Evans function review

Part I: History, construction, properties and applications

Strathclyde, April 18th 2005
Simon J.A. Malham
http://www.ma.hw.ac.uk/~simonm/talks/

Acknowledgments
T.J. Bridges, C.K.R.T. Jones, M. Marletta \& B. Sandstede.

Goal:

Construct the discrete spectrum of general linear differential operators with associated boundary conditions.

Outline

- Introduction: Sturm-Louiville problems
- Miss-distance function
- Discretization vs shooting
- Example application: reaction-diffusion systems
- Evans function: definition and properties
- Key landmarks: advances and applications
- Further refinements and numerical construction

1 Introduction

Sturm-Liouville problems I

$$
-\frac{\mathrm{d}}{\mathrm{~d} x}\left(p(x) \frac{\mathrm{d} u}{\mathrm{~d} x}\right)+q(x) u=\lambda w(x) u
$$

on $a \leq x \leq b$, plus (regular) boundary conditions

$$
\begin{aligned}
a_{1} u(a) & =a_{2} p(a) u^{\prime}(a), \\
b_{1} u(b) & =b_{2} p(b) u^{\prime}(b) .
\end{aligned}
$$

Liouville normal form (Schrödinger equation):

$$
-u^{\prime \prime}+q(x) u=\lambda u
$$

plus boundary conditions.

Sturm-Liouville problems II

Equivalent first order system:

$$
U^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
q(x)-\lambda & 0
\end{array}\right) U,
$$

plus boundary conditions.
Values of λ for which there is a non-trivial solution subject to the boundary conditions is an eigenvalue and corresponding solutions eigenfunctions.

Schrödinger equation: energy levels, wave functions, bound states and resonances.

Sturm-Liouville problems III

The linear operator

$$
L \equiv \frac{1}{w(x)}\left(-\frac{\mathrm{d}}{\mathrm{~d} x}\left(p(x) \frac{\mathrm{d}}{\mathrm{~d} x}\right)\right)+q(x)
$$

on $a<x<b$ is formally self-adjoint wrt $w(x)$.

- eigenvalues are simple
- $\lambda_{0}<\lambda_{1}<\lambda_{2}<\ldots$
- eigenfunctions form orthogonal set

For two solutions

$$
L u=\lambda u \quad \text { and } \quad L v=\lambda v
$$

for same value of λ, the Wronskian

$$
W(u, v) \equiv p v^{\prime} u-p u^{\prime} v=\mathrm{constant} .
$$

Shooting: basic idea

Sturm-Liouville eigenvalue problem solved over $[a, b]$ for a succession of values of λ which are adjusted until the boundary conditions at both ends are satisfied \Rightarrow we've found an eigenvalue.

Simplest version

- Choose values of $u(a)$ and $p(a) u^{\prime}(a)$ satisfying the left-hand boundary conditions

$$
p(a) u_{\mathrm{L}}^{\prime}(a)=a_{1} \quad u_{\mathrm{L}}(a)=a_{2},
$$

and solve this initial value problem $\Rightarrow u_{\mathrm{L}}(x, \lambda)$.

- At $x=b$ define the miss-distance function

$$
D(\lambda) \equiv b_{1} u_{\mathrm{L}}(b, \lambda)-b_{2}\left(p u_{\mathrm{L}}^{\prime}\right)(b, \lambda)
$$

Alternative

- Can shoot from both ends towards a middle matching point $x=c \in[a, b]$-with the right-hand solution satisfying

$$
p(b) u_{\mathrm{R}}^{\prime}(b)=b_{1} \quad u_{\mathrm{R}}(b)=b_{2} .
$$

- Natural choice for miss-distance function is the Wronskian determinant

$$
D(\lambda) \equiv \operatorname{det}\left(\begin{array}{cc}
u_{\mathrm{L}}(c, \lambda) & u_{\mathrm{R}}(c, \lambda) \\
p u_{\mathrm{L}}^{\prime}(c, \lambda) & p u_{\mathrm{R}}^{\prime}(c, \lambda)
\end{array}\right) .
$$

- This is zero when multiplying u_{R} by a suitable scalar factor makes it a continuation of u_{L} for $x \geq c \Rightarrow$ we have an eigenfunction, λ an eigenvalue.
- i.e. u_{R} and u_{L} are linearly dependent.
- $D(\lambda)$ is independent of c by the constancy of the Wronskian; however choice of c does have numerical accuracy implications.

Prüfer methods, Pruess methods (1975).

Non-selfadjoint Sturm-Liouville problems
Greenberg \& Marletta (2001):

$$
p_{2 m}(x) u^{(2 m)}+\cdots+p_{0}(x) u=\lambda w(x) u
$$

plus $2 m$ separated boundary conditions

$$
\sum_{j=0}^{2 m-1} a_{i j} y^{(j)}(a)=0, \quad \sum_{j=0}^{2 m-1} b_{i j} y^{(j)}(b)=0
$$

$i=1, \ldots, m$.

- Reformulate as a first order system

$$
\binom{U}{V}^{\prime}=A(x, \lambda)\binom{U}{V}
$$

with boundary conditions (in matrix form)

$$
a_{1} U(a)+a_{2} V(a)=O \quad b_{1} U(b)+b_{2} V(b)=O .
$$

- Natural choice for miss-distance function is the Wronskian determinant

$$
D(\lambda) \equiv \operatorname{det}\left(\begin{array}{ll}
U_{\mathrm{L}}(c, \lambda) & U_{\mathrm{R}}(c, \lambda) \\
V_{\mathrm{L}}(c, \lambda) & V_{\mathrm{R}}(c, \lambda)
\end{array}\right)
$$

2 Discretization vs shooting

Discretization of L using finite differences or finite elements \Rightarrow matrix eigenvalue problem.

Advantages

- Simple to set up; especially on a finite interval and a uniform mesh.
- Many applications potential is well behaved and methods competitive.
- Extrapolation and sophisticated correction techniques \Rightarrow even higher eigenvalues can be computed efficiently, error $\mathcal{O}\left(\lambda^{4} h^{2}\right) \rightarrow \mathcal{O}\left(\lambda^{2} h^{4}\right)$.

Disadvantages

- Replace an infinite dimensional problem by a finite dimensional one (dimension $=\#$ of mesh points).
- Spurious eigenvalues (can be excised).
- Ill-suited to singular problems.
- Mesh reduction very expensive (unless adaptive variable mesh used).

Shooting methods

- Higher approximations with uniform error bounds.
- Higher order methods.
- More versatility.

3 Example application: reaction-diffusion systems

$$
U_{t}=B U_{\xi \xi}+c U_{\xi}+F(U)
$$

Example: Autocatalytic two-component system

$$
\begin{aligned}
u_{t} & =\delta u_{\xi \xi}+c u_{\xi}-u v^{m} \\
v_{t} & =v_{\xi \xi}+c v_{\xi}+u v^{m}
\end{aligned}
$$

Front-type boundary conditions

$$
\begin{array}{ll}
(u, v) \rightarrow(1,0) & \text { as } x \rightarrow-\infty \\
(u, v) \rightarrow(0,1) & \text { as } x \rightarrow+\infty
\end{array}
$$

Travelling wave in moving frame

$$
U(\xi, t)=U_{c}(\xi)
$$

Stability of travelling waves

Perturbation ansatz:

$$
U(\xi, t)=U_{c}(\xi)+\hat{U}(\xi) \mathrm{e}^{\lambda t}
$$

Plugging this into the reaction-diffusion system

$$
U_{t}=B U_{\xi \xi}+c U_{\xi}+F(U)
$$

and ignoring quadratic and higher powers in \hat{U} yields

$$
\lambda \hat{U}=[\underbrace{B \partial_{\xi \xi}+c I \partial_{\xi}+D F\left(U_{c}(\xi)\right)}_{L}] \hat{U}
$$

with $\hat{U}(\xi) \rightarrow 0$ as $\xi \rightarrow \pm \infty$.

Reformulation

$$
Y^{\prime}=A(\xi, \lambda) Y
$$

where $Y=\left(\hat{U}, \hat{U}_{\xi}\right)$, and

$$
A(\xi, \lambda)=\left(\begin{array}{cc}
O & I \\
B^{-1}\left(\lambda-D F\left(U_{c}(\xi)\right)\right) & -c B^{-1}
\end{array}\right)
$$

Spectrum of the linear operator I

For a general non-selfadjoint linear differential operator L :

- Resolvent operator:

$$
R_{\lambda} \equiv(L-\lambda I)^{-1}
$$

- Resolvent set:

$$
r(L) \equiv\left\{\lambda \in \mathbb{C}:\left\|R_{\lambda}\right\|<\infty\right\}
$$

- Spectrum:

$$
\sigma \equiv \mathbb{C} \backslash r(L)
$$

- Discrete spectrum (eigenvalues):

$$
\sigma_{\text {discrete }} \equiv\left\{\lambda \in \sigma: R_{\lambda} \text { doesn't exist }\right\}
$$

(Sandstede 1990)

Spectrum of the linear operator II

- Essential spectrum:

$$
\sigma_{\mathrm{ess}} \equiv \sigma \backslash \sigma_{\text {discrete }}
$$

- Further:

$$
\sigma_{\text {ess }}=\sigma_{\text {continuous }} \cup \sigma_{\text {residual }},
$$

where

$$
\sigma_{\text {continuous }} \equiv\left\{\lambda \in \mathbb{C}: R_{\lambda} \text { exists, not bdd }\right\}
$$

Linear stability and nonlinear stability
If

- 0 is a simple eigenvalue $\left(\partial_{\xi} U_{c}(\xi)\right)$;
- σ strictly in left-half λ-plane;
- L is sectorial;
then linear stability \Longrightarrow orbital stability (Henry 1981).
(Relaxed for Fitzhugh-Nagumo systems; Evans 1972).

Spectrum structure

4 The Evans function

Reformulated version

$$
Y^{\prime}=A(\xi, \lambda) Y
$$

with domain $\mathbb{L}^{2}(\mathbb{R})$.

Limiting systems

$$
A_{ \pm}(\lambda)=\lim _{\xi \rightarrow \pm \infty} A(\xi, \lambda)
$$

- Assume A_{-}has a k-dimensional unstable manifold
- A_{+}has an $(2 n-k)$-dimensional stable manifold
- Look for intersection under the "evolution" of the BVP

Wronskian

$$
\begin{aligned}
D(\lambda) & =\mathrm{e}^{-\int_{0}^{\xi} \operatorname{Tr} A(x, \lambda) \mathrm{d} x} \cdot \operatorname{det}\left(Y_{1}^{-}(\xi ; \lambda) \cdots Y_{k}^{-}(\xi ; \lambda) Y_{k+1}^{+}(\xi ; \lambda) \cdots Y_{2 n}^{+}(\xi ; \lambda)\right) \\
& =\mathrm{e}^{-\int_{0}^{\xi} \operatorname{Tr} A(x, \lambda) \mathrm{d} x} \cdot\left(Y_{1}^{-} \wedge \cdots \wedge Y_{k}^{-} \wedge Y_{k+1}^{+} \wedge \cdots \wedge Y_{2 n}^{+}\right) \\
& \equiv \mathrm{e}^{-\int_{0}^{\xi} \operatorname{Tr} A(x, \lambda) \mathrm{d} x} \cdot\left(U_{-}(\xi ; \lambda) \wedge U_{+}(\xi ; \lambda)\right)
\end{aligned}
$$

(Prefactor ensures ξ-independence, from Abel's theorem.)

Properties of the Evans function
(Evans 1975; Alexander, Gardner \& Jones 1990)

- Zeros correspond to eigenvalues
- Order of the zero corresponds to algebraic multiplicity
- Analytic to the right of the essential spectrum
- Can use argument principle to determine number of zeros in the right half plane

Via transmission coefficients

(Evans 1975; Jones 1984, Swinton 1992)

- $Y_{i}^{ \pm} \sim \eta_{i}^{ \pm} \mathrm{e}^{\mu_{i}^{ \pm} \xi}$ as $\xi \rightarrow \pm \infty, i=1, \ldots, 2 n$.

$$
\begin{aligned}
& Y_{1}^{-}(+\infty) \sim b_{1,1} \eta_{1} \mathrm{e}^{\mu_{1}^{+} \xi}+\cdots+b_{1,2 n} \eta_{1} \mathrm{e}^{\mu_{2 n}^{+} \xi} \\
& \vdots \\
& Y_{k}^{-}(+\infty) \sim b_{k, 1} \eta_{1} \mathrm{e}^{\mu_{1}^{+} \xi}+\cdots+b_{k, 2 n} \eta_{1} \mathrm{e}^{\mu_{2 n}^{+} \xi}
\end{aligned}
$$

- $c_{1} Y_{1}^{-}+c_{2} Y_{2}^{-}+\cdots c_{k} Y_{k}^{-} \rightarrow$

$$
\tilde{D}(\lambda) \equiv \operatorname{det}\left(\begin{array}{ccc}
\left(Y_{1}^{+}(\xi ; \lambda)\right)^{\dagger} Y_{1}^{-}(\xi ; \lambda) & \cdots & \left(Y_{k}^{+}(\xi ; \lambda)\right)^{\dagger} Y_{1}^{-}(\xi ; \lambda) \\
\vdots & & \vdots \\
\left(Y_{1}^{+}(\xi ; \lambda)\right)^{\dagger} Y_{k}^{-}(\xi ; \lambda) & \cdots & \left(Y_{k}^{+}(\xi ; \lambda)\right)^{\dagger} Y_{k}^{-}(\xi ; \lambda)
\end{array}\right) .
$$

- Equivalent to Evans function up to an analytic multiplicative term (Bridges \& Derks 1999).
- $k \times k$ submatrix of Dyson S-matrix (from radiation theories of Tomonaga, Schwinger \& Feynman).

Asymptotic behaviour $|\lambda| \rightarrow \infty$

- Rescale $z=\sqrt{|\lambda|} \xi \Longrightarrow$

$$
Y^{\prime}=\tilde{A}(z, \lambda) Y
$$

where

$$
\tilde{A}(z, \lambda)=\left(\begin{array}{cc}
O & I \\
B^{-1}\left(I \mathrm{e}^{\mathrm{i} \arg \lambda}-D F\left(U_{c}(z / \sqrt{|\lambda|})\right) /|\lambda|\right) & -c B^{-1} / \sqrt{|\lambda|}
\end{array}\right) .
$$

- And so as $|\lambda| \rightarrow \infty$

$$
\tilde{A}(z, \lambda) \rightarrow A_{\infty}=\left(\begin{array}{cc}
O & I \\
\mathrm{e}^{\mathrm{i} \arg \lambda} B^{-1} & O
\end{array}\right) .
$$

- For example, as $\lambda \rightarrow \mathrm{i} \infty$

$$
D(\mathrm{i} y) \rightarrow-4 \mathrm{i} \sqrt{\delta}
$$

5 Key landmarks

J.W. Evans 1972(I,II,III), 1975(IV)

- Nerve axon equations (Hodgkin-Huxley \rightarrow Fitzhugh-Nagumo):

$$
\begin{aligned}
u_{t} & =u_{x x}+f(u, V), \\
V_{t} & =F(u, V) .
\end{aligned}
$$

- Construction of $D(\lambda)$ and analytical determination of stability via $D^{\prime}(0)$ and $D(\infty)$.

Evans \& Feroe 1977

- Numerical construction of $D(\lambda)$.
- Introduction of winding number

$$
\mathcal{W}(\Gamma) \equiv \frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{D^{\prime}(\lambda)}{D(\lambda)} \mathrm{d} \lambda .
$$

Spectrum structure

C.K.R.T. Jones 1984

- Nerve axon equations (Fitzhugh-Nagumo):

$$
\begin{aligned}
u_{t} & =u_{x x}+f(u)-w \\
w_{t} & =\epsilon(u-\gamma w)
\end{aligned}
$$

in asymptotic state $\epsilon \ll 1, \gamma \ll 1$;

- Maximum principles difficult to apply.
- Calculated winding number in asymptotic limit, establishing stability.

Alexander, Gardner \& Jones 1990
The bees knees of Evans function papers, introducing:

- generalization to semi-linear parabolic systems;
- projection spaces as an analytic tool;
- topological invariant Chern number with property

$$
\mathcal{W}(D(\Gamma))=c_{1}(\mathcal{E}(\Gamma))=\# \text { evals inside } \Gamma
$$

where the augmented unstable bundle

$$
\begin{aligned}
\mathcal{E}(\Gamma) & =\mathcal{E}_{\mathrm{S}} \oplus \mathcal{E}_{\mathrm{F}}, \\
c_{1}(\mathcal{E}(\Gamma)) & =c_{1}\left(\mathcal{E}_{\mathrm{S}}\right)+c_{1}\left(\mathcal{E}_{\mathrm{F}}\right) ;
\end{aligned}
$$

- rigorous treatment of singular perturbation problems, computed the invariant for the reduced fast and slow systems (easy).

Terman 1990

- Stability of planar waves to combustion model system in the high activation energy limit.
- Asymptotic expansion of the Evans function in transverse wavenumber and Lewis number.
- Derived the asymptotic neutral stability curves that had hitherto been only established numerically.

Pego \& Weinstein 1992

- Stability of solitary waves for generalized

1. $\mathrm{KdV}: \partial_{t} u+\partial_{x} f(u)+\partial_{x}^{3} u=0$
2. $\mathrm{BBM}: \partial_{t} u+\partial_{x} u+\partial_{x} f(u)-\partial_{t} \partial_{x}^{2} u=0$
3. Boussinesq: $\partial_{t}^{2} u-\partial_{x}^{2} u+\partial_{x}^{2} f(u)-\partial_{t}^{2} \partial_{x}^{2} u=0$

- Each admits a solitary wave, e.g. with $f(u)=u^{p+1} /(p+1)$:

$$
u_{c}(x)=\alpha \operatorname{sech}^{2 / p}(\gamma x) .
$$

- Establish, if normalize $D(\lambda) \rightarrow 1$ as $|\lambda| \rightarrow \infty$:

1. $D^{\prime}(0)=0$;
2. $\operatorname{sgn} D^{\prime \prime}(0)=\operatorname{sgn} \frac{\mathrm{d}}{\mathrm{d} c} \int_{-\infty}^{\infty} \frac{1}{2} u_{c}^{2}(x) \mathrm{d} x$.

- $\Longrightarrow u_{c}$ unstable when $p>4$.

6 Conclusion

- The Evans function stability method provides a versatile method for the location of the discrete spectrum associated with planar travelling waves.
- Better control over accuracy, convergence and asymptotics of discrete spectrum.
- Stability of travelling waves with full two dimensional structure?
- Resonance poles (Chang, Demekhin \& Kopelevich, 1996).

7 Example

8 Next week: Numerical construction

- Integrating along unstable manifolds.
- Projection spaces \& exterior product representation.
- Projection methods?
- What is the best integrator?
- Preserving Grassmannians.
- Precomputation.
- Scalar reaction-diffusion problems.

