)

Magnus numerical method

Truncate Magnus series and replace $A(x)$ by interpolant at Gauss-Legendre points $x_{1,2}=\left(\frac{1}{2} \pm \frac{\sqrt{3}}{6}\right) x$:

$$
y(x) \approx \exp \left(\frac{1}{2} x\left(A\left(x_{1}\right)+A\left(x_{2}\right)\right)-\frac{\sqrt{3}}{12}\left[A\left(x_{1}\right), A\left(x_{2}\right)\right]\right) y(0)
$$

This is a method of order four.

Other numerical methods

- In the case $k=2$ and $n=4$, the Grassmannian is attractive, if we replace $w^{\prime}=\ell(A(x, \lambda)) w$ by $w^{\prime}=\ell(A(x, \lambda-\sigma /)) w$, where σ is the largest eigenvalue, provided the spectrum of A changes not too much as x varies.
(Bridges, Derks \& Gottwald '02)
- If $\operatorname{tr} A=0$, the Grassmannian is a strong quadratic invariant. Gauss-Legendre methods (eg. implicit midpoint rule) conserve these.
(Allen \& Bridges '02)
- In practice, with proof when $n=2$, fourth order Gauss-Legendre is globally most accurate.
(Aparicio, Malham \& Oliver '05; Malham \& Niesen '06)

Outline

1 Evans function
2 Numerical computation
3 Exterior product spaces
4 Numerical methods
5 Examples

Autocatalytic model

The autocatalytic reaction $U+m V \rightarrow(m+1) V$ is modeled by

$$
\begin{aligned}
u_{t} & =\delta u_{x x}-u v^{m} \\
v_{t} & =v_{x x}+u v^{m} .
\end{aligned}
$$

There is a unique travelling wave solution with $(u, v) \rightarrow(0,1)$ as $x \rightarrow-\infty$ and $(u, v) \rightarrow(1,0)$ as $x \rightarrow+\infty$ for any speed $c \in\left[c_{*}, \infty\right)$.

Evans function evaluated with the Magnus and Gauss-Legendre methods to assess the stability of travelling wave with $c=c_{*}$.

Precomputation:: $w^{\prime}=A(x, \lambda) w$ with $w(-L)=w_{0}$.

$$
A(x, \lambda)=A_{0}(x)+\lambda A_{1}(x)+\mu A_{2}(x) .
$$

Autocatalytic model II

Stability of rotating Ekman layer

Linearization of the 3d Navier-Stokes equation in a rotating frame about the Ekman layer coupled to a compliant surface leads to

$$
\begin{array}{r}
\phi^{\prime \prime \prime \prime}-b(x) \phi^{\prime \prime}-a(x) \phi+2 \psi^{\prime}=0 \\
\psi^{\prime \prime}+\left(\gamma^{2}-b(x)\right) \psi-\mathrm{i} \gamma R V^{\prime}(x) \phi-2 \phi^{\prime}=0
\end{array}
$$

for $0 \leq x<\infty$ with compliant surface BCs at $x=0$.
Lifting yields an ODE on $\Lambda^{3}\left(\mathbb{C}^{6}\right)$, which has dimension 20.
However the dimension of the Grassmannian is only 9.
(Allen \& Bridges '03)

Summary: shooting vs discretization

Discretization of the linearized operators via finite differences or elements generates a matrix eigenvalue problem.
Discretization methods:

Summary: shooting vs discretization

Discretization of the linearized operators via finite differences or elements generates a matrix eigenvalue problem.
Discretization methods:

- (+) simple (on finite intervals using uniform mesh);

Summary: shooting vs discretization

Discretization of the linearized operators via finite differences or elements generates a matrix eigenvalue problem.
Discretization methods:

- (+) simple (on finite intervals using uniform mesh);
- (-) spurious eigenvalues (can be excised);

Summary: shooting vs discretization

Discretization of the linearized operators via finite differences or elements generates a matrix eigenvalue problem.
Discretization methods:

- (+) simple (on finite intervals using uniform mesh);
- (-) spurious eigenvalues (can be excised);
- (-) mesh reduction expensive;

Summary: shooting vs discretization

Discretization of the linearized operators via finite differences or elements generates a matrix eigenvalue problem.
Discretization methods:

- (+) simple (on finite intervals using uniform mesh);
- (-) spurious eigenvalues (can be excised);
- (-) mesh reduction expensive;
- (-) non-selfadjoint problems problematic.

Summary: shooting vs discretization

Discretization of the linearized operators via finite differences or elements generates a matrix eigenvalue problem.
Discretization methods:

- (+) simple (on finite intervals using uniform mesh);
- (-) spurious eigenvalues (can be excised);
- (-) mesh reduction expensive;
- (-) non-selfadjoint problems problematic.

Shooting methods:

Summary: shooting vs discretization

Discretization of the linearized operators via finite differences or elements generates a matrix eigenvalue problem.
Discretization methods:

- (+) simple (on finite intervals using uniform mesh);
- (-) spurious eigenvalues (can be excised);
- (-) mesh reduction expensive;
- (-) non-selfadjoint problems problematic.

Shooting methods:

- (+) Higher order approximations with uniform error bounds;

Summary: shooting vs discretization

Discretization of the linearized operators via finite differences or elements generates a matrix eigenvalue problem.
Discretization methods:

- (+) simple (on finite intervals using uniform mesh);
- (-) spurious eigenvalues (can be excised);
- (-) mesh reduction expensive;
- (-) non-selfadjoint problems problematic.

Shooting methods:

- (+) Higher order approximations with uniform error bounds;
- (+) Non-selfadjoint problems natural.

Summary: shooting vs discretization

Discretization of the linearized operators via finite differences or elements generates a matrix eigenvalue problem.
Discretization methods:

- (+) simple (on finite intervals using uniform mesh);
- (-) spurious eigenvalues (can be excised);
- (-) mesh reduction expensive;
- (-) non-selfadjoint problems problematic.

Shooting methods:

- (+) Higher order approximations with uniform error bounds;
- (+) Non-selfadjoint problems natural.
- $(-) \operatorname{dim}\left(\Lambda^{k}\left(\mathbb{C}^{n}\right)\right)=\binom{n}{k}$.

Summary: shooting vs discretization

Discretization of the linearized operators via finite differences or elements generates a matrix eigenvalue problem.
Discretization methods:

- (+) simple (on finite intervals using uniform mesh);
- (-) spurious eigenvalues (can be excised);
- (-) mesh reduction expensive;
- (-) non-selfadjoint problems problematic.

Shooting methods:

- (+) Higher order approximations with uniform error bounds;
- $(+)$ Non-selfadjoint problems natural.
- $(-) \operatorname{dim}\left(\Lambda^{k}\left(\mathbb{C}^{n}\right)\right)=\binom{n}{k}$.
- $(+)$ Continuous orthogonalization.

Continuous orthogonalization

(Humphreys \& Zumbrun '05)

With

$$
Y=\left(y_{1}^{-} \cdots y_{k}^{-}\right),
$$

consider polar decomposition

$$
Y=\Omega \alpha, \quad \operatorname{det} \alpha=\gamma
$$

Then

$$
\begin{aligned}
\Omega^{\prime} & =\left(I-\Omega \Omega^{*}\right) A(x, \lambda) \Omega, \\
\gamma^{\prime} & =\operatorname{Tr}\left(\Omega^{*} A(x, \lambda) \Omega\right) \gamma
\end{aligned}
$$

Integrate: need to preserve Stiefel manifold: $\Omega^{*} \Omega=1$.

