Fredholm determinants and computing the stability of travelling waves

Simon J.A. Malham, Margaret Beck (HW), Issa Karambal (NAIS), Veerle Ledoux (Ghent), Robert Marangell (UNC), Jitse Niesen (Leeds), Vera Thümmler (D-fine)

Heriot-Watt University, Edinburgh, UK

NWCS 2012, Seattle June 13th – 16th

イロト イポト イヨト イヨト

Parabolic nonlinear systems on $\mathbb{R} \times \mathbb{T}$:

$$\partial_t U = B \Delta U + c \partial_x U + F(U).$$

Travelling wave U_c . Small perturbations U satisfy:

$$B \Delta U + c \partial_x U + DF(U_c)U = \lambda U.$$

Main solution approaches:

- Projection and iteration.
- Shooting and matching.
- Operator determinants.

Setup

On \mathbb{R} : $B \partial_{xx} U + c \partial_x U + DF(U_c)U = \lambda U$

$$\Leftrightarrow \quad \partial_{x} U = P, \\ \partial_{x} P = B^{-1} (\lambda - DF(U_{c})) U - cB^{-1}P.$$

$$\Leftrightarrow \qquad \mathsf{Y}' = \mathsf{A}(\mathsf{x}; \lambda) \mathsf{Y}.$$

For $\lambda \in \mathbb{C}$: matching condition

$$E(\lambda) := e^{\int_0^x \operatorname{Tr} A(\xi;\lambda) \, \mathrm{d}\xi} \, \det \left(Y_1^- \cdots Y_k^- Y_{k+1}^+ \cdots Y_n^+ \right)$$
$$= e^{\int_0^x \operatorname{Tr} A(\xi;\lambda) \, \mathrm{d}\xi} \, \det \left(Y^- Y^+ \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Carrying the same information are:

- In one dimension d = 1:
 - Evans matrix;
 - Matrix of transmission coefficients;
 - Fredholm operators;
 - Titchmarsh–Weyl matrix-function;
 - Grassmannian Riccati flow.
- In multi-dimensions *d* > 1:
 - Fredholm operators;
 - Dirichlet-to-Neumann map;
 - Fredholm Grassmannian flow.

- Computational domain.
- Different exponential growth rates.
- Polynomial complexity.
- Flow singularities?!
- Where to match?
- Retaining analyticity?
- How to project transversely.
- How to approximate the Fredholm Grassmannian flow.

Fredholm determinants

Eval problem:
$$(L_0 + v(x) - \lambda \operatorname{id})u = 0$$

Inverse $K_0(\lambda) \coloneqq (L_0 - \lambda \operatorname{id})^{-1}$ is compact

$$\lambda \text{ eval} \Leftrightarrow \operatorname{det}_{\mathrm{F}}(\operatorname{id} + \mathcal{K}_{0}(\lambda) \circ \mathbf{v}) = \mathbf{0}$$

Operator
$$\partial_x - (A_0(\lambda) + R(x))$$
 is Fredholm

Inverse $K_0(\lambda) \coloneqq (\partial_x - A_0(\lambda))^{-1}$ is compact

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$$\lambda \text{ eval} \Leftrightarrow \operatorname{det}_{\mathrm{F}}(\operatorname{id} + \mathcal{K}_{0}(\lambda) \circ \mathcal{R}) = 0$$

For Hilbert space \mathbb{H} :

$$\operatorname{tr} \mathsf{K} := \sum_{i \ge 1} \langle \varphi_i, \mathsf{K} \varphi_i \rangle_{\mathbb{H}} = \int_{\mathbb{R}} \operatorname{tr} \mathsf{G}(\mathsf{x}; \mathsf{x}) \, \mathrm{d} \mathsf{x}$$

Trace class operators: $||K||_{\mathbb{J}_1(\mathbb{H})} \coloneqq \operatorname{tr} |K|$

Hilbert–Schmidt operators: $||K||_{\mathbb{J}_2(\mathbb{H})} \coloneqq \operatorname{tr} K^* K$

Birman–Schwinger operator is trace class:

$$K(\lambda) \coloneqq |R|^{1/2} K_0(\lambda) \circ R|R|^{-1/2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Evans function and operator determinants

Definition

Set
$$d(\lambda) \coloneqq \operatorname{det}_{\mathbb{F}}(\operatorname{id} + K(\lambda))$$
 and $E(\lambda) = \operatorname{det}_{\mathbb{C}^n}(Y^- Y^+)$.

Theorem (Issa Karambal (2012a))

If $D(\lambda)$ is matrix of transmission coefficients:

 $d(\lambda) \equiv \det_{\mathbb{C}^n} D(\lambda)$

2 If
$$c(\lambda) \coloneqq \det_{\mathbb{C}^n} (Y_0^- Y_0^+)$$
 then

$$d(\lambda) = \frac{E(\lambda)}{c(\lambda)}$$

(ロ) (四) (三) (三) (三)

i.e. $\det_{\mathrm{F}}(L_0 + v(x) - \lambda \mathrm{id}) = \det_{\mathrm{F}}(L_0 - \lambda \mathrm{id}) \det_1(\mathrm{id} - K(\lambda) \circ v)$

Fredholm expansion

$$\det(\mathrm{id} + K) = \sum_{m \ge 0} \operatorname{tr} K^{\wedge m}$$

where

$$\operatorname{tr} \mathcal{K}^{\wedge m} = \sum_{i_{1} < \dots < i_{m}} \left\langle \varphi_{i_{1}} \wedge \dots \wedge \varphi_{i_{m}}, \mathcal{K} \varphi_{i_{1}} \wedge \dots \wedge \mathcal{K} \varphi_{i_{m}} \right\rangle_{\mathbb{H}^{\wedge m}}$$
$$= \sum_{i_{1} < \dots < i_{m}} \operatorname{det} \left[\left\langle \varphi_{i_{p}}, \mathcal{K} \varphi_{i_{q}} \right\rangle_{\mathbb{H}} \right]_{p,q \in \{1,\dots,m\}}$$
$$= \frac{1}{m!} \int_{\mathbb{R}^{m}} \operatorname{det} \left[G(x_{i}, x_{j}) \right] \mathrm{d}x_{1} \dots \mathrm{d}x_{m}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Bornemann 2010, Karambal 2012b

• Stiefel manifold:

 $\mathbb{V}(n,k) = \{k \text{-frames centred at the origin}\}.$

• Grassmann manifold:

 $Gr(n, k) = \{k \text{-dimensional subspaces of } \mathbb{C}^n\}.$

• Fibre bundle:

 $\pi \colon \mathbb{V}(n,k) \to \operatorname{Gr}(n,k) \cong \mathbb{V}(n,k)/\operatorname{GL}(k)$ $\pi \colon k\text{-frame} \mapsto \operatorname{spanning} k\text{-plane}$

Representation

Example: Gr(3,2)

$$\pi\colon Y=y_{\mathfrak{i}^\circ}u\mapsto y_{\mathfrak{i}^\circ}$$

Example coordinate patch:

$$y_{i^{\circ}} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ \hat{y}_{k+1,1} & \hat{y}_{k+1,2} & \cdots & \hat{y}_{k+1,k} \\ \hat{y}_{k+2,1} & \hat{y}_{k+2,2} & \cdots & \hat{y}_{k+2,k} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{y}_{n,1} & \hat{y}_{n,2} & \cdots & \hat{y}_{n,k} \end{pmatrix}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Local chart $\mathbb{U}_i \to \mathbb{C}^{(n-k)k}$ given by $y_{i^\circ} \mapsto \hat{y}$.

$$Y' = A(x, Y) Y$$

Substitute decomposition $Y = y_{i^{\circ}} u$:

$$y'_{\mathfrak{i}^{\circ}}u + y_{\mathfrak{i}^{\circ}}u' = (A_{\mathfrak{i}} + A_{\mathfrak{i}^{\circ}}\hat{y}) u$$

Project onto i°th and ith rows:

$$\hat{y}' = c + d\,\hat{y} - \hat{y}(a + b\,\hat{y})$$
 and $u' = (a + b\,\hat{y})\,u$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

where $a = A_{i \times i}$, $b = A_{i \times i^{\circ}}$, $c = A_{i^{\circ} \times i}$ and $d = A_{i^{\circ} \times i^{\circ}}$.

Boussinesq system

PDE:
$$u_{tt} = (1 - c^2) u_{xx} + 2c u_{xt} - u_{xxxx} - (u^2)_{xx}$$
.
Solitary waves with sech² profile.

Figure: Evans function for c = 1/4 with GGEM-RK and $x_* = 8$ (left panel). Entries of y_i for $\lambda = 0.15543141$ (right panel).

・ロト ・日下 ・ ヨト ・

Figure: Error in the eigenvalue for different choices of the matching point: N = 512.

Autocatalytic fronts

$$\partial_t u = \delta \Delta u + c \partial_x u - u v^m,$$

 $\partial_t v = \Delta v + c \partial_x v + u v^m.$

Figure: Error in the eigenvalue when $\delta = 0.1$ and m = 9: N = 256.

H 5

On $\mathbb{R}\times\mathbb{T}$ we have:

$$\mathsf{B}\Delta U + c\,\partial_x U + \mathsf{D} F(U_c)U = \lambda U.$$

On the Fourier modes $k = -K, -K + 1, \dots, K$:

$$\partial_x \hat{U}_k = \hat{P}_k,$$

 $\partial_x \hat{P}_k = \lambda B^{-1} \hat{U}_k + (k/\tilde{L})^2 \hat{U}_k - \sum_{\nu=-K}^K B^{-1} \hat{D}_{k-\nu} \hat{U}_{\nu} - c B^{-1} \hat{P}_k.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Substitute $U(x, y, t) = V(x - \gamma(t), y, t)$ into original PDE:

$$\partial_t V = B \Delta V + \gamma'(t) \partial_x V + F(V),$$

$$0 = \int_{\mathbb{R} \times \mathbb{T}} (\partial_x \hat{V}(x, y, t))^{\mathrm{T}} (\hat{V}(x, y, t) - V(x, y, t)) dx dy.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(Developed by Beyn and Thümmler.)

Wrinkled front: Evans function for $\delta = 2.5$

イロト イヨト イヨト イヨト

Wrinkled front: Evans function for $\delta = 3$

Κ	Eigenvalues (Evans function)				
3	0.001609	-0.000026	-0.000781	-0.001296	-0.000670
4	0.001609	0.000002	-0.000001	-0.000519	-0.000670
5	0.001589	0.000002	-0.000001	-0.000519	-0.000720
6	0.001589	-0.00002	-0.00003	-0.000515	-0.000720
7	0.001589	-0.00002	-0.00003	-0.000515	-0.000721
8	0.001589	-0.00002	-0.00003	-0.000515	-0.000721
9	0.001589	-0.00002	-0.00003	-0.000515	-0.000721
÷			:		
24	0.001589	-0.00002	-0.00003	-0.000515	-0.000721
	Eigenvalues (ARPACK)				
	0.001592	0.000000	0.000000	-0.000514	-0.000719

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Wrinkled front: contour integration

Figure: Left panel: contour. Right panel: $\arg(D(\lambda))$ when λ transverses the top half. $\delta = 3$.

イロト イロト イヨト イヨト

Singularities and Schubert cycles

Ledoux & M. 2009, Aljasser 2012 and Beck & M. 2012

Sufficient to compute the subspace spanned by $Y^- := [Y_1^- \cdots Y_k^-]$ With respect to $\mathbb{C}^n = \mathbb{C}^k \oplus \mathbb{C}^{n-k}$ graph of $y \in \operatorname{Lin}(\mathbb{C}^k; \mathbb{C}^{n-k})$, i.e.

$$\left\{ (\mathrm{id}_{\mathbb{C}^k} \oplus y)(z) \colon z \in \mathbb{C}^k \right\}$$

realizes such a k-plane.

 $\operatorname{GL}(\mathbb{C}^n)$ acts on $\operatorname{Gr}(n, k)$ via the Mobius map

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \cdot \begin{pmatrix} \mathsf{id} \\ y \end{pmatrix} = \begin{pmatrix} \mathsf{id} \\ (\gamma + \delta y)(\alpha + \beta y)^{-1} \end{pmatrix}$$

where $\alpha \in GL(\mathbb{C}^k)$, $\delta \in GL(\mathbb{C}^{n-k})$, $\beta \in \mathbb{C}^{k \times (n-k)}$ and $\gamma \in \mathbb{C}^{(n-k) \times k}$

Suppose $\mathbb{H}=\mathbb{H}_1\oplus\mathbb{H}_2$

eg.
$$\mathbb{H}_1 = H^{s+\frac{1}{2}}(\partial \Omega)$$
 and $\mathbb{H}_2 = H^{s-\frac{1}{2}}(\partial \Omega)$

 $Gr(\mathbb{H})$ is a Hilbert manifold modelled on $\mathbb{J}_2(\mathbb{H}_1; \mathbb{H}_2)$

For $y \in \mathbb{J}_2(\mathbb{H}_1; \mathbb{H}_2)$: $\left\{ (\mathrm{id}_{\mathbb{H}_1} \oplus y)(z) : z \in \mathbb{H}_1 \right\}$ carves a subspace of \mathbb{H}

 $\operatorname{GL}_{\operatorname{res}}({\mathbb H})$ acts on $\operatorname{Gr}({\mathbb H})$ via the Mobius map

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \cdot \begin{pmatrix} \mathsf{id} \\ y \end{pmatrix} = \begin{pmatrix} \mathsf{id} \\ (\gamma + \delta y)(\alpha + \beta y)^{-1} \end{pmatrix}$$

where $\alpha \in \operatorname{Fred}(\mathbb{H}_1)$, $\delta \in \operatorname{Fred}(\mathbb{H}_2)$, $\beta \in \mathbb{J}_2(\mathbb{H}_2; \mathbb{H}_1)$ and $\gamma \in \mathbb{J}_2(\mathbb{H}_1; \mathbb{H}_2)$.

- J.C., Alexander, R. Gardner, and C.K.R.T. Jones, A topological invariant arising in the stability analysis of traveling waves, J. Reine Angew. Math. 410 (1990), pp. 167–212.
- A.Y. Aljasser, Computing the Evans function for the stability of combustion waves, PhD Thesis (Heriot–Watt), 2012.
- J. Deng and C.K.R.T. Jones, Multi-dimensional Morse index theorems and a symplectic view of elliptic boundary value problems, Transactions of the AMS, 2009.
- J. Humpherys and K. Zumbrun, An efficient shooting algorithm for Evans function calculations in large systems, Physica D 220 (2006), pp. 116–126.

- I. Karambal, The Evans function and operator determinants, submitted to Physica D, 2012a.
- 2 I. Karambal, manuscript in preparation, 2012b.
- V. Ledoux, S.J.A. Malham and V. Thümmler, Grassmannian spectral shooting, Mathematics of Computation 79 (2010), pp. 1585–1619.
- V. Ledoux, S.J.A. Malham, J. Niesen and V. Thümmler, *Computing stability of multi-dimensional travelling waves*, SIADS 8(1) (2009), pp. 480–507.