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Abstract

This Thesis presents an analytic examination of the classical, incompressible Navier-Stokes
equations using the techniques of elementary functional analysis to establish new results in the
theory of attractors and length scales. This approach, initiated by Leray (1934) and expounded
in the last decade by Constantin, Foias, Temam and others, provides us with the necessary tools
in order to fully understand and appreciate these equations from the mathematical point of
view.

Firstly, the more abstract ideas/notions related to a general evolution equation are outlined
(including absorbing sets and attractors) and our objectives are established within this general
framework. In addition, a more detailed (and rigorous) discussion specific to the structure and
properties of Sobolev spaces as well as a full account of the Gagliardo-Nirenberg inequality are
given. Both of these, with some new extended results, are essential to the work which follows.

Secondly, the theory outlined above is now specialized to the Navier-Stokes equations and also
corresponding well-known results/properties are shown — with a few alternative proofs provided.
Importantly, the ‘Ladder Theorem’ is introduced.

Thirdly, we generalize the analytic structure of the ladder to a ‘Lattice Theorem’ in order
to look for the minimum assumptions necessary to show the existence of an attractor for the
d = 3 Navier-Stokes equations consisting of C* functions. The lattice approach reproduces the
classical L3+¢ (e > 0) result due to Serrin, and also provides us with an alternative assumption
for C® regularity of the attractor: that of assuming ||P}|2(1+s) (for any § such that 1/5 < § < 1)
is uniformly bounded, where P is the pressure field.

Fourthly, we define a natural set of length scales which are more sensitive to intermittent
fluctuations (and so much shorter) than the Kolmogorov length and are therefore a more realistic
minimum length scale. We determine how these new scales compare with those that can be
derived from the attractor dimension or the number of determining modes.

Lastly, a similiar analytic approach is initiated for the MHD equations.
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Chapter 1

Introduction

The study and research of this thesis concerns the aspects of regularity (smoothness) of the
solution of the incompressible Navier-Stokes equations and also a natural definition for a min-
imum length scale for the fluid flow. The incompressible Navier-Stokes equations are a set
of nonlinear Partial Differential Equations (PDEs) which describe the (Eulerian formulation)
evolution of the velocity field u = u(z,t) at a point & = (z1,...,24) € @ C R? and time ¢t € R,
where d = 2 or 3 is the space dimension. For a Newtonian (i.e. with ‘stress’ linearly propor-
tional to ‘rate of strain’) and isotropic fluid, with P = P(z,t) as the pressure, we normally
write them as
Gu+u-Vu=vAu—~VP+f

divu =0

where f is the ‘external forcing’ and v is the ‘viscosity’ (dissipa,tidn coefficient). For their simple
derivation see for instance, Batchelor [8], Tritton [89] or any other elementary fluid mechanics
textbook.

The examination of these equations provided here is purely analytical and at all times from a
strictly mathematical (as opposed to physical) point of view.

1.1 Existence, Uniqueness, Regularity and Attractors

A solution to the general set of equations, under realistic initial and boundary conditions, has
not been found in d = 2 or 3. Solutions which have been found are highly specialized meaning
that they are only valid under severe restrictions to the general problem - for example, we
can solve the ‘Stokes problem’, but this is a stationary, linear version/simplification of the
Navier-Stokes equations.

So, for the evolutionary, nonlinear incompressible Navier-Stokes equations (d = 2, 3) we must
address the questions:

e Does a solution exist and on what interval of time?
e Is that solution unique?

In order to (at least partially) answer these questions, it is necessary to apply the theory and
ideas of elementary functional analysis and in particular, determine the various function spaces
in which the solution can be proved to lie. Subsequently, a third important question is very
relevant:

13



14 CHAPTER 1. INTRODUCTION

e Is that solution regular (i.e. smooth) ?

Leray [57] (1934) proved that “weak” solutions exist for the incompressible Navier-Stokes equa-
tions (d = 2, 3). Such solutions allow singularities in the velocity or vorticity (curl of the veloc-
ity) fields. The functional-analytic approach he initiated has in recent years been extended by
Peter Constantin, Ciprian Foias, Roger Temam and many others.

In two dimensions, we can prove the existence of “strong” solutions (which we can subsequently
show as being regular and smooth) for the incompressible Navier-Stokes initial value problem
on all finite intervals of time [0, T, provided the initial data are sufficiently smooth.

In three dimensions, such “strong” solutions are only known to exist on some finite interval
[0,7*], T* depending on the initial conditions. For this case, we might ask ourselves the
questions:

e What are the assumptions we must make in order to prove the existence of strong solutions
for all time? Our aim would be to try to reduce these assumptions (eventually) to some
information which is already known to be true for the Navier-Stokes equations.

e Having shown, under these assumptions, the existence of strong solutions for all finite-
time intervals [0,T], and so consequently (as we will see later) these solutions will be
regular, how does the solution behave as ¢ — co? Does the solution tend to some compli-
cated attracting set? We might expect, by analogy with evolutionary, nonlinear Ordinary
Differential Equations (ODEs), the solution (in certain parameter regimes) to be sensitive
to initial conditions and so the long-time behaviour of the solution could appear chaotic.

The questions of finite-time as well as long-time (¢ — oo) regularity are obviously related to
giving a qualitative as well as quantative description of the solution (which we are unable to
solve analytically).

Chapters 2 and 3 of this thesis outline the functional-analytic techniques and framework we
need in order to tackle the questions posed above, which we try to answer in Chapters 4 and 5.

In Chapter 2, we introduce the semi-group of operators, the concepts of absorbing sets and
attractors, the theory of linear operators and discuss techniques for showing the existence of a
‘Global Attractor’.

The essentials of functional analysis are provided in the first part of Chapter 3. However, the
main result of Chapter 3 is the proof of the Gagliardo-Nirenberg inequality in terms of semi-
norms for mean-zero and space-periodic functions which we will need in the following chapters.
The proof is non-trivial, and some new results are presented.

In Chapter 4, we provide a detailed account of the exact setting in which we are to study the
incompressible Navier-Stokes equations and outline the main results proved for them so far.
We also introduce the ‘Ladder Theorem’ (an infinite set of a-priori estimates) and we examine
the assumptions necessary to prove (for d = 3) regular solutions on all finite intervals of time as
well as in the attractor. The concept of a ladder theorem was first introduced by Bartuccelli,
Constantin, Doering, Gibbon and Gisselfalt [3] for the Complex Ginzburg-Landau equation,
and later applied to the Navier-Stokes equations by Bartuccelli, Doering and Gibbon [4].

A generalization of the ‘Ladder Theorem’ which we shall call the ‘Lattice Theorem’, is intro-
duced in Chapter 5. We attempt to relax the minimum assumptions we must make in order
to prove regular solutions in three dimensions for all time, but instead, we reproduce the well-
known result of Serrin [79] — which essentially says that provided we assume the velocity field to
be uniformly bounded in a particular function space, then we can prove the existence of strong,
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regular solutions. However, we are able to provide ‘alternative’ assumptions via the pressure
field and open a new avenue of attack via some further sharper attractor estimates.

At this point the examination of the existence of regular solutions ends.

1.2 Turblilence, Relevant Modes and Minimum Length
Scales

In the second part of this thesis, we address the notion of fluid turbulence.

The incompressible Navier-Stokes equations are the simplest general equations describing in-
compressible fluid flow such as water or oil flow. With appropriate initial and boundary con-
ditions, they apply to a large variety of flow situations which are extended further when we
couple them with the field equations describing other naturally occurring physical phenomena
— for example convection systems, magneto-hydrodynamic flows, thermohydraulic situations,
in meterological applications and of course aeronautical flows.

Turbulent behaviour (highly irregular variations in the velocity field) is obvious in a large
number of such flows — for example in fluid mixing, convection and flows around ships.

Such behaviour is more prevalent in low viscosity as opposed to high viscosity (respectively,
high and low Reynolds number) flows. Low Reynolds number flows are said to be laminar ie.
they exhibit regular and predictable variations in space and time.

Chapter 6 addresses the problem of defining minimum length scales for turbulent flow. Firstly,
we review the existing theories on turbulence and in particular the scaling arguments of Kol-
mogorov which give rise to the Kolmogorov dissipation scale. After discussing the limitations
of this scaling theory and some more recent alternative theories that have been suggested, we
give a definition for a length scale via the number of relevant (Fourier) modes, which are deter-
mined via a ‘Fourier splitting’ argument. We show how the classical Kolmogorov dissipation
scale is only relevant for laminar (or quiescent) flows while the length scale we have defined
includes a term which might account for observed excursions from Kolmogorov scaling theory
for strongly turbulent flows. We then compare our length scale estimates with estimates for
length scales provided via the attractor dimension and the number of determining modes. Such
a minimum scale is very important to numerical analysts who are trying to simulate ‘real’ flows
computationally and are therefore interested in ‘resolving’ minimum relevant scales for accurate
numerical schemes.

1.3 Magneto-Hydrodynamics

In the last chapter we derive the general form of the Magneto-Hydrodynamics (MHD) equations
and we show how we can apply similiar techniques to them. We derive some a-priori estimates
which include an ‘MHD Ladder Theorem’ for smooth solutions, and set the path for a further
in-depth investigation of these equations.
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Chapter 2

The General Framework

In this chapter we introduce the abstract theory necessary for dealing with a general evolution
equation. We assume that we have shown the existence and uniqueness of the solution, which
needs to be proved for each Partial Differential Equation separately. With our ultimate goal
being to determine the long-time behaviour of the solution, we outline the concepts of absorb-
ing sets, attractors and their regularity, which we will eventually apply to the Navier-Stokes
equations.

I have based a lot of the material of this chapter on Temam [88].

2.1 The General Evolution Equation

Consider the general form of an evolution equation:
du(t)
U(O) = Up

where the solution u = u(t) belongs to a function space H (the time-like variable ¢ varying
continuously on some interval C R) and F is a mapping from H into itself.

If the Initial Value Problem (IVP) is well-posed, then we know u(t) € H, V¢ > 0 and can give
a complete description of the dynamical system at any time — our interest is specific to the
long-time (¢ — co) behaviour of the solution u(t).

Usually, H will be a function space defined on © C R? (and in most instances a Banach or
Hilbert space), however at this point, we need only assume H to be an arbitrary metric space
(with metric p(-,-)).

2.2 Semi-groups of Operators

Under the assumption that we know the solution u = u(t) of such a dynamical system, i.e.
the initial value problem (2.1) is well-posed (see later theory for non-well-posed problems), we
can then formulate the evolution of the system by u(f) = S(t)uo, where {S(t),t > 0} are a
semi-group of operators (on H) which satisfy the usual semi-group properties:

Sit+s)=5(@)-S(s) Vst2>0, (2.2)

17



18 CHAPTER 2. THE GENERAL FRAMEWORK

S(0)=1Ip (in H) ' (2.3)
and we will also assume

S(t) : H — H is a continuous operator for all ¢ >0 . (2.4)

Some Basic Definitions and Results:
1. If the S(¢) are injective then (2.1) have the “backward uniqueness” property.
2. The orbit (or trajectory) starting at ug = {U S(t)ug} = positive orbit.
>0

3. The w-limit set of up € H 1s

w(uo) = () |J SW)wo , (2.5)

s>20t>s

and similarly, the w-limit set of 4 C H is

wd) = JSwA. (2.6)

s20t>s
where the closures are in H.

4. A set X C H is positively invariant for the semi-group S(t) if S(t)X C X, V¢ > 0;
negatively invariant if SZ)X D X, V¢ > 0; and a (functional) invariant set for the
semi-group S(¢) if SG)X =X, Vt>0.

2.3 Absorbing Sets and Attractors

If p(z,A) = ;lélfl p(z,y) (where p(-,-) is the metric for H) we define:

Definition 2.3.1 If A C H satisfies
1. S@)A=A, Vi>0 (ie itis an invariant set)
2. There exists an open neighbourhood U of A, such that:
Yuo €U, p(S{t)ug,A)—0 as t— o0 (2.7)

then A is said to be an attractor (set) - “A attracts the poinis of U”.

Definition 2.3.2 We say A C H uniformly attracts the points of a set BC U if

sup p(S(t)ug,A) =0 as t — o0 (2.8)
upg€B

“A uniformly atiracis B” or simply, “A atiracts B”.
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Definition 2.3.3 The semi-group {S(t) : t > 0} possesses a global (or universal, mazimal)
attractor A C H, if A is a compact atiractor that attracts the bounded sets of H.

A global attractor is unique, and maximal for its inclusion in the set of bounded attractors and
bounded invariant sets.

Definition 2.3.4 Suppose BC H and U D B is open. Then B is an absorbing set in U if,
Y By CU, By bounded, 3 T1(By) such that ¥Vt > T1(Bo), S(t)Bo C B (2.9)

the orbit of any bounded set of U enters B after a certain time (“B absorbs the bounded sets of
u”).

A sufficient condition for the existence of an absorbing set is the existence of a global attractor.
However, we are interested in the reverse implication, and in order to prove the existence of a
global attractor when the existence of an absorbing set is known, we need to make the following
extra assumption about the semi-group S(1):

Definition 2.3.5 The operators S(t) are uniformly compact fort large if

V B bounded, 3 To(B) such that U S(t)B is relatively compact in H . (2.10)
t_>_To

Temam [88] thus provides us with the following theorem:

Theorem 2.3.1 Suppose H is a metric space, and the operators S(t) are given end sat-
isfy (2.2)-(2.4) and (2.10). Also, assume there exists a bounded set B C U (U open) such
that B is absorbing in U.

Then A = w(B) is a compact attractor (which attracts the bounded sets of U ), and it is mazimal
for the inclusion relation among the bounded attractors in U.

Further, if H is a Banach space and U convez and connected, then A is also connected.

2.4 Operators and Imbeddings

Let f be an operator from the normed space X into the normed space Y.
Definition 2.4.1 f is called compact if f(A) is pre-compect (= f(A) is compact) in Y
whenever A is bounded in X.

(A bounded set in a normed space is one which is contained in the ball B(0, R) (centre 0, radius

R) for some R.)
- f is said to be bounded, if f(A) is bounded in Y whenever A is bounded in X.
If f is continuous and compact, then f is said to be completely continuous.

Remark: We can immediately deduce: Every compact operator is bounded; and since every
bounded linear operator is continuous, every compact linear operator is completely continuous.
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Definition 2.4.2 If

1. The normed space X is a vector subspace of the normed space Y,

2. The operator Ip : X — Y such that Ipz =z VY £ € X 1s continuous
then X is said to be imbedded in Y (we write X —7Y ).

Remark: Since the identity operator outlined in 2 is linear, then 2 is equivalent to the assertion:
there exists a constant K such that

Ipzlly < Kllzllx VYzeX. (2.11)

If Ip (imbedding operator) is compact, X is compactly imbeddedin Y.

Definition 2.4.3 A subset A of a normed space X is said to be dense in X if eachz € X is
a limit point of A.

Remark: Suppose the normed spaces X, Y and Z are such that X CY C Z. Then clearly, if
we know the inclusion X C 7 is dense, then the inclusion Y C Z is also dense.

2.5 Linear Operators

2.5.1 Linear Operators and Bi-linear Forms
We assume V to be an arbitrary Hilbert space with scalar product (-,-})v = ((+,-)) and corre-
sponding norm || - ||v. Let V' signify the dual of V.

We introduce another Hilbert space H, with dual H', scalar product (-, )g and norm || - ||#,
such that V' C H, where the imbedding is dense and continuous.

i.e. Ip : V — H is a continuous injection.

From the theory of dual spaces, we can infer that the adjoint operator, I : H' — V', is
injective, and I (H') = W densely imbedded in V".

The Riesz Representation Theorem allows us to identify H and H’ so that we can write
VCH=HCV (2.12)

where the injections are continuous and each space is dense in the following.

The inclusions (2.12) imply that the scalar product of f € H and v € V in H is identical to
the scalar product of f and u in the duality between V'’ and V (denoted (-, -)),

(fuy=(f,w)g VYFEH ueV (2.13)

Let us, for the moment concentrate on the space V.

Suppose we are given a : V x V — R, a bi-linear continuous form (hence it is linear, continuous
with respect to each of its dependents on V).
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So for all u € V, the mapping v — a(u, v) is linear, continuous from V' into R and identifies an
element £, € V.

If we denote by A the mapping (from V into V)
u v by (2.14)

then A € £(V,V"’), i.e. a linear, continuous operator from V' into V’. Further, there exists
M < oo such that (since a is a bi-linear continuous form)

la(u, v)| < Mllullvijvlly VYuveV (2.15)

= ”A”[,(V,V') <M. (2.16)

Hence to each bi-linear, continuous form a on V' x V we can associate a linear, continuous
operator A: V — V',

Also, given a linear, continuous operator A € L(V,V’), set
a(u,v) = (Au,v) Vu,veV (2.17)

i.e. we can associate A4 with a bi-linear, continuous foomaeon V x V.

Definition 2.5.1 The bi-linear form a is coercive 4f

3 o > 0 such that a(u,u) > oflully VueV. (2.18)

Theorem 2.5.1 (Lax-Milgram) Ifa is a bi-linear, continuous, coercive form on V xV, then
A is an isomorphism from V onto V'.

In other words (under the assumptions outlined), for each linear continuous form £, € V', there
exists a unique u € V such that a(u,v) = (fy,v), Vv EV.

Noting the inclusions (2.12) above, and assuming the form a to be continuous and coercive, it
is natural to define the domain of A in H as

DA ={ucV: Aue H}ICV. (2.19)

We can now consider A as a linear, unbounded operator from D(A) to H, which (from (2.17)
and (2.18)) is also strictly positive:

(Au,u) = a(u,u) > o|lully >0 Vu#£0. (2.20)
D(A) is a Hilbert space for the norm
llullpa) = [|Aullz (2.21)

We also see that A is an isomorphism from D(A) onto H.
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2.5.2 Spectral Representation of A

Consider the following two further assumptions about A:
1. A is self-adjoint: If the form a is symmetric, i.e.
(Au,v) = (Av,u) = a(u,v) Yu,veV (2.22)

then, clearly A is self-adjoint (from V to V' and as an unbounded operator in H).
From (2.22) we also see that A~! is also self-adjoint (in H).

This assumption alone (which implies A is a strictly positive, self-adjoint, unbounded
operator in H) means that we can apply spectral theory and so consider operators of the
form A* (s € R).

2. The injection of V onto H is compact: This allows us to consider A~! as a self adjoint,
compact operator in H, indeed:

Let B C H be a bounded set. We see that

1A ullpea = 44 g = lullz Ve . (2.29)
Hence A~1B is bounded in D(A).
Further we see that

1Aullv{lullv
el Aullmllu|lv
cillullpayllullv (2.24)

where c; is the (operator) norm of the injection of V' into H (= norm of the injection of
H into V/, by duality) i.e.

allullf < au,u) = (Au,u)

A IA

lullg <ellully YueV. (2.25)

The sequence (2.24) implies that

c
lfellv < ;1 llullpa) (2.26)
and this combined with (2.23) and (2.25) give
-1 Ci -1 €1
1Al < S A by = Sliuls VueH (2.27)

and so A~1B is bounded in V. Since the injection V onto H is compact it follows that
A!B is relatively compact in H.

Note: (2.24) and (2.25) imply [|uflg < ¢}/« ||Aullg and so the norm {||Au||} + [|u||/%}/? is
equivalent to the norm [|Aul|g on D(A).

Thus, with these two assumptions, A~! is a self-adjoint, compact operator in H and conse-
quently, by the spectral theory for such operators in a Hilbert space, there exists an orthonormal
basis for H, {w; € D(A),j € N} which are the eigenvectors of A:

A—le' = (/\j)—'le ViEN (228)



2.5. LINEAR OPERATORS 23

where the ();)~! are a decreasing sequence (in j) tending to zero, and therefore
Aw; = Ajwj VjeN (229)

0<A <A<L...
where the A_,-—-»odasj—-»oo.

See for instance [92], [75], [21, 22], [88] and [16].

2.5.3 Powers of the Operator A

For the moment we assume the first point of the previous section —i.e. we assume a is symmetric
and therefore A is a strictly positive, self-adjoint, unbounded operator in H.

Fors €R,s> 0: We can define A* by spectral theory (see Yosida [92]), where A® is a stricily
positive, self-adjoint, unbounded, injective operator in H whose domain is D(A*) C H (the
inclusion being dense in H).

Further, D(A*) is a Hilbert space for the scalar product and norm:
(u,v)p(an = (A°u, A%0) , (2.30)
llullpcas) = {(u,u)p(m)}l/z . (2.31)
Also, A® : D(A*) — H is an isomorphism.

We define D(A~*) to be the dual of D(A®), (s > 0). With (u,v)p(a--) defined in the obvious
manner, we can deduce the following:

D(A**)C D(A*?) V1,52 €R, s1 <82 (2.32)

where the injections are continuous, each space dense in the following one, and further, A®27°1
is an isomorphism of D(A®*) onto D(A®?), V s1,s2 € R, with 51 < s2.

Some examples are
¢ D(AY=H=H'
s D(AY?) =V
e D(A') = D(4)

If in addition, the injection from V into H is compact, we can use the spectral representation
of A to characterize the operators A*:

o0
VueD(A*),s€R, Au=Y M(u,wj)nw; (2.33)
i=1
and the scalar product and norm of D(A’) take the form

(4, v)peas) = Z }\?’(u, w;)a(v, wi)H , (2.34)
j=1
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1/2 ,
llullpeas = (Z /\fsl(u,Wj)le) (2.35)

j=1
and further, we can characterize D(A*) in the obvious manner,

D(A*) = {u € H :||ullpcar) < oo} 5>0
T | {completion of H wrt the norm ||u||pan} s<0

In the compact case, the imbedding of D(A*) into D(A*~¢) is compact, for all s ER, € > 0.

2.6 The Existence of an Attractor and its Regularity

Suppose we have established the existence and uniqueness of a solution to the problem (2.1)
and we are therefore able to define the semi-group S(t) : ug € H ~— u(t) € H for the system.

Let us further assume that we have shown the continuity of the semi-group S(t) and we can
therefore appeal to some of the theory of Sections 2.2 and 2.3.

We wish to characterize the behaviour of the solutions, in particular their long-time behaviour,
and so we must essentially address the following points:

1. The non-linear stability of the problem: Do the solutions remain bounded ast — o0 7

2. Can we show the existence of absorbing sets in particular function spaces? This usually
amounts to proving a-priori estimates for the PDE (these are time-differential inequalities
for function space norms of the solution and we discuss them in Chapters 4 and 5).

3. Can we show the existence of a global attractor? This means we need to show that the
semi-group is uniformly compact for large ¢ (see (2.10)).

4. Supposing we have shown the existence of an attractor A C H, can we determine if the
attractor is actually included in a subspace of H of more regular functions?

Now, let us suppose that we can show points 1 and 2 for our PDE, and in particular, S(¢) :
H — V is continuous and that there exists absorbing sets By in H and By in V (where V and
H are as in Sections 2.2 and 2.3 with V' compactly imbedded in H).

Further, let us assume that we can show that if B C H is any (arbitrary) given bounded set,
then S(t)B is included in By (in particular By is so included) after a certain time (this result
will typically follow from the a-priori estimates we present in Chapters 4 and 5) i.e.

3Tpsuchthat Vi>Ty S()BC By (2.36)
and so
|J S@®BC By is bounded in V (2.37)
t>To

and further, since V' is compactly imbedded in H,

U S(t)B is relatively compact in H (2.38)
t>To

and so the semi-group {S(t),t > 0} is uniformly compact.
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We can therefore apply Theorem 2.3.1 with &/ = H.

So, in summary, the ezistence of an attractor in H follows when the ezistence of an absorbing
set in a space V (compactly imbedded in H ) is known.

We now address the last question, and that is of the regularity of the attractor (i.e. regularity
as t — oo): If the data we are presented with are sufficiently regular, can we show that the
attractor is included in a set of more spatially regular functions W, where W C H, or even
better W C V7

In terms of PDEs, if we can show that (the solutions which lie in) the maximal attractor lies
in the Sobolev spaces H™(Q), m = 1,..., M for some M, then we say that we have achieved
“partial regularity” of the attractor. If, however, we can prove this V M € N (with C* initial
data) then we say that we have C*° (Q) regularity (or just “regularity”) of the attractor.

And so, generalizing the above argument, if we can show the existence of an absorbing set in
H™ for some m, the attractor A is bounded in H™ and (H™ compactly imbedded in H m-1
implies) that the global attractor lies in H m-1,

We shall, in Chapters 4 and 5, show the existence of absorbing sets in all the spaces H™, m € N
for the Navier-Stokes equations where,

1. For d = 2, we do not need to make any assumptions.

2. For d = 3, we will investigate the minimum assumptions necessary to show this.

2.7 The Semi-group for Non-well-posed Problems

For the case when the semi-group S(t) associated with the initial value problem (2.1) cannot
be defined everywhere, i.e. the initial value problem (2.1) is not well-posed, we must rely on
the following more general setting. We will need this theory in Chapter 4.

Let two Hilbert spaces, W C H (the injection being continuous) be given.

Suppose that a family of operators {S(t),t > 0} is defined and continuous from one part
D(S(t)) C W to W, where

- D(S(t) = U D,(S(t)) (2.39)
p>0
D,(SE) = {uo €W, [IS(r)uollw <p, 0< 7 <18} (2.40)

Obviously, D(S(t)) = D(S(t); W) is the domain of S(t) in W.
Given ugp € W, S(t)uo is defined if and only if ug € D(S(2)).

By analogy with (2.2), (2.3) we require our family of operators S(t) satisfy a set of semi-group
properties in the sense:

S(0)=1Ip (in H) D(S(0)) = W

St +s)=S(t)-S(s) (on D(S(t+ 5)) Vst>0 (2.41)

Remark: It is apparent from the definitions above that

Viy >tz D(S(t1)) S D(S(t2)) and Dy(S(t1)) € D(S(t2)) (242)
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Definition 2.7.1 If a set X C W is such that
1. S(t)ug exists Vuo € X, V12> 0
25X =X,vt>0

then X is said to be a functional invariant set for the semi-group S(t).

Definition 2.7.2 If a set A C W satisfies

1. A is an invariant set (as above)

2. there exists an open neighbourhood U O W of A such that V up € U, S(t)uo — A in H
ast — oo (i.e. convergence in the norm of H)

then A is said 1o be an attractor.

2.8 Summary and Additionals

Thus for the general evolution equation, we have defined the semi-group of operators, functional
invariant sets and we have provided a theorem which guarantees (under the conditions outlined)
the existence of a global attractor when the existence of an absorbing set is known. After
defining what we mean by an ‘imbedding’ from one normed linear space into another, we have
examined in detail the theory of linear, continuous operators (such as A) and also, we have
defined the domain of A in H, namely D(A). Under further restrictions, we then defined powers
of these linear operators (A%, s € R) and their corresponding domains D(A®).

Subsequently, we consider the question of regularity of the attractor and we outline how we
intend to proceed in order to show the existence of a C* attractor. Finally, in the last section,
the theory of the semi-group of operators is presented in a more general setting.

All the theory of this chapter (and the significance of the order) I have given will become relevant
in Chapters 4 and 5 when we specialize to the incompressible Navier-Stokes equations — the
next chapter outlines the important theory of Sobolev spaces and interpolation inequalities in
detail, which will also be very relevant in Chapters 4 and 5.

The main references I have used for nearly all the main theory of this chapter were Temam [88],
Adams [1] and Oliver [72]. Further material can be found in Yosida [92], Courant and Hilbert [21,
22] and also Riesz and Nagy [75].

It would be natural to follow our discussion in this chapter with one on the general theory for the
determination of the dimension of the attractor, however, we are not interested in this problem
in this thesis, although we do make some comparisons with such calculations in Chapter 6.




Chaptei‘ 3

The Gagliardo-Nirenberg
Inequality

3.1 Introduction and Aims

In this chapter, we outline the function space theory (for real valued functions) we intend
to use in the following chapters, and in particular, we introduce Sobolev spaces as well as
several versions of an inequality of the Gagliardo-Nirenberg type (which is an example of an
interpolation inequality). We will consider this important inequality for the following distinct
cases:

1. For functions with compact support in R4,

2. For functions defined on a domain Qp = [0, L]¢ C R¢, with no specified boundary con-
ditions. For this case, the Gagliardo-Nirenberg inequality is given for the usual Sobolev
norms (which we will also refer to as full Sobolev norms). To prove this case we will
use extension theorems for full Sobolev norms combined with the last result. Extension
theorems show the existence of extension operators which allow us to prove norm inequal-
ities for functions on bounded domains when the same inequalities are known to hold for
functions defined on R4,

3. For functions defined on a domain Q;, which have zero mean and which are also periodic
in R4 with period Q7. In this case the Gagliardo-Nirenberg inequality can be proved for
semi-norms — we will combine the first result above with extension theorems and a new
inequality of the Poincaré type (which holds for mean-zero and space-periodic functions).

Remarks:

1. Multiplicative constants will be calculated (as far as possible), but no claim is made that
these are optimal constants — indeed, their optimization invites some interesting further
work! '

2. We will provide the proofs as a series of lemmas. Each lemma will be proved in as full
generality as possible (to invite further work).

3. We can easily generalize the three cases above to d-vector valued functions u € W™?(Q)¢
— see Section 3.2.4.

4. There are three primary references: Nirenberg [70], Adams [1] and Friedman [33].

27



28 CHAPTER 3. THE GAGLIARDO-NIRENBERG INEQUALITY
3.2 Preliminaries

Let © be a domain in R9.
The generalised derivative operator of order NV is defined as

grrtnattna

D" =
- n n2 na
0z 032 - - - Oz

(3.1)

where n = (ny,ng,...,nq) is a multi-index and |n|=ny +nz+---+ng = N.

Recall the general theory of the ‘Operators and Imbeddings’ section in Chapter 2.
3.2.1 Spaces of Continuous Functions

Definition 3.2.1 For m a non-negative integer, C™(Q2) is the (vector) space of all functions
& which are continuous on Q and whose partial derivatives of order D*¢, |o| < m are also
continuous on 1.

o]

Further, C(Q) = C9(Q) and C2(Q) = [] C™(9).

m=0

The subspaces CI*(Q) consist of those functions in C™(Q2) that-also have compact support in
Q.

For functions ¢ € C(£2) which are bounded and uniformly continuous on Q there exists a unique,
bounded, continuous extension to the closure Q of €.

Definition 3.2.2 C™(Q) is the vector space of those functions ¢ € C™(2) whose derivatives
D¢ for 0 < |a] < m are bounded and uniformly continuous on Q.

Remark: C™(Q) is a Banach space with the norm

ll; C™ ()|l = o JHax sup | D¢ ()] (3.2)

Definition 3.2.3 For 0 < X < 1, define C™*(Q) to be the subspace of C™(Q2) consisting of
those functions ¢ for which D*¢ (0 < |a| < m) satisfies a Hélder condition of exponent X in
Q, i.e. there exists a constant K such that

|D*¢(z) - D*¢(y)| < K|z —y|* Vz,y€Q (3.3)

Remark: C™*(Q) is a Banach space with norm given by

|D*¢(z) — D*¢(y)|

COMALON Wa . Tte}
lg; C™A())| = ||¢; C (Q)"“Logﬂ‘},?’s‘m;“j‘;fg g (3.4)
T#Y

For further details of various inclusions and imbeddings between these spaces, see Adams [1],
Chapter 1.
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Definition 3.2.4 A function v(z) defined on a set S is said to be uniformly Holder continuous
of exponent & on S if
[v(z) = v(y)]
sup[v]e = sup —————— 3.5
s [ ]a cyes lm — yla ( )
is finite. If a function v is uniformly Holder continuous of exponent o on each compact subset
of a domain §, then it is said to be Holder continuous of exponent « in 2.

Definition 3.2.5 Forp < 0, set h = [~d/p], —a = h+ d/p, and define

lulp.n = sup | D"u| = Z sup |DPu| if =0, (3.6)
Q Q
|Bl=h
lulp.a = [DPulan= Y s?zp[D”u]a if «a>0. (3.7
|8l=h

Remark: By [z] with z € R* (with no index), we mean ‘take the integer part, rounding down.’

3.2.2 Lebesgue Spaces

Let © be domain in R? and let p be any positive real number. By a.e. (= almost everywhere)
we mean everywhere except on a set of measure zero.

Definition 3.2.6 The Lebesgue Space LP(Q) is the space of equivalence classes of p-integrable
functions on Q - i.e. the class of all measurable functions u defined on Q, for which the

functional
1/p
o= ( [ 1) <o (38)

(We identify in LP() funciions that are equal a.e. on .)

Definition 3.2.7 We say that o function u, measurable on Q, is essentially bounded on 2 if
there ezists a constani K such that [u(z)| < K a.e. on Q. The greatest lower bound of such con-
stants K is called the essential supremum of |u| on Q which we write as esssup,eq |u(z)|. So we
call L®(2) the vector space consisting of all functions u for which |julleo,0 = €sssUP,eq ju(z)|
is finite (functions being indentified if equal a.e. on Q). Clearly, the functional [|ul|co 15 @ norm

on L ().

Theorem 3.2.1 (Young’s Inequality) Fora >0, b2> 0 and any € > 0 we have

ab < %(ae)p 41 (9>q (3.9)

q \€

where%+%::1with1<p,q<oo.

See Adams [1], Chapter 8, for a more concise and at the same time much more general treatment
of a range of inequalities which include the above as a special case.
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Theorem 3.2.2 (Holder’s Inequality) If 1 < p < oo and u € LP(Q), u € LI(Q), then
uv € LY(Q) and

1,1
[ 1@ o(@)lds < lullalillu where - +2=1. (3.10)
Q

Remark: A similar inequality holds for summations, i.e.
/p /g 11
a;b;) < a;lF b; |9 with —4+-=1. 3.11
s (gir)” (o) " w fjor

Theorem 3.2.3 (Minkowski’s Inequality) If 1 < p < oo, then

llu+ollp < flullp + Il - (3.12)

Note: Holder’s inequality naturally gives us: For 1 < p < p’ < oo then
llullp < (vol @)M/P=%" [lullps . BN CEL)
(This assumes vol  finite.)

Theorem 3.2.4 LP(Q) is a Banach space for 1 < p < oo and L*(Q) is a Hilbert space with
respect to the inner product

(u,0) = /ﬂ w(2)o(@)ds . (3.14)

Theorem 3.2.5 For1 < p < 00, Co(2) and C() are both dense in LF(S2).

Remark: As an example, to prove the first result we proceed as follows: Let u € LP(Q2) and
let ¢ > 0. We show there exists a function ¢ € Co(Q) such that ||u — ¢|lp.0 < €.

(In fact the set of simple functions in L?() is dense in LP(Q2) for 1 < p < o0.)

Remark: C(Q), Co(?) and C(Q2) are not dense in L>(Q2) as they are proper closed subspaces
of this space.

3.2.3 Weak and Strong Derivatives

Definition 3.2.8 We say that a function defined a.e. on Q is locally integrable on Q provided
u € LY(Q) for every measurable Q which is such that Q@ C Q and Q is compact in RY, We write
u € Li, (Q).

Definition 3.2.9 Let u,v be two locally integrable functions defined on Q. We call v = D%u
the weak derivative of u (of order a) provided v satisfies

/ u(z)D*¢(x)de = (—1)1 / v(z)d(x)dz (3.15)
(1] Q

Jor every ¢ € C§°(RQ).
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Definition 3.2.10 For u,v two locally integrable functions on Q, D*u = v in the strong r?
sense (p > 1) if for any compact subset K of 2 there exists a sequence of funclions ¢; in
Clel(Q) such that

[ 18— upde—0, [ 1D76; ~opdz —0 (3.16)
K K

as j — oo.
Remark: It is clear that if D®u = v in the strong L? sense, then D*u = v in the weak sense.

Theorem 3.2.6 Suppose u,v belong to LP locallyin Q (p > 1) and that v is the weak derivative
of u (of order ), then on any compact set K C Q there exist functions ¢; € C(Q) such
that (3.16) holds.

Remark: This means that the concepts of weak and strong derivatives are consistent.

For further details, see Adams [1], Chapters 1 and 3, as well as Friedman [33], Section 6.

3.2.4 Sobolev Spaces

In this section we define Sobolev spaces of integer order for a domain Q C R¢. These are
vector subspaces of various LP(§2) spaces — we additionally demand that the weak derivatives
of elements in L? () spaces also lie in LP(Q).

Definition 3.2.11 We define the functional || - ||mp,0 (With m a non-negative integer and
1<p<o0)as ,

1/p
l[ellm,p,0 = ( Z HD"‘qu) when 1<p< (3.17)

0L jal<m

and
llullm,con = max [|D%uf|eo when p=co (3.18)
0<]a|<m

for any function for which the right-hand side is meaningful.
We easily see that (3.17) and (3.18) define norms on vector spaces of functions for which those

norms are finite (functions being identified in the space if they are equal a.e.).

Definition 3.2.12 Consider the following three spaces:

e H™?(Q) = the completion of {u € C™(Q) : ||ullmp,0 < oo} with respect to the norm
I llm.p.0,

o WmP(Q) = {ue LP(R) : D*u € LP(Q)  for 0 < |a| < m}, where D*u is the weak
partial derivative (see above),

o WJMP(Q) = the closure of C§°(Q) in the space W™P(Q).

The above spaces, when appropriately equipped with the norms (3.17) or (3.18) are called
Sobolev spaces over Q.
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Theorem 3.2.7 W™?(Q) is a Banach space.

Theorem 3.2.8 W™2(Q) is a separable Hilbert space with inner product

(u, V)m = Z (D%*u, D*v). (3.19)

0<|e|sm

Theorem 3.2.9 (Meyers and Serrin) If1 < p < co, then H™P(Q) = W™P(Q).

Remark: In proving this result, it is established that if u € W™P(Q) and € > 0, there exists
¢ € C°(Q) such that ||u— @llmp < € i.e. {¢ € C°(Q) : ||¢llm,p.0 < o} is dense in WmP(R).
Note further that this result does not extend to p = oo.

Remark: Thus functions having weak derivatives can be suitably approximated by smooth
functions. (See the section on weak derivatives above and also Adams [1], Chapters 1 and 3)

Further Note: As suggested by the above theorems, it will be convenient to abbreviate
H™(Q) = Wm™2(Q).

Definition 3.2.13 Suppose Q C Re. If for all 2 € bdry Q = 0Q there exists an open set Uy

and non-zero vector y; such that ¢ € Uy, and if z € QN U, implies z +1y, € Q, 0 <t < 1,
then Q is said fo have the segment property.

Remark: If  has the segment property, then it must have an (d — 1)-dimensional boundary,
and the domain cannot simultaneously lie on both sides of any given part of its boundary.

Theorem 3.2.10 Suppose Q has the segment property. The set of restrictions to Q of functions
in C§°(RY) is dense in W™P(Q) for 1 < p < oo.

Remark: In particular (for Q with the segment property):
1. C*(Q) is dense in W™P(Q) for any m (k > m),
2. C°(RY) is dense in W™P(RY).

Corollary 3.2.11 WP (R%) = Wm2(R9).

3.2.5 Semi-norms

Definition 3.2.14 For 1 < p < oo and for integers j, 0 < j < m we introduce the functionals
| < 1j,p.0 on W™P(Q) as follows:

i/p
) /n lD"‘u(m)lPdw) . (3.20)

|eel=7

luljp = luljpn= (
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Clearly, |ulo,p = |lullo,» = |lullp is the norm of w in L?(£2) and

1/p
1ellmp0 = ( Z Iulg,p,n) (3.21)

0<j<m

which is the usual norm (i.e. full Sobolev norm) for W™P(Q). If j > 1, |- |, is a semi-norm
— it has all the properties of a norm, except that |ul; o = 0 does not imply that u vanishes in
WmP(Q) e.g. u may be a non-zero constant on a domain Q having finite volume (for example
Q= [0, L]d).

Definition 3.2.15 Clearly, we should define the functional (semi-norm)

|t|m,00,0 = max sup | D*u(z)| . (3.22)
lal=m zen
So that
llulim 00 = o, |]j,00,00 (3.23)

as we would expect.
3.2.6 Some Interpolation Theorems and Equivalent Norms

Definition 3.2.16 Two different norms || -||1 and || - ||2 on a vector space X are equivalent if
they induce the same topology (on X ), i.c. if for some constants a,b > 0,

allzlly < llzllz < bllzlh (3.24)

forallz e X.
Remark: The results of this section (except where stated otherwise) apply for 1 < p < oo.

Lemma 3.2.12 On an interval X = [a,b] (length |A| = b—a > 0), for f € C%()), we have

[irwpasenr [iropa+oe [iopa (3.25)
A A p
where ¢ an absolute constant independent of p and |A|.

Remark: In fact ¢ = 2°P-1,

Proof: Suppose o = |A|/4. Pick z; € (a,a+ a), 3 € (b — ,b). Then by the Mean Value
Theorem there exists a y € (1, 2) such that

flly)= ML). (3.26)

Zg — 1

and also by the Fundamental Theorem of Calculus,

@) == [ 1w+ rw. (3.27)
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Combining (3.26) and (3.27) and taking the modulus of both sides we get
@< [l + e (3.28)
Now integrate over o between (b — o, b) and over z; between (a,a + «).
=\l s [ 1@l g [ 1 (3.29)

Now use that (A + B)? < ¢? (A? + B?) (for A, B > 0; 1 < p < co and where ¢# = 2P~1).

1ror < ([1ro) +egn ([ folde) (3.30)

= [rorasene ([irora) +osn ([ isope)

Corollary 3.2.13 For f € C?()) and for all0 < e<1
Jirpasenpe [ 1 opae 5o Jiropa. (3.31)
where ¢ an absolute constant independent of p and |A|.

Proof: For all 0 < € < 1,3 m € N such that 1e!/? < L < ¢!/P. (Choose m = [55] + 1 with

[-] defined as in Section 3.2.1.)
Set a; =a+ (b— a);{;— for j = 1,...,m. Note that a¢; — aj_; = (b — a)/m = |A|/m.

> [

cpz [(“‘) ( [ If”(t)l”dt> o ()7 ( [ If(t)l”dt)]
e ([ Iropa) + S5 ([ 1sorar)

Remark: A result similar to the above corollary is also true when the interval A is not finite:

L
m

/ ()Pt
A

IA

AN

]

Without loss of generality, assume a is finite and b = oo

Given € > 0,set a; = a+ jel/?, j=0,1,2,... (= aj — aj_1 = €'/P). Using the lemma,

Z / \F ()Pt
c”Z{ / MO I e / If(t)l”dt} ,

-1 Gj-1

/ PP

I
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so that the result looks like

/_0; I/ ()Pdt < P [c /_ o:o If”(t)lpdt+8”'e'1 / o:o If(t)l”dt] - (332)

The results above are the essential ingredients in the proofs of the following series of theorems
outlined in Adams [1]. I include the theorems here for the sake of completeness. Adams 1
(Chapter 4) presents them in a more general setting which is not relevant here.

Note: I have included all the multiplicative constants in the results above, and therefore one
should be able to calculate the appropriate multiplicative constants for the results below, by
reproducing the proofs in detail. This should be quite straightforward.

Theorem 3.2.14 For all ¢ > 0, integers j, 0 < j < m—1, on a domain Q C R4 gnd for all
u € WP (), there ezists a constant K(m, p,d) such that

luljp < Kelulm,p + Ke 3/ Dlulop . (3.33)

Theorem 3.2.15 Qp = [0, L] CRY. Forall0 < e< 1, integers j, 0 <j<m—1 and for all
u € WmP(QL), there exists a constant K(e,m,p, L) such that

luljp < Kelulmp + Kemilm=Dlyjo, . (3.34)

Corollary 3.2.16 The functional [llmp0:= (luff, , o+ uff , 0)}/P is an equivalent norm to
the usual norm ||ullm pa on WP () (2 C R?) and also on W™P(Qr).

Theorem 3.2.17 For Qr C RY, 1< p < oo, integers j, 0 < j < m and for allu € W™P(Qg),
there exists a constant K(m,p, L) such that

lullip < Kllalli/ T llulloz? ™ - (3.35)

Remark: This last result is also true for u € Wi™P(Q) with K(m,p,d) independent of the
domain.

Remark: Under certain circumstances | - |m p,a s equivalent to the usual norm for the space
Wy P(R), Q C R4, This is particularly so if { is bounded, for consider the lemma:

Lemma 3.2.18 Suppose Q C R? is bounded in some direction, u € Wol’p(Q), then
ulop.0 < d"VPIM Julip0 (3.36)

where |A\| = “thickness” of Q in the bounded direction.
Proof: Assume u € C}(R) and that Q is bounded in the i** direction (without loss of generality,
suppose 0 < z; < |A|), then by the Fundamental Theorem of Calculus

7 Bu

u(Zy, ..o &y, L4) = —
( ) b (3] bk ) 0 6xz

dz; . (3.37)
Take the modulus of both sides to the pt* power, apply Holder’s inequality, and then integrate
both sides over €, to get (3.36). Now use that C}(f2) is dense in WeP(Q). O
Remark: This is a generalization of Poincaré’s inequality for functions u € WP (Q).

Remark: This result is true for p = 0o, when our assumptions are u € C§(f).
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3.2.7 Other Spaces

When dealing with evolutionary partial differential equations it is convenient to introduce the
following spaces defined on  x (0,T) C R4+1,

Definition 3.2.17 Suppose X is a Banach space. For1 < p < 00, —00 < a < b < oo,
LP(a,b; X) is the space of equivalence classes of LP functions from (a,b) into X and is a
Banach space for the norm

b 1/p
I llzrapix) = ( / ||f(t)ll§<dt) : (3.38)

L>(a,b; X) is the space of equivalence classes of (measurable) essentially bounded functions
from (a,b) into X and is also a Banach space for the norm

|fllzes(apix) = €ss sup ||F(#)lix - (3.39)
té(a,b)

Now suppose —oo < a < b < 0o. Then C([a,b]; X) is the space continuous functions from [a, b]
to X and for k € N, C*([a,b]; X) is the space of k times continuously differentiable functions
from [a,b] to X. Both are Banach spaces for the respectlive norms

IFlleqesx) = sup IF®Ix (3.40)
t€la,b)
1Al 3|21 (3.41)
cr(laB)X) = TR : i
j=1 ot C({a,3:X)

3.2.8 Mean-zero and Space-periodic Functions

Definition 3.2.18 For m € N, H:.(Qr) is the space of functions in H (R%) which are
periodic with period Qr: ie. u(z + Le;) = u(x), Vz € R4, i =1,...,d and where ¢; is the
canonical basis for R9.

Remarks:

1. For more details on the periodicity condition, see the beginning of the next chapter.
2. ngr(QL) = L;%er(QL)'

3. H7:, is a Hilbert space for the scalar product (u, v)m,q, giving rise to the norm
Nullm,2.0: = {(%, W)ma 12 . (3.42)
It is apparent that

Hp, . (QL) ={u= Z cre®™h el g = ey, Z |E]2™|cx|? < oo} (3.43)
keZe k€zZd
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and that the norm ||ul|m 2,0, = {(%, ¥)ma, }}/? is equivalent to the norm

1/2
(Z (1+ |k|2m)|ck|2) : (3.44)

keze
Remark: In fact, H7,.(Qr) is a Hilbert space for the norm (3.44) withm e R, m > 0.

Definition 3.2.19 HI’,’;,(QL) = {u € H(QL) : co = 0} i.e. the space of periodic functions
on H™(Qr) which have mean zero: udz = 0.
2

Remark: In fact, H7,(Qz) is a Hilbert space for the norm (3 xezn |k]2™|ex|2)1/2, m € R,
with A7,(Qr) and Hy;77(Q) in duality V m € R.

3.2.9 Extension Theorems

Definition 3.2.20 We call o linear operator E : W™?(Q) — W™P(R9), a simple (m,p)-
extension operator for Q provided there ezisis a constant K(m,p) such that for every u €
W™ P(Q) the conditions hold:

1. Eu(z) = u(z) a.e. in Q
2. |Eullm p e < Kljtellmp.0 -

See also the definitions for a strong m-eztension operator and total extension operatorfor { in
Adams [1], Chapter 4.

Adams [1] also outlines three theorems which provide the existence of all three types of exten-
sion operators for domains Q having specific properties. Thus we know there exists a simple
extension operator for the domain Qr = [0, L]¢ — this follows from the following simplified
version of the Calderén extension theorem,

Theorem 3.2.19 For 0 C RY, there exists a simple (m, p)-extension operator E = E(m,p)
foranyme {1,2,...} and 1 < p< 0.

The existence of such a simple (m,p)-extension operator for a domain 2 means that norm
inequalities which hold for functions defined on R¢ are then known to hold for functions defined
on , for example:

llello,e.0 < [1Bullo,gre < KillEwflm pme < KiK|fullmpa - (3.45)

where the central inequality is known to be true (on R%).

Friedman [33] (Lemma 5.2) provides an extension theorem for C™-functions:

Definition 3.2.21 For a bounded domain Q with boundary 8Q, we say that 0K is of class
C™ if for all z* € ORQ, there exists a ball B(z*, R) (some R) such that 0Q N B(z*, R) can be
represented by

zi=flajg) (G=1,...,d) (3.46)

Jor somei (i=1,...,d) with f a C™ regular function.
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Theorem 3.2.20 Let 1 < p < oco. Let @ C R be a bounded domain with dQ of class C™. For
u € C™(Q) there exists an extension operator E : C™(Q) — CF(R?) such that

1. Eu(z) = u(z) in Q

2. |Eulm,p,re < cllulimpa .

where ¢ is independent of u.

Further information can be found in the classical texts of Adams [1] and Friedman [33].

3.2.10 A Poincaré Inequality and its Implications

Theorem 3.2.21 Suppose f € C*(Qr) has mean zero on Qf = [0, L}, Then

lf[O,p,ﬂL S Cl(d)p) L |f|1,p,ﬂz, (347)

for1 < p < oo and where ¢;(d,p) = d*=1/7.

Note:

1. Using that C1(Qg) is dense in W?(Q1) for 1 < p < o, we could relax our assumptions
to f € WLP(Q) with zero mean. For the p = oo case we also only need to assume
f € WbLe(Qp), although a separate proof is necessary - see page 28 of A. Zenisek,
Nonlinear Elliptic and Evolution Problems and Their Finile Element Approzimations,
Academic Press, 1990.

2. For f € C1(2p) with mean zero, |f|1 p,q, is equivalent to the functional ||f||; ., With
1<p<L oo

Also see A. Kufner, O. John and S. Fué&ik, Function Spaces, Noordhoff Int. Publishing, 1977.
Proof: We will prove that

| Flopfo,3e < L Z B o, 011 for 1<p< oo (3.48)
Ip, ¥

by induction on d. The right-hand side of (3.48) is bounded by ¢1(d,p) L |fl1,p,0.-

Consider the case d = 1. Since f(z) has zero mean (i. e. fOL f(z)dz = 0), there exists z* € [0, L]
such that f(2*) = 0. The Fundamental Theorem of Calculus then gives

:ca L
f(w)=/_5§dx = If(w)lsfo % 4

Thus we could immediately write |f|o,co,f0,2] < |fl1,1,[0,2] and use the natural ordering of norms
(p <9 = ||9llp < c(L)||#llp') to get the required result for d = 1 or we use a Holder inequality
arf

on (3.49) to get
[F(@)P < LP-1 ( /0 o ) (3.50)

= |flop,j0.21 £ LIfl1p00.17 - (3.51)
Now assume the result (3.48) to be true for d — 1.

(3.49)
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Consider f(z1,...,%4-1,%q) and assume f has mean zero on [0, L)4. Write f = h+ g where we
define g as
1
g(z1,. .. 2g-1) = I / f(z1,...,24-1,24)dzg (3.52)
0
We note that g has mean zero on [0, L]4~*.
From the definition of h it is obvious that
L
/ h(zy,...,zd)dza = 0 (3.53)
0
and so by analogy with the one dimensional case there exists z € [0, L] such that
h((L‘l, .. .,:L’d-l,z‘;;) =0.
“d Oh
= |h(z1,...,2a)] = (21, ..., Ta—1, Ty)dEy
e Ozq
d
L
Gh
< —\d
< [ || dee
L
of
= =—1d
/o Bza| """
L 6f p
= |h(z)|Pdz < L / / —idzg| dxy---deg_q
[o,L)¢ o,r-1 \Jo [0%4
P
< |3
0%ajo,p o,
using Holder’s inequality.
of
= |hlopore < L |2 : (3.54)
- 02do,p,f0,L)¢
Now, since ¢ has zero mean and we assume that the d — 1 case (for (3.48)) is true,
d-1
g
l9lopo,1-+ < L e
plo-H = 19%i lop fo,L1e-1
d-1
< -S| 9L (3.55)
i=1 6mi D,p,[O,L]d
where we have used (3.52) on the right-hand side above.
Now integrating with respect to &4 in (3.55) we get
d-1
0
|glo,p,0,23¢ £ L Z 5~f- . (3.56)
i=1 19%ilop 0,0}

Since naturally |flop 10,23¢ < |9lo,p,[0,L1¢ + |Blop,0,L3¢, We get

of of

Bz; Oz4

-1
|flo,p,fo,z3e S L z
g=1

0,p,{0,L]¢ 0,p,[0,L]¢
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Corollary 3.2.22 For functions which have mean zero on Qr, the semi-norm |ulmp o, for
1< p < oo is equivalent to the full Sobolev norm |[u||lmp.0, on W™P(QL).

Proof of corollary: This follows from the theorem above combined with the results in Sec-
tion 3.2.6. ]

Theorem 3.2.23 Suppose f € Coitt(Qr), then for allm > 1,
|f|m,P,ﬂL < CQ(d,p, m) L lf|m+1,p,ﬂz, (3.57)

with 1 < p < oo.

Proof: Consider the case m = 1 in the statement of the theorem. Assume f € CZ,.(QL).
Hence there exists y € [0, L] such that

Oif(@1,y. s Bie1, Y, Titt, . 2d) =0, V&1, .., %1, Tit1,...,%4 .
Thus we can write of ey
-a-é—i(ﬁbu-,xd):/y Ezg(fly-u,fd)d& (3.58)

foralli=1,...,d.
L
= 10:f(@)] < ]0 102 |de;

L
= of(@)P < 1P / 102 £ P d;
0

d d
= 3 [ eserdsr Yy [ (epds
i=1 Y8 i=1 Y

= |flipar S Lifl2pa.
where we note that this in fact holds V 1 < p < o0.

The result |D™ 1g|, 0, < L|D™ g|s,q, is now obvious, and so when we sum over the
multi-index and re-translate all the derivative multi-indicies into the norm, we get (3.57) with
a non-trivial constant cq(d, p, m). O

Corollary 3.2.24 For functions f € CJ3.(Q), for all m > 1 with mean zero, |flmpa, 15
equivalent to the functional ||f||mp.a,, for 1 <p < oo.

3.3 The Gagliardo-Nirenberg Inequality

We will mainly be considering functions with compact support in some domain Q C R for
which we will prove an inequality of the Gagliardo-Nirenberg type for semi-norms. Two other
versions are also presented, with the use of extension theorems — the last of which is most
relevant to subsequent chapters. However, I have outlined some of the proofs in as great a
generality as possible, in particular, presenting some examples of how one might prove the
Gagliardo-Nirenberg inequality for a bounded domain such as Qr = [0, L]¢ (with no specified
boundary conditions) without resorting to extension theorems.

Remark: Note that the operator of zero extension outside Q@ C R4 maps Wy?(Q) isometrically
into WP (R9).
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3.3.1 For Functions with Compact Support

Theorem 3.3.1 (Gagliardo-Nirenberg) Let q,7 be any real numbers satisfying 1 < ¢,7 <
co. For any integer j, 0 < j < m, and for any a in the interval j/m < a <1, set

1 _J 1 m l1-a

;—;ﬁa(; 7>+ ol (3.59)
Assume m — j — d/r is not a non-negative integer.
For u € CI*(R%) we have

[uljpme < clul, - ge l”lé;ﬁga . (3.60)

If m — j — d/r is a non-negative integer, then the above inequality holds only for a = j/m.

Remark: We see that we can use the density results outlined in the last section, namely, that
CP(RHNW™r (RN LI(RY) is dense in W™ (RY)NLI(R?) for 1 < ¢, 7 < 00, i.e. we can assert
that given u € W™ (R9) N LI(R%) and € > 0, there exists ¢ € Cg°(RY) N W™ (R) N LI(R)
such that '

|t — @lm,r <€ and |u—dlg<e€.

(See for example Friedman, Section 10.) This allows us to relax the assumption in the above
theorem from u € CP*(RY%) to u € W™ (R9) N LI(R?). It is important to note that these
density results DO NOT extend to ¢, = co.

Remark: The theorem above is equally valid for u ecy (Q) for some bounded domain 2 C R¢
(see proof). Consequently, we can use that CJ*(Q) N Wg™"(Q) N L§(Q) is dense in Wg™"(Q) N
LY(Q) for 1 < ¢,7 < oo to relax our assumption to u € Wy () N L{(Q). Again we exclude
g,7 = 00.

Also Note: For bounded domain 2, the semi-norm | - |m p,q is equivalent to the full norm
| - llm,p,0 o0 WH?(Q), 1 < p < oo (use the L? form of Poincaré inequality (3.36) for functions
with compact support — see previous section).

3.3.2 For Functions on 7 — No Specified Boundary Conditions

With the extension theorems of Section 3.2.9 and the remarks of the last section in mind, we
can prove the following two alternative results,

Theorem 3.3.2 Under all the conditions outlined in Theorem 3.3.1 (including the special treat-
ment of the case when m — j — d/r is a non-negative inieger) but, where we need only assume
u € W™ (Qr) N LI(QL) and wilh the restriction 1 < ¢,r < 00, we have

luljp.0. < Cllullin s, lullo g, - (3.61)

Proof: The result follows immediately from Theorem 3.3.1, where we include the remark that
if we restrict ourselves to 1 < ¢, < 0o we need only assume u € W™ (R9) N L¢(R?), and we
make additional use of the extension theorems in Section 3.2.9, indeed:

Assume u € W™ (Qr) N L4(Qg). By Section 3.2.9 we know there exists an extension operator
E:Wmr(Qp) N LI(QL) — W™ (R%) N LI(R?). Apply Theorem 3.3.1 to Eu, to get

|Bulj pme < ClEU|l7, ; pell Bullg ;e (3.62)
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and so by the properties of the extension operator F, we see that

lulj p.0. < 1Buljpme < Collullfn s llello g,

and we have proved the theorem. |

However, if we are willing to make some alternative assumptions about the type of domain we
are considering, we can apply Friedman’s version of the extension theorem in the following way:

Theorem 3.3.3 Let Q be a bounded domain with the segment property such that 09 is C™.
Then, under all the conditions outlined in Theorem 3.3.1 (including the special treatment of
the case when m — j — d/r is a non-negative integer) but, where we need only assume u €
Wmr(Q)N LI1(Q) with 1 < ¢, < 0o, we have

|uljp.0 < Cllullfrallullsyf - (3.63)
Proof: Assume u € C™(8). By the extension theorem in Section 3.2.9 there exists an extension

operator E : C™($1) — CP(R%) and so, since Eu € CJ*(R?), we can apply Theorem 3.3.1 to
Eu to get

|Euljp s < CllEullg, , mell Bullg e (3.64)

and so
[uljp.0 < [Buljpre < Collullm - allullo e - (3.65)
We can now use that for the domain considered, C*®(Q)NW™ (Q)NLI(L) is dense in W™ (Q)N
L1(Q). m]

3.3.3 For Space-periodic, Mean-zero Functions on ()

Theorem 3.3.4 Under all the conditions outlined in Theorem 3.3.1 (including the special
treatment of the case when m — j — d/r is a non-negative integer) but, where we assume
u € W™ (Qr) N LY(Q), with the restriction 1 < ¢,r < oo, and that our functions u, are
mean-zero and periodic on Qf,, we have

lulipn < elulf g, lulogh, - (3.66)

Proof: We use Theorem 3.3.2 together with the fact (proved in Section 3.2.10) that |u|m p a,
is an equivalent norm to ||u|lm pa, (When 1 < p < oo) for the space of functions considered. O

Important Remark: There are many generalizations of the Sobolev spaces considered and
also corresponding extension theorems. See Chapter 7 of Adams [1], and also the book by
S.M. Nikol’skii, Approrimation of Functions of Several Variables and Imbedding Theorems,
Springer-Verlag, 1975 — in particular Theorem 1 on page 381 of this book.

For the cases r = 1 or oo, we will add a term &2 )||u||s (for any ¢ > 0) with  constant, to
the right-hand side in (3.66) — see Nirenberg [70]. This could prove to be unnecessary. If we
apply (8.66) to the Navier-Stokes equations for either of these cases, this will always be a term
of lower order which we will ignore.

3.4 Proof of the Gagliardo-Nirenberg Theorem

We will now proceed to prove Theorem 3.3.1.
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3.4.1 Casea=1

We shall consider the case a = 1. Also, let us specialize to the case j = 0, m = 1, since we can
use induction on m to get the general case.

Lemma 3.4.1 Assume r # d. For all u € C*(QL) we have

243/ 2p 1
lulo, 2= 0, < T luliras + lulora 5 (3.67)
for u € C§(R?) we have
2d3/2p
ulo, 2 ke < =7 luly,rge - (3.68)

Proof of lemma: We can immediately distinguish two distinct cases: r < d and » > d.
The case r = d is the exceptional case and we do prove this case below, however, we do not
investigate it further.

(A) Caser<d

Lemma 3.4.2 For all u € C*(Qr) we have

r(d-1 1
Iuio,f_{;,ﬂz, — ﬁl(/;‘_(d_—.)-;’jlulilrryﬂlz + flulo,r,ﬂ[, ; (3‘69)

for u € Whm(Qr) (but in this case (only) we need to restrict r < 00),

21=1/rp(d -1
ol e < 2 ol e (3.70)

Jor u € C}(2), & C R? we have

r(d—1)

lulo, g=_a < mhﬂl,r,a - (3.71)

Proof: Assume u € C}{().
Definition 3.4.1 By A, we denote a real interval of length |A| > 0.

Definition 3.4.2 By A; = [a;, ;] we denote a real interval of length |A;| = b; — a; > 0 along
the ; direction. In general, Ay = Ai(2;5), Vj#i.

Definition 3.4.3 Let &} and &} denote two arbitrary distinct points in the interval };, i.e.
1.€2 € \; with &} # €.

By the Fundamental Theorem of Calculus we see that:

w1, .oy Ty oy 2a) —u(- o, 6 =/1 g—ldxi, (3.72)

Ul mhe ) —u(o )= [ s, (3.73)



44 CHAPTER 3. THE GAGLIARDO-NIRENBERG INEQUALITY

fori=1,...,d and where z; € };.

Without loss of generality, assume £Z > £}, and combining the above,

=i &
zu(z)_u(...’ggz...)_u(...’giz’..-): . %dmg—/ gg;dzi (3.74)

which implies

|2u(m)_u(...,5g,...)_u(...,gg,...)|5/: g_;‘z dz; (3.75)
SO 5
2u(o)| < [ | oot a8l a8 (3.76)

Now integrate both sides with respect to £} and ¢Z over the range of the interval

1 Ou
= |U(m)|S§/>\; B2 d

Remark: Note what happens when u is a non-zero constant on A;.

ol
. u|dx; . 3.77
] A,'l I (3.77)

From (3.77) we can write

ey
lu(z)|75 < H ( / Gu | o + ™ /\ i) Iuld:c,-) (3.78)
Let us suppose |A;]| = [Az] = ... = |Ag| = |A| and call 2, = [0, |A|]¢ C R4
Integrate (3.78) with respect to z; up to z4 over Q) and apply Holder’s inequality each time,
d 1
g 1 du 1 =1
u(z)|T-1dz < (—/ de + — u d.'c) . 3.79
[ weistar <1 (5 [, 5] 2 g, (3.79)
Now using Young’s inequality we get
=
u(z)|T=Tdz < / uldz . 3.80
IRCs (dzn wm”) (380)

. ; : 1
Remark: Again, consider the case u constant on £, we get lulo,ﬁ,n,\ < ml“lﬂ,l,ﬂx-

It seems obvious to take |A| = L so as to minimize 1/[A[, and so we see that

1 1
lulo,p2r 0, < gglulias + Flulonas - (3.81)

Now, the usual norm for W™?(Q) is normally taken to be (as stated previously)

0<j<m

i/p
llullm,p = ( Z Iui§,p) (3.82)

and so with this definition for the norm (3.81) would give us

ol .0, < mx 51 il s, - (3.83)
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An equivalent norm to that defined above (and perhaps more appropriate as it is dimensionally
uniform) would be

2 1
a0, = luls 0. + Flulbosa (3-89
in which case we would write '

llello, a0, < el gy - (3.85)

Note that if v had compact support in any domain Q C R? then the second term on the
right-hand side in (3.81) would be non-existent (go back to step before (3.74) and use the zero
boundary conditions) and we could write

1
lulo,z2;.0 < ggluliia - (3.86)
r(d—
Now, for r < d, consider the function, v = |u| = , which is continuously differentiable if

r> 1.
If we substitute for » in (3.81) and appl}" a Holder inequality we see that we get

1-1/d 1—=1 1-1/r
dr r(d —1)d1-1/" / gr
=7 < e —— a=r
(/m, e dm) - 2d(d-r1) el ( oL ful?= d
+o ( / Jul dz) (3.87)
L \Jqa,

and so if we apply a Holder inequality to the last term as follows

~am 1 . 1-—1/1" 1/r
/ |u|"?——rlld:c:/ Mi&:ﬂumxg(/ |u|z%:dz> (/ |u|’da:> , (3.88)
r Qr (133 Qr

we get
r(d—1) 1
ulo, gz 0, < W_—r‘)lull,r,m + Zlulo,r,m . (3.89)

Thus, if we define [Jull1,rq, = (|ul] , o, + [4lor0.)"/" and more naturally,

2 1
i) 0, = (uli 0, + 106 0"

then we get,
1-1 rd-1) 1
Il 0, < 27 max |51 2l (3.90)
and (d-1)
— rr -
Il 0, <2 g5 I, - (3.91)

Remark: At this point we can make use of the density theorems outlined in the previous
section, i. e. that C°(Qg) N W™P(Qr) is dense in W™P(Qr), so that we need only assume
u € W17(Qr) for the case when we assume no specific boundary conditions — the Gagliardo-
Nirenberg inequality in terms of full norms.

Also, if u € C}(), R C R¢

r(d—1)
|u|0,-,,%:—,,n = m luli,r0 -
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Remark: Since r < d, and C°(R%) is dense in W1 (R%) (1 < 7 < o0), we can relax our
assumption to u € Wb (IR9). o
(B) Case r > d.

We see that it suffices to prove
Lemma 3.4.3 Forr >d and u € C*(Qr)

, @) —u@)|  2rdE
Y= = r—d Uity -

(3.92)

x, yen ’13 -
oy

Proof:

§otation: For0 <t <1, Qp; = cube of edge Lt with faces parallel to Qy, and such that
Qr: C Q.

Let ¢,y € Qr with |zt —y| = ¢L < L, (¢ < 1). Hence, there exists a cube Q,1 with
T,y € QoL C QL-

If z € Q,r, then
1
u(z) = u(z) — /0 Ediu(m +i(z—x))dt (3.93)

1
= Ju(z) — u(z)| < &L /0 Vu(e +t(z - a))ldt (3.94)

where the V = V,, operator is with respect to w = z +#(z — z). Now, since

dz = (sL)? (3.95)
QoL

we see that

1
u(z) — @Iy /n.,,, u(z)dz

(-(;}ﬁ- / (u(2) — u(2))dz

di/2
< e /n L / Vu(z+4(z —2)|dt . (3.96)
Thus with w = z +#(z — z), we get
dz| < a' -4\ dtd
u(z) — T L)d/ u(z)dz| < @Dt /n.,“/ t~¢|Vu(w)|dt dw
< & ¢=¢ Vu(z)|dzd
$ oo [ vu(e)dde
di/2 [ 4 1/r 1/g J
< — Vuz'z] /[/ dz] t—dt
(UL)d_l /(;L’ ( )l [} Qort

d
by using Holder’s inequality with %+% = 1. Also note that, by |Vu(w)| we mean E ]-a—a—u(wﬂ.
< w;
i=1

ey
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Then we see that

1 d'/? ' 1/q4~d
u(m) - -(—E:f)—d'/s; i U(z)dz S WIVUIO’T’QL / (Vol QU’Li) 9 dt
dz 4/4 gdfa-d
- oo / (eL)¥1 £3/1-4dt [Vl
= (eL)!~¥" K(d,r)|Vulo,a, (3.97)
where . e
K(d,r) = d/? / t=drdt = 2 : (3.98)
0 r-
A similiar inequality holds for y in place of z, and so
1
-y < u(z u(z)dz| + |u ————/ uzdz|
) - w0 < |ute) - o [ wede| 4 o)~ o [ )
< AcL)-4T K(d,r)|Vulora, (3.99)
So that in fact, since |Vulorn, < d="ul1,r 0., We get
[ul@) ~wW)| < 9 (d,r)dt 1" uls i, (3.100)

o~ oI
but this is for |z — y| = ¢L with o < 1.
Now, let z,y € Q and |z — y| = oL with 1 < o < d'/2. If z € QL then we see that all
arguments coincide with those outlined above (with L replacing oL in all instances) and so the
inequality corresponding to (3.97) is

u(z) — EI-J/Q w(z)dz| < L'~ K(d,7) |Vulorgq, - (3.101)
L

So, if we use that L < oL for 1 < ¢ < d/2 then we see that we can proceed exactly as before
to get the same inequality . |

Remark: This argument also holds (in a slightly modified form) for v € C§(), @ C R¢ (with
some extra assumptions about the type of domain), but, in particular, for Q = R?.

(C) Case r=d.

Lemma 3.4.4 Forg>1, 280 >1 p—g> sy and v € CH(QL) we have

[ulopnz < caluh T Iuliiga, + L7 luly e, (3.102)
whereas for u € C}(Q),
lulop., < calul; 40 [wldl?q, - (3.103)

Remark: Note the restrictions outlined, and also that p > ¢ implies p > 5:%73'

Proof of lemma: Apply (3.81) to the continuously differentiable function v = ]ulwf—u (pro-

vided ﬂd‘;’—ll > 1), and use Holder’s inequality,
1/d - 1-1/d
de P=7-1d
61& ) (‘/(;L |UI x)

(/m |ulpakc)b-l/al < ch(/nL
+%/m u[ 252 de (3.104)

i=1



48 CHAPTER 3. THE GAGLIARDO-NIRENBERG INEQUALITY

Now notice that, if we write

1-1/d ) (pldm1)=d) 1-1/d
(-0 = (] iemtenea
QL QL

d—1 d-1
Pygd P Pypl(p~g)(d—1)~d] F2d
[u| T de lul~ EDE=T de
Qy 1173

where we have used Holder’s inequality with 1—21— + ?}; = 1. We choose P; = -(-"—‘—q%}d"—l).

IN -

Note: this means we require P; > 1, i.e.
—q > —. .
P—42 37 (3.105)

So we get

1-1/d ',—1; {P—q‘),gi;l)—d
(/ Iulp’ﬁTdm) < (/ Iulqdw) (/ |u|Pd:c) ) (3.106)
i Qr S .

Again, we have to use an intricate Holder inequality to deal with the term
1/Q: 1/Q2
—1 Q3 ((p—g)(d—1)—d) P
/ lulrsT_Zd dz < (/ |u|-—‘-j—rq =) dm) (/ |u|$g%dz) (3.107)
133 QL QL

and where -+ + - =1 with -2 < p(d-1) .10 true since we have the restriction (3.105).
Q1 Q2 p—q = d

So, if we choose, @1 = (p_—:%?d;—qlzm’ we find
p—g)(d—1)=d —g+d
- d{p— d(p—q)
/ |2 de < (/ |u|Pd.1:> o (/ |u|7or d:z:> . (3.108)
Qr Qr Qr

And thus we see that (after using Holder’s inequality with 3 ;) we get the required result. O
Remark: This is the exceptional case, and we will not investigate it further!
Hence the proof of the original Lemma 3.4.1. ]

We are now in a position to prove the following lemma:

Lemma 3.4.5 For allu e CP(RY),0<j<m,1<r<ooandVm—j—d/rgNU{0}, we
have

lulj:l’,md < K(j,m,d,r) Iulm,r,md (3.109)
where . . )
—_m-J

;— r T - (3.110)

Proof: By induction on m. We have already proved that V u € C3(R9), r # d, that (taking
the worst of two constants)

2d3/%y dr

lulop < =] lul,r with p=—— (3.111)

i.e. (3.109) is true for m = 1.
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For all u € CP*H(RY), r # d, we can obviously substitute D™u into (3.111) to get (for any
m € N)

dr
d—r
and with K'(s,d,r) a non-trivial constant (since the generalized derivative D" and gradient
V" are not the same operator under LP-norms, V 1 < p < o).

lulﬁl,P < K'(ﬁz’ da 1’) |u|r'n+1,r with = (3112)

Assume (3.109) is true for some m (¥ 0 < j < m). From (3.112) we can write

: ., 1 1 1
[t|m,r < K'(m,d, ') |t}msr,rn with —=aT g (3.113)

Using this in (3.109) and noting that r = dr'/(d— '), we soon see that we get (3.109) for m+1.
O

Remark: It is important to note the restriction m— j —d/r ¢ NU{0}, as this condition allows
us to exclude any occurance of the exceptional case (outlined in the previous section) in our
induction proof. To clarify this point, let us examine how the induction proof proceeds when p
is negative (when p is positive this problem is not present):

Given p < 0, we would first prove |u|jp < ¢|ulj41,r, With 1/p =1/r; — 1/d and of course we
exclude r; = d.

Note that 7; > d > 1. We then iterate the right-hand side, which proceeds with the usual
positive norms, and as we increase to m derivatives, this allows us to reduce our resulting

r = Pm—j so that :
1 1 m—-j5_ 1 ., d

and of course the condition m — j — d/r € NU {0} excludes ry = d. The rest is induction!

3.4.2 Casea=j/m

We shall consider the case a = j/m. Further, we shall concentrate on the case j = 1,m = 2,
since we can use induction on m to get the general m case.

First consider the following Corollary to Lemma 3.2.12:
Corollary 3.4.6 On an interval X (length |A| > 0) we have for u € C2(X)

rlq

plr
/ |DufPde < @ |A[+2-PI7 ( / |Dzu|ra‘m) + P8P |\~ (/") ( / Iu|‘1d.’z) (3.115)
A A A
with ¢ = 2P—1, 513—1-51;:% and 1< g<oo,1<r<oo.

Proof: Proceeding exactly as in the Lemma 3.2.12, we can integrate (3.30) over A to get

4 p
/ |Dufds < || ( / |D2u[dz) + PR ( / |u|d:c> . (3.116)
A A A

Now,forr>1,q¢ > 1,
1/r
/ |D?ulde < |APY7 (/ |D2u|’) (3.117)
A A
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1/q 4
/|u|d:c§ A= 1/ (/ Iulqu> . (3.118)
A A

= -zl—q + o and substitute (3.117) and (3.118) in (3.116), then the corollary
. O

and

If we now identify

1
follows. P

Lemma 3.4.7 For allu € C3(RY) and 1 <r < o0, 1< g < 00, we have

fuly pme < 4292502 [ul 2l 2, (3.119)

where 1 + 1 ——1-
% 2 p

Proof: We will first prove the result (for d = 1) that: for 1 < ¢ <00, 1 < r < 00,

p/2r p/2q
/ |DulPdz < #93/241 ( f |Dzu|rdx> ( / |u|qdm) . (3.120)

We see that it is sufficient for us to prove that: for any L > 0,

L oo pl2r o r/2q
/ |DufPde < cP2%P/241 < / |D2u|’d:c> (/ |u[4dm) . (3.121)
0 o] 0

Let £ € N and consider the interval A : 0 < z < L/k (assume u # 0 in A).

If the first term on the right-hand side of (3.115) is greater than the second, then take A; = A.
If not, increase A, keeping the left point fixed, until both terms on the right-hand side of (3.115)
are equal — call this interval A;.

In the first case we have
p/r

L 14p—p/r L
|DulPde < 2c? (-> / |D?ufrdz | (3.122)
M k 0

and in the latter

pf2r p/2q
/ |DulPde < 2cP8P/? ( f [D%[’d:c) ( / |u|qu> : (3.123)
A1 A Ay

If Ay > L we have finished. If not, proceed to Az, As, ... etc. until [0, L] is covered by the A;’s.

Case (3.122) happens at most &' < k times, and so in general we would get something which

looks like
L L 14p-p/r L
/ |DulPdz < k'2¢P <Z> / | D?u|"dz
0 0

o pf2r ) »/2q
+2cP8P/? ( / |D2u|'dz> ( / [u|qu) (3.124)
0 0

where we have used Holder’s inequality. Taking the limit & — oo then (3.121) follows.

plr

For d > 1, apply (3.120) to each derivative D;u treating all the z; (j # ¢) as parameters. Then
integrate with respect to the z; (j # i) and use Holder’s inequality. Then simply sum over ¢
and take the p** root.

The cases ¢ = o0, r = 1, 00 follow by taking these limits in the inequality (3.120). O
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Lemma 3.4.8 For all u € C*(RY), and integers 0 < j < m we have

.

Ij/m
m

o euls I with 1 m=J (3.125)

‘u'j;Prle S C(d7j7 m,q, ’I") Iu 1g,Re p mr mq

Proof: By induction on m > 2.

We know the lemma is true for m = 2 and we will assume it is true (i.e. (3.125) holds) for
somem (V0 <j<m-—1).

Note that if we assume u € CI*F1(IR%) we can substitute D™~y into (3.119) to get (¥ 72 € N)

1 1

1/2 1/2 RS
2! + 2q'

- . 1
[ulim,e < e1(d,m, g ') Julgiy olulgZy o with 7=

(3.126)

and with c;(d, 7, ¢', ') a non-trivial constant.

Since by assumption (3.125) holds for j = m — 1 (for the m we have chosen) we can write

m=1 1 . 1 m-—1 1
|u|m—1,q' < ca(d, m, g, r) lulm':‘r |ul(’)':q with ‘q‘,‘ = pro + 'm_q . (3127)
Substitute (3.127) into (3.126) with 7 = m, to get
e < ca(d,m, g, ) Ul T with = T (3.128)
Ujm,r S C3lQ, M, 4, Umt1,r 1%lo,g o (m+ 1)1"’ (m ¥ 1)9’ . .
If we substitute this into (3.125) then we get
. =i ke 001 J m+1—3
Julip < ca(dym, 50,7 [l lulorg ™ with P maDr T mrng O
i.e. the result of the lemma for m 4 1. O

3.4.3 Combining the a =1 and a = j/m Cases

In this subsection, we will bring together the last two subsections in order to prove the
Gagliardo-Nirenberg inequality for general a between j/m < a < 1 (for m — j — d/r not a
non-negative integer). First, consider the following lemma

Lemma 3.4.9 For —co < A < p < v < 0o and any  C R? we have
v— -A
July < e lulE ul7™ (3.130)
when the right-hand side is meaningful and where cay is independent of u.
Remark: The proof of the result for A > 0 is an obvious application of Holder’s inequality,

and also we note that c(z) = 1 for this case.

For ) < 0, the situation is a little more delicate and ¢(3) is a non-trivial constant (but, of course,
still independent of u) — see Nirenberg [70] or Friedman [33].

The two previous sections (in particular Lemmas 3.4.5 and 3.4.8) have shown us that

a1 j 1
[uljp < cylulm,r with '1‘) = .(1_1 + ('1: - %) (3.131)
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and
s < ey lulifFIulsy ™ with 2= L+ mol (3.132)
where we must assume m — j — d/r ¢ NU {0} in (3.131).
There are several ways to proceed via (3.130).
Clearly, we can use (3.130) in the form
luljp < €3 [ul}-",p1|ulﬁp2 with a = Y —1/p and f=1—-a. (3.133)

1/p2—1/p1
Note that we cannot restrict both of p; and ps to being positive!

Now use (3.131) with p; and (3.132) with p; in the right-hand side of (3.133) to get

fulip < el fulg S 9™ (3.134)
with '
—=14 (% - %) (3.135)
and .
p_11 Lt (3.136)
Identify
a = %+ﬂ=a(j/m— 1)+1 ’ (8.137)
and recall
= Ym-lp (3.138)

o = .
1/ps—1/p;

Note 0 < o < 1 if and only if j/m < a < 1, and so solving (3.135)—(3.138) we get the result of
Theorem 3.3.1. ]

3.5 Conclusions and Further Work

Nearly all of the theory of this chapter is relevant for the rest of this thesis. The most important
points are

1. We have defined Lebesgue and Sobolev spaces and outlined the elementary inequalities
of Young and Holder. We know W™P(Q) = H™?(Q) and that H™ = W™? is a Hilbert
space. Some important density results were also introduced.

2. Semi-norms and results concerning equivalent norms for particular domains were discussed
in detail as were extension theorems.

3. A Poincaré type of inequality was then proved and we were subsequently able to show
that for mean-zero, space-periodic (and sufficiently regular) functions the semi-norm is
equivalent to the usual Sobolev norm.
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4. We stated and proved the Gagliardo-Nirenberg inequality for functions with compact
support on R%, We then use extension theorems to prove a similar inequality in terms of
full norms for functions with no specified boundary conditions. We combine this second
theorem with the results in point 3 (above) to prove a Gagliardo-Nirenberg inequality
in terms of semi-norms for mean-zero, space-periodic functions (also see all the other
necessary assumptions in that theorem). We shall use this version repeatedly in the
following chapters.

5. The original Gagliardo-Nirenberg inequality for functions with compact support is then
proved, in as full generality as possible. Multiplicative constants are calculated as far as
possible. If we know c(1), ¢(2) and ¢(3) (as outlined in the last section above), we can
explicitly give the Gagliardo-Nirenberg constant for the general case.

Further Work:

1. Can we improve the extension theorem results and calculate the multiplicative constants
explicitly (in addition to finding c(1), ¢(2) and ¢(g) explicitly)?

2. Is there any way to generalize or improve the inequality ? See, for example, Nirenberg [71].
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Chapter 4

The Navier-Stokes Equations

In this chapter we introduce the Navier-Stokes equations and specify the initial and boundary
value problem associated with them that we are going study. A detailed account of the necessary
specific function spaces with some useful lemmas is then provided along with some initial a-
priori estimates. We then determine the existence and uniqueness of “weak” and “strong”
solutions to our problem.

Through this examination we realise that in the two dimensional case strong solutions exist
for all time, but in the three dimensional case, we cannot extend the time interval of existence
of strong solutions for arbitrary time, without making further assumptions - these consist of
assuming the solution lies in a certain LP(21) space for all time in order to show the existence
of strong solutions for all time. Further, we show that strong solutions are also regular (ie.
smooth) solutions while they exist. This means that we can prove regular solutions for all time
for the two dimensional case but only for a finite interval of time (depending on the initial data)
in the three dimensional case (again without making the further assumptions mentioned).

We relate the finite-time existence of strong solutions to the well-posedness of the three dimen-
sional problem and show that when we know strong solutions exist for all time and initial data,
the problem is well-posed and we can prove the existence of a global attractor.

Lastly, we introduce an infinite set of a-priori estimates (these are norm estimates for smooth
solutions) which we use to consider the minimum assumptions sufficient to show the existence of
an attractor consisting of regular functions. The stage is then set for the analysis of Chapter 5,
where we will try to relax these minimum assumptions.

4.1 Equations and Boundary Conditions

Consider the domain 7, = [0, L]¢ C R%. Let z = (21,...,24) € Q and t €R, 1 > 0.

Suppose u(z,t) = (ui(z,t),...,ua(z,t)) : QL x [0,00) — R4 is the velocity field for the fluid
considered at some point (z,t) and P = P(z,1) : Q7 x[0,00) — R is the pressure field. Further,
f = f(z) : Q¢ — R is the given time-independent forcing function (force per unit volume).
Further in this thesis, we will assume that f is divergence-free and f € C*(Q)¢.

Assuming uniform density (which without loss of generality we rescale to unity) and with v > 0

as the viscosity (really the kinematic viscosity or dissipation coefficient), then if our flow is
restricted to §r, the incompressible Navier-Stokes equations are

u+(u-Vu = vAu—-VP+f

div u 0 (4.1)

55
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If we non-dimensionalize the above equations, they would have the same form, except now v~}

would represent the Reynold’s number for the flow, denoted by Re = UL/v, where L is the
representative length and U is the representative velocity used for non-dimensionalization.

For d = 2 we know that there exists a well-posed boundary value problem associated with (4.1)
(cf. Temam [86]). While in the d = 3 case this problem is still open, it is sensible (by analogy
with the d = 2 case) to complete (4.1) by the initial and boundary conditions (for d = 2, 3):

u(z,0) = uo(z) Y2 €Q (4.2)
u(z,t) = ¢(z,t) YeedQr, t>0

(4.1)~(4.2) with this boundary condition are the classical formulation of the Navier-Stokes
equations.

Here we will assume space-periodic boundary conditions:
u(z + Le;,t) = u(z,t) Yz eRS, V>0 (4.3)

where e,...,eq is the canonical basis for R and L is the period in the i*® direction. These
boundary conditions provide a simpler functional setting, but at the same time they leave the
many mathematical difficulties unchanged.

Remark: The issue of boundary layers is not considered here.

We shall take / fdz =0, so that there is no overall translation of the fluid, i.e.
0

ude =0 (44)
.

(the fluid has mean zero — see for example, Temam [86].)

4.2 The Functional Setting

In this section we introduce some important function spaces which we will use to examine the
existence, uniqueness and regularity of our problem.

4.2.1 The Function Spaces H and V

Consider the following two function spaces:

V ={ue HL, ()% divu =0 in R}, (4.5)
H ={u€ H, ()% divu=0in R%} . (4.6)
d
Remark: X? = HX endowed with the product structure.
i=1

We equip H and V with the scalar products and norms (respectively)

(u,v) = (u,v)g = / u(z)v(z)de and |jullg = {(u,w)5}?, 4.7

QL

d
(@)= =Y (F 2] e = (@D 4

i=1
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where ||u|lv is equivalent to the norm induced by Hée,(Q L)%
V is a Hilbert space for this norm.
The dual of Vis V! = {u € H};}(QL)"’ = (I:I,}e,(QL)d)’, div u = 0 in R4}

We see that V C H C V' where the inclusions (injections) are continuous, and each space is
dense in the following one.

Also, U =V N C>®(R%)? (test function space) is dense in V, H and V'.

We shall also identify, for some domain Q C R4, D(Q) = C§°(£2) and so D’(2) = the space of
distributions on .

4.2.2 The Operator A

Recall the theory of the section on linear operators in Chapter 2. We see that we can apply
the general theory outlined there to the spaces H and V' defined above.

Identify the bi-linear form a(,-) on V x V with the scalar product defined on V x V
a(u,v) = ((wv,v)) =(v,v)y YuveV (4.9)

and so A is the (strictly) positive, self-adjoint, unbounded, linear operator from D(A) onto H
defined by

(Au,v) = (Au,v) = a(u,v) =(y,v)y VuveV. (4.10)
Furthermore, with this definition A : D(4) — H is an isomorphism, with
D(A) = {u €V, Au € H} (4.11)
or more precisely, _
D(A) = HZ.(QL)* NV . (4.12)
Specifically,
Au=-Au Vue D). (4.13)

(Also see Temam [86] or Constantin and Foias [16] for a more explicit treatment of the char-
acterisation of D(A) — though in the latter the boundary conditions under consideration are
somewhat different.)

As outlined before, D(A) is equipped with the norm ||Au||z, which is equivalent to the norm
induced by ng,(QL)d — the Poincaré inequality for mean-zero, space-periodic functions is
needed to show this.

Further, since A is a strictly positive, self-adjoint, unbounded, linear operator, we can de-
fine powers A°, s € R, which are, similarly, strictly positive, self-adjoint, unbounded, linear
operators in H, whose domain is D(A®) C H (the inclusion being dense in H).

We set
V. =D(A*?) VseR. (4.14)

V, is a closed subspace of Hf,er(QL)d, in fact:
V, = {u€ B, ()% divu=0}. (4.15)
We call V_, = (V,)/, s > 0, the dual of V.
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And so we see that we can write

s>2 s=2 s=1 s=0 s=-1 s= -5 < -1

D(4*/?) C D(A) C D(4Y?) C D) C DAY C D41

I || al | |1 I
Vs C Va cC V=V C W=H C Vo1 C V_g

Further, not only is A an isomorphism from V onto V' as well as from D(A) onto H, more
generally, A is an isomorphism from V42 onto V;, V s € R.

Also, the norm ||4*/2||g on V, is equivalent to that induced by Hj,,(Qz)?
callulls,2 < 1A/ %lm < callulls,2 ¥ u€ D(A?) (4.16)

where ¢; and ¢ depend on s and L.
Note that the injection of V onto H is compact.
Further, the injection of V; into V,_. is compact for all s € R, ¢ > 0.

Also, as in Chapter 2, we can consider A~! : H — D(A) as a self-adjoint, compact operator in
H and all the theory of Section 2.5 applies to our linear operator A defined by (4.10).

4.3 A Priori Estimates

Assuming u is a sufficiently regular solution of the Navier-Stokes equations, we can make the
following (energy-type) a-priori estimates:

4.3.1 The Energy A-priori Estimate

We can rewrite the equation (4.1) (with w = curl u) as:
1
w+wAu=vAu—-V(P+ 5|u|2)+f (4.17)

where ‘A’ is the vector product. Consider the scalar product of (4.17) with u and integrating
over §f,

1
'2'3t||U||%a(nL) = —v||Dullfaq,y + (4, o, (4.18)

where ||ul|z2(q, ) is equivalent to the norm on H, the square of which equals / |u|%dz, i.e. the
Q
total energy of our system. -

Also, ||Dullzan,) = llullgs (a,) = luliz0. — the H?! semi-norm which is equivalent to the
per
norm on V.

Remark: I will persist with this new norm notation as a matter of convenience for later in
this chapter and throughout the following chapters.

Note: For divergence free functions such as u on periodic boundary conditions,

[ wide= [ [vuds=juitaa, (4.19)
O Qr
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A Cauchy-Schwarz inequality in (4.18) gives

1
50ullullEaay) + VIDulZaq,) < llellza@ullfllza@n) (4.20)
The Poincaré inequality for mean-zero functions tells us that

llullzan,) £ LilDullr2ay) (4.21)
and so if we use Young’s inequality we see that
1 v L? v L2
'2'5t||u||%z(n,,) +v||Dullaq,) < m””“%z(m) + z;”f“%n(m) < §HDUH%2(nL) + %llflliz(n,,)
(4.22)
L2
= Biljull}o(q,) + VIIDull}agq,) < 7||f||§;e(nL) . (4.23)

If we now integrate with respect to time and recall that f € C*(2.)¢ is time-independent,
then

t L2t
lullZaea,) @) + V/o 1Dul|320,)(s) ds < llullZaga,(0) + —l;-llflliz(nL) . (4.24)

Thus we could deduce that if the initial energy is finite, then the energy is finite for allt > 0
and also fg ||Dul|2,(s) ds is bounded for all £ > 0. If we use Poincaré’s inequality in (4.23) and
apply the Uniform Gronwall Lemma (see Temam [88], Chapter 3, Lemma. 1.1), then

l[ull25(2) < l[ull22(0) exp[~vL2t) + v~2L4||fl|%a(1 — expl—v L))

i.e. the energy ||lu||2, is uniformly bounded.

4.3.2 A Second A-priori Estimate

Result for d =2

Note that we can write (4.1) in index notation (commas denoting partial derivatives):
Ui+ UpUip = VUi gk — P+ fi (4.25)

where u = (u1,uz) and also u1,1 + uz2 =0 (d = 2).

If we differentiate the above with respect to the jt* variable, multiply by u; ; and integrate over
Qy then:

1
50l DulZ2 + /n ug jur jui pdz = —v||D?ullZs + (v, o, (4.26)

L
where [|D?ullra(a,) = llullgz (q,) = lul2,20. ie. the H? semi-norm, which is equivalent to
per
lAullz = [|Aullz.
Crucially, in the d = 2 case (using the divergence property) fnL u; jur jus; d = 0 (which is

not true in the d = 3 case). Thus for d = 2, if we use integration by parts, a Cauchy-Schwarz
inequality and then Young’s inequality on the last term in (4.26), we get

Ol Dulls + vIID?ullF. < v HIfllZa -
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Poincaré’s inequality and then integrating with respect to time shows us that || Dul|3sq,)(?)

and [} |D?ul|} 2, y(5) ds are bounded for all # > 0 provided ||[Du||2,(0) is finite, while the
Uniform Gronwall ﬂemma implies

2
1Dl (2) < | Dl (0) expl—ev L] + [ [3a(1 — exp—cv L~21])

and so ||Duljz2> = ||w||z2 is uniformly bounded in time.

Result for d =3

Again, assuming our solutions to (4.1)—(4.4) are sufficiently regular, note that by using a Holder
inequality as well as integration by parts, we can write the d = 3 version of (4.26) as

1
50l Dullzs + v D*ullz2 < e(n) |1 Dull=[| Dullzs + (—Av, fa, - (4.27)

The Gagliardo-Nirenberg inequality of the last chapter allows us to majorise the “Du“ L+ term

as follows
1Dyl < || D2ull35H | Dullfst . (4.28)

Using this in (4.27), applying Young’s inequality and dealing with the last term on the right-
hand side appropriately, we see that we get

d 2
—I1DuliZ: +vlID*ullfa < 2000~ Dullz + I 7lIz- (4.29)

where ¢; is independent of v and L.

Now, if we define

A =10ua + (£) i (4.30
then (4.29) becomes
ddtl < ea(v, L) FP (4.31)
and integration soon reveals that
= £1(0)
@) < = 4.32
1(8) < (1 - 2c,F2(0)£)1/2 (4.32)

which holds as long as the denominator is non-zero: in fact we can deduce that provided
0 <t < Ti{|| Dul|2(0)), where

-1

2
T1(||Dunm(0))=§[ (nDuuLz(OH( ) ufum)] (4.33)
then '
Rt <250 (434)
ie. )
1Dults)+ (2) A1 <2 (uDunLamw( ) Ilfllp) (4.35)

and so obviously ||Dul|z2(t) is bounded for the interval of time indicated.
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4.4 Weak and Strong Solutions

4.4.1 Weak Form of Navier-Stokes Equations (due to J. Leray)

Let T > 0 be givén.

First, let us introduce the tri-linear continuous form b (defined on H}.(Qr)* x Hp, (Q )4 x
H},.(Q)? and in particular on V x V x V):

d
b(u,v,w) = Z/ﬂ ui(Div;)w; de (4.36)

6i=1
whenever the integrals make sense.

We see that, if ue V

b(u,v,v) =0 Vv € HL(QL)". (4.37)
Further, let us define the bi-linear operator B from V x V into V' by.
(B(u,v),w) =b(u,v,w) Yuv,weV (4.38)
and set
B(u) = B{u,u) € V' VueV. (4.39)

Remark: See Temam [87] and [86] for the various continuity properties of the tri-linear form
b.

Let us suppose that u and P are classical solutions of (4.1)~(4.4), and in particular,
ueC*Q x[0,T))¢ and P eCYQL x[0,T)). (4.40)

We can immediately see (via the a-priori estimates above) that u € L2(0,T; V), and further,
if we multiply (4.1) by a test function v € ¥ and integrate over Qy (using periodic boundary
conditions) then we get

' d
E(u, v) + v((u,v)) + b(u, u,v) = (f, v) (4.41)
By continuity (4.41) holds for all v € V.
This suggests the following weak formulation:
The Weak Problem (WP): For f € L2(0,T;V’) and uo € H given, find u satisfying

u € L0, T; V) (4.42)

and
_(—%(u, v) + v((u,v)) + b(u,u,v) = (f,v) VYveV, (4.43)
u(0) = ug . (4.44)

Remark: If u € L2(0,T;V) only, then the initial condition (4.44) does not make sense. We
will prove below, that if v € L2(0,T;V) and also satisfies (4.43) then u is a.e. equal to a
continuous function from [0, 7] into V', so that (4.44) is meaningful.

Consider the following two lemmas provided in Temam [87}:
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Lemma 4.4.1 Suppose X is a Banach space with dual X' and u,g € L*(a,b;X). Then the
following three conditions are equivalent:

1. u is a.e. equal to a primitive function of g,
t
u(t) i‘£+/ g(s)ds, £€€X, a e te]ab]. (4.45)

2. For each test function ¢ € D((a,b)),

b b
[ uweaa=- [ swewyar, &= (4.46)

3. For eachne X', J

in the scalar distributional sense, on (a,b).

If 1-8 are satisfied, we know that u is a.e. equal to a continuous function from [a,b] into X,
and g is the (X -valued) distributional (weak) derivative of u.

Lemma 4.4.2 Assume d < 4 and that u € L?(0,T;V). Then the function Bu defined by
(Bu(t),v) = b(u(t),u(t),v) VveV ae in t€[0,T] (4.48)
belongs to L*(0,T; V").

If u satifies (4.42)—(4.43), then (4.10) and the lemma above imply

%(u,u):(f—VAu—Bu,v) Voev. (4.49)

Since A is linear, continuous (in fact an isomorphism) from V into V', and u € L%(0,T;V),
then Au € L?(0,T;V’) and so using Lemma 4.4.2 we see that f — vAu — Bu € L*(0,T; V’).

Lemma 4.4.1 with X = V’ tells us

% e LY, T; V") (4.50)
and d
U
=1 vAu— Bu (4.51)

(the latter satisfied in the distibutional sense in V’). Further, Lemma 4.4.1 implies that u is
a.e. equal to a continuous function from [0,T] into V’ and (4.44) is therefore meaningful.

Clearly, the weak problem is equivalent to:

(WP) Alternative: Given f € L%(0,T;V’) and uo € H, find u satisfying

we L0, T V) %3;- € L0, T3 V") (4.52)
and 4
&y vAu+Bu)=F on (0,T), (4.53)

dt
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u()=u . - (4.54)

Since the solutions we are considering may not be very regular functions, (4.563) is therefore
satisfied in a distributional sense in V.

Remark: Since we will assume f is independent of ¢, this means that the dynamical system
associated with (4.53) is autonomous.

4.4.2 Strong Solutions

We now consider a class of more regular solutions:
The Strong Problem (SP): For f € L?(0,T; H) and uo € V given, find u satisfying

u € L*(0,T; D(A)) N L*(0, T; V) (4.55)
as well as (4.48) ~ (4.44)-

Remark: If u is a strong solution, then by interpolation (see Temam .[86], Section 2.4),
Bu € L*(0,T; H) . (4.56)
We know f € L?(0,T; H) and Au € L%(0,T; H) so

du
di

The condition u € L%(0,T; D(A)) along with that last condition (4.57), allows us to deduce
(see Temam [87] Chapter 3, Section 1.4; or Temam [86], Section 2.4) that u is a.e. equal to a
continuous function from [0, 7] into V/,

v e C([0,T;V) . (4.58)

=f—-vAu— Bu € L*0,T;H) . (4.57)

4.5 Existence and Uniqueness Theorems

I quote the two following theorems from Temam [86]. They collect resuits from Leray [57, 56, 58],
Hopf [42], Ladyzhenskaya [52], Lions [59], Lions and Prodi [61] and also Serrin [79].

Let T > 0 be given.

Theorem 4.5.1 (Weak Solutions) For f € L2(0,T;V") and up € H given, there exists a
weak solution u to the Navier-Stokes equations (d = 2 and 3) satisfying

u € L2(0,T; V)N L=(0,T; H) . (4.59)

For d=2: u is unique and
ue C([0,T); H) , (4.60)
%‘- € L¥0,T; V") (4.61)

and we can assert: u{t) — up in H ast — 0.
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For d=3: u is weakly continuous from [0,T] into H,

v € C([0,T]; Hy) , (4.62)
% e LY3(0,T; V') . (4.63)

Remark: By u is weakly continuous from [0,T] into H (i.e. (4.62)), we mean: V v € H,
t ++ (u(t),v) is a continuous scalar function.

Theorem 4.5.2 (Strong Solutions) (i) d=2: ForanyT >0, f € L*(0,T;H) andug € V
given, there exists a unique sirong solution to the Navier-Stokes equations satisfying

u e L*(0,T; D(A)) nC([0,T];V) , (4.64)
% € L*0,T; H) . (4.65)

(ii) d=3: For f € L>(0,T; H) and up € V given, there exists a unique strong solution to the
Navier-Stokes equations on [0,T*], with T* = T*(uo) = min{T, T1(}| Duo||z2)} (and Ty given
by (4.33)) which satisfies

u € L*(0,T*; D(A) n C([0,T*]; V) , (4.66)
%‘- € L*(0,T*;H) . \ (4.67)

The Proofs of Theorems 4.5.1 and 4.5.2: We consider a so-called Galerkin method. We
look for an approximate solution u,, of the weak and strong problems

m
Um =Y gimthw; VYmeN, (4.68)
j=1
Um : [0,T] — Wy, = space spanned by wy,..., wn (4.69)

where the wj, j € N are the eigenfunctions of the operator A.
Note that the w;, j € N are a basis for H.

If P, is the orthogonal projector in H onto W,,, then u,, satisfies

Edz(um, 9) + V{(tm, v)) + b(ttm, tmy 8) = (f,0) ¥ v € Wim (4.70)

um(0) = Prmuo . (4.71)

Existence and uniqueness of the solution u,, for the system (4.70), (4.71) is well known (they
represent a system of ODEs) defined on an interval (0,7,,), T > 0.

We use a-priori estimates for the u,, (analogous to those outlined above) to show that the uy,
lie in the appropriate function spaces and we extract a subsequence s of Uy, so that Uy — u
(the unique limit) in the right spaces as m' — oo (and to show T,,, = T'). Passage to the limit
in (4.70) shows that u is a solution of the weak problem.

For the details, I refer the reader to Temam [87] and [86]. O

Remarks:
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1. We see that for d = 2,3 a weak solution for the Navier-Stokes equations exists on [0, 77,
vT>0.

(a) d =2 : Weak solution is also unique,

(b) d = 3 : It is not known if the weak solution is unique (or what further assumption
could make it unique).

2. As far as strong solutions are concerned:

(a) d = 2 : There exists a unique strong solution to the Navier-Stokes equations on
[0,7,vT>0.

(b) d = 3 : There exists a unique strong solution to the Navier-Stokes equations on
[0,T*], T* as above — we cannot extend the interval of existence to an arbitrary time
T. This is an existence result local in time.

3. Some of the a-priori estimates for u,, (referred to in the proof) imply that (analogous to
the a-priori energy estimate derived above for smooth functions)

llullZ(2) +2u/0 1DulZa(s) ds < IIUH%::(OH?/0 (f(s),u(s)) ds . (4.72)

This is an energy inequality satisfied by the weak solution u for d = 2,3. For d = 2 weak
solutions in fact satisfy (4.72) as an equality — as do strong solutions for d = 2, 3.

4. Obviously, if u is a weak solution for the Navier-Stokes equations, for d = 2, and if u
satisfies the hypotheses of Theorem 4.5.2 above, then uniqueness = u is a strong solution.

5. J. Sather and J. Serrin (see [80]) proved: For d = 3, assuming f € L2(0,T; H) and
ug € H given, then if there exists a solution of (4.42), (4.43) satisfying (4.55), (4.59) as
well as (4.72) as an equality (i.e. a strong solution), then there does not exist any other
solution u of (4.42), (4.43) satisfying (4.59), (4.72) (i.e. a weak solution)—i.e. as long as
the strong solution exists (d = 3), it is unique in the class of weak solutions. Temam [87]
points out that the uniqueness of a weak solution is related to the regularity properties
we know of the weak solution.

6. We can investigate further regularity properties of strong solutions if we make further
assumptions on the given data (this may not involve further restrictions on the initial
data). According to Temam this is “due to a regularizing effect” of the Navier-Stokes
equations for strong solutions — we shall clarify these statements further on.

7. It is possible to “lift” a weak solution to a strong solution by assuming a further regularity
property for the weak solution. An example is given below.

4.5.1 An Example of How to Lift a Weak Solution to a Strong One.
In d = 3, recall from Section 4.3 that we can make the following a-priori estimate,
1
50lIDullz. + (I D*ullg, = - /ﬂ Ui, Uk, Uik 42 + (u, Fia, (4.73)
L

and using a Cauchy-Schwarz inequality, then a Young’s inequality and finally Poincaré’s in-
equality, we get

1 v L?
Lo Dulls + S0Pl < 1Dulfgs + E DS (@19
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Now consider the following Gagliardo-Nirenberg inequality
lul1,s < clulf sluloy” (4.75)
where a = 6/(g + 6) and hence the restriction 1 < ¢ < 6.

Using this in (4.74), applying a Young’s inequality (which incurs the restriction 3a < 2 => ¢ > 3)
and then integrating with respect to ¢ we get

I DulfZa(t) + exv / I D?u|2.(s) ds

< IDull22(0) + cav™ 2'3"/ leel 5 o (S)dS+—HDf||Lz- (4.76)

From this inequality we can conclude that if ||ul| L s+« is uniformly bounded then u € L*°([0,}; V),
for all ¢ > 0. In fact, || Du]|12(?) is uniformly bounded in time (apply (4.75), Poincaré’s inequal-
ity and the Uniform Gronwall Lemma to (4.74)).

Recall that Theorem 4.5.2 shows that for u a weak solution of the Navier-Stokes equations in
three dimensions, u is also a strong solution on [0, T*(|| Duol|z2)]-

Let T > 0 be given and assume ||u||zs+ is bounded on {0, T).
Now, suppose T” is the largest possible value of T* and assume that 77 < T'.

Then
limsup || Du(t)||p2 = oo . (4.77)
t /T

However, the a-priori estimate (4.76) above implies that if ||Du(t)||z: becomes unbounded
then ||u||ps+< is also unbounded - a contradiction! (Or in other words, (4. 76) = || Dul|g2(2) is
bounded for ¢t / T, contradicting the assumption 77 < T'.)

In fact, with this assumption, we know u € C([0,T1],V), V T > 0, via Theorem 4.5.2.

We also remark that if we naturally assume that ||Du||L2(2) is uniformly bounded, then u is a
strong solution of the Navier-Stokes equations for an arbitrary interval of time (d = 3).

Thus, to summarize (a result which is analogous to that of Serrin [79]): if u is a weak solution
of the three dimensional Navier-Stokes equations and if we assume u is uniformly bounded in
L3*¢ then u is a strong solution for the Navier-Stokes equations with v € C([0,T}; V), VT > 0,
and further ||uljy (¢) is uniformly bounded.

In fact, the result that Serrin [79] proves is the following:

Let u be a solution of the d-dimensional Navier-Stokes equations (assume f is at least in
L1((0,T); LY(2)) and is a conservative external force) in some open region Q x (0,T) of space-
time, with u € L>*((0,T); L*(R)), w € L%((0,T); L2(Q)). Suppose further that

u € L*'((0,T); L*()) (4.78)
where i 3
5 + ¥ <1 (4'79)

Then u 15 of class C® in the space variables, and each derivative is bounded in compact subre-
gions of Q@ x (0,T").

If we further assume that u, € LP((0,T); L2(2)), where p > 1, then the space derivatives of u
are absolutely continuous functions of time, and there exists a strongly differentiable function
P = P(z,t) such that (4.1) is satisfied a.e. in Q x (0,T).

Remarks:
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1. This result is more general. However, Serrin did not directly use the results of Theo-
rems 4.5.1 and 4.5.2, which we were able to use in our derivation above.

2. The proof is via a complicated series of estimates for convolution integrals to show
w € L=((0,T); L*(R)) and then successively showing spatial Holder continuity (with
arbitrary exponent 6 < 1) of w, wy, Wgs, ... etc.

Temam [86] provides a version which states that the assumption v € L*(0,T; V) is sufficient
to “lift” u to the status of a strong solution for all finite intervals, while Ladyzhenskaya [52],
shows (a result which we essentially reproduce in Chapter 6) that if we assume the initial data
is sufficiently small (i.e. within a particular ball B(0, R*)) or if we assume the viscosity is
sufficiently large, then we can show the existence of strong solutions for all time.

Ladyzhenskaya [52] also provides some other results: the existence (for d = 3) of so-called
“generalized solutions” (defined as a solution which (essentially) lies in L>°(0,T; L*(2))) on
some finite interval of time [0, 7*]. However, this result has been superceded by those mentioned
in the last few sections.

4.5.2 Some Further Remarks:

1. For d = 2 everything is essentially known: We know a unique strong solution exists for an
arbitrary interval of time [0, 7. The two following points analogously apply to the d = 2
case, except that we can replace 7* by T for arbitrary 7" > 0 given.

2. Temam [86] gives a-priori estimates (d = 3) in terms of |u|, = |ulr 2,0, (cf. Temam [86]
Lemma 4.1) (under the assumption u is smooth) and with analogous estimates for u,
proceeds (via a Galerkin method) to prove the result (d = 3):

Lemma 4.5.3 Ifup € V and f € L*(0,T;V,-1), r > 1 then u € C((0,T*]; V;).

This lemma is related to the results in the Sections 4.7 and 4.8 below. However, it also
exemplifies the next point:

3. If we examine carefully the lemma outlined above, we see that it implicitly tackles (and
answers) the question of regularity at t = 0: If we assume the initial data up € W1 (i. e.
further regularity properties) for some space Wy C H, can we show that the solution u(t)
enters into the space Wy C W in an arbitrary short time? This question is naturally
related to the compatability conditions of the data at t = 0: these are the necessary and
sufficient conditions on the data for the solution u to be smooth up to time ¢t = 0.

This has been proved in the result above (W; = V and Wo = V,, V r > 1).

In other words, even if we assume initial data which is not regular (ug € V and f
appropriately regular (as above)) within an arbitrary small interval of time the solution
becomes regular satisfying the conclusions of Lemma 4.5.3.

Thus we do not need to assume C™ initial data in order for our solutions to be smooth
on (0,7*] (d = 3) and in fact need only make the assumptions outlined in Lemma 4.5.3.
(Of course, if we assume ug € V; then u € C([0,T*],V;).)

See Temam [85] where ¢ = 0 regularity for d = 2,3 is more explicitly investigated and
proved for the Navier-Stokes equations.
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4. We can also derive a-priori estimates for weak solutions which take a different form to the
a-priori estimates used to prove Lemma 4.5.3 above — see Foias, Guillope and Temam [30]
and also Temam [86], Theorem 4.2.

4.5.3 Summary

1. For d = 2, we can show the existence of a semi-group of operators for the Navier-Stokes
equations:

S(t) : uo — u(t) (4.80)
which are continuous from H into itself (in fact from H into D(A)).

2. For d = 3, the boundary value problem is not well-posed and the situation is a little more
complex. We can make an extra assumption in order to show the existence of such a
semi-group of operators, for example, that u is uniformly bounded in L3+¢(Q) holds for
the flow. Then having established the existence of the semi-group of operators, we must
investigate any further assumptions we might have to make in order to show the existence
of a C*® attractor. We proceed to discuss this in detail below.

For a good proportion of the material above, I have relied on the classical texts by Temam, [86]
and [87].

4.6 Non-well-posed Problems

We have seen that for the two dimensional Navier-Stokes equations (4.1) (supplemented with
the initial and boundary conditions indicated) are well-posed and there exist strong solutions
globally in time, which means that we can immediately proceed to the two sections which follow
this one, where we show the existence of a C*® global attractor.

However in three spatial dimensions, we have found that (4.1)-(4.4) is not necessarily a well-
posed initial boundary value problem and we only know that there exists a unique strong
solution on some finite interval of time (provided we do not restrict our data further).

We have indicated how we can “lift” a weak solution to a strong one for a time interval of
arbitrary length by making some extra assumptions on the flow e.g. v € L3+¢(Qr) uniformly
or more obviously, u € V uniformly. We can also show the existence of a strong solution for
all time if we assume the initial data to be sufficiently small (in certain norms) or that the
viscosity is very large (this is Ladyzhenskaya’s result [52]). In either case, we are then able to
establish the existence of a well defined continuous semi-group of operators S(t) : H — H. (We
in fact have u € C([0,T]; V).)

Subsequently, we are then able to proceed to discuss further regularity properties of the solution
as well as the regularity of the attractor.

Let us be more careful with these assertions.

When the initial value problem (IVP) with which we are presented is ill-posed, i.e. a semi-
group of operators cannot be defined everywhere, we can still proceed to define invariant sets
and attractors — recall the theory of semi-groups for non-well-posed problems in Chapter 2.

In the following exposition we present the relationship between whether an initial value problem
is well-posed, and the corresponding existence of an absorbing set and global attractor; more
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precisely, we will show that for some specific IVPs, if-a particular initial value problem is
well-posed for all initial data, then there exisis an absorbing set and a global attractor.

The specific equations mentioned are those which fall into the category of IVPs which can be

written in the form
% + Au+ B(u) + Ru

I
() (4.81)

Up

in H (for f and uo in H).
As before, we have assumed:

1. We are given two Hilbert spaces V C H (the injection being compact, dense and contin-
uous) andso VC H C V.

9. We consider the coercive, bi-linear continuous form a(u,v). So, the associated linear
operator A € £(V,V’) is an isomorphism from V onto V', and

D(A)={ueV, AueH}CV (4.82)
the injection being dense and continuous.

3. R:V — V' is a continuous linear operator which maps D{A) onto H, and which also
satisfies a certain set of conditions. Similarly, B : V x V — V' is a bi-linear continuous
operator which satisfies a certain set of conditions (B also maps D(A) x D(A) onto H).
I refer the interested reader to Chapter 7 of Temam [88] since the exact nature of these
conditions is not important for a discussion of the ideas presented here. However, for the
d = 3 Navier-Stokes equations (4.1)-(4.4) we know that R = 0 and B certainly satisfies
the conditions mentioned.

Note that the IVP (4.81) includes the Navier-Stokes equations-(4.1)—(4.4).

We can prove the following theorem for the IVP (4.81):

Theorem 4.6.1 Under the assumptions mentioned for the operators R and B, for f € H and
ug € H given, there erists a solution u of (4.81) satisfying

u€ L20,T;V)NnL*®(0,T;H) VT>0. (4.83)
Such a solution is not guaraniced to be unique.
If we further assume that ug € V, then 3T* = T*(||uollv, f) > 0 such that there exists a unique
strong solution u of (4.81) on [0,T*] satisfying
u € L0, T*; D(A)) nC([0,T*]; V) (4.84)

For the proof, see Temam [88], Chapter 7.

We see from the theory of Section 2.7 of Chapter 2, that there exists an operator S(¢) which is
the mapping

SH):upeVeu(t)eV (4.85)
whenever the mapping is defined.

Remark: Some a-priori estimates derived in the last two sections (and applied in the proof of
the theorem above) show that the absorbing ball of V', B(0, M) C D(S(T™*(M))).

With reference to the theory of Section 2.7 of Chapter 2 and the above theorem, we will say
that the IVP (4.81) is well-posed in V on [0, T] for some ug € V, if uo € D(S(T); V). In that
case, there exists a unique solution u of (4.81) such that

u € C([0, T]; V) N L2(0, T; D(A)) . (4.86)
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Theorem 4.6.2 Assume the hypotheses of Theorem 4.6.1 are satisfied. If the TVP (4.81) is
well-posed in V, YV ug € V and VT > 0, then the corresponding semi-group {8@),t > 0}
possesses an absorbing set in V and a global atiractor.

Remarks:

1. In other words, as Temam states: “if we know the solution u of [4.81] remains bounded
in V, V up and all finite intervals [0, T], then we know that l|lu(t)|lv remains bounded
Y ¢t > 0 and uniformly for ug in a bounded set in V.

2. Thus, if we can show the existence of a unique strong solution for all time, for all initial
data, then Theorem 4.6.2 tells us that our system is well-posed and possesses a global
attractor. For the three dimensional Navier-Stokes equations, this means that we must
assume u is uniformly bounded in V or, as we already know, it is sufficient to assume u
is uniformly bounded in L3+¢. ’

3. We could proceed to investigate the dimension of functional invariant sets for non-well-
posed problems (cf. Temam [88], Chapter 7).

4. This theory along with that concerning the existence and uniqueness of weak and strong
solutions exposes the first two fundamental questions we should now ask ourselves con-
cerning the Navier-Stokes equations (4.1)-(4.4):

(a) Do unique strong solutions exist for all time (T > 0) or if they only exist on some
finite interval [0, 7*], what minimum assumptions must we make in order to prove
that they exist VT > 07 We can then use lemmas such as 4.5.3 to show these strong
solutions are regular (smooth) on all finite intervals of time,

(b) The theory of this section then tells us that, having assumed the sufficient condition
to show (well-posedness) the existence and uniqueness of a strong solution (and so
we further know u € C([0,79;V)), we can then say that the corresponding semi-
group {S(¢),t > 0} has an absorbing set in V and a global attractor. We then ask
ourselves (d = 3 case): What is the minimal assumption we need to make to show
that the maximal attractor is bounded in & ", for some or all n € N?

5. We now investigate some a-priori estimates which will provide us with partial answers to
both questions. We will go on to improve these estimates and what we can deduce from
them in Chapter 5.

4.7 The Ladder Theorem

In this section we construct a set of a-priori estimates for solutions of the N avier-Stokes equa-
tions which are based on those in Bartuccelli, Doering and Gibbon [4].

Note: We must assume u is a sufficiently regular function for all time in the three dimensional
case.

These estimates take the form of differential inequalities for various semi-norms of u.

Definition 4.7.1 Ford =23 we define the functionals

d
Hy=3%" %" / ID™u;Pde = Jul} 4 q, (4.87)

i=1 |n|=N

- Al
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which are equivalent to the square of the usual norms defined on H;,Ve,(QL)d or Vn (see above
and Chapter 3).

Note (reiteration): For mean-zero, space periodic functions (as here) this semi-norm Hy is
equivalent to the full Sobolev norm on HN(Qz) = WN:2(Qr) — see Chapter 3.

Lemma 4.7.1 On periodic boundary conditions, for u sufficiently regular and V r,5, N € N
with s < N we have

Hy < HFG HES, . (4.88)
Proof: Step 1:

Firstly, let Hpr = Z / |D™¢;|? de. Now we show that (with ¢; periodic)

|m|=M
Ay < B3 Hy?, (4.89)
FIM — _Z/(Dm+1¢i) (Dm_ltﬁ,') dz
i“M
1/2 1/2
< [E/(D’"“@)z d:c] [Z:/(D’"‘lqs,-)2 d.fc] (4.90)

using the Cauchy-Schwarz inequality.
Step 2: Secondly, we show that VM € N,
~ Mo 1 '
Hy < HM“?l‘S AT (4.91)

To achieve this, we know from (4.89) that (4.91) holds for M = 1. Assume (4.91) holds for M.
Then

~ ~ ~ o~ ~ M ~ 1
Husr < By, if® < B3, By Ho™ D (4.92)
SO
Hus1 < HMs“f;';g A (4.93)

Hence (4.91) is true VM € N by induction.
Step 3: Thirdly, we show that VM,r e N

iy < BFD 57 (4.94)
We know from (4.91) that (4.94) holds for r = 1. Assume (4.94) holds for r. Then
iy < BED AT < BEETD gD (4.95)
where we have used (4.91). Hence (4.94) is true V.M, r € N, by induction.
Step 4: Now suppose that originally ¢; = D"~™u;, then
Hy=Hy and Ho=Hn-m (4.96)

and so with M = s we have

I e
Hy < HNY, HEZ,
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]

Now recall that our periodic forcing function f € C*°(QL)¢ is divergence-free and independent
of time, and so f has a cut-off in its wave number spectrum at kyoz = 27 /A;, where we regard
A; as the smallest scale in the forcing.

For our system, we can introduce a natural time-scale as follows: 7o = L?/v.

Thus we can introduce velocity and vorticity fields associated with the forcing function:
up =71f and wj=curlyy . (4.97)
So, we can define the following set of dimensionally uniform semi-norms: ‘
Definition 4.7.2
Fy:=Hy +luslk 20, - (4.98)
For these semi-norms we can prove the following a-priori estimates:
Theorem 4.7.2 (Ladder Theorem) Forallt >0, N>1,1<s< N and d=2,3, we have

F]{;}-l/s

1/s
N-s

1.
R R G AR 2 (4.99)

and .y )
1. vF : ful )
Zfy < -l (2) 1710,00,02,,
2 N > 2 F]b/:s + (CN,S v

+vA;3)FN (4.100)

where \g2 = L~2 + A;z and c%?, (7 = 1,2) are constants which depend only on N and s.

Proof: In [4] the following a-priori estimates were established:

1.

sHN < —vHNp1 + D Hyult 00 + HY IfIN 2,00 (4.101)
1. Hylul o

JHN < —%HNH + C(Z)LIV-‘E"— +HY? | flv a0 - (4.102)

Now recall our definition for Fiy, and also the assumed properties of f. I will indicate the proof
of (4.99) as the proof of (4.100) follows analogously (from (4.102)).

Add and subtract v|ugs|n41,2 to (4.101) to get
1
2
Now consider the last term in (4.103). Young’s inequality =>

Fy < ~vFyq1 + O Hylulo0 + viugl3 2 + HY | flv2.0, - (4.103)

HY?\flnz < 75 Hy + 7ol fle = 75" Fv = L™ Fy . (4.104)
The third term on the right-hand side of (4.103) can be majorised as follows:

|ufﬁv+1,2FN

viusli,z < v i <vA7’Fy (4.105)

us %1,2
where A is the cut-off scale described above.

Thus, if we include both these results in (4.103) and use (4.88), we get (4.99). O
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4.8 Consequence of the Ladder Structure.

Note: Henceforth, we will assume (without loss of generality) up € C*°(Qr) — recall our
discussion on the question of regularity at ¢ = 0.

We are interested in the long-time behaviour of solutions to the Navier-Stokes equations.

Consider the following strict definitions for the ‘time asymptotic upper bound’ and ‘time aver-
age’ of the function f(u(t)): _
f:= sup limsup f(S@)ug) (4.106)

uge(Cee t—oo
and

(f) :=limsup sup %/0 F(S(T)ug)dr . (4.107)

100 ugeCo®

Recall the results of Section 4.3.

1. d = 2,3: The energy H is uniformly bounded in time, provided that it is bounded
initially. Furthermore, we see that there exists an absorbing ball in Lger(QL)d whose
radius is given by

- _IL*
Ho < —5|Ifll7 (4.108)

and we also have the time average result
L2
(H1) < —|Ifllz- - (4.109)

2. d = 2: The ‘enstrophy’ Hy = |ul,2,q, is uniformly bounded in time, provided it is initially
bounded. Also, there exists an absorbing ball in H},,.(Qz)? whose radius is given by

Hi< L Fiki 4.110
1S 5 Iflie (4.110)
Or even
— L2 9
Hi < —5|Iflizs (4.111)
and we also have ,
D2l < Iz | (4.112)

2
The latter of the following two lemmas will prove useful in what follows.

Lemma 4.8.1 Fory>0,a>8>1, ande >0

— 1 a—1 o - 6 ——l
p < s =1 yo e
Yy _(a_1>6 Ty +(a_1>€ Y. (4.113)
Proof: Via Young’s inequality (under the hypotheses of the lemma),
1 b 1 vy
B — ybtv < 2 [ yells (Y
VA (ye ) +3 (61/,,) (4.114)

withpu+v=p8,1/p+1/g=1and 1< p,¢ < oo. Now choose up = o and vg = 1, so we find
that p = -"isf__;ll) and v = %551’- By making the appropriate substitutions, the result follows. O
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Lemma 4.8.2 For any solution y(t) > 0, t > 0 of a differential inequality
ey < —y*+ezy®, teRt (4.115)

where o > B> 1 and ¢ = 2(t) > 0, z = z(t) > 0; we can make the following estimate

¢
(0) < w0 [e [ a(r)ar] (4.116)
0
where 8
g(t) = :c(t)'g-—% z(t)T:%tli' and c¢= Z: T (4.117)
Proof: Apply Lemma 4.8.1 to the right-hand side of (4.115) and choose
(t) = [2(t)2()] & (4.118)
so that we get
() S ealolwe) = - (uew [-¢ [ a(rar]) <o. (4119)
to
Integrate between s and g + 7
totr ‘
= y(to +r) < y(s)exp [c/ g(r)’d-r] (4.120)
to

which gives (4.116). However note that we can make the following alternative estimate (by
integrating with respect to s between # and to + 7):

1 to-+r to4r
y(to+7) < - (exp [c/ g(r)d‘r:D / y(s)ds (4.121)
io tD
(by analogy with the Uniform Gronwall Lemma). o

Remark: Oliver [72] (Appendix C, Lemmas 8 and 9) provides a much more general argument
for the existence of absorbing balls for differential inequalities and we will use these two lemmas
for large time absorbing ball radii.
Now let us consider the Ladder Theorem in the previous section.
For either of the ladders (4.99) or (4.100) we see that we can close the hierarchy of the structure
of (4.103) via the following Gagliardo-Nirenberg inequalities:

[ulf oo < ¢ Ffya P57, a= (@4 2)/2(V +1)]; (4122)

ul3 oo < ¢ FRFS™Y, b=d/2N (4.123)
where in each case we incur the restiction 2N > d (comes from requiring a < 1 and also b < 1).

Let us concentrate on the |u|; o ladder (this in fact gives us sharper results). Closing the
hierarchy as described, we get:

%FN L —vFypu + CF;/_leNFol;—a + VAO—ZFN . (4.124)
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Young’s inequality and the inequality in Lemma 4.7.1 give

%FNS_@—-a)I/ F% +c(2-—a) [F,%Fol‘“

=
PR - — ] +vA;2FN (4.125)

where for convenience we have taken s = 1. From this inequality we find (via Lemma 4.8.2)
that we can bound the Fy(t) pointwise in time by Fx_1(t) and Fo(t), V t > 0 (but subject to
the restriction a < 1, i.e. N > d/2) and further we see that we can find absorbing balls in all
the H;}er(ﬂ £)4, ¥V n € N (subject to the same restriction) with radii
PR T

Fy<c (4.126)

yl-a

Remarks:

1. For a strict treatment on how to find absorbing balls from differential inequalities of the
type (4.125) I refer the reader to Oliver [72] where a very adequate account is provided.

2. Formally we can ignore the last term in (4.125) as this is of lower order.

Important Remarks:

1. The restriction N > d/2 is crucial. It means that we must have N > 2 in (4.126). So Fy
is our “bottom rung”, i.e. starting point of the ladder.

2. Thus if there exists an absorbing ball in Hz}er(QL)d, then there exist absorbing sets in all
the A%, (Qr)¢, VneN.

3. From the estimates included above we deduce that for d = 2 there exist absorbing balls in
all the I-‘II’,‘e,,(QL)d and so via the theory outlined in Chapter 2, for the d = 2 Navier-Stokes
equations, there exists a compact, connected global atiractor, which is included in C*® and
bounded in H7,.(2r)?, Vn €N,

4. For the d = 3 case, we know that if we assume u € V uniformly then via the theory of
Section 4.6 there exists a global attractor. The estimates above re-iterate this assertion
and also show that (with this assumption) the global attractor is compact, connected,
included in C* and bounded in HY,(Qr)%, Vn€N.

€

This is not the weakest assumption (in d = 3), as indicated earlier, and we investigate this in
the next chapter.

4.9 Conclusions

In this chapter we have,

1. Rigorously outlined the Navier-Stokes problem we are going to investigate.

2. Defined the function spaces H and V, and also the specific form of the linear operator A
from D(A) onto H (defined via the inner product on V'). We also defined the spaces V;,
s eR.



76

CHAPTER 4. THE NAVIER-STOKES EQUATIONS

. Provided a-priori estimates which indicated that the energy ||u||m for the system (d = 2

and 3) is bounded for all time, and that the solution to the d = 2 Navier-Stokes problem
was bounded in V for all time t > 0, whereas this was only true for a finite time in the
d =3 case.

. Introduced the concepts of “weak” and “strong” solutions, which we then considered in

detail. We were able to show the existence

(2) of unique, strong solutions for all time in the d = 2 case,

(b) of unique (while they exist), strong solutions in the three dimensional case for a pre-
determined finite-time interval, the length of which depended on the initial data.

. Examined how in three dimensions, after making certain assumptions (such as the solution

u to our Navier-Stokes problem is assumed bounded in a certain function space), we could
show the existence of strong solutions for all time. We also provided a theorem which
shows how strong solutions are in fact regular solutions (while they exist).

. Related the non-well-posedness of the three dimensional Navier-Stokes problem to our

inability to show that unique strong solutions exist for all time.

. Outlined a series of a-priori estimates, which we called the ‘Ladder Theorem’ and we

showed how we can prove the existence of regular strong solutions for all time and the
existence of a C® attractor, provided we assume the solution of our Navier-Stokes problem
is uniformly bounded in V (i.e. we assume uniformly bounded strong solutions exist for
all time).

It is important to note that there exists a vast amount of functional-analytic theory surrounding
these (and other equations) and I refer the interested reader to, in particular, the books by
Temam [86, 87, 88], Constantin and Foias [16], Ladyzhenskaya [52] and also Serrin [80, 79].




Chapter 5

The Lattice and Regularity
Assumptions

We have seen how to “lift” weak solutions to strong ones via a-priori estimates like (4.76)
and we have also witnessed the usefulness of the set of a-priori estimates provided by the
Ladder Theorem. The Ladder Theorem, however, did not naturally expose the L3+¢ result of
Section 4.5.1 but instead, required u to be uniformly bounded in V' as a minimum assumption
to prove the existence of strong solutions. We can then assert via Lemma 4.5.3 the regularity
of strong solutions for all finite intervals of time, and further we use the Ladder Theorem to
show the existence of absorbing sets in H7,.(Qr)?, for all n € N.

Recall that we want to address the following questions:

1. What are the minimum assumptions sufficient to show the existence and uniqueness of
strong solutions on [0,7],V T > 07

2. What are the minimum assumptions sufficient to show the existence of a global attractor
of C* functions?

To this end, we then naturally ask ourselves:

3. Can we improve the Ladder Theorem in any way?

4. Can we reduce the minimum assumption for regularity of the solution u to the Navier-
Stokes equations from u uniformly bounded in L3+¢(Qr) (Serrin’s result [80]) to u uni-
formly bounded in some other space W 2 L3+¢(Qr)? (Our ultimate goal would be
W= Lger(QL)d , which we already know the solution u lies in, and we would therefore
obtain regular solutions without any assumptions.)

By introducing an additional degree of freedom into the class of functionals considered, we will
generalize the Ladder Theorem to a Lattice Theorem. Unfortunately this reproduces Serrin’s
result, however, it does shed some new light on the problem and in particular, we are able to
provide some alternative minimum assumptions for regularity.

(
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5.1 Notation and Brief Assessment of the Problem

The complete functional setting for the Navier-Stokes equations provided in the last chapter
continues to apply here as well as in the next chapter.

Definition 5.1.1 For N € NU {0}, m > 1 we define the functionals

Hum=3 5 [ 10vulmds = |OVulZh = i, 6.1

i=1 |n|=N

which are equivalent to the full Sobolev norms on the spaces Wgﬁﬁm (QL)? i.e. the Sobolev space
of periodic functions with zero mean (recall the theory of Chapter 3).

When one calculates the ladder a-priori estimates, the pressure P is naturally removed via a
divergence theorem result with space-periodic boundary conditions. As we will see when we
begin to calculate the Lattice a-priori estimates, this is no longer the case. However we are able
to deal with the pressure quite naturally from the Navier-Stokes equations and this in turn,
releases the idea of transferring the minimum assumptions for regularity onto the pressure.
This constitutes the latter half of this chapter. I also refer the reader to Bartuccelli et al. [6].

5.2 The Lattice Theorem

Theorem 5.2.1 (Lattice Theorem) Assuming u is a smooth solution of the Navier-Stokes
equations (4.1)-(4.4), then ford=3, N > 1 and 1 < m < 2, we have

1 . H}\,+1/m
%HN,m S-ve —o— +eNm¥ ~3/5Hnm HDuHS/5 (5.2)
HN—I,m
or
H1+1/m 1wk
%HN,m < -ve ——+eNm y TR Hy 2""’ f|u “(N /e (5.3)
HN«—I m
where p = Sim(N —1) +2] and ¢ = N(1-p).

8mN

5.3 Proof of Lattice Theorem

From the incompressible Navier-Stokes equations and our definition for Hy

1 .
Er—n—HN’m = Z Z / (D"w;)>™ 1 D" [—(u - V)u; + vAu; — P; + fi] da

i=1 n|=N
Ine+To+Tp+Tr . (5.4)
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5.3.1 The Laplacian Term T},

Integration by parts gives,

T o= 293 /QL(D”U;)Z'"‘lD”Au,-d:c

i |n|=N
2m—1
- _V(_EZ_). D> /ﬂ [Ds (D™ us)™)]? de . (5.5)
i,k |n|=N
Consequently, if we define
B = (D u;)™ (5.6)
S0
IBEIE = Hm (5.7)
then we find that @ )
m —
Ty = ~u__7-n2——||DB§j,’:)||§ . (5.8)

Now, note that if we perform integration by parts on Hy,m and then use the Cauchy-Schwarz
inequality,

i |nj=N

H, < (@m—-1?IDECOIEY Y /n D P -D| D2 ds . (5.9)
L

Using Holder’s inequality, it turns out that

Hym < (2m = 12DB{DIBEN Y™ HYT, . - (5.10)
Consequently,
(m) 1 N
- [|IDB;lI3 < - S —m (5.11)
n (2m - 1) H}vfl,m

which gives us the expression for the Laplacian term in the Lattice Theorem.

5.3.2 The Pressure Term Tp

Z Z L (D"ui)zm"lD"'('P,,-)

i |n|=N

|Tp| = 17T

dz < Hyl3 T8 (5.12)

where
Ts = Y, / (D"Ps)dz
i |nj=NY

> [ (D"VP)da
Inj=N o

> (DP-DAP)? dz . (5.13)
|(n-1Dl=N=-1Y52

Il

Now we prove,
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Lemma 5.3.1
1. A'P = -—Zu,-,ju]-,,-,

i,j

2. |AP|, < cHYT,Vr>1,

Proof:

1. Taking the divergence of the Navier-Stokes equations gives

AP =-V. (u . Vu) = - Z 8i(ujuz-,]-) = - z u,-,juj,i . (5.14)
1,5 iJ

2. Now simply take L"-norm of both sides and apply the Cauchy-Schwarz inequality,
1APIE < S [ i gl de < B, (5.15)
i,j Y8

hence the result.
O

Remark: Note that we have assumed a divergence-free forcing function —~ we do not need to
make this assumption, the Lattice Theorem would still be correct (we simply get lower order
terms in Hy m).

With the first result of the lemma

2
Ts= 3 / > D Yuiu4)| de (5.16)
In-1f=N-1" | i
Using the Schwarz inequality and a Leibniz expansion, we get
2
Ts<) > f D Cp DMui )D T (uy)| de (5.17)
ij |(n=1)=N-1782 | ¢

and we will define

H= ¥ / | DAL 52| Dir= D= i |2 e (5.18)
|(n=1)|=N-1"3
where i,j = 1,...,d; n = (n1,ns,...,n4), £ = (f1,42,...,£3) are multi-indicies. (n —1) is

also a multi-index (given in this form for notational purposes only) such that |[(n — 1) =
(n=1)14---+(n—1)g = N — 1. From the Leibniz operation we must have £; < (n~1);, V i.

Consequently,
3
Ts <> S ol 4. (5.19)
i £
A Holder inequality gives
AL) DD D= e | (5.20)
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1 1 1
where = + <~ = —.
p q 2

There are two paths we can now follow:
(i) The ||Du|js Lattice

Consider the following set of Gagliardo-Nirenberg inequalities,
1D 5wy < e DVl | Dus
D=0ty < ¢ [[D g 1D

where E + ;;— = -1—, and we also require
p

=-§+a(%—-15’—:—1)+1‘“ 0< 3k <a<l,

s N-

Choose
1 1 1-a L
EI_)-;+ P @a—'ﬁa Vd;
E—;'*‘ bs =b= N-— s Vd
Hence

0<a<l & 0LL<N-1
0<b<l & 0LKN-L-1<N-1

where equality also holds above. Since a+ b =1 and % + —;— =1

1 1 1

FtsTe
Therefore

A < c[IDVull2|Dull}

and we get

1/2 i

Tp < CHNl,zm-— N/:/z | Dulls -
. 1.1 1 . . . L.

Since - + S5 5 convenient natural choice here is s = r = 4, which gives

1/2 1/4
Tp < ¢ HY 1 Hi3 | Dulla -
Now, note that we can write

H 3y = BN and BT, = 1B

and we can perform the following two Gagliardo-Nirenberg inequalities:
BNz @mery < cIDBID N5 1B 13
1B llesm < cIDBI N8 B I3

81

(5.21)
(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)
(5.28)

5 we see that we must have

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)
(5.35)
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where a; = 3(m — 1)/2(2m — 1) and as = 3(r — 2m)/2r and where we must restrict ourselves
to 1 < m < 2 when r = 4. Combining these two inequalities in our expression above for Tp,

we find

sm

3/8
Tp < c [||DB§j:)||§] HY® IDulls  where 1<m<2. (5.36)
If we now use a Young’s Inequality (multiply and divide by »3/8) and combine the ”DB£’;Q“2

term in (5.36) with the Laplacian term, we obtain the || Dul|4 lattice.

(i1) The ||ul|4 Lattice

Instead of the Gagliardo-Nirenberg inequalities employed above, we consider the following set

1D uill, < || DNugllf flusll; (5.37)
| DOVl < e 1DV w7 luslli (5.38)
where %+ % = 1; 7,5 > 1, and we require
1 N 1- :
%_—__L%l+a<;—.g>+ %, 0<kt<ac (5.39)
1 N-L 1 N 1-4%
S - - <=L <ph<l. 4
p 7 +b(r d>+s , 0= <b< (5.40)
If we choose
1 1 1-—a L+1
St a= -, Vd | (5.41)
1 1 1-% N-L
gyt % b=, Vd (5.42)
then,
0<a<l & 0<L+1<N (5.43)
0<b<l & 0LKN-L<N (5.44)

where equality also holds here. Since we require % + % = 1, this means we must have

2s(N+1)

= 4
TESN—2(N-1) (5.45)
Hence, since a + b = (N + 1)/N we get
Te S deHy Gy By ™ IV 0/ (5.46)

We can now see that when N = 1, then we must have r = 4, independent of s, and further, for
general N, if we choose s = 4 then r is again exactly equal to 4 (independent of N).

Remark: Another choice could be r = 2(2m — 1) or r = 2m and to leave the parameter s
free. The results which we outline in the next main section below turn out to be the same with
either of these choices.

With the choicer =s =14

Tp < deHylgme1 Hi 4N VDN (5.47)
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Since from (5.33) we know that Hy »/2 = Ile”:)ll:;ﬁ , we can use the inequalities (5.34) and
(5.35) to get

2 L -
Tp < de [IDBSDIE] Hy At lull™ 0 (5.48)

in

where § = 3[m(N — 1) +2]/8mN. Consequently, an application of Young’s inequality gives us
the ||ul]4 lattice.

5.3.3 The Non-linear and Forcing Terms Ty, and Tr

Although it is possible to bound the non-linear term above as in [4], it is also possible to show
that it has an upper bound proportional to the pressure term.

Tnp==- 3, /ﬂ |D™u P D™ (wjus j)|de N >1. (5.49)
i,j |n|=N 7L

Consequently, we can use a Leibniz expansion
Tve=—9 3. / |D"ui P> " CF D*u; D™tuy j| e
ij n]=N75K £0
where integration by parts reveals that the £ = 0 term is zero. Cauchy’s inequality implies
1/2
Twr < Hifno |2 30 08 [ 1D D7t e (5.50)
ij |n|=N €0 4

It is now easy to see that we can deal with the non-linear term by following a procedure very
similiar to that previously used for the pressure term. Note that £ # 0 allows us to find the
appropriate upper bound for the non-linear term.

The forcing term can be bounded with a single application of Holder’s inequality, as follows:

Tr < Y., / | D™ ;2™ | D" f;| dz
i |nj=N YL
-l
< Hy 2% 1DV fllzm - (5.51)
Thus we have now proved both parts of the Lattice Theorem. ]

Remark: Any forcing terms are of lower order and we therefore omit them from the statement
of the theorem.

5.4 The L3 Result From the Lattice

Firstly, set N = 1 in the second version (5.3) of the lattice. We see that the differential
inequality takes the form

1 11+1/m - 14—
. 5 m < - AL =y H Img .
2mH1’ < -ve H&ll,:f +e1,m v Hy (5.52)

where p = 3/4m and ¢ =1 —p.
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Recall Lemma 4.8.2 of Chapter 4. We immediately see that Hj m,(t) will remain bounded for
all t > 0 provided Ho () also does so for all ¢ > 0, with the restriction 2¢ > 1 =>m > 3/2.

This result is analogous to that of the a-priori estimate (4.76), and in fact, we could use this
alternative in the subsequent arguments of Chapter 4 to “lift” weak solutions to strong ones.

Further, we see that if we assume Hg g/o4¢ (€ > 0) is uniformly bounded, then we can find an
absorbing set in Hj g/24¢ by analogy with the arguments of Section 4.8.

For more general N > 1, we can close the hierarchy of the lattice (5.3) via the following
Gagliardo-Nirenberg inequality
llulls < ¢ Hyzl2m H o2/ (5.53)

where a; = 3(2 — m)/4Nm, and we have the restriction 1 <m < 2.

Then we find upper bounds (point-wise in time) for the Hy,m(t) in terms of Hy_1 m(t) and
Ho,m(t) via Lemma 4.8.2 (with m > 3/2) and in fact, an absorbing ball argument gives

==No H(oz Nm)(N—l)] (554)

p— 2
Hynm Se v [ —SN I e 1,m

where o = [fNm+ 3m — 6], 8 = [a(N — 1) — 6N +4Nm] and N > 1. Thus we have recovered
Serrin’s result.

Alternatively, considering (5.2), ||Dul|4 can be controlled by:
|Dulls < ¢ Hy /2™ B a0/2m (5.55)

where a; = (m +6)/4Nm and & < a; < 1, ie. for N = 2 we must restrict ourselves to
1<m<2. Also

Hy-im < c Hy W HJY (5.56)

If we substitute (5.55) and (5.56) into the lattice (5.2) and look for upper bounds point-wise in
time (via Lemma 4.8.2) as well as an absorbing ball, we find that

—4m? Nﬁ—[2m(N+1)-3]] et
0,m

Hym<c [1/ for N>2, m>3/2 (5.57)

Thus Hy /24 is the bottom point of this lattice, and again, we have recovered Serrin’s result.

5.5 Boundedness of ||P|; and Regularity

The first theorem of this section is an a-priori estimate for the functionals Hp,, and we use
this estimate to show that we can prove the existence of strong solutions for all times provided
we assume that ||P||; is uniformly bounded in time, with s given. The second theorem given
in this section uses a result of the Lattice Theorem to relax some of the assumptions we must
make in order to show a C'™® attractor.

Theorem 5.5.1 For smooth solutions u of the three dimensional Navier-Stokes equations (4.1)-
(4.4), provided m > 2 and with 2’;‘;;11 <6< m—1 we get

1 (()2m+1)/3 ﬁ / 2m/
2 m m/Tm M/ Ym
z—m-Ho,m <—vem m + co,m Hy (IIP||2(1+5)) (5.58)
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where .
Brm=(1—a)(m—-1) and ym =m—a(m-—1) (5.59)
with 5 5
m
Proof:
Beginning with Hopm = / |u|>™ dz and differentiating with respect to time gives
QL
2—1n-f'{0’m <—-v(2m-— 1)/n | Dul?|u]2(m-V dz + |/s; (VP)u?m1dz| . (5.61)
L L
Now we take the last term, integrate by parts and use a Holder inequality
Tp = I/ (VP) u?™1 dz|
Qr
< @m=1) [ [PlIDulluPD de
Qr,
1/2
< @m-DIPlasn ) | [ 1Du? o= ] (562
L
where Tj-‘a' = —'%:771 Now
. af2m
ol = 7y < ([ 1Dup e az) T BERO (56)
L

where we have used a Gagliardo-Nirenberg inequality with a = 3[p—1]/27. Since0 < a < 1
we find that 1 < 5 < 3 which implies that § must lie in the range

m-—1
2m+1

<§<m—1. (5.64)

The pressure term becomes

) [m+a (m—1)]/2m

Tp < ¢ (2m — D)|[Pll2+5) ( /n |Duf? |u[2(m=1) de HEL-@m=Dm (5 65)
L

We use a Young’s inequality in (5.65) and combine the / | Du|?|u)2(™=1) dz term with the
2
Laplacian term and then use interpolation: -

(2m+41)/3

- m? Dul? [u2(m-Ddz = — / Du™)Pdz < — =22 . 5.66
o | Duf® [ul - |D(u™)|* dz < 7, (5.66)
We have now proved the theorem. (]

Important Remark: Consider the consequences of the theorem: If we take m = 2 then we
can show that Hg »(t) is bounded point-wise in time V ¢ > 0 provided that ||P||3(145) is bounded
for all t > 0 (via Lemma 4.8.2) and further an absorbing ball argument gives

_ N _ 7641 S 65!1+6!
Toz < ev X8 (Hon) ™" (Plogssy) (5.67)

where 6 lies in the range 1/5 < 6 < 1. Thus ||P||3(14s) uniformly bounded implies Ho 2 = [|ulls
is uniformly bounded.
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Corollary 5.5.2 A sufficient condition o show the ezistence of strong (and so regular) solu-
tions as well as the existence of a global atiractor included in C*™ and bounded in H*, Vn €N
is ||P||2(1+6) uniformly bounded, 1/5 < 6 <1.

Proof: This result follows from the remark above combined with the Lattice Theorem (5.3)
(with m = 2), using all the techniques previously outlined to lift weak solutions to strong ones.
O

Theorem 5.5.3 The ball denoted by B = BH,?;‘i(nL)d(O’R) is an absorbing set in Hgé‘}.(QL)d
for the semi-group S(t) (defined via the assumptions of the corollary above) where

—_ o 1/D
R=Top < e [y P (5.68)
with s > 15/8 and
D = 56s—606+47s—78 (5.69)
v = 21és+ 10266 — 573s + 594 (5.70)
Furthermore all the absorbing sets in H;,‘é;*(QL)d, VY n €N are included in B.
Proof:
1. Use the first result of Lemma 5.3.1 in a Gagliardo-Nirenberg inequality to obtain
IPlla+s) < cIAPIGIPIL < e B IPI (5.71)
where s < 2(1+ 6) is to be determined. The exponent b(s, §) is given by
2(1+68)—s ’
b(s,6) = §—mri——+ . 5.72
.8 =37 5676 (5.72)

2. To perform the next step, we need to control Hy 3 by Ho 2. This is conveniently furnished
from the Lattice Theorem (5.54) by choosing N = 1 and m = 2 to give

_H-l,2 < cv16 (ﬁo,g)s . (5.73)
Note that the constant is dimensionless.

3. Using the results from 1 and 2 in (5.67) we easily find that Hy » is controlled by Hy,; and

[|Pl|; provided

1+6
1> 15b(s, 6) (56_~}-2) (5.74)
which yields
78 4 606
e (5.75)
Since § lies in the range 1/5 < 6 < 1 we find that any choice of s which satisfies s > 15/8 will
do. o

Remark: This theorem further restricts the size of the absorbing set in Hgéﬁ(ﬂ )¢ to within

the radius R = R(||P||;5/84c), ¥ € > 0 and so we have further relaxed the classes of functions
which we need assume lie in the attractor in order to show the existence of a global attractor
included in C*® and bounded in H™, V n € N (described in the corollary above).
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5.6 Conclusions and Further Work

Thus we can reproduce Serrin’s L3+¢ result and also provide some concrete alternatives in the
form of assumptions made on the pressure field. The last theorem indicates that it should be
possible to improve Corollary 5.5.2 so that ||P|l15/8+¢ assumed uniformly bounded should be
sufficient to show the existence of strong solutions for all time — this might constitute some
interesting further work as would any improvement on Serrin’s result.
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Chaptei' 6

Length Scales

We have examined carefully the mathematical questions of existence, uniqueness and regularity
(smoothness) of the solution to the Navier-Stokes equations. We have seen that the existence
of a regular solution in three dimensions for all time is indeterminable without some extra
assumptions and further that there is a marked difference between two and three dimensional
flows — which is of course reflected by a qualitative difference in physical behaviour, particularly,
the vorticity is (at least) conserved for the two dimensional Navier-Stokes equations.

In this chapter, we introduce the notion of turbulence (irregular variations of the velocity field,
spatially and temporally) as a physical behaviour exhibited by ‘real’ flows and observed in
a wide variety of physical situations. The inherent nonlinearity (due to the transport term)
of the Navier-Stokes equations, means that we expect temporal chaos (by analogy with finite
dimensional nonlinear evolution systems, we suppose that our deterministic system will exhibit
a sensitivity to initial conditions), but we also realize that for our infinite dimensional system
we can also have spatial chaos. ’

We try to initiate an understanding of this behaviour by providing a rigorous basis for a set of
minimum length scales which will hopefully ‘resolve’ turbulent flows.

6.1 Review of the Existing Theories of Turbulence

Let us examine the concept of turbulence and the theories derived so far used to descibe/explain
it.

We are all aware of the intricate physical behaviour observed in the wake of a ship or aircraft, or
the beautiful patterns occuring when two distinct fluids are mixed or the swirling eddies occuring
along the edges of rapidly flowing rivers. These are features of ‘high Reynolds number’ flows —
recall that Re = UL/v which is inversely proportional to the viscosity (dissipation coefficient).

We attribute the common held notion of turbulence to Lewis Richardson:

“Turbulent flows consist of a hierarchical structure of entities which we call ‘eddies’ which have
various ‘sizes’. We generally accept that the forcing in the flow ‘drives’ the largest eddies which
become unstable and branch into smaller eddies which in turn become unstable and produce
even smaller eddies and so forth. It is generally considered that this process continues until
the scales involved (e.g. eddy diameter) are such that molecular viscosity v will rapidly damp
further cascading and the energy is dissipated as heat.”

89
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6.1.1 Eddy Viscosity

At a simplistic level we realize that there are two scales, the molecular and the macroscopic {or
hydrodynamical) levels.

Random molecular motions are characterized by the mean free path. Hydrodynamic scales
are those macroscopic characteristic scales of our fluid model we wish to investigate (and on
which the Navier-Stokes equations as a model for fluid flow is based — see the Continuum
Hypothesis, for example, in Batchelor [8]). A result shown by Chapman, Enskog and others is
that activity at the molecular scale tends to ‘diffuse’ the motions at the hydrodynamic scale
(e.g. the smoothing of velocity gradients at hydrodynamic scales).

Transport coefficients such as the kinematic molecular viscosity are such that:
V = Uma ~ velocity of thermal molecular motion x mean free path

So we make the following analogy (due to Prandtl): Large-scale eddies are diffused into small-
scale eddies — the diffusion coefficient (or ‘eddy viscosity’ — which smooths out gradients in the
mean velocity) is such that

Veddy ™~ Urms * £ ' (61)
where upmy, is the root mean square of the fluctuating velocity and £ is the mixing length.
Hence,

Veddy _, M = R= the (local) Reynolds number .
Vmol Vmol

In other words, the transport of momentum, heat and particles (and therefore kinetic energy
dissipation) is enhanced (by a factor of R) in turbulent flows — “velocity gradients are smoothed
out more rapidly in turbulent as opposed to laminar flows” — an observable effect.

Let g1 = local rate of (viscous) dissipation of energy.
Eloc = Vrnollvul2

on the scale L of eddying motion. On this scale, dissipation occurs via

Veddy ™~ Upms * L (6.2)
and lvut ~ urms/L
U 2 3 u?
> eue o (S2) ~ Spe = g
rms

In other words: eddying motions with kinetic energy u2,,, are dissipated in a time L/tyms.

6.1.2 Scaling (Kolmogorov and Obukhov, 1941)
Equations (4.1) obviously represent the conservation laws of momentum and mass — the energy
is estimated by (4.18).

Kolmogorov noticed the following scale invariance property of these equations when v is set to
ZEro;

Suppose we scale distance by ), velocity by \* (with h arbitrary and real) and so time scales
like A1=". Then, we see that (4.1) (with v = 0) are invariant with respect to this scaling.

The following theory of scaling in turbulence relies on three basic assumptions:
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1. The scale invariance property derived above (with v = 0) holds in a statistical sense (not
necessarily true for detailed structures).

2. A finite flux of energy ¢ flows from large scales to small scales (where turbulence is
dissipated) in the limit as R — oo.

3. The energy flux through the scale £ is assumed to depend only on £ and the local velocity
ug of eddies of size £.

3
. . C u . _
Dimensional analysis implies €, ~ — and ¢, scales like A3h-1

£

Scale invariance means that h = 1/3.

There are several consequences:
1. ug ~ /3413 ¢ = g1, = rate of dissipation of energy.

Then Vug ~ £1/3¢-2/3 is dominated by small scales and becomes infinite unless cascading
is cut off at a minimum scale. :

2. (ug)P ~ eP/34r/3 where (6ug)P is the ‘structure function of order p’ (= the average of the
pt® power of velocity increments measured over distances £) and (, = p/3 is the scaling
ezponent.

3. The energy spectrum (with k denoting the wave-number) satisfies
E(k) = Ce¥/3k~5/3

where C is known as the Kolmogorov-Obukhov Constant’ (this theory does not predict a
value for it).

4. The eddy viscosity at scale £ is

Ug~f’ut~61/3£4/3 .

The scaling invariance property does not hold at large scales (i.e. scales characterised by the
diameter of the domain considered) as well as small scales, where the molecular viscosity vmor
cannot be ignored.

Thus the above theory only applies so long as v¢ > Vma 1. €. £> Ag,, Where

1/4
o (221 /
? €

is the Kolmogorov dissipation scale. (For £ <« Ak, molecular viscosity is important and domi-
nant).

Thus the scaling argu.ment is only valid in the Kolmogorov Inertial Range

>‘K o K L€ L.
The extent of the inertial range is

L ~ 61/4L ~ (urm8L>3/4 = R3/4 .

AKo Vi/:l Vmol
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See Frisch and Orszag [34] as well Landau and Lifshitz [53] for further details.

And so we have an estimate for the number of degrees of freedom (for d = 3) as

L 3
Na=z ~ (A ) ~ R%/* (6.3)

Ko

which is a heuristic estimate for the number of modes we need to describe the fluid flow.

6.1.3 The Limitations of Kolmogorov’s Theory

We now understand the concepts of Kolmogorov scaling and the corresponding theory of turbu-
lence consequently derived. It has been one of the most influencial theories on fluid turbulence
since it was introduced. However, there are some ‘extenuating’ points that must be made:

1. The theory has been successful as far as simple experimental verification is concerned (see
for example the results of Grant, Stewart and Moillet [39] for very high Reynolds numbers
flows). However, there is some further experimental evidence that scaling invariance is
weakly broken for exact solutions of the Navier-Stokes equations — though the underlying
mechanism for this is not clearly understood.

Frisch and Orszag [34] provide an example: We have seen that the p*® order structure
function scales with exponent ¢, = p/3, but there is some experimental evidence (Monin
and Yaglom [68, 69] and Anselmet, Gagne, Hopfinger and Antonia [2]) which reveals that
there are some flows for which ¢, can be much smaller than p/3 for p > 4. Frisch and
Orszag suggest that this implies increasingly non-Gaussian statistical behaviour at small
scales or “inertial range intermittency”.

2. The assumptions which are necessary for Kolmogorov’s scaling argument are very severe
— recall that after deducing the scale invariance property for the Navier-Stokes equations
with zero viscosity, we made three assumptions which were needed for Kolmogorov’s
scaling argument.

How can we provide a firmer, rigorous theory for Navier-Stokes minimum length scales
which can also account for inertial range intermittency?

Some of the physical/geometric theories put forth so far are:

Statistical Theories (see for example, Monin and Yaglom [68, 69]) This theory involves find-
ing equations for average quantities in the flow (such as the mean velocity etc. ). However,
a finite, closed set of equations involving such quantities cannot be found and so they are
unable to predict Kolmogorov scaling (any closure argument involves some unacceptable
approximations).

Renormalization Group Theory (due to Kenneth Wilson — and recently extended by Yakhot
and Orszag [90]) Frisch and Orszag [34] point out that such theories strive to reproduce the
Kolmogorov-Obukhov law in the inertial range and (likely) ignore some of the subtleties
of turbulence.

Multi-fractal Models If we simultaneously examine on many scales the wave transform of
some turbulent signals, we realize that a complicated structure appears to exist at nearly
all scales in the inertial range. Mandelbrot {64] realized that if the branching process of
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the cascade continued to ever smaller scales, then as we proceed to the limit B — oo the
“fine scales of turbulence form a fractal set”.

This property leads to the so-called multi-fractal models which seem to be consistent at
the two levels: Firstly, with the fact that scale invariance assumptions still give a very
good “first-order’ model of turbulence energetics, while on the other hand, it accounts
for the existence of inertial range intermittency. Such models also appear to agree with
recent experiments such as those of Parisi and Frisch [37]. However, as Frisch and Orszag
point out, such models do not reveal the mechanism of symmetry breaking.

Vortex Dynamics It is known in three dimensions that infinitesimal vorticity segments are
being continuously squeezed and stretched, and of course the strength of local vorticity
varies accordingly — vorticity is amplified by the stretching of such vorticity segments.
Vortex lines are deformed, transformed and folded in the flow which as we would expect
leads to highly intricate, intermittent fine-scale vortical structures.

As we know, vorticity is generated by either by viscous action at rigid boundaries, where
a no-slip condition must always hold, or by bouyancy effects in the interior of the flow.
So, we expect (and observe) large scale spatially intermittent structures in flows.

1t is speculated that singularities in the vorticity occur in finite time for the d = 3 Euler
equations (the inviscid limit of the Navier-Stokes equations) — we discuss this later in
this chapter in some detail. These vortex singularities may account for the symmetry
breaking (breaking of scale invariance) observed in the Navier-Stokes equations.

However, another mechanism for symmetry breaking could be provided by long-lasting
coherent structures on all scales (as typically observed in many turbulent flows) — which
only occur when the nonlinearity of the Navier-Stokes equations is depleted such as when
the vorticity field aligns with the velocity field. Such persistent coherent structures have
been observed, for example, in rapidly rotating atmospheric storms.

And so as we draw this unusually long introduction to an end, the essential questions we need
to address are:

1. Can we provide a model which accounts for fine-scale intermittent behaviour (inertial
range intermittency) for fully general flows (which statistical turbulence descriptions can-
not do)?

9. Can we make such a description mathematically rigorous?

3. Part of this could be the computation of a minimum length scale (possibly smaller than
the Kolmogorov dissipation length) for the attractor. The implications for computer
modelling in the case of such a scale existing are obvious!

Advances have been made in the investigation of minimum length scales:

1. Such a minimum scale is best studied through an analysis of the wave number spectrum
of the velocity field.

2. We can rigorously provide a set of scales (defined through a wave-number argument),
for which we can readily make estimates via the Ladder Theorem of Chapter 4 (which of
course is a derived directly from the Navier-Stokes equations), and which seem to account
for fine-scale intermittency (breaking of scale invariance).
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3. We compare these scales against the Kolmogorov dissipation length as well as against
other recent attempts to derive such a scale — for instance the scale derived by Hen-
shaw, Kreiss and Reyna [41], or the length scale derived via the attractor dimension
(Temam [88]), or that derived from the number of determining modes by Foias et al. [31]
(1983) and Foias et al. {17] (1985).

We will mainly be concentrating on the three dimensional case (though we also consider the
two dimensional case for which we can provide more comparisons) and, of course, we need to
assume existence, uniqueness and regularity for all time throughout.

6.2 Wavenumbers and Length Scales

We have already seen an example of a minimum length scale (Ag,) for the flow, and we have
argued as to why this length scale may be unsuitable in some respects.

Can we provide a definition for a length scale which is more sensitive to intermittent fluctua-
tions? Let’s investigate this question in detail.

It is clear that we can associate a characteristic length scale with each (Fourier) mode of
the system and consequently we would expect the minimum length scale associated with an
evolutionary PDE to be the characteristic length corresponding to the ‘highest’ relevant mode
for the system.

We can exploit this idea more systematically: Oliver [72] points ourt that the problem of defining
a minimum length scale can be reduced to the problem of defining relevant modes, i.e. the
(Fourier) modes necessary to describe the system in some appropriate way. This can be seen
as follows:

Let, say, {w1,...,wn} be the ‘relevant’ modes for our system and let ¢; be the length scale
associated with the j*» mode. Then the minimum length scale we are looking for would be

L= j:If.l.I.l,Ngj . (6.4)

But how do we determine the ‘relevant’ modes for our system?

Oliver [72] argues that, when it exists, a natural definition for the number of relevant modes is
via the inertial manifold for the system: an inertial manifold allows us to represent the long-
term behaviour (after transients have died out) of the system on a finite-dimensional linear
subspace of the phase space, i.e. we can (for the long-term dynamics) reduce the PDE to a set
of ODE’s on a certain set of specified modes.

This argument is compelling — the author concurs with the conclusions of Oliver [72]. However,
in the absense of a proof of an inertial manifold (as yet?) for the two dimensional Navier-Stokes
and even regularity on a time interval of arbitrary length in the three dimensional case, we must
search for an alternative natural definition for the number of relevant modes and from which
we can define a minimum length scale.

6.3 A Natural Length Scale?

Consequently, consider the following argument, in which we define the number of relevant
modes to be the minimum number of ‘low’ modes which ensure that the ‘high’ modes have less
or equal influence on the L* norm.
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Let us suppose we are given a function g(z) € V; (where we still have 4 = —A) and that & > 0.
Further, let us suppose d = 3 (an analogous (though slightly more involved) argument applies
to the d = 2 case). Consider the Fourier expansion of g:

g(z) = Z apet®® = (Z + Z) ape*? (6.5)

rezd [kl<x  [Kl>s
E#0

where k = (ky, k2, ks) and [k] = max{|ki], |k2l, |ks|} and the wavenumber £ > 1 is as yet
arbitrary and divides the ‘low’ modes [k] < « and ‘high’ modes [k] > x. Applying the Cauchy-
Schwarz inequality,

1/2 1/2 1/2 1/2
lg(2)] < ( > ) ( > Iaklz) + ( > k*”) ( 3 Ik“aklz) (6.6)
k1< (k1< [k]1>& [k1>%

for some s > 3/2. We can estimate (bound above)
Z and Z k2% ' (6.7)
[k]<k [k]>~

by simple integrals (see for example [31]) and ignoring &’s of lower order, so

llglleo < e(k*2llgllz + &>>*ID%gll2) - (6.8)

f we now impose that we want the ‘high’ modes and the ‘low’ modes to have equal influence,
we determine k:
, _ Dl

”9”2

We can immediately see that this choice of k in (6.8) furnishes a well known interpolation
inequality — see for example Foias et al. [31] where this technique is used to estimate the
multiplicative constant for Agmon’s inequality.

(6.9)

Now take g = D" u for u a solution of our dynamical system, set s-+r = N, with r, 5, N € NU{0}
and so:

Definition 6.3.1 A natural definition for the number of ‘relevant’ modes k? is

K= = fﬁ (6.10)

where 7 < N, with r, N € NU {0} and the Fn’s are defined in (4.98).

Remarks:

1. The F, terms are naturally bounded below by [[D" u;||2 and so the k() are bounded
above in terms of the Fy.

As Oliver [72] points out, without such a lower bound, our definition would be unsuitable,
unless we were able to exclude small amplitude transients, which would be the case if we
were able to engage the inertial manifold idea.

2. The definition is not unique (it depends on N and r) — but it is possible that the Ky ’s are
qualitively independent of N and r — we may be able to bound them above by something
independent of N and r.
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An alternative justification for this definition: - Moments of thé¢ power spectrum: Con-
sider the energy in the flow,

E@) = /ﬂ |u(z, )| %ds = / |k, £)[2dk = / E(k,)dk (6.11)

via Parseval’s theorem. E(k,t) is the instantaneous energy spectrum and defines the distribu-
tion of energy among wavenumbers and also allows us to consider the normalized ‘probability
distribution’

E(k,t)

P{k,t) = 20) (6.12)
We can write time-dependent moments of this distribution as
()50 = / k|2 |k, t)|2dk/ / |a(k, t)|*dk = Hn/Ho (6.13)

where the s.a. on (k?V), , stands for ‘spatial average’. We can associate a time-dependent
wavelength scale Ay with this quantity

AR~ [P s Y (6.14)

Not only can the forcing be included in the definitions to make the Hy’s into F’s, but the

ratio of moments
(kZN)s.a. - FN

) = T (6.15)

also defines a length scale

TW=T)
Fl\’-) (6.16)

-1 ~
(length) ( T,

which of course, is the time-dependent length scale associated with the ky, wavenumbers
outlined above in (6.10).

6.4 Some properties of the ky,

In this section we make a few remarks regarding the («kn ) defined in (6.10). The £x, have
the following properties:
(k3 0) < A5 ' (6.17)

for d = 2,3.
Remarks:

1. This is obviously analogous to the result (4.109).

2. In the d = 2 it is also true that (k3 ;) < A % which is the generalization of (4.112).

The gy - are also ordered in an obvious way,

KNy r(t) S ENpr(t) TSNS Ny (6.18)
kN (t) SEN(E) mSm SN (6.19)

Theorem 6.4.1 For the d = 3 Navier-Stokes equations withr < N — 1

(N —)en s < 2(enrl|Dulloo + A5 KN - (6.20)
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Proof: Since n%f_r) = Fn/F;,

2AN=r)-1. Fn  FnF,
2(N —r)kan ey, = oy -l (6.21)
Recall the Fiy ladder of Chapter 4.
1. -
5FN < —vFny1 + (¢]|Dulloo + VAGE) FN . (6.22)

If we go back a few steps in the proof of (6.22), then we can easily prove the reverse version
of (6.22), i.e.

%Fr > —uFry1 — (c||Dullos + ¥AF2)F; - (6.23)

Combining (6.21)—(6.23) and using Lemma 4.7.1 we see that we get
(N —r)in,y SV (E3+l,r - ”?v,r) KN + 2 (c| Dulloo + ¥A52)kN,r - (6.24)
Now use that k41, < kN, providedr +1 < N. ]

We now investigate an a-priori estimate which reveals how upper bounds on the £y, can become
singular in finite-time (we take the case f = 0 - i.e. zero forcing). Using the interpolation
inequality for N > 3
5/2
1Dulloo < eni/gllulle (6.25)

and using this in Theorem 6.4.1, we integrate with respect to time (ignoring the vAg 2 term
which does not change the nature of the result — it is a term of lower order), we obtain

1
[k, 0) (O] 732 = [k w0y (8] /% < ¢ /0 l[ull2(s)ds (6.26)
which, from the Navier-Stokes equations, is itself bounded by '
t
G() = [ lulla(s)ds < L~ |ulla(Ol1 ~ exp(—eL?v1)] (6.27)
0

(this comes from using a Poincaré inequality in (4.23) and then integrating with respect to time
twice). In combination with (6.26), this gives

-2/5
kno(t) < ¢ [m\,,(,(o)-fﬁ2 —6e] . (6.28)
The solution has no singularities if
[ken,0(0)]%/% > L2 Jul|2(0) - (6.29)
This can be converted into
kN 0(0) < L~ [y Re]2/® (6.30)
where the Reynolds number Re, defined in terms of the initial conditions is
-1/2
e - 2 150) 631

This is analogous to the well known result of Ladyzhenskaya [52] described in Chapter 4.

Now consider the following lemma which is a modification (to periodic conditions on [0, L]®) of
the result

1Dulioo < e[1 + [lwlloo (1 + log™ Hs) + [|w]lo] (6.32)
proved by Beale, Kato and Majda [9] (The ‘4’ sign on the logarithm is defined such that
log* @ =loga for a > 1 and log™ a = 0 otherwise).
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Lemma 6.4.2 For smooth functions u on periodic boundary conditions with zero mean, we can
prove

1Dullee < e [{1 4108 (Lin ) Hlolloo + L4/} (6:33)

for N >3 and 1 <7< N and where w = curl u is the vorticity.

Proof:
Since V - u = 0 and w = curlu, the Biot-Savart law implies
1 / (z-9) /
u(r) = —-— — x w(y)dy = K(z —y) x w(y)dy 6.34
@ =g | map xe@w= [ K-y xuw (6:39)

Let us introduce (as per Beale, Kato and Majda [9]) the cut-off function
1 =<y
Golz) = { 0, |z|>2

and which also satisfies |D{,(z)| < ¢/p, where p is a suitably small radius to be chosen later
on.

Introducing {,(z — y) + [1 — {,(x — )] under the integral we see that
Du@) = -4 [ Dile—K(e - u)kaladdy
2= [ DI =Gla - vIK (e~ )}ee)dy (6.35)
Q.

and so using integration by parts (recall periodic boundary conditions assumed) we see that we
get

Du(z) = DuM(z) + Du®(z) (6.36)
where ]
Dut(@) =~ [ Gle—9)K(z —y)Duly)dy (6.37)
and .
Du(e) =~ [ D= Golo ~ YIK (e~ )}elw)dy (6.38)

From the definition of K(z — y) we have |K(z —y)| < clz —y|~2
Then, regarding K as a function of y, for z fixed, let Bg = {y : |z — y| < R}, then:

1/p R /p s
|EllLe(Br) = (/B |K!de) <c (/0 r2=2p dr) <cRF" (6.39)
R

with » = |z — y|. Thus
K € LP(Bj,) provided p<3/2.

Applying Holder’s inequality to (6.37) gives
|Du)(2)] < ¢ ||Kllp, 85, | Dwllg. 0 (6.40)
where 1/p+1/¢ = 1.
= |DuM(z)| < cp'~%¥/1||Dw|, with 3<g< o0 (6.41)
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The remaining term is

Du®(z) = / D{[1 - ¢(z — y)]K (z — y)}w(y) dy

Q:\Bzp
Thus,
IDu®(z)] < e / IDK (z - 9)] ()| dy
Qr\B2,
e / K (2 — )| DGy (x — 1)) [w(y)] dy
Qr\B32,
cL 2p
< Cllwlleo “ldr 4 —1d
< nwn{]pr r/pp }
< C'flolle {1+10g*(Lo™Y)} . (6.42)

We now combine (6.41) and (6.42) and apply the Gagliardo-Nirenberg inequality :

1Dwlly < elIDYwligllwlls™® < enffy R (6.43)
where, with N > 3,
o= (2-1) a1
to get
1Dulloo < e {p* 03 FY2 + 1 +1og* (Lo lwleo} - (6.45)
Now choose
ol = nﬁfgf%mfi'as (6.46)
which gives the result of the lemma. ]

Remark: We see that the kx5, (N > 3) are thus the natural ‘mediators’ between || Dul|o, and
lllloo -

We can equate consequences of the above theorem and lemma with the results of Beale, Kato
and Majda [9] for the Euler equations with zero forcing (f = 0).

Let us first examine, the results of that paper.

Beale, Kato and Majda [9] tackle the d = 3 Euler equations with zero forcing (so this would be
equivalent to setting » = 0 and f = 0 in the setting for the Navier-Stokes equations (4.1)—(4.4)).

A local existence theorem is known (analogous to the theorem for strong solutions of the Navier-
Stokes equations) for the Euler equations as follows:

Theorem 6.4.3 Assume uo € H*(Qz), s > 3 is given with |uols < Ko, for some Ko > 0.
Then there ezists To(Ko) > 0 so that (4.1)-(4.4) withv =0, f = 0 have a solution in the class

u € C([0,T); H*)nCY([0,T); H*~1) (6.47)

at least for T = Ty(Ko).

Beale, Kato and Majda go on to prove:
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Theorem 6.4.4 Suppose u is a solution of (4.1)-({.4) withv =0, f'= 0. Suppose further,
there exisis T* which is such that u cannot be continued in the class (6.47) to T = T*; and that
T* is the first such time. Then

T*
[ ol dt = oo (6.48)
0
and more particularly
lim sup ||w(t)||eoc = o0 - (6.49)
t /T

There is an obvious corollary to this theorem,

Corollary 6.4.5 Suppose there are two constants Cy and T*, so that on any interval of ez-
istence [0,T] of the solution in class (6.47) with T < T* to the Euler equations, the vorticity
satisfies the a-priori estimate

/0 ’ llw(®)lloo @ < Co - (6.50)

Then the solution can be continued in the class (6.47) to the interval [0, T*].

Now recall the results of Theorem 6.4.1 and Lemma 6.4.2.

An integration of the result of Theorem 6.4.1 and Lemma 6.4.2 gives

t
kns(t) <enr L™ exp [exp (/ wlioo + 9(t) dr)] (6.51)
o
where
g(t) =vAg?+ cL"3/2}7'11/2 (6.52)

The result for the Euler equations is recovered by putting f = 0 and » = 0. Here we have
a solution of the differential inequality for both the Euler and the Navier Stokes equations in
terms of the Ky -, instead of the Hy norms alone [9].

6.5 Important Results for the sy,

In this section we prove some specific results for the kn, which we will discuss in detail in the
next section.

We have strict definitions for the ‘time average’ and ‘time-asymptotic upper bound’ for a
function f(u(t)):

(f) := limsup sup -tl—/o F(S(r)ug) dr

t—+00 UgEA

and .
f := sup limsup f(S(¢)uo) -
ug€A 1—00

Also, a useful inequality for the rest of this chapter is Jensen’s inequality:

(9(=)) < g({(=)) for g concave, >0 . (6.53)
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Theorem 6.5.1 Ford=2,3, N>3andr+1<N
(c3r.r) < enr v ([ Dulloo) + A5 (6.54)

and

Ry < e v Tl + 252 - (6.55)

Furthermore for N = 1,2, we have

1. Ford=2:
(k3,) <cAg? and K3, <cA3?. (6.56)

2. Ford=3:
(£3.1) < ez v {llwlleo) + A5 (6.57)

and L -
w31 < ez v wlloo + A7 (6.58)
as well as (ford =2,3)

(k3 0) <252 (6.59)

Proof: For N > 3, this result is obvious from the Ladder Theorem of Chapter 4 — divide
through by the Fy and take the time average of both sides (or in the ‘limsup’ case use the
absorbing ball argument of Chapter 4) — this gives a very natural derivation of an upper bound
for our relevant modes from the Ladder Theorem!

For N = 2, we can use the vorticity formulation of the Navier-Stokes equations (consider the
‘curl’ of 4.1 — where note that H; = ||w]|3) to prove the result above.

For N = 1, we have simply proved a restatement of Leray’s inequality — see (4.109). |

Remark: For N > 3, the upper bounds for (mlzv’,) and nfv,r are uniform in (N, r), except in
the constant, so we can consider such estimates for the wavenumbers to be qualitatively similiar
for all N, r!

Theorem 6.5.2 Ford = 3 and u a smooth solution of the Navier-Stokes equations (4.1)-(4.4),
we have

(IDulles) < c1 v [(|Dull3) + 1 Dugll3] + c2 v 2g? + L33(|| Dull3)*/? (6.60)
compari;on term
and
Dullee < c1v™® [[Dull, + 1Dusl] + c2vXz?+  L=%/]Dull (6.61)
| ——1

comparison term

Corollary 6.5.3 Ford =3,

(lwlloo) < exv™2 [(Iwllf) + llwsll3] + e2vAg? + L3 2(|lw]i5)1/? (6.62)
and
Tolleo < cxv™® [Tl + loslls] + c2v35® + L] (6.63)

where the last term on the right-hand side is a comparison term.
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Proof of theorem:
Step 1: Proof of (6.60) and (6.62)

Recall that for space-periodic, mean-zero functions we can apply the Gagliardo-Nirenberg in-
equality as follows

|Dulle < clIDVullgllDull3™

< cF]c\z{/2 Fl(l——a)/Z

< AR (6.64)
for N > 3. Let us now add a ‘comparison’ term L~3/2|| Dul|z to the right hand side of (6.64),
so that we have

IDullos < cx33F* + L7321 Dull - (6.65)
(LRI i
(1) (I1)

The reason for doing this will become much more apparent in the next section. For the moment
though, assume that (II) is simply a term which we might want to compare (I) against. Note
that (II) is of much lower order than (I) and if we were to ignore (I) we would be essentially
writing || Du||cc ~ L~3/2||Dul|2.

Remark: Note that (of course) (6.65) is dimensionally uniform.
We can take the time average of both sides of (6.65) to get

(1Dulleo) < (1) * (F2)* + L73(|| Dulla) - (6.66)
Now use Theorem 6.5.1 with r = 1 to get

(IDuleo) < [ev™ (lIDullea) + 257" (FHYY* + L=(|Dula) - (6.67)
Using Young’s and Jensen’s inequalities on the right-hand side of (6.67), we finally obtain
(1Dullos) < 1273 (|| Dull3) + c2v=> | Dugll3 + cav Ag® + L™3/*(|| Dull3)*/? (6.68)

which is (6.60). The corollary to this, (6.62), follows since [|w|jco < ||Dulleo and |lwllz = || Dull2.
Step 2: Proof of (6.61) and (6.63)

Again, using a Gagliardo-Nirenberg inequality

IDullee < cHyE BTV
< eFYZ FETVR (6.69)

where b = -3, and again, we will add a L=3/%||Dul|; comparison term to the right-hand side
of (6.69) to get
| Dulleo < ¢ N2y FE ™2 4 L73/2|| Dl . (6.70)

Next, solve the Ladder Theorem of Chapter 4 to get
vl TS 2N &
P < [cu— Dull, + A5 ] . (6.71)

Using this in (6.70),

(| Dull

0]

3/4 __ S,
<e [ev i Dull + 35| Fy'* + L=/[Duls (6.72)
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Young’s inequality then gives,

— — 4 A
TBull, < c1v=>TDuls + cav=2l|Duglly + csv g2 + L~ Dul; . (6.73)
The corollary to (6.63) is true for the same reasons given in Step 1. 0

Now let us combine the results of Theorem 6.5.1 and Theorem 6.5.2:

Corollary 6.5.4 (Main Result) For u a smooth solution of (4.1)-(4.4),d=3, N >3 and
r+1< N, we have ,

(k%,) <c v L7323 DulV2 + 252 | +ev™ | (I1Dull3) +lIDusll3 (6.74)
It « -~ v | ——_
bounded terms no control
and o o -
#r < e (v Dul +077) + v (Dul +1DwlE) - (679)

Remark: (||Du||2) is bounded a-priori, whereas (||Dul|§) would become singular in finite-time
if we were not assuming regularity.

Further, we can make a d-dimensional restatement of the inequality (6.75):
Theorem 6.5.5 Ford = 2,3 dimensions and for N > 4%‘1,

N=1

e < v 172 QTSR 670
where Q = v—2L*4F;.

Proof: Consider the result (6.24) in the proof of Theorem 6.4.1. Take » = 0 in that result and
we get
Nikno £ —v K,?v,o + 2 (en||Dulloo + uAaz)nN,o + ven,o(F1/Fo) (6.77)

Now use that Fy > 72||f]|2 in the last term in (6.77) as well as the inequality,

1 Dufloo < ch":mNF”‘fjg-l F? (6.78)

(which is a combination of Gagliardo-Nirenberg and Poincaré inequalities), and then find the
absorbing ball (ignoring terms of lower order) for &n,0 to get the result. a

Remark: Since the ky,o are ordered such that £x,,0 < &n,,0 for Ny < Ny, we can take the
minimum of the right-hand side of the estimate in Theorem 6.5.5, namely the limit as N — oo
(for d = 3) which yields Q2. This is similar to the upper bound on the length scale derived in
equation (6.75). The Q? estimate, in effect, when all the factors of L are accounted for, gives
v4FZ.

Lastly, we might ask ourselves if we can prove such results for higher derivatives:

Theorem 6.5.6 Forp > 0, wy = curl uy,

curl? w _ 3/4 -
(Tl s ra) < o Ll +lon] ™ +e™ @

where the constants c¢; and ¢y depend on p.
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Proof: Consider the Gagliardo-Nirenberg inequality
(D" w)lleo < IOV (D u)li§ (D" w)llz™* (6.80)

where @ = 3/2(N — r) and we require N > r + 2. This gives us

3
FN dN—ri 1
N Fl/2
c(m) g

= c(x, ) F}? (6.81)

[ Dulle

IN

SO

|07 ufloo 2 \3/4
< c(ky, 6.82
Brall, + 1DreTs = ° V) (6:82)

and so we can use Theorem 6.5.1 to get

I|D" ulloo > 2 \3/4
< C{ky,
QWwMHmwmz < elen)
< clerr™ (| Dulloo) + A5 21/
< av 3 [(IDullf) + (IDuslldP/ 4+ 2 25%%  (6.83)

where we have used Theorem 6.5.2 and ignored the comparison term. With p = » —1 the result
follows. ]

6.6 Minimum Length Scales and Intermittency

So of what relevance are all the results proved for («%,) and k%, (where the &y, are the
wave-numbers we defined in (6.10)) in the previous section, and in particular Theorems 6.5.4
and 6.5.57

In 6.5.4 and 6.5.5 we gave (d = 3) a-priori upper bounds for (k) and %, ,..
We will associate two different length scales with our wave-numbers kx , as follows:
Definition 6.6.1

0 = (8R), (6.84)
Ly = Ky, - (6.85)

Now let us examine the significance of the results of the previous section with respect to the
number of relevant modes and minimum length scales for the d-dimensional Navier-Stokes
equations (4.1)—(4.4).

Let us enumerate all the bounded scales we have come across so far:
1. A52 = L2 + A72; the box length L and the smallest scale in the forcing A;.
2. Ak, = (V3/€)'/4; the Kolmogorov length, where £ is the energy dissipation.

3. pio = (V3/es)!/%; the equivalent of the Kolmogorov length for the forcing.
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Recall the results of (6.54) and (6.55) of Theorem 6.5.1. Note that in both cases the right-hand
side upper bounds are independent of N and r, except in the constants, and so we will regard
this set of length scales as qualitatively similiar. Thus we can write

£\ BTy (6.86)
T (6.87)

Remark: Recall that we are assuming global regularity holds for the d = 3 Navier-Stokes
equations (otherwise the terms (|| Dul|eo) and || Dul|, may become unbounded).

These two results essentially reproduce (by different methods — though the approach is not too
dissimiliar) the (d = 3) conclusions of Henshaw, Kriess and Reyna [41]. '

Henshaw, Kriess and Reyna [41] go on to make the following assertion for the scale (6.87) they
derived:

If we identify the energy dissipation rate as € = 2vH; and we assume that

[Dull, ~ 2/|Dullz = v=*/%/2 (6.88)

then we see that
L= Ako (6.89)

i.e. the classical Kolmogorov length scale (for turbulence).

Remark: Actually, this result occurs in the pre-print of their paper [41]. In the actual [41]
paper they modify the assumption to assuming ¢ is of order 1, and that [[Duf|,, ~= v=1/2 -
this is of course essentially the same and amounts to an identical result.

Thus, to summarize, we can derive a length scale £ which corresponds to that of Henshaw,
Kriess and Reyna [41], and further, if we identify the rate of energy dissipation as ¢ = 2vH;
and further assume that ||[Duf|., ~ 2||Dulls = v~1/2%e!/2, i. e. the flow is laminar - there is
no strong intermittent turbulent behaviour, then the natural length scale is determined as the
classical Kolmogorov length scale (as we might expect).

Equally, we could have assumed (|| Dul|oo) ~ ¥~1/2€1/2 to obtain a similiar conclusion £ ~ Ag,.
These conclusions are expressed as

With € = 2vH; as the energy dissipation rate, then if we assume:

1. {||Duljeo) ~ v=Y2eM? = £52 <enAgE+ AT

2. [[Dufly, ~v=2%Y2 = L3 < ene AR+ A5

oo
However, we have insinuated that these scales are in some way unsatisfactory. We now demon-
strate why.

These estimates show us that if we assume the flow we are considering to have maximum
fluctuations (in the vorticity) bound by the root mean square average of the vorticity of the
flow the resultant scale is Ag,.

1. This is an extra assumption and is unacceptably restrictive.
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2. We must still account for the existence of inertial range intermittency.
We can improve our estimates to provide a more realistic length scale.
We immediately see that we can derive two length scales from the results of Theorem 6.5.4:

1. If we identify ¢ = &, = 2vL™3(H;) (and so there is a corresponding scale ,\%‘;) =
(v3/€1a)/4 — where ‘ta’ stands for ‘time average’) then we see from (6.74) that:

&= (ki) S e OEN"2 4252 | +ev™t | (IDu]l3) +IDusll | - (6.90)
e, pr— Nz, msares?
bounded terms no control

9. We have an alternative: If we identify ¢ = ¢, = 2vL~3H; (and so correspondingly
/\f,i,? = (v3/ei5)'/4 — where ‘Is’ stands for ‘limsup’ or ‘time-asymptotic upper bound’)
then we see from (6.75) that:

£ =7, < (OEN?+252) +ev? (IDUE+11Dwsllg) . (691)

What are the merits of both the length scales (6.90) and (6.91)7

These length scales are relevant on three levels:

1. Firstly, we have the Kolmogorov length Ag, (alternatively defined via /\g‘:}) and /\g?o) ).
We have shown that this scale is prevalent when either the time average or limsup in
time (as well as sup over initial conditions) of || Dul|so goes like 2||Duf|; = v~1/2¢1/2 with
€ = 2vHy, i.e. it is the minimum length scale which will only resolve the flow during long
time intervals when the flow remains quiescent (the maximum norm of the vorticity is
bounded by the root mean square of the vorticity).

This means that there must be long time intervals between large intermittent events. So,
Ak, is the natural scale only during those time intervals between rare events when the
vorticity in the fluid remains near its root mean square spatial average.

2. If we examine the length scale derived in (6.90) closely, we see that there is an addi-
tive term to the Kolmogorov scale, over which we have no explicit control. This term
(v=%(|| Dul}5)) could possibly be very large (in comparison with the Kolmogorov term)
and so drive scales down to ones much smaller than Kolmogorov — it is the part which
would become singular if regularity fails. Also note that this term will become very large
for high Reynold’s numbers — a natural behaviour we would expect for a faithful length
scale.

The length scale (6.90) is thus a much shorter scale associated with the possible, unpre-
dictable intermittent bursts. There exists a very strong analogy here with the d = 2,3
Complex Ginzburg-Landau equation (see [3, 72]) where the solution shows much stronger
(possible) turbulent behaviour towards the inviscid limit — the Non-linear Schrodinger
equation, which we know exhibits finite-time singularities. So strong intermittent turbu-
lent behaviour is likely to occur if the Euler equations exhibit finite-tirne singularities (an
as yet unproved proposition — see the reviews by Majda [62, 63]).



6.6. MINIMUM LENGTH SCALES AND INTERMITTENCY 107

3. The length scale derived in (6.91) is possibly even shorter. The time average operations
we performed in (6.90) inevitably miss out some detailed information in the flow and so
(assuming regularity of course) we see that the most sensitive length scale of the attractor
is that defined in (6.91) — defined via ‘limsup’ estimates.

There are some further remarks we should make about the scale (6.90):

In conventional turbulence theory one normally considers the time averaged energy spectrum
(E(k)) (which is the quantity which is supposed to decay algebraically in an inertial range).
The instantaneous distribution of energy is

E(k,.)

P®) = TawER,)

(6.92)

and we see that we can define some relevant length scales via (the average distribution of
energy)

(P)(k) = ﬁ% (6.93)
(P(k, ) = <TH%_;(1¢_)/)> . (6.94)

A definition through (6.93) is more conventional i.e. as a ratio of time averages (ratio of (Fiv)
over (F,)), however, we note that the length scale we have defined ({n,-) corresponds to a time
average of a ratio. Moments computed by taking the time average of the ratio will obviously
tend to be more sensitive to rare, deep fluctuations in the vorticity than moments considered
as a ratio of time averages.

6.6.1 Results in the d =2 Case
Let us introduce the non-dimensional Grashof number:

g .= L7l (6.95)

u2

and in d = 2 we also have the estimate (recall results of Chapter 4):
(Fa) < V2A54G% . (6.96)

Theorem 6.5.1 is also true in d = 2, N > 3. If we combine the d = 2 results of that theorem
(N > 3) with the following (d = 2 only) modified version of the Brezis and Gallouet [11]
logarithmic estimate (see for example Doering and Gibbon [25] for an alternative proof),

1 F. 1/2
IDulleo < ¢ Fil? [1 +3 logLZFz] (6.97)

and (noting that x3 , < k%, for N > 3, r > 2) applying the Cauchy-Schwarz and then Jensen’s
inequalities:

1 - 1/2
(1Dl < o(F2 [1+ 3 l0g (270, )] (6.98)

we finally get (using that log(1l + log Q) < log@ for @ > 1):

—2 1/2
(k%) Scenyr 252G [1 + log (%%g)] (6.99)
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Further from Theorem 6.5.5 we get for d =2, N > 3,

“12v,0 < c)\(','2 G? (6.100)
and so we see that in d = 2 we can estimate
e\ "2 A2 \1Y?
(7\%> <cG [1 +1log (ﬁg)] (6.101)
and .
Lno\ ™
(,\_) <ecG?. (6.102)
0

6.7 Other Length Scale Estimates

We have already seen how the length scales we have derived compare to the classical Kolmogorov
scale and at the same time that of Henshaw, Kreiss and Reyna [41]. However, there obviously
exist (and have done so for some time, particularly for d = 2) some much more sophisticated
examples of minimum length scales, and we investigate those here.

6.7.1 The Attractor Dimension

Recall that in the classical theory of turbulence a heuristical estimate for the number of degrees
of freedom for the flow is given by
; ,
L
N~ (-[> (6.103)

where L is a characteristic scale associated with the physical dimensions of the domain of the
fluid, and £ is a minimum length scale (for example, any one of the minimum scales mentioned
above) for the fluid flow.

We normally identify £ as the diffusion length below which molecular viscosity heavily daraps
the motion (i.e. the scale below which we suppose no more interesting dynamics is occurring —
see the arguments at the beginning of this chapter).

From the scaling arguments outlined at the beginning of this chapter, we would normally expect
£= Ak, = (v3/€)!/* where ¢ is the rate of dissipation of energy.

We also know that in two dimensions, it is convenient to introduce the Kraichnan length
Akr = (v3/n)1/® where 7 is the rate of enstrophy dissipation.

Temam [88] interprets the dimension of the attractor as the number of degrees of freedom of
the flow, and (in Chapter 6 of [88]) provides some estimates for the dimension of the attractor
which we outline below.

Note: Consider an m-dimensional infinitesimal volume element (say V(u,m)) in the phase
space H about an arbitrary solution u on the attractor. If we can show V{(u,m) decays to
zero volume as ¢ — 00, then the attractor cannot contain any m-dimensional subsets and the
smallest m with this property majorises the (Hausdorff) dimension of the attractor.

With this in mind, the proof proceeds by linearizing the general evolution equation (2.1), and
then considering the evolution of V{u, m) under the linearized system. For the details of the
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general calculation (for the Hausdorff (dz(A)) and fractal {(das(A)) dimensions of the attractor
A), I refer the interested reader to Temam [88] and Oliver [72].

I summarize the results of Temam [88], Chapter 6 (d = 2).
With the rate of dissipation of energy defined as

€ = 2vL~2(Hy) (6.104)

a simple a-priori estimate (analogous to the energy-type estimates of Chapter 4) reveals,

e < V3L4G? (6.105)
and so with Mg, = (3/¢)1/4 we find
2
L L2gl/?
(Axo) < —m <6 (6.106)

Temam [88] then proves (Chapter 6, Theorem 3.1) that if m is defined as

2 1/2
L) =c(;€§) L*<m (6.107)

m—1<ec¢
(/\Ko
where ¢ is a dimensionless constant, then

1. the m-dimensional volume element in H is ézponentially decaying in the phase space as
{1 — 00,

2. if A denotes the d = 2 Navier-Stokes attractor (that we know ezists) then
e dg(A)<m
o dy(A) <2m

where dg(A) and dp(A) are (respectively) the Hausdorff and fractal dimensions of the
attractor A.

Note: We can replace m in (6.107) in the result above by a larger m = m; given by
my—1<eG<my (6.108)

and so we are able to make an estimate of the form

2
NK0~< L > ~G. (6.109)

AKo
We can improve on this result via the enstrophy disipation 7.
We indentify the enstrophy dissipation flux as
n=2wL"*(Hy) (6.110)
and another simple a-priori estimate gives us,

n < v3L8G2 (6.111)
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and so with £ = Ak, = (3/n)'/¢ we find

2 1/3
( L ) - (ﬁ) < gs . (6.112)

Axy v

Temam [88] then proves (Chapter 6, Theorem 3.2) that if my is defined as
2 1/3
m2—1<c(L ) <1+log< L)) <my (6.113)
AKr Akr

1. the mo-dimensional volume element in V is ezponentially decaying in the phase space as
1 — o0,

then

2. the global attractor A for the d = 2 Navier-Stokes equations is such that

[ dH(.A) S ma

Further we can replace my in (6.113) of this result (using (6.112)) by a larger m = mg3 given by
mg—1< cG3(1 +1ogG)/3 < m3 (6.114)

and so we can make an estimate of the form

I 2 I 1/3
Nicr ~ ( ) (1 +log ( )) ~ ¢G*3(1+logG)/® . (6.115)
AKr /\Kr

This result is also reproduced by Doering and Gibbon [25].

6.7.2 Determining Modes

In Foias et al. [31] (1983) and Foias et al. [17] (1985) the concept of determining modes is intro-
duced for the two and three dimensional (respectively) space-periodic Navier-Stokes equations.

Definition 6.7.1 Suppose
oQ [+
uy = Z aj(t)w; and uy= ij(t)wj
i=1 j=1

are two solutions to the Navier-Stokes equations (4.1)-(4.4) where {wi,ws,...} are a set of
divergence-free eigenfunctions spanning H (for ezample the eigenfunctions of the operator A).

Then a finite sel of M modes {w1,...,wp} are said to be determining if the condition
M
> laj(t) = b;(#)] = 0 es t —> o0 (6.116)
i=1

s necessary and sufficient for

/ lus(2,2) — ug(z, )| de— 0 as t— oo . (6.117)

Qg
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However, as Oliver [72] points out, such a set of modes does not guarantee the long-term
behaviour of the system can be represented by a set of Ordinary Differential Equations for the
modes {w1,...,wnr} — which would be the case via the inertial manifold concept.

Further, length scales which we compute via the number of determining modes are larger than
those calculated by.other means. Indeed, Foias et al. [31] estimate the number of determining
modes for d = 2 to be bounded by ¢G(1 + logG)'/2, and also in a later paper (Foias et al.
[17], 1985) they prove that for the three dimensional Navier-Stokes equations the attractor
dimension is always majorised by the number of determining modes.

6.8 Conclusions

Thus we have given a rigorous definition for the number of relevant modes via a Fourier splitting
argument from which we defined two sets of minimum length scales, {n, and L r.

If we assumed our flow to be laminar, we showed that the scales we derived corresponded to the
classical Kolmogorov dissipation scale. However, without this assumption, the estimates for our
scales have an extra term which reveals how inertial range intermittency might be accounted
for.

We subsequently argued for the relative suitability of the scales £y, and Ly, and why we
expected the number of degrees of freedom associated with alternative estimates for length
scales might be smaller (i.e. the corresponding length scales would be larger). We then provided
some alternative estimates for minimum length scales, in particular for the two dimensional case
for which there exists a wide range of such estimates. In sumimary, the various estimates we
have are

Estimate of d=2
Number of Determining modes ~ cG(1+logG)/?
Degrees of Freedom from dp(A) ~ cG3(1 +logG)!/3
Degrees of Freedom from £37% = (k},) | ~cG(1+log G)H?
Degrees of Freedom from £1“v’2, =&k}, ~cG?

much as we expected.
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Chapter 7

The MagnetoHydrodynamics
Equations.

In this last chapter, we introduce the MHD equations and derive some a-priori estimates for
them which are analogous to those for the Navier-Stokes equations (which were outlined in
Chapter 4). We set the stage for a further in-depth investigation.

7.1 Introduction to MHD

Let us suppose we have a conducting fluid material contained in a volume Qz, = [0, L]¢ but
that this material is non-magnetic, that is to say that the permeability y of the material is
47 -10~7 Henry per metre. Also let us suppose that this fluid has a characteristic permittivity
e, and electrical conductivity o. Hence, both Maxwell’s equations and a modified form of the
Navier-Stokes equations apply to this fluid material.

Let us first examine Maxwell’s equations. Let
e J = current density
¢ B = the magnetic field
e E = electric intensity (field)
e p. = charge density

e p = mass density of fluid material.

Then, conservation of charge gives

9pc _
5 +V.J=0 (7.1)
and Maxwell’s equations are
curl = —-%—?— (7.2)
curlH = J + 66—1: (7.3)
V-D=p, (7.4)

113
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V-B=0 ' (7.5)
where D =¢F and B = uH.
With reference to Cowling [23] we can ignore Maxwell’s displacement currents which means
that the term 8p./dt in (7.1) is of order u?/c? times the remaining term (u = fluid velocity

and ¢ = the velocity of light) and so we neglect this term i.e. relativistic effects are ignored.
Thus (7.1)—(7.5) now become

V.-J=0 (7.6)
curl B = pJ (7.7
curlE = -—%—t]?- (7.8)
V-B=0. (7.9)

To proceed any further, we must now carefully establish exactly what sort of conducting fluids
and conditions we have in mind [54, 43, 29]. We assume our fluid to be a conducting liquid or
dense ionized gas (to which Ohm’s Law is still applicable). We also assume that the character-
istic distances and time intervals for the fluid motion concerned are very much larger than the
mean free path and mean free time of the current carriers (electrons and ions). This means that
currents are determined by self-induction rather than by electrical resistance (particle effects
are ignored) and also that there is no separation of charge (the fluid is effectively electrically
neutral ~ to a good approximation).

Hence if J' and E’ are the current density and electric field (respectively) measured in the
rest frame of the medium/fluid; with J and E those measured relative to the laboratory; then
Ohm’s Law holds (o = electrical conductivity)

J = oF . ' (7.10)

If the fluid material has velocity u(z,t), then the transformation between the two frames of
reference is
J = J +peu (7.11)

and
E' = E4+uAB (7.12)

where p, is the charge density. The second term on the right-hand side of (7.11) is due to the
convection of current (from motion of resultant charge) while the first is due to the conduction
of electric current (whose effect we ignore under the assumptions outlined above). Hence for a
fluid particle volume dV', and charge p., we have the following expression for the Lorentz force
on the fluid particle

dF = p.E'dV = p.EdV + (pou) ABdV = (J AB)dV (7.13)

which we could also obtain directly from the Maxwell Stress Tensor [54]. Note that the p.E
term is ignored (fluid electrically neutral).

Let us now consider the fluid equations: we shall assume the fluid to be incompressible and to
have uniform unit density (p = 1). Hence the equation of conservation of mass density gives

divu=0. (7.14)
In the equation of motion there are three types of body (volume) forces

e J A B per unit volume of Electro-Magnetic origin
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o Electrostatic force due to charge density (negligible in comparison and therefore ignored
— as explained above)

e External body force per unit volume which we call f

Hence, our equation of motion is
u,+(u-V)u=uAu—-,1;V'P+f+%J/\B. (7.15)

Thus, with ¢ spatially uniform, our governing equations are (7.6)—~(7.9), (7.10) and (7.14),
(7.15).

If we substitute (7.10) into (7.8) and use (7.7) we get

_%?. = curl(u A B) + 7AB (7.16)
where we have also made use of the identity curl (curlB) = V(V - B) = AB and n = (op)™! =
resistivity. The first term on the right-hand side of (7.16) is essentially a transport term and
the second is due to a dissipation (leak) effect.

We can now use another identity, curl (u A B) = (B - V)u— (u - V)B (for divergence-free u and
B) in (7.16); as well as

1 B?
in (7.15) to get our full set of governing equations in the form
u+(u.V)u_uAu--1_(B.V)B+1v(19+i32>—f (7.18)
' up P 2p '
B:+(u-V)B—9AB—(B-V)u=0 (7.19)
V-ou=0 (7.20)
V-B=0. (7.21)

Finally, we can transform these equations (in the usual way) into the non-dimensional form
shown in the next section (z — z/L, u — u/U, etc. ).

7.2 The Equations and Their Setting

Consider the MHD equations in the domain 7, = [0, L]¢ with periodic boundary conditions in
the following non-dimensional form,

ut+(u-V)u——Re‘lAu—(,B-V)ﬁ«l-V(’P+%ﬁz) = (7.22)
B+ (u-VYB—-RIAB—(B-V)u =0 (7.23)
Vu=20 (7.24)

Vg =0 (7.25)

where
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e u = fluid velocity

e P = pressure

e 3= S'2 B and B is the magnetic field

e g = external volume forceé applied to the fluid which is a C* function (time-independent)

(all quantities non-dimensionalised).

Further,

¢ Re = Reynold’s Number

o R,, = Magnetic Reynold’s Number

® S > 0 is related to the Alfvén Number
(again all non-dimensional quantities).

In addition to periodic boundary conditions we shall take / gdz = 0 so that
232

/ ude = Bdz=0 (7.26)
Qr Qr -

for the domain Qp, for all time.

With L as a typical representative length, U a typical velocity, By a typical magnetic field
measure, 4 = the magnetic permeability, o = conductivity of the fluid and where we have
assumed unit mass density, p = 1; then we define the magnetic Reynold’s number as

Rpm=LUop (7.27)
and the Alfvén number is given by
1/2
A= W) (7.28)
By

The magnetic Reynold’s number is directly analogous to the original Reynold’s number for
fluids, i.e. it gives a comparison between transport/forcing effects and dissipation effects for B,
whereas, the ratio of inertial to magnetic stresses are typically of the order of the square of the
Alfvén number.

From these definitions, S = A~2 and so S > 0 is given by

M? _ B

where M is the Hartmann Number (gives a comparison between magnetic viscous force and
the ordinary viscous force per unit volume),

o \ /2
M = BoL (;;) . (7.30)

The non-dimensional form of (7.22) ~ (7.25) motivate us to define
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Definition 7.2.1 For N >0,d = 2,3, 8; = S1/2 B; and (; = (curl B); we define the functionals

d
Hy = Z Z / |D™w;|? de = |“ﬁv,2,nL (7.31)
i=1 |n|=N VS
and ,
=Y O [ 106l dz=plia, (32)
i=1 |n|=N L

which we combine naturally to deﬁne

Gyn=Hn+ EN . (7.33)

7.3 The Energy Estimate
Consider
d d
Go = Ho + Eo = ;/m fus|? dz + ;/ﬂ |62 dz (7.34)

which is a measure of the total energy of our system.

Theorem 7.3.1 Assuming u and B to be smooth selutions of (7.22)—(7.25) then for d = 2,3,
V t> 0, with R = max{Re, R,}, we can make the a-priori estimate

1. 1 ‘
560 < -% Gy + Gy |gllz - (7.35)

Proof: Using that V -« and V . 8 are zero:

1. 1
~Hyg=~—H, + Z/ u;B; B j dz + Z/ u;ig; dz (7.36)
2 RB i,j QL i nL
and ) )
gbo=——Fi- }_"J‘ /9 ) uiB; Bi j de (7.37)
which we can combine to give
1. 1
5Go < =5 G1+ Gy "lallz (7.38)
2 R
where R = max{Re, Rm}. o

Corollary 7.3.2 Gy is bounded (a-priori) for all time and in fact

Go < [M]z . (7.39)

c

Proof: Simply apply Poincaré’s inequality to the first term on the right-hand side of (7.35)
and use Lemma 4.8.2. Then look for the absorbing ball to get the result. 0O
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7.4 The MHD Ladder

We can prove the following theorem for the Gn'’s,

Theorem 7.4.1 (MHD Ladder Theorem) Assumingu and f to be smooth solutions of (7.22)-
(7.25), then for all N > 1,¢ >0, d = 2,3 and with R = max{Re, R} we can derive the a-priori
estimates

1. 1
5Gn < —5 Gnar+e(IDulloo + [1DBlleo) G + G 1DV gllz (7.40)

Proof: Using (7.22) — (7.25) directly, we see that we can write
%HN = - —]%: Z/(D"+1ui)2 - Z/(D“u,—) D™ (ujui ;)
+ 3 / (DPus) D™ (Biif) + 3 / (D"u;) (D" g:) (7.41)
and
tiv= - - [orar =% [0°8) D)
+ ¥ [@re) 0 gmy) (1.42)

which we can combine to get
1. 1
‘Q'GN - _ EZ/(DH-HU’:)z _ Rl_r_r: E/(Dn+1ﬂi)2
- Z/(D"uz') D"(uju,-,,-)+Z/(D”u,~)D"(ﬂ,-ﬂ,-,,~)
- /(D"ﬂi) D"(uiBig) + Y /(D"ﬁi) D" (Bjui ;)
+ > / (D™u;) (D™ gs) - (7.43)
Consider each of the non-linear terms
NL1 > / (D™u;) D™ (uju; ;)

= > [(Du) (O CpDu; D*HHhiw) | <N . (7.44)
i,5,N L£0

i

i

Note that the £ = 0 term in the Leibniz expansion is zero. Similarly,

NL2 = —Y / (D" B:) D" (u; B 5)

= -3 / (D"6:) (3 CpDu; D"4G;) U< N . (7.45)
i5,N 20
Now consider the two remaining non-linear terms together
NL34 = Y / (D u;)D™(Bi i) + / (D"B;)D™ (B ui ;) (7.46)
= Y /(D”Ui)(z CpD*B; D" b1 5)
,,N ££0
+ Y [ a0 (T crpts; 0tusy) (7.47)

ij,N ££0
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where £ < N and the two corresponding £ = 0 terms cancel each other out.

Now consider (7.45)

B 1/2
N2 < B S / CPp(Dtu;) (DP~15; ;)2 (7.48)
i3,V ££0
- 1/2
< EYP|NS TN AL (7.49)
| i§ £50
where
A= / (D) (D~61,5) < [ID"uy g D™~ 44%5 i (7.50)
N
where :—)-{- ;11- = -;-

Now let us consider the following pair of Gagliardo-Nirenberg inequalities

ID%ull, < cliD™u; 15[l Dys 15 (7.51)

|Dm=#*Ligill, < cllDBBI DA (7.52)

where we require

1 _ _ —
_z;z L=l yq(i- 25 QSN_1Sa<1 (7.53)
1 _ _ N-L
= NoLoyp (- ) ogN_15b<1. (7.54)
Now if we choose ap = 2 and bg = 2 then
L-1 N-L
o= and b._——-——N_l (7.55)

with 1/p+ 1/q = 1/2.

For 2 < L < N — 1 we see that (7.53) & (7.54) are satisfied. (7.51) and (7.52) are also seen to
be satisfied for L=1& L= N.

Hence,
NL2 < c EX*HY || Dul|is* EY | DB (7.56)
Similarly,
NL1 < c Hy||Du|eo , (7.57)
NL34 < ¢ HY/2EN?||DBlloo + ¢ EX* B\ DB|I s HY || DullLs® . (7.58)
Hence, if R = max{Re, R} then (via Young’s inequality and/or the definition Gy = Hy+En)
we see that we get the result of the MHD Ladder Theorem. ]

Further, let us construct a vector f = 7 g where 7y is a characteristic time scale. Consequently
we define

Definition 7.4.1
Fyn=Gn+|DVfl13 . (7.59)

Then we can prove the following corollary,
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Corollary 7.4.2 For smooth solutions and d = 2,3, N > 1, with /\52 = -1-22- 5! -I-/\}'Z, we have

1. 1 1.
S <~ Fve  [o1Dule + D) + 357 P (7.60)
Proof: Note that 1
GNIDgllz < 575 Fy (7.61)
and so
1. 1 1
-2-FN < —RGN+1 - —R'”DNHf“%
1 _ 1
+ (Dl + 1D + 5757 ) B+ D115 (7.2
1 1
<~ g s+ (elDulle + DB + 757 ) Fi
1 [|DN+1 713
10D Jllz 7.63
E DVIR N (7.63)
1 1, 1.
< -5 Fvat (cupunoo +ellDBlleo + 5757 + 57 2) Fy . (7.64)
and hence the result. ]

Thus we can conclude results parallel to those proved from the Ladder Theorem for the Navier-
Stokes equations in Chapter 4. i.e. for the d = 2,3 MHD equations, provided we assume regular
strong solutions for all finite-time intervals and that « and f# are uniformly bounded in time in
V', then there exist absorbing sets for u and £ in all the H{,"er(QL)d, for all » € N and hence we
can deduce a C™ global attractor.



Chaptei‘ 8

Conclusions and Further Work

8.1 Research Presented in this Thesis

The following original work (indented and enumerated below) was presented in this thesis:

In Chapter 2 the general framework for the evolution equation was introduced, the semi-group
of operators defined, and then a theorem was provided which would guarantee the existence of
a global attractor when the existence of an absorbing set is known. Following some theory on
linear operators, we outlined how we would proceed in order to show the regularity of solutions
in the attractor.

Some elementary functional analysis for Lebesgue and Sobolev spaces followed in the first part
of Chapter 3. Consequently:

1. With the help of a Poincaré type of inequality proved for mean-zero functions (on Qr)
the equivalence of semi-norms and full-norms on W™?(Q) (where the dot indicates zero
mean) for 1 < p < co was shown; which was also extended to p = oo for space-periodic
smooth functions.

2. The Gagliardo-Nirenberg inequality was reproduced for functions with compact support,
but with the multiplicative constants provided as far as was possible.

3. Two alternative versions of the Gagliardo-Nirenberg inequality were proved (via extension
theorems):

(a) The first for full Sobolev norms for functions with no specified boundary conditions
on .

(b) The second for semi-norms for mean-zero functions on periodic boundary conditions
on 1. This result was needed and used repeatedly in the following chapters when
calculating a-priori estimates.

After introducing the initial and boundary value Navier-Stokes problem we were to study,
“weak” and “strong” solutions were also introduced and their relevance discussed. It was
apparent that for the two dimensional Navier-Stokes problem, unique, regular solutions have
been proved to exist for all time, but in the three dimensional case we must make some extra
assumptions in order to prove regularity for all time:

121
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4. An alternative (to that of Serrin) proof of the minimum assumptions sufficient for regu-
larity (the solution assumed uniformly bounded in L3+¢) was proved via direct functional
analytic techniques.

Subsequently, the non-well-posedness of the three dimensional problem was discussed and re-
lated to the existence of strong solutions. A ‘Ladder Theorem’ was then proved, which comprises
of a set of a-priori estimates which we used to show the regularity of solutions in the attractor
— provided we assumed that strong solutions existed for all finite-time intervals and were also
uniformly bounded in time.

5. An interpolation inequality, important for the particular version of the Ladder Theorem
outlined, was also proved.

Then in Chapter 5,

6. The ‘Lattice Theorem’ was proved — this provided a much more general set of a-priori
estimates (previously unknown) for semi-norms, and which we hoped, could be used to
improve on Serrin’s result (the L3+¢ result mentioned). However, the estimates only re-
produced (at the bottom ‘rung’) Serrin’s result, and thus indicated that via the functional
analytic techniques we have employed, we might not improve this result. These estimates
also showed that u assumed bounded in L3t¢ uniformly in time was sufficient to prove
the existence of a C'® global attractor.

Calculations for the a-priori estimates of the Lattice Theorem suggested the alternative assump-
tions which were possible (via lattice-like techniques) to prove the existence of strong solutions
for all time — the [|P||3(1+5) result, which was subsequently improved:

7. The minimum assumptions sufficient for a C* attractor, was then reduced to [|P||15/8+¢
via some further estimates, which crucially involved the Lattice Theorem.

Having investigated the question of regularity as far as seemed possible, we then turned our
attention to defining a minimum length scale for a Navier-Stokes fluid flow.

In Chapter 6, we introduced the notion of turbulence and importantly, the Kolmogorov dissipa-
tion length scale. The limitations of Kolmogorov’s scaling theory as well as several alternative
theories were discussed, and we subsequently set about a rigorous mathematical derivation for
an appropriate minimum length scale. A Fourier splitting argument provided us with an esti-
mate for the number of ‘relevant modes’ we should consider — we defined our minimum length
scale via the number of relevant modes.

Consequently, we introduce the wavenumbers £y, for which we proved a large set of a-priori
estimates (specific to the Navier-Stokes equations). In particular:

8. An estimate for the xy ,’s allowed us to derive a result analogous to Ladyzhenskaya’s
result for small enough initial data, or large enough viscosity.

9. We were also able to provide an alternative proof (via the «n,’s) of the Beale, Kato
and Majda result concerning the breakdown of regularity occuring when ||w||o becomes
singular.

We then proved some further (and more important) a-priori estimates for the kn »’s, in partic-
ular Corollary 6.5.4 and:
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10. The estimate for x% ; in Theorem 6.5.5.

With these estimates we then showed how the Kolmogorov dissipation length applies to qui-
escent (laminar) flows and that the definition we provided for the minimum length scale via
(K3 ) or 76—21\; incorporates a term which might account for inertial range intermittency. Sub-
sequently, in the last part of Chapter 6, we compared estimates for length scales defined via
alternative means (such as the attractor dimension) with estimates for the length scales we
defined.

Lastly,

11. The MHD equations were derived and some a-priori estimates (including an ‘MHD Ladder
Theorem’) were proved — from which we could deduce some results analogous to those
proved for the Navier-Stokes equations.

8.2 Further Work

It seems (to the author ar least) that new results which can be achieved via the specific func-
tional analytic techniques outlined are exhausted. Another, more subtle approach seems to be
necessary.

There are some important questions which are left unanswered (particularly) in the d = 3 case:

1. Can we relax the assumptions necessary for any of the Gagliardo-Nirenberg inequalities
we have proved, and also, find explicitly, the exact form of the multiplicative constants?
These would be helpful for a whole range of evolutionary nonlinear PDE problems (such
as the CGL equation) in addition to the Navier-Stokes equations. Dimensional analysis
suggests that an improvement (sharpening) of this inequality is not possible. Can we
prove the inequality in more general terms?

2. Can we prove the existence of regular strong solutions for all time for the three dimensional
Navier-Stokes equations? This is an open and very crucial problem. Can we, for instance,
improve on Serrin’s result or the pressure results of Chapters 4 and 57 Can we improve
the Lattice Theorem and also provide the multiplicative constants?

3. Further, the question of the existence of an ‘Inertial Manifold’ for the two dimensional
Navier-Stokes equations (on periodic or other boundary conditions) must be addressed.
This would have several important consequences, including resolving the ‘best’ length
scale for two dimensional numerical simulations.

4. Is it possible to extend most of the results we have shown for the Navier-Stokes equations
to the MHD system? Does a lattice-like structure exist? Can we prove a result analogous
to Serrin’s? What is the best estimate we can give for the attractor dimension — provided
we can prove it exists without assumptions? Can we define an appropriate minimum
length scale?
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