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Take home message:

For non-selfadjoint stiff problems, the Evans function

method, which is a shooting & matching technique, is

the most accurate or even the only approach.
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Consider the Sturm–Liouville problem on [a, b]:

−u′′ + q(x) u = λ u ,

with boundary conditions u(a) = u(b) = 0, i.e.

y ′ = A(x , λ) y , where A(x , λ) =

(
0 1

q(x) − λ 0

)

, (*)

with boundary conditions y1(a) = y1(b) = 0.

Denote by y−(x) the solution of (*) with y−(a) =

(
0
1

)

.

The miss-distance function is

D(λ) = y−
1 (b).

Eigenvalues correspond to zeros of the miss-distance function.
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The matching point ξ

y ′ = A(x , λ) y , y1(a) = y1(b) = 0 . (*)

Denote by y−(x) the solution of (*) with y−(a) =

(
0
1

)

.

Denote by y+(x) the solution of (*) with y+(b) =

(
0
1

)

.

The SLP (*) has a solution if y+ is a multiple of y−.

The miss-distance function, evaluated at ξ∈ [a, b] is

D(λ) = det

(
y−
1 (ξ) y+

1 (ξ)
y−
2 (ξ) y+

2 (ξ)

)

.

For ξ = b, we get D(λ) = y−
1 (b), as before.



General spectral problems

For x ∈ R consider
y ′ = A(x , λ) y ,

with y(x) ∈ C
n.

We assume there is a region Ω ⊂ C such that for all λ ∈ Ω:

◮ A(x , λ) → A±(λ) as x → ±∞;

◮ A±(λ) are hyperbolic;

◮ A−(λ) has k unstable eigenvalues µ−1 ,. . . ,µ−
k
, with

corresponding eigenvectors v−
1 , . . . , v−

k
;

◮ A+(λ) has n − k unstable eigenvalues µ+
1 ,. . . ,µ+

n−k
, with

corresponding eigenvectors v+
1 , . . . , v+

n−k
.
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General spectral problems II

Hence there exist:

◮ k solutions: y−
i

(x) ∼ eµ−

i
xv−

i
as x → −∞.

◮ n − k solutions: y+
i

(x) ∼ eµ+
i
xv+

i
as x → +∞.

The Evans function is defined by

D(λ) = det
(
y−
1 (ξ) · · · y−

k
(ξ) y+

1 (ξ) · · · y+
n−k

(ξ)
)
.

It is analytic in Ω and its zeros correspond to eigenvalues.
(Evans ’75; Alexander, Gardner & Jones ’90; Sandstede ’02)
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Computing the Evans function numerically

D(λ) = det
(
y−
1 (ξ) · · · y−

k
(ξ) y+

1 (ξ) · · · y+
n−k

(ξ)
)
.

Basic numerical computation:

◮ Compute the unstable eigenvectors v−
1 , . . . , v−

k
of A−.

◮ For i = 1, . . . , k , solve y ′ = A(x , λ) y with initial condition
y(−L) = v−

i
(where L is large) to get y−

i
(ξ).

◮ Compute y+
i

(ξ) similarly, and calculate the determinant.



Computing the Evans function numerically

D(λ) = det
(
y−
1 (ξ) · · · y−

k
(ξ) y+

1 (ξ) · · · y+
n−k

(ξ)
)
.

Basic numerical computation:

◮ Compute the unstable eigenvectors v−
1 , . . . , v−

k
of A−.

◮ For i = 1, . . . , k , solve y ′ = A(x , λ) y with initial condition
y(−L) = v−

i
(where L is large) to get y−

i
(ξ).

◮ Compute y+
i

(ξ) similarly, and calculate the determinant.

The Evans function is analytic, so we can use the argument
principle to count the number of eigenvalues in a given region.
(Evans & Faroe ’77)

Use Newton’s method to solve D(λ) = 0 and locate eigenvalues.
(Pego, Smereka & Weinstein ’93)



Spectrum structure
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Problems

◮ Unstable space ⇒ for example y−
i

grow with rate µ−
i
.

Solution: Rescale: write y−
i

= eµ−

i
xu−

i
and solve

u′ =
(
A(x , λ) − µ−

i
I
)
u .

with ui (x) → v−
i

as x → −∞.

◮ Eigenvectors v±
i

must be analytic functions of λ.

Solution: Kato’s algorithm.

◮ If Reµ−1 > Reµ−2 , then u−
1 can be computed accurately, but

when computing u−
2 any errors in the u−

1 direction dominate
the u−

2 solution.

Solution: Do not look at the y−
i

individually, but look at the
subspace S = span{y−

1 , . . . , y
−
k
} and lift the equation

y ′ = A(x , λ) y to S ′ = ℓ
(
A(x , λ)

)
S .
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Evans function

For vi ∈ C
n:

det
(
v1 · · · vn

)
≡ v1 ∧ · · · ∧ vn .

Hence Evans function

D(λ) ≡ e−
R ξ

0 TrA(x ,λ)dx
(
y−
1 ∧ · · · ∧ y−

k
︸ ︷︷ ︸

w−(ξ, λ)

∧ y+
1 ∧ · · · ∧ y+

n−k
︸ ︷︷ ︸

w+(ξ, λ)

)
.

Prefactor ensures ξ-independence, from Abel’s theorem.



Exterior product of a vector space

Let V be a vector space with basis e1, . . . , en.

The exterior product space Λk(V ) is a vector space with basis

{ei1 ∧ . . . ∧ eik
: 1 ≤ i1 ≤ · · · ≤ ik ≤ n} .

For example, Λ2(C4) is six dimensional with basis

e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4 .

The Grassmannian manifold Gk(V ) is the set of k-dimensional
subspaces of V . We consider the identification

span{v1, . . . , vk} ∈ Gk(V ) ↔ v1 ∧ . . . ∧ vk ∈ Λk(V ) .



The Grassmannian manifold

We can embed Gk(V ) in Λk(V ), or to be precise, P
(
Λk(V )

)
.

A form w ∈ Λk(V ) is decomposable if it can be written as
w = v1 ∧ . . . ∧ vk with vi ∈ V .

Only decomposable forms correspond to subspaces.

Consider for example Λ2(C4). The form

S1e1 ∧ e2 + S2e1 ∧ e3 + S3e1 ∧ e4 + S4e2 ∧ e3 + S5e2 ∧ e4 + S6e3 ∧ e4

is decomposable iff

S1S6 − S2S5 + S3S4 = 0 .



Lifting the differential equation

A linear differential equation on V

y ′ = A(x) y (*)

induces an equation on Λk(V ):

w ′ = ℓ
(
A(x)

)
w (†) .

For example with k = 2 and V = C
n.

If y1 and y2 solve (*) then w = y1 ∧ y2 solves (†).
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Computing the Evans function II

Now basic numerical computation:

◮ Compute the unstable eigenvectors v−
1 , . . . , v−

k
of A−.

◮ Lift the equation to Λk(Cn): w ′ = ℓ
(
A(x , λ)

)
w ; and rescale

w(x) = e(µ−

1 +···+µ−

k
)x u(x) to solve

u′ =
(

ℓ
(
A(x , λ)

)
−(µ−1 + · · · + µ−

k
) I

)

u ,

with initial condition u(−L) = v−
1 ∧ · · · ∧ v−

k
(where L is

large) to get w−(ξ).

◮ Compute w+(ξ) similarly, and evaluate

D(λ) = w− ∧ w+ .

(Bridges ’99; Brin ’00; Afendikov & Bridges ’01)

Same as Compound matrix method.
(Davey ’79; Ng & Reid ’79)



Magnus series

We need to solve the linear differential equation

y ′ = A(x) y .

Solution
y(x) = exp

(
σ(x)

)
y(0) ,

where

σ(x) =

∫
x

0
A(ξ)dξ +

1

2

∫
x

0

∫ ξ1

0
[A(ξ1),A(ξ2)]dξ2dξ1 + · · · .

Converges if
∫

x

0 ‖A(ξ)‖dξ <π. (Moan & Niesen ’06)



Magnus numerical method

Truncate Magnus series and replace A(x) by interpolant at

Gauss–Legendre points x1,2 =
(

1
2 ±

√
3

6

)
x :

y(x) ≈ exp

(

1
2x

(
A(x1) + A(x2)

)
−

√
3

12

[
A(x1),A(x2)

]
)

y(0) .

This is a method of order four. (Iserles & Norsett ’99)

Preserves Grassmannian invariants (decomposability conditions).
(Niesen ’05)



Other numerical methods

◮ In the case k = 2 and n = 4, the Grassmannian is attractive,
if we replace w ′ = ℓ

(
A(x , λ)

)
w by w ′ = ℓ

(
A(x , λ− σI )

)
w ,

where σ is the largest eigenvalue, provided the spectrum of A

changes not too much as x varies.
(Bridges, Derks & Gottwald ’02)

◮ If trA = 0, the Grassmannian is a strong quadratic invariant.
Gauss–Legendre methods (eg. implicit midpoint rule)
conserve these. (Allen & Bridges ’02)

◮ In practice, with proof when n = 2, fourth order
Gauss–Legendre is globally most accurate.
(Aparicio, Malham & Oliver ’05; Malham & Niesen ’06)
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Autocatalytic model

The autocatalytic reaction U + mV → (m + 1)V is modeled by

ut = δuxx − uvm ,

vt = vxx + uvm .

There is a unique travelling wave solution with (u, v) → (0, 1) as
x → −∞ and (u, v) → (1, 0) as x → +∞ for any speed
c ∈ [c∗,∞).

Evans function evaluated with the Magnus and Gauss–Legendre
methods to assess the stability of travelling wave with c = c∗.

Precomputation:: w ′ = A(x , λ)w with w(−L) = w0.

A(x , λ) = A0(x) + λA1(x) + µA2(x) .



Autocatalytic model II
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Stability of rotating Ekman layer

Linearization of the 3d Navier–Stokes equation in a rotating frame
about the Ekman layer coupled to a compliant surface leads to

φ′′′′ − b(x)φ′′ − a(x)φ+ 2ψ′ = 0 ,

ψ′′ +
(
γ2 − b(x)

)
ψ − iγRV ′(x)φ− 2φ′ = 0 ,

for 0 ≤ x <∞ with compliant surface BCs at x = 0.

Lifting yields an ODE on Λ3(C6), which has dimension 20.
However the dimension of the Grassmannian is only 9.

(Allen & Bridges ’03)
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Summary: shooting vs discretization

Discretization of the linearized operators via finite differences or
elements generates a matrix eigenvalue problem.

Discretization methods:

◮ (+) simple (on finite intervals using uniform mesh);

◮ (-) spurious eigenvalues (can be excised);

◮ (-) mesh reduction expensive;

◮ (-) non-selfadjoint problems problematic.

Shooting methods:

◮ (+) Higher order approximations with uniform error bounds;

◮ (+) Non-selfadjoint problems natural.

◮ (-) dim
(
Λk(Cn)

)
=

(
n

k

)

.

◮ (+) Continuous orthogonalization.



Continuous orthogonalization

(Humphreys & Zumbrun ’05)

With
Y =

(
y−
1 · · · y−

k

)
,

consider polar decomposition

Y = Ωα , detα = γ .

Then

Ω′ =
(
I − ΩΩ∗) A(x , λ)Ω ,

γ′ = Tr
(
Ω∗A(x , λ)Ω

)
γ .

Integrate: need to preserve Stiefel manifold: Ω∗Ω = I .
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