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Abstract

A partial differential equation (PDE) is an equation that involves partial deriva-

tives of an unknown function u : Ω→ R. The domain Ω denotes an open subset of Rd,

d = 2, 3. Partial differential equations (PDEs) are used in order to model problems

in all areas of science, including physics, engineering, finance, etc...

It is often impossible to solve a PDE exactly using analytical methods and thus

most PDEs are solved numerically. In order to solve a PDE numerically, one intro-

duces a triangulation of the domain with finitely many vertices. The solution of the

PDE is approximated by a piecewise polynomial function on this grid; this is the

Finite Element Method (FEM).

For linear PDEs, the FEM leads to a linear system of equations of the form

Au = f , where A is a very large n × n matrix that is very sparse. Solving Au = f

using Gaussian elimination results in significant “fill-in”, where many zero entries of

A become nonzero as the Gaussian elimination algorithm progresses. For very large

problems, Gaussian elimination will exhaust the main memory of any computer. As

a result, it is necessary to use an iterative algorithm to solve the problem Au = f .

Classical iterative methods such as Jacobi and Gauss-Seidel require more and more

iterations as the size n of A increases and thus these iterations are not useful for large

values of n. Domain decomposition is a more sophisticated iterative scheme based on

partitioning the domain Ω into many subdomains {Ωk}. Since the Green’s functions

are nonlocal, it is impossible to solve local problems on the subdomains Ωk and thus

obtain a global solution unless we iterate by exchanging information between the local

problems.

In the method of H. Schwarz, the information exchanged across the “artificial

interfaces” is Dirichlet data. J. L. Lions improved the Schwarz method by exchanging

Robin boundary data. Gander and his collaborators found that one could obtain

accelerated convergence by tuning the Robin parameter; this is the optimized Schwarz

method (OSM). The design and analysis of optimized Schwarz methods for general

domains and subdomains has proven to be a challenge. Loisel found that the OSM is

dual to the 2-Lagrange multiplier (2LM) method, which is an iteration on the Robin

traces; the 2-Lagrange multiplier method is amenable to analysis.

OSM with a coarse grid correction has previously been considered for cylindrical

domains using Fourier analysis. This approach has some serious limitations, since

only very regular domains and subdomains and only the Laplacian can be consid-

ered. These limitations are not purely theoretical; the implementation of an OSM

for a domain decomposition with cross points (points that are shared between three

or more subdomains) has remained challenging. Our main result is the design and

implementation of a 2-Lagrange multiplier method, which is dual to the OSM, in-

cluding a coarse-grid correction, which handles cross points. This is highly valuable
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not only from the point of view of analysis, but also because it describes in detail

how the cross points are handled by the implementation. Our analysis shows that

the condition number of the linear problem scales like O((H/h)1/2), where H is the

subdomain diameter and h is the grid parameter.

We have implemented our algorithms in C using the PETSc library. Numeri-

cal experiments performed on the HECToR supercomputer confirm the good scaling

properties of our algorithms.
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For Alexandros, Angeliki, Christos.
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The most formidable weapon

against errors of every kind is

reason. I have never used any other,

and I trust I never shall.

Thomas Paine, January 27 1974.
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Chapter 1

Introduction

Numerical Analysis lies in the

meeting point of pure mathematics,

computer science and application

areas. It often attracts some degree

of hostility from all three. [8]

.

1.1 Introduction

A partial differential equation (PDE) is an equation containing an unknown multi-

variate function and its partial derivatives. PDEs can be used to model a wide range

of phenomena such as sound, heat, elasticity, fluid flow, and more. For example,

Laplace’s equation for heat in a metal plate is

∆ũ = −ũxx − ũyy = f̃ in Ω, (1.1)

where the domain Ω ⊂ R2 describes the shape of the metal plate. The forcing

function f̃ , defined on Ω, describes the amount of heat per unit time being pumped

into the plane at each point of Ω. A PDE such as Laplace’s equation must be supple-

mented by boundary conditions in order to obtain a unique solution; e.g. Dirichlet

conditions ũ = 0 on ∂Ω.

In [28], Joseph Fourier provided the first solution method for Laplace’s equation.

In modern terminology, his method is as follows. For the plate Ω = (0, π) × (0, π),

begin with the ansatz that ũ(x, y) =
∑∞

j,k=1 û(j, k) sin(jx) sin(ky). Writing a corre-

sponding Fourier series for f̃(x, y) and differentiating term-by-term leads to û(j, k) =

f̂(j, k)/(j2 + k2).

Fourier’s method works because the eigensolutions ∆ũ = λũ of the Laplacian

on the square (with homogeneous Dirichlet boundary conditions) are of the form

10



Chapter 1: Introduction

sin(jx) sin(ky). To apply Fourier’s approach to a general domain Ω would require

knowing the eigenvectors of the Laplacian on Ω; an impossible task except for the

simplest domain shapes (e.g. rectangles and discs).

An equation that describes the bending of a plate is the biharmonic equation

ũxxxx + 2ũxxyy + ũyyyy = f̃ .

In [19], Chladni described intriguing patterns formed when a sand-covered metal

plate is caused to vibrate by drawing a violin bow over it. This equation is more

challenging to analyze by Fourier’s technique and the problem remained open until

[56], where Ritz designed the first modern discretization of a PDE. In Ritz’s method,

the solution ũ(x, y) is expanded according to some family {φi(x, y)} of basis functions.

The basis functions do not have to be eigensolutions of the PDE operator but instead

are selected on the basis of computational efficiency. For example, in the Finite

Element Method (FEM), the domain Ω is triangulated and the basis functions are

piecewise polynomial on this triangulation.

When we discretize (1.1) using the FEM, we obtain a linear problem

Au = f, (1.2)

where A ∈ Rn×n is a symmetric and positive definite matrix; ũ ∈ Rn is an unknown

vector, and f̃ ∈ Rn is a given data vector. The “continuous” solution ũ(x, y) is then

approximately ũ(x, y) ≈
∑

k ukφk(x, y).

Any linear solver can be used to solve (1.2). However, since the number n of basis

functions is large, it is desirable to use a linear solver that scales well for large linear

problems. In principle, Gaussian elimination can solve (1.2) in approximately 2
3
n3

floating point instructions (FLOPS). For the Laplacian, we can improve the estimate

somewhat by taking into account the sparsity structure of A, which shows that we will

need O(n2) FLOPS in 2d or O(n2.33...) FLOPS in 3d. Nevertheless, the computational

cost grows much faster than the problem size.

Another difficulty with Gaussian elimination is that it is an inherently sequen-

tial algorithm. Seemingly presciently, G.E. Moore [51] stated that the number of

transistors on a CPU chip would double approximately every two years. CPU power

consumption grows proportionally to CPU frequency; this increasing amount of power

dissipates as heat. Waste heat must be removed from the CPU using a “heat sink”.

The maximal rate at which we can remove heat from the CPU becomes a limit on

CPU frequency, known as the “power wall”. Since CPU can no longer increase the

clock frequencies, manufacturers have used the increasing number of transistors to

provide multiple CPU cores, which must then compute in parallel; see [36] and [52].

Parallelism in supercomputers was introduced in the 1960’s to tackle real-world

11



Chapter 1: Introduction

Figure 1.1: Images of HECToR supercomputer and its successor ARCHER based at
EPCC.

Figure 1.2: Projected performance development of top 500 Supercomputers,
[http://top500.org/statistics/perfdevel/, data: June 2015].

problems in fields such as climate modeling, data analysis, nanosciences, molecular

biology and many others. Modern supercomputers feature tens of thousands of proces-

sors and with the ability to provide thousands of Gigaflops of performance [52]. The

British academic national supercomputer HECToR (High End Computing Terascale

Resources) and its successor ARCHER (Academic Research Computing High End

Resource), based at the Edinburgh Parallel Computing Centre (EPCC), c.f. Figure

1.1, can provide 800 Teraflops and 1.56 Petaflops of theoretical peak performance

respectively. The exascale era is expected to begin in 2018; see Figure 1.2.

On such massively parallel architectures, sequential solvers such as Gaussian elim-

ination can no longer be used and one must instead resort to iterative solvers. In

an iterative solver, one obtains successive approximations u(1), u(2), . . . to the equation

(1.2), such that limk u
(k) = u. Three requirements guide the design of an iterative

solver:

1. Computing u(k+1) from u(k) must be efficient.

12
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2. Each iteration must be parallelelizable.

3. The iterates must approach u to a prescribed tolerance in a small number of

iterations. If the number of iterations does not depend on the problem size, we

say that the iteration is scalable.

Iterates of classical iterations such as Jacobi and Gauss-Seidel can be efficiently com-

puted (point 1). The Gauss-Seidel algorithm is not so easy to parallelize, but the

Jacobi algorithm is highly parallelizable (point 2). However, the Jacobi algorithm

applied to the 2d Laplacian will typically require O(n2) iterations to produce an ap-

proximate solution.

In domain decomposition, the domain Ω is partitioned into subdomains Ω =

∪kΩk; the subdomains may be overlapping or disjoint. On each subdomain, one

solves the PDE and one obtains boundary conditions from neighboring subdomains.

For example, Schwarz’s overlapping method [62] reads

−∆ũnext = f̃ in Ωj and ũnext = ũprev on Ω̄ \ Ωj,

where j cycles through the various subdomains. This iteration is written in “Gauss-

Seidel” style, but one can obtain a parallel version by “coloring” the subdomains in

such a way that overlapping subdomains have distinct colors and solving all subdo-

mains of a given color in parallel in a single iteration.

In [47], P.L. Lions proposed a nonoverlapping variant of Schwarz’s method where

one exchanges Robin instead of Dirichlet data across subdomain interfaces. In other

words, the iteration scheme now looks like

−∆ũnext = f̃ in Ωj and aũnext +Dν ũnext = λ̃ on ∂Ωj,

where Dν denotes the directional derivative in the direction ν of the outwards-pointing

unit normal to ∂Ωj, and a > 0 is a Robin tuning parameter, which can be chosen

freely. The Robin data λ̃ must somehow be read off the neighboring subdomains.

Points on the artificial interface Γ = Ω∩∪j∂Ωj are either regular interface points

that are adjacent to exactly two subdomains, or cross points that are adjacent to

three or more subdomains. For any regular interface points x ∈ Γ, we may use

λ̃(x) = aũprev,neighbor(x) + Dν ũprev,neighbor(x). However, the situation is more delicate

when cross points are present since there are multiple choices of previous iterates

at cross points. An added twist of Lions’s method is that the iterates of adjacent

subdomains typically do not meet continuously across the subdomain boundaries.

Lions proved that his method converges when there are no cross points, and no

overlap. In [44] and [49], the convergence of Lions’s method for certain overlapping

decompositions was proved.
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The choice a of the Robin parameter is very important. In his original paper,

Lions says “Next, it is worth discussing the effective choice of [the Robin parameter]:

let us first indicate that this is by large an open problem.” This open problem was

widely studied by Fourier analysis, [24], [29], [67]. Such methods became known

as optimized Schwarz methods (OSM). Although the Fourier approach reveals

the correct Robin parameter, it has three important limitations. First, the Fourier

approach is only applicable to simple domains and subdomains, such as rectangles.

Second, the Fourier approach gives no information about cross points (but see [31]).

Third, the Fourier approach does not apply to general elliptic problems.

In [48], Loisel addressed these three points. In order to explain Loisel’s idea, we

first introduce some notation.

Because the iterates of the OSM do not meet continuously across Γ, in practical

implementations, the discrete iterates u(k) are stored as block vectors

u(k) =


u

(k)
1
...

u
(k)
m

 ,
where m is the number of subdomains. Each u

(k)
j is a solution on subdomain Ωj at

iteration k. We further arrange each u
(k)
j into blocks as follows

u
(k)
j =

[
u

(k)
Ij

u
(k)
Γj

]
,

where the subscript I indicates degrees of freedom in the interior of Ωj and the

subscript Γ indicates degrees of freedom on the artificial interface Γ. The vector u
(k)
Γj

is the trace of u
(k)
j along ∂Ωj ∩ Γ. We can put together all the traces, as follows:

u
(k)
G =


u

(k)
Γ1
...

u
(k)
Γm

 ,
We can think of u

(k)
G as a multi-valued trace; it is a “function” with multiple values

along Γ (one value per adjacent subdomain at any given point on Γ). Note that we

use the subscript G in order to keep the notion distinct from a single-valued trace,

denoted by the subscript Γ.

Loisel formulated the symmetric 2-Lagrange multiplier linear problem:

AS2LMλ = hs (1.3)

14



Chapter 1: Introduction

and the non-symmetric 2-Lagrange multiplier linear problem:

AN2LMλ = hn. (1.4)

The solution vector λ ∈ Rm has the block structure

λ =


λ1

...

λm

 ,
where m is the number of subdomains. Each λk represents (discrete) Robin data on

the part of the artificial interface Γ corresponding to subdomain Ωk. The “primal”

solution uk can be recovered by solving a discrete Robin problem on Ωk with the

discrete Robin data λk. Systems (1.2) and (1.3) are equivalent in the following sense:

if one solves (1.3) and then one recovers uk by solving suitable Robin subproblems,

then the uk meet continuously across Γ and can be glued together to obtain the

solution of (1.2). Furthermore, if one applies a suitable Richardson iteration to (1.3),

the resulting iteration is equivalent to the OSM, at least when there are no cross

points. This is similar to the relationship between BDDC and FETI-DB [13].

This approach has several advantages. First, the analysis and implementation

of 2LM (including condition numbers) applies to general domains and subdomains.

Second, the analysis and implementation of 2LM is applicable even when there are

cross points. Third, the analysis and implementation of 2LM applies for general

elliptic problems.

Although Loisel’s general framework is excellent, it also reveals an expected prob-

lem with 2LM and OSM. Although the OSM is very efficient when there are few

subdomains, the condition number of 2LM increases unboundedly when the number

of subdomains increases. This is a well-known phenomenon that affects all “1-level”

domain decomposition methods. The solution has long been known to introduce a

“coarse space”, [23]. A first attempt at introducing a coarse grid into an optimized

Schwarz method is described in [24]. However, this paper is based on Fourier analysis

and hence suffers from the usual flaws (it does not apply to general domains and

subdomains, general elliptic equations, or cross points.)

1.1.1 Summary of main results

In this thesis, we develop a new general theory for 2-level 2-Lagrange multiplier meth-

ods, for general domain, subdomains and elliptic equations, including cross points.

Using our new theory, we provide sharp condition number estimates that show that

the method is scalable. We also describe the first massively parallel implementation
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of a 2-level 2-Lagrange multiplier method.

Our main theoretical result is to show that the condition number of the 2LM

system is O(
√
H/h). As a result, if one enforces that the ratio H/h remains bounded

as h → ∞, one obtains a scalable algorithm. Furthermore, our condition number is

much smaller than the condition number O(H/h) of a minimally overlapping 2-level

Schwarz method.

PETSc [6] is a standard library that implements many algorithms for solving

linear problems on supercomputers. For example, PETSc implements the additive

Schwarz preconditioner in a “black-box” fashion, as follows. Let A be a given stiffness

matrix, and let R1, . . . , Rm be “restriction” matrices corresponding to each subdomain

(each row of Rj is a row of the identity matrix, see [69]). The additive Schwarz

preconditioner is then

P−1
AS =

∑
j

RT
j A
−1
j Rj where Aj = RjAR

T
j . (1.5)

We see that, in order to use an additive Schwarz preconditioner, all the user has to do

is assemble A and provide the matrices {Rj}; the rest can be done “automatically”

by PETSc.

More sophisticated domain decomposition methods are more difficult to implement

in a “black box” manner. For example, FETI methods require the “partial assembly”

A =
∑
i

RT
i ANiRi, (1.6)

whereANi are stiffness matrices corresponding to the subdomain bilinear forms
∫

Ωi
∇u·

∇v. These bilinear forms can be interpreted as Neumann problems on Ωi.

It would seem at first blush that implementing 2LM would require for the user to

provide stiffness matrices for Robin problems on the subdomains. One of our innova-

tions is to leverage the partial assembly formula (1.6); our library then automatically

generates the Robin subproblems.

The choice of the Robin parameter can significantly impact the performance of

the 2-Lagrange multiplier and optimized Schwarz methods. Traditionally, the Robin

parameter is chosen by Fourier analysis; this is difficult to automate. We are able to

prove that the optimized Robin parameter is the geometric average of the extremal

eigenvalues of the subdomain Dirichlet-to-Neumann (D2N) maps. This can be com-

puted efficiently at run time; we do not need to diagonalize fully the D2N and it

suffices to only compute the extremal eigenvalues using, e.g., the power and inverse

power methods.

Generating the coarse space is challenging for a wide variety of domain decompo-

sition methods. For example, in Schwarz method, a coarse mesh must be provided,
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Chapter 1: Introduction

which means that the user must provide information beyond just the Ri matrices and

the stiffness matrix A. By contrast, our coarse space is generated fully automatically

without any extra data from the user. Our coarse space consists of the indicating

function of the floating subdomains. Note that our coarse space is discontinuous.

Our library is applicable to any elliptic problem for general domains and subdo-

mains. We demonstrate the efficacy of our algorithms on sample problems on general

domains and subdomains, using the 2d Laplacian for simplicity.

1.1.2 Overview of the thesis

This thesis is organized as follows. In Chapter 2, we provide an overview of the nec-

essary functional analytical tools that we need for our analysis. In Chapter 3, we

describe the finite element method. In Chapter 4, we describe Krylov space methods,

which are used to accelerate the convergence of the 2-Lagrange multiplier methods.

According to [21], Krylov subspace methods,were placed third in the top ten algo-

rithms of in the 20th century 1. In Chapter 5, we describe and analyze 2-Lagrange

Multiplier methods and the related optimized Schwarz methods. In Chapter 6, we

describe our massively parallel implementations of the 2LM and give experiment on

Hector. Chapter 7 includes our conclusion and suggests possible avenues for future

work. Further details of the implementation are provided in Appendix A. Some details

of the proof of the condition number estimate are in Appendix B.

1The full list of the top ten algorithms in the 20th century according to [21]. [21], a) Metropolis
Algorithm for Monte Carlo b) Simplex Method for Linear Programming c) Krylov Subspace Iteration
Methods d) The Decompositional Approach to Matrix Computations. e) The Fortran Optimizing
Compiler f) QR Algorithm for Computing Eigenvalue g) Quicksort Algorithm for Sorting h) Fast
Fourier Transform i) Integer Relation Detection j) Fast Multipole Method .
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Chapter 2

Sobolev Spaces and the Variational

Formulation of Elliptic PDEs

The Sobolev spaces are the cornerstone of modern theory of partial differential equa-

tions. They were named after the significant Russian mathematician S.L. Sobolev.

Sobolev spaces are vector spaces of functions, with “weak” derivatives that satisfy

certain integrability conditions, [1].

Moreover as it is pointed out in [14], Sobolev spaces are one of the significant

cases where we can observe the strong interconnection between different fields of

mathematics. In this particular case we observe the connection between functional

analysis and PDEs, since abstract results from functional analysis can be applied in

order to solve PDEs problems.

In this Chapter we introduce the necessary background on Sobolev Spaces, in

order establish the necessary theoretical background in order to describe the weak

formulation of PDEs and the Finite Element Method. In this context we define

Lebesgue spaces, weak derivatives, the notion of a variational formulation of elliptic

partial differential equations and some important existence and uniqueness theorems.

We follow the treatment on these topics from books, [14], [12].

2.1 Sobolev Spaces

Let u be a Lebesgue measurable function, we define the Lebesgue space

Lp(Ω) = {u : ||u||p <∞},

where ||u||p = (
∫

Ω
|u|pdµ)1/p, for 1 ≤ p <∞ and

||u||∞ = esssup{|u(x)|, x ∈ Ω},
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Figure 2.1: Function (2.1) in one and two dimentions

for p = ∞. For p = 2, the space L2(Ω) is a Hilbert space equipped with the inner

product

(u, v) =

∫
Ω

uvdµ.

Definition 2.1.1. We define the support of a real valued function u on a subdomain

Ω ⊂ Rd, as supp(u) = {x ∈ Ω s.t u(x) 6= 0}.

Definition 2.1.2. Let Ω be an open domain in Ω. Then D(Ω) = C∞0 (Ω), where

C∞0 (Ω) is the space of C∞ functions with compact support in Ω.

Let d ∈ N, we define the multi-index a = (a1, a2, . . . , an) and |a| = a1+a2+. . .+an,

then for u ∈ D(Ω),

Dau =
( ∂

∂x1

)a1

. . .
( ∂

∂xn

)an
u.

A standard example of a function that belongs to D(Rn) is the function, see Figure

(2.1),

u(x) =

{
e
− 1

1−||x||2 if ||x|| < 1

0 if ‖x‖ ≥ 1
(2.1)

Definition 2.1.3. We define the dual space of D(Ω), D′(Ω), as the space of distribu-

tions and let

L1
loc(Ω) = {u ∈ L1(K) for all compact K ⊂ Ω}.

Then for a locally integrable u ∈ L1
loc we define the linear functional Tu : C∞0 (R)→ R,

Tu(φ) =

∫
Ω

uφdµ. (2.2)

The space L1
loc, the space of locally integrable functions, is also referred as the space of

regular distributions since every element of u ∈ L1
loc(Ω) corresponds to Tu ∈ D′(Ω)

thought the one-to-one mapping (2.2).
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Corollary 2.1.4. Let Ω be a bounded subset of Rd and let Lp(Ω) ⊂ L1
loc(Ω), 1 ≤ p <

∞. From Hölder’s inequality and the definition of L1
loc we get that for all compact

K ⊂ Ω,

‖1Ku‖L1(Ω) ≤ |K|(1−1/p)‖u‖p ≤ ∞.

Hence the functions in Lp are regular distributions.

Definition 2.1.5. [12] A function u ∈ L1
loc(Ω) has a weak derivative Dau, in the

distribution sense, provided there exists a function v ∈ L1
loc(Ω) such that,∫

uDaφdµ = (−1)|a|
∫

Ω

vφdµ for all φ ∈ D(Ω).

If such v exists, we define Dau = v.

Definition 2.1.6. Let Ω ⊂ Rd and 1 ≤ p < ∞ for any integer k ≥ 1, |a| ≤ k, we

define the Sobolev Spaces,

W k
p (Ω) = {u ∈ Lp(Ω) such that ‖u‖Wk

p (Ω) <∞}

where the norm

‖u‖Wk
p (Ω) =

(∑
|a|≤k

‖Dau‖pLp(Ω)

)1/p

and the seminorm

|u|Wk
p (Ω) =

(∑
|a|=k

‖Dau‖pLp(Ω)

)1/p

.

We set Hk = W k
2 , the space Hk is a Hilbert space, equipped with the inner product

(u, v)Hk =
∑
|a|≤k

(Dau,Dav)L2 (2.3)

For the special case k = 1, the inner product has the form,

(u, v)H1 = (u, v)L2 +
n∑
i=1

(
∂u

∂xi
,
∂v

∂xi
)L2 ,

where ∂u
∂xi

has to still be understood in the weak sense and the associated norm

‖u‖H1 =
(
‖u‖2

L2 +
n∑
i=1

‖ ∂u
∂xi
‖2
L2

)1/2

.

From [69] we get that for Sobolev spaces of fractional order, we can define an

equivalent intrinsic norm defined in terms of integrals over a domain Ω as follows.
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Definition 2.1.7. ([69]) Let σ ∈ (0, 1), then the norm

‖u‖Hσ(Ω) = (‖u‖2
L2(Ω) + |u|2Hσ(Ω))

1/2,

with the seminorm

|u|2Hσ(Ω) =

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|2σ+n
dxdy,

provides an equivalent norm, equivalent to the one defined by the inner product (2.3),

in Hσ. Moreover, let s > 0, with [s] the integer part of s and σ = s − [s]. Then an

equivalent norm for Hs is given by,

(‖u‖H[s](Ω) + |u|2Hs(Ω))
1/2,

with the seminorm,

|u|2Hs(Ω) =
∑
|a|=[s]

∫
Ω

∫
Ω

|Dau(x)−Dau(y)|2

|x− y|2σ+n
dxdy.

Finally we define Hs
0 as the closure of D(Ω) in Hs(Ω) and the space H−s, the space

of bounded linear functional on Hs
0 as the dual of Hs

0 , equipped with the norm,

||u||H−s(Ω) = sup
u∈Hs

0

〈u, v〉
||u||Hs(Ω)

Theorem 2.1.8. [5],[14] Let u ∈ Hk(Ω), k > 1/2, then there exists the trace u|∂Ω of

the function u on Ω with u ∈ H(k−1/2)(∂Ω) ⊂ L2(∂Ω),

‖u‖H(k−1/2)(∂Ω) ≤ C‖u‖Hk(Ω)

where C is independent of u.

Remark 2.1.9. The standard proof of Theorem 2.1.8 is given through Interpolation

spaces [20], [50]. For our proof we use the Fourier series expansion of functions

u ∈ Hk(Rd). We define the Fourier transforms for u ∈ L1(Rd) as,

(Fu)(ω) =

∫
Rd
u(x)e−2πiωT xdx.

1. For any u ∈ L1(Rd)∩L2(Rd) one has that ||u||2L = ||Fu||L2 (Parseval’s identity).

One may thus define F on L2 by density.

2. If û = Fu ∈ L1(Rd) then for any ω ∈ R, the inverse Fourier transform is

(F−1û) =

∫
Rd
û(ω)e2πiωT xdω.
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3. If u ∈ H1(Rd) then,

F(
∂u

∂xj
) = −2πiωjFu.

As a result the H1 norm becomes,

||u||2H1(Rd) =

∫
Rd

(1 + 4π2ωTω)|û(ω)|2dω.

4. Generally speaking, we define the Hs(Rd) norm by,

||u||2Hs(Rd) =

∫
Rk

(1 + 4π2ωTω)s|û(ω)|2dω.

5. The Fourier transform of a compactly supported smooth function is rapidly de-

creasing.

6. The Hölder inequality is
∫
uv ≤ ||u||Lp ||v||Lq , where p, q ∈ [1,∞] and 1

p
+ 1

q
= 1.

We prove Theorem 2.1.8 for the case when k = 1.

Theorem 2.1.10. For a smooth and compactly supported u ∈ H1(Rd), we define the

trace γu by,

(γu)(x) = u(x, 0) for, x ∈ Rd−1.

We show that ||γu||H1/2(Rd−1) ≤ c1||u||H1(Rd). We thus define γ on all of H1(Rd)

by density and continuity. This γ is surjective onto H1/2(Rd) with a continuous left

inverse γ−1 and

||γ−1u||H1(Rd) ≤ c2||u||H1/2(Rd−1).

Proof. Let z = (x, y) ∈ Rd−1×R. and ω = (α, β) ∈ Rd−1×R. From the naive Fourier

inversion Formula for function f(y), we find that f(0) =
∫
R f̂(β)dβ provided eg. f(y)

is smooth and compactly supported. Thus setting v(x) = u(x, 0), we find that

v̂(α) =

∫
R
û(α, β)dβ.

We now want to estimate û(a) using Hölder inequality:

|v̂(α)| = |
∫
R
û(α, β)dβ|

= |
∫
R
(1 + 4π2||a||2 + 4πβ2)−1/2(1 + 4π2||a||2 + 4π2b2)1/2û(α, β)dβ|

≤ ||(1 + 4π2||a||2 + 4π2β2)−1/2||L2(β)||(1 + 4π2||a||2 + 4π2β2)1/2û(α, β)||L2(β)

≤ 1

2(1 + 4π2||a||2)1/4
|(1 + 4π2||a||2 + 4π2β2)1/2û(α, β)||L2(β).
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Thus, computing the H1/2 norm of v(x) gives,

||v||2H1/2(Rd−1) =

∫
Rd−1

(1 + 4π2α2)1/2|v̂(α)|2dα

≤
∫
Rd−1

(1+4π2||α||2)1/2
( 1

2(1 + 4π2||a||2)1/4
||(1 + 4π2||a||2 + 4π2β2)1/2û(α, β)||L2(β)

)2

dα

=
1

4
||u||2H1(Rd)

For the left-inverse, given v ∈ H1/2(Rd−1), let û(α, β) = v̂(α)
2
√

1+4π2||α||2
1+4π2||a||2+4π2β2 . Di-

rect calculation shows that v̂(a) =
∫
R û(α, β) and we obtain,

||u||2H1(Rk) =

∫
Rd−1

∫
R
(1 + 4π2||α||2 + 4π2β2)

∣∣∣v̂(a)
2
√

1 + 4π2||a||2
1 + 4π2||a||2 + 4π2β2

∣∣∣dβdα
=

∫
Rd−1

∫
R
(1 + ||α||2 + β2)

∣∣∣v̂(α)
2
√

1 + 4π2||α||2
1 + 4π2||a||2 + 4π2β2

∣∣∣2dβdα
=

∫
Rd−1

∫
R
|v̂(a)|2

∫
R

4 + 16π2||α||2

1 + 4π2||a||2 + 4π2β2
dβdα

=

∫
Rd−1

∫
R
|v̂(α)|22

√
1 + 4π2||α||2dα = 2||v||2H1/2(Rd−1).

2.2 Variational Formulation of Elliptic Boundary

Value Problems

In the previous section we have presented some basic results on Sobolev spaces and

the concept of “weak” derivatives. In this section we will present the weak formula-

tion for elliptic boundary problems and the results that guarantee the existence and

uniqueness of the solution for elliptic PDEs.

Definition 2.2.1. A linear functional ` on a linear space V is a mapping ` : V → R
such that for all u, v ∈ V

1. `(u+ v) = `(u) + `(v)

2. `(λv) = λ`(v), for all λ ∈ R.

A linear functional is continuous if |`(v)| ≤ C||v||V for all v ∈ V .

Definition 2.2.2. A bilinear form, a(., .) on a linear space V is a mapping a : V×V →
R such that for all u, v ∈ V
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1. a(u+ v, w) = a(u,w) + a(v, w) for all w ∈ V

2. a(u, v + w) = a(u, v) + a(v, w) for all w ∈ V

3. a(λu, v) = a(u, λv) = λa(u, v) for all λ ∈ R.

Moreover a bilinear form is called symmetric if a(u, v) = a(v, u). If additionally

a(u, u) > 0 and a(u, u) = 0 iff u = 0, then a(u, v) defines an inner product.

Definition 2.2.3. A bilinear form a(., .) on a Hilbert space H is said to be bounded

if there exists C <∞ such that

|a(u, v)| ≤ C‖u‖H‖v‖H, for all u, v ∈ H;

and coercive on V ⊂ H if ∃ c > 0 such that

a(v, v) ≥ c‖v‖2
H for all v ∈ V.

Proposition 2.2.4. Let H be a Hilbert space, and suppose a(., .) is a symmetric

bilinear form that is continuous on H and coercive on a subspace V of H. Then

(V, a(., .)) is a Hilbert space.

Proof. First we will prove that a(., .) defines an inner product on the space V . Since

a(u, v) is a symmetric bilinear form it satisfies the inner product condition of symmetry

and linearity. Moreover since a(., .) is coercive it follows that a(u, u) ≥ 0 and that

a(u, u) = 0 iff u = 0. So it is an inner product.

Moreover, we need to prove that the space V with the associated energy norm

‖u‖E =
√
a(u, u) is complete. Let ε > 0 and un be a Cauchy sequence in (V, ‖.‖E),

then since un is a Cauchy sequence and the bilinear form is coercive, then from

Definition 2.2.3 we get that ε > ‖um − un‖E ≥
√
c‖um − un‖H. Hence {un} is also

a Cauchy sequence in (H, ‖.‖H). Since H is a complete Banach space and V is a

closed subspace of H then there exists u ∈ H such that un → u in the ‖.‖H norm and

u ∈ V . Since a(., .) is bounded we have that ‖u−un‖E ≤ C1/2||u−un||H → 0. Hence

(V, ‖.‖E) is complete.

Theorem 2.2.5. (Riesz representation theorem) Let H be a Hilbert space and f :

H → R, f ∈ H∗, where the H∗ is the dual space of H, there exists a unique u ∈ H
such that f = fu, where fu(v) = (v, u).

Proof. Let M = {v ∈ H : f(v) = 0}, then M is a closed subset of H. We can assume

that M 6= H since in this case we would get that f ≡ 0 and f = f0. Hence if we get

M 6= H then there exists an element w 6= 0 orthogonal to M . (Such a w exist, since for

Hilbert spaces it holds that if M is closed subspace of H, then H = M ⊕MT ). In [14]
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w is defined explicitly with the additional property that ||w|| = 1. Let w0 ∈ H such

that w0 /∈ M . Let PM be the projection from H to M . Then we define w1 = PMw0

and we get

w =
w0 − w1

|w0 − w1|
.

Then for arbitrary v ∈ H, we set z = v − f(v)
f(w)

w. Since w ∈ MT we get that

f(w) 6= 0. Moreover, we have that f(z) = f(v)− f(v)
f(w)

f(w) = 0, hence z ∈M . Finally,

(w, z) = (w, v − f(v)

f(w)
) = 0,

(w, v) =
f(v)

f(w)
,

f(v) = f(w)(w, v) = (v, f(w)w) = fu,

with u = f(w)w.

Proposition 2.2.6. Assume that H is a Hilbert space, a(., .) is a coercive and bounded

symmetric bilinear form and V is a closed subspace of H, then we can write the weak

variation formulation of an elliptic boundary value problem as: Let f ∈ V ∗, find

u ∈ V such that

a(v, u) = f(v) for all v ∈ V. (2.4)

Moreover there exists a unique solution u ∈ V , of (2.4).

Proof. Since (V, a(., .)) is a Hilbert space, we can apply the Riesz representation the-

orem.

A very important theorem that is widely used to prove the existence and unique-

ness of solution for the variational formulation of PDEs, is the LaxMilgram theorem.

Theorem 2.2.7. (Lax-Milgram) Assume that a(., .) is a continuous coercive bilinear

form on H . Then for any f ∈ H∗, there exists a unique element u ∈ H such that

a(v, u) = f(v) for all v ∈ V. (2.5)

Moreover, if a(., .) is symmetric,

1

2
a(u, u)− f(u) = min

v∈H
{a(v, v)− f(v)} (2.6)

Proof. Page 140, Corollary 5.8, [14]

Proposition 2.2.8. (Poincaré’s inequality) Assume that Ω ⊂ Rd is open and bounded

in some direction. Then there exists a constant C, depending on Ω, such that

||u||L2(Ω) ≤ C‖∇u‖L2(Ω), for all u ∈ H1
0 (Ω)
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α β

Ω

Proof. We assume that d = 2 but the proof can be easily generalised for d > 2. Let

u(x, y) ∈ C∞0 (Ω) and Ω be bounded in some direction with width d = α − β. From

the fundamental theorem of calculus we have that,

u(x, y) =

∫ x

α

ux(ξ, y)dξ +

=0︷ ︸︸ ︷
u(α, y)

and ∫ β

α

u(x, y)2dx =

∫ β

α

[

∫ x

α

ux(ξ, y)dξ]2dx.

From Jensen’s inequality, [39], we get∫ β

α

u(x, y)2dx ≤
∫ β

α

(x− α)

∫ x

α

u2
x(ξ, y)dξdx

≤
∫ β

α

(β − α)

∫ β

α

u2
x(ξ, y)dξdx

= (β − α)2

∫ β

α

u2
x(ξ, y)dξ.

Hence, ∫
Ω

u2 =

∫ ∞
−∞

∫ β

α

u2dxdy

≤ (β − α)2

∫ ∞
−∞

∫ β

α

u2
x(ξ, y)dξdy

≤ (β − α)2

∫ ∞
−∞

∫ β

α

[u2
x + u2

y]dξdy = (β − α)2|u|2H1(Ω).

for every u ∈ C∞0 (Ω). Since C∞(Ω) = H1
0 (Ω) the proof is complete.

Proposition 2.2.9. Assume Ω ⊂ Rd is a bounded domain with a Lipschitz continuous

boundary Γ, then the Green’s formula for arbitrary u ∈ C2(Ω), v ∈ C1(Ω) reads:

−∆uvdx = −
∫

Γ

∂u

∂ν
vds+

∫
Ω

∇u∇vdx, (2.7)
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where ∂u
∂ν

is the directional derivative of u in the direction of the outward pointing

normal ν.

Remark 2.2.10. In order to present the 2-Lagrange multiplier methods in Chapter

5, we will use as a model problem the Poisson equation with Dirichlet boundary con-

ditions. Nevertheless, our methods can be applied in a wide range of elliptic PDEs

for which their corresponding bilinear forms are self-adjoint and coercive, like the

reaction-diffusion equation.

We consider the second order elliptic partial differential equation,

−∆u = f in Ω (2.8)

u = 0 on ∂Ω

where ∆ denotes the Laplace operator ∆ =
∑n

k=1
∂2

∂x2
i
, with f ∈ C1(Ω) and Ω has a

Lipschitz boundary with positive measure.

Given f ∈ C1(Ω), the strong solution of (2.8) is a function u ∈ C2(Ω) that satisfies

(2.8) and the boundary conditions. Multiplying both sides of (2.8) by a smooth test

function v ∈ C∞0 (Ω) and by using the Green’s formula (2.7) we get that

−
∫

Ω

∆uvdx =

∫
Ω

∇u∇vdx =

∫
Ω

fvdx, (2.9)

since u = 0 on the boundary ∂Ω,
∫
∂Ω

∂u
∂ν
vds = 0.

Since C∞0 (Ω) = H1
0 (Ω) we can choose choose our test functions such that v ∈

H1
0 (Ω). Moreover if we assume that f ∈ (H1

0 )∗, the weak formulation of the boundary

problem (2.8) becomes:

Find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) for all v ∈ H1
0 , (2.10)

where a(u, v) =
∫

Ω
∇u∇vdx and (f, v) =

∫
Ω
fvdx.

We can easily prove that problem (2.10) has a unique solution u ∈ H1
0 (Ω) by

using Proposition 2.2.8. The bilinear form a(u, u) in (2.10) is coercive, since from the

Poincaré’s inequality

a(u, u) = (∇u,∇u) = |u|2H1
0
≥ c1‖u‖2

H1
0

and bounded since from the Cauchy-Schwarz inequality we get

a(u, v) = (∇u,∇v) ≤ ‖u‖H1
0
‖v‖H1

0
.

Moreover u ∈ H1
0 = W 1

0,2, hence from Proposition 2.2.8 and the Cauchy-Schwarz
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inequality we get

(f, v) ≤ ‖f‖L2‖v‖L2 ≤ C‖f‖L2‖∇v‖L2 ≤ C ′‖v‖H1
0

Since problem (2.10) satisfies all conditions of Theorem 2.2.7, we conclude that prob-

lem (2.10) has a unique solution u ∈ H1
0 (Ω).
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Finite Element Method

Solving problems arising from various scientific fields that can be described by partial

differential equations, can prove a very difficult task. Hence, we have to use efficient

numerical methods in order to find a numerical approximation of their solution.

Such numerical methods are the Galerkin methods and especially the Finite Ele-

ment Method. These methods are of significant importance for the field of numerical

analysis, since they give us the flexibility to discretise the problems over very com-

plex geometries in 2 and 3 dimensions and they have been extensively studied and

numerically tested for more than four decades.

A typical way to solve numerically a PDE problem, is first to discretise the problem

and then to find an approximate discrete solution of the problem. The solution lies in

a finite dimensional subspace of our original infinite dimensional space. The Galerkin

method provides a general framework for the finite dimensional approximation of

partial differential equations.

After the discretisation of a PDE, in general we get a large discrete system with

millions or billions of degrees of freedom. As science evolves there is an increasing

demand for accurate approximations of solutions of complicated problems and these

problems become harder and even more complex. Hence there is natural need of

numerical methods that exploit the increased computational capabilities of the new

high performance systems and the concept of parallelism.

The Galerkin type methods and more precisely the Finite Element Methods are

one of the most widespread and well understood methods for solving the numerical

solution of PDE problems, [4], [61], [12], [11].

3.1 Galerkin Method

In this section we will use as a model problem, the weak formulation of the Poisson

problem (2.10). Instead of solving the infinite dimensional problem we want to find

the projection of the solution on a finite dimensional subspace Vh of the infinite
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dimensional space V, Vh ⊂ V . The finite dimensional weak formulation reads: find

uh ∈ Vh such that

a(uh, v) = (f, v) for all v ∈ Vh. (3.1)

For the problem (2.10) we have V ⊆ H1
0 (Ω). When the finite element space

Vh is a subset of the infinite dimensional space V , Vh ⊂ V , then we have the case of

conforming elements. Nevertheless, for certain problems we can allow the “variational

crime” where Vh * V , the case of non-conforming-elements. From Theorem 2.2.7

(Lax-Milgram theorem), (3.1) has a unique finite dimensional solution.

We assume the finite dimensional set of functions {φi}ni=1 with n ∈ N, forms the

finite dimensional base of the space Vh ⊂ H1
0 . The finite dimensional solution can

be written as a linear combination of the basis functions φi, uh =
∑n

i=1 uiφi and

consequently Problem (2.10) can be written in a matrix form as

Auh = fh,

where A is the n × n stiffness matrix, the n × 1 vector fh is the projection of f on

Vh and the n× 1 vector uh is the approximate solution. Here we can note that in the

case of second order elliptic PDEs the matrix A is a large sparse matrix, symmetric

and positive definite. Standard direct solvers, like Gaussian elimination, are not the

most efficient way to solve this type of problems as we have discussed in Section 1.1.

Instead iterative methods, sequential or parallel, are more appropriate for these large

scale problems.

Proposition 3.1.1. (Céa’s inequality) Assume that V is a Hilbert Space and Vh ⊆ V

be a subspace of V. Moreover, let a(., .) be a bilinear form continuous and coercive

on V and f ∈ V ′. Then if u ∈ V is a solution for the variational problem (2.4) and

uh ∈ Vh is the Galerkin approximation of the solution (3.1) we have the following

error estimate.

‖u− uh‖V ≤
c1

c2

min
v∈Vh
‖u− v‖V , (3.2)

where c1, c2 are positive real constants defined in the proof.

Proof. Let v ∈ Vh ⊂ V , subtracting a(uh, v) = f(v) from a(u, v) = f(v) we get the

orthogonality condition

a(u− uh, v) = 0, for all v ∈ Vh

Moreover since a(u, v) is coercive and bounded bilinear form on V we get that

c2‖u− uh‖2
V ≤ a(u− uh, u− uh) = a(u− uh, u− v) + a(u− uh, v − uh)
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= a(u− uh, u− v) ≤ c1‖u− uh‖V ‖u− v‖V .

Dividing by ‖u− uh‖ we get that

‖u− uh‖V ≤
c1

c2

‖u− v‖V for all v ∈ Vh

which is equivalently written as

‖u− uh‖V ≤
c1

c2

min
v∈Vh
‖u− v‖V .

Hence a general error estimate between the exact and the approximate solution is

given by (3.2).

3.2 Finite Element Method

The Finite Element Method can be seen as a special case of the Galerkin method,

when the finite dimensional space Vh is spanned by piecewise polynomials, associated

with the partitioning of the domain. Let us define Πhu as the projection of u on the

finite element space Vh. The projection of the solution from an infinite dimensional

space to a finite dimensional space lead to some errors. The error estimates for such

methods are of the type

‖u− Πhu‖V ≤ Chα,

where 0 < h < 1 and α is a positive real scalar.

In order to achieve smaller error between the exact solution of the weak problem

and the approximate solution, we can either refine the mesh or increase the polynomial

degree, or both, which are commonly referred as the h, p and h-p version respectively.

The construction of the finite element space consists of two main steps. We start

from a polygonal domain Ω ⊂ Rd, d = 1, 2, 3, with boundary ∂Ω. We divide Ω into

elements and get our triangulation Th. Then we use this triangulation in order to

define the finite element space Vh.

In order to understand the analysis and the implementation of our methods it is

useful to describe in detail this procedure and to present some important analytical

results related with the finite element spaces.

The triangulation Th of a polygonal domain Ω ⊂ Rd consists of shape elements Ki,

which can be triangles or rectangles in 2 dimensions and tetrahedral or hexahedral in

3 dimensions, also referred to as cells. We use the term triangulation and the notation

Th when Ω is discretized by any type of shape elements.

A formal definition of a triangulation is:

31



Chapter 3: Finite Element Method

Figure 3.1: Triangulation of a polygonal mesh Ω, partitioned in 8 non-overlapping
subdomains by METIS. [43]

Definition 3.2.1. A triangulation Th(Ω) of a polygonal domain Ω ⊂ Rd is the parti-

tion of Ω into elements Ki such that,

1. ∪di=1Ki = Ω

2. Ki ∩Kj = ∅ for i 6= j

3. 0 < diam(Ki) < h.

4. Ki ∩Kj is either empty, a vertex, or an edge.

Remark 3.2.2. Efficient data structures are required in order to store and access the
information related to the triangulation Th. The main information we want to store
is the matrix P that holds the coordinates of the nodes and the connectivity matrix
of the underlying graph, which is denoted by T . If we assume that a triangulation Th
consists of m triangles and n nodes, the connectivity matrix T is of size 3 ×m and
matrix P of size 2× n. In the general case of d-dimensions, T is of size (d+ 1)×m
and P of size d×m. For example in the case of a 2-dimensional square domain [0, 1]2

we get the following matrices P and T , see Figure 3.2,

P =

[
0 1.0 1.0 0 0.5 1.0 0.5 0 0.5

1.0 1.0 0 0 1.0 0.5 0 0.5 0.5

]
, T =

4 2 2 4 1 3 5 7

9 9 5 7 8 6 8 6

8 6 9 9 5 7 9 9


.

Another interesting concept is that of “the measure of the quality” of each element

Ki. We are interested on the measure of quality for both theoretical and practical

reasons. “Bad” elements, e.g. elements with very acute angles, will lead to bad

approximations. Hence we introduce the definitions of the shape-regular and quasi-

uniform triangulations.
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Figure 3.2: Square 2D mesh.

Definition 3.2.3. Let dKi be the diameter of the largest inscribed circle of the shape

element Ki, hKi = diam(Ki) and h as defined in Definition 3.2.1. Then for a trian-

gulation Th we define the aspect ratio CKi = hKi/dKi. The family {Th}h>0 is called

shape regular if there exists a constant C0 such that

CKi ≤ C0 ∀Ki ∈ Th.

Moreover we say that Th is quasi-uniform if there exists a constant C1 independent

of h such that

hKi ≥ C1h ∀Ki ∈ Th.

The above definitions are useful in order to establish theoretical results for our

methods. It is possible to follow other estimates to measure the quality of the elements,

e.g. we can use estimates like the ones that appear in [54], [27]. For example we can

use the estimate that calculates the ratio between the radius of largest inscribed and

the smallest circumscribed circle, see Algorithm 1. In Algorithm 1 we implement a

C++ function that takes as an input the triangulation Th and returns as an output

a vector with the quality of each simplicial element. In Figure 3.3 we see a histogram

of the quality of the mesh depicted in Figure 3.1.

Definition 3.2.4. For completeness, we state a formal definition of a finite element

space by P.G. Ciarlet. (Ciarlet 1978, [55], [12]).

1. Let K ⊆ Rd be a bounded closed set with nonempty interior and piecewise smooth

boundary, the element domain.

2. P be a finite-dimensional space of functions on K, the space of shape functions.

3. N = {N1, N2, ..., Nn} be the nodal basis for P∗, where Ni i = 1, . . . n is the set

of nodal variables.

Then the triplet (K,P ,N ) is called a finite element space.
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Algorithm 1 Mesh quality, [54],[27]
.

1 std::vector <double > mesh_quality(const std::vector <int > &T, const std::vector <double > &P){

2 int size=T.size ()/3;

3 std::vector <double > m_quality(size ,0.0);

4 double v11 ,v12 ,v21 ,v22 ,v31 ,v32 ,temp1 ,temp2 ,temp3 ,Rmax ,Rmin;

5
6 for(int i=0;i<size;i++){

7 v11=(P[2*T[3*i+1]]-P[2*T[3*i]]); v12=(P[2*T[3*i+1]+1] -P[2*T[3*i]+1]);

8 v21=(P[2*T[3*i+2]]-P[2*T[3*i]]); v22=(P[2*T[3*i+2]+1] -P[2*T[3*i]+1]);

9 v31=(P[2*T[3*i+2]]-P[2*T[3*i+1]]); v32=(P[2*T[3*i+2]+1] -P[2*T[3*i+1]+1]);

10
11 temp1=std::sqrt(v11*v11+v12*v12); temp2=std::sqrt(v21*v21+v22*v22);

12 temp3=std::sqrt(v31*v31+v32*v32);

13
14 Rmin =0.5* std::sqrt(( temp2+temp3 -temp1 )*( temp3+temp1 -temp2 )*\

15 (temp1+temp2 -temp3 )/( temp1+temp2+temp3 ));

16 Rmax=( temp1*temp2*temp3 )/std::sqrt((temp1+temp2+temp3 )*\

17 (temp2+temp3 -temp1 )*( temp3+temp1 -temp2 )*( temp1+temp2 -temp3 ));

18 m_quality[i]=2* Rmin/Rmax;

19 }

20 return m_quality;

21 }

Mesh quality for mesh in Figure 3.1

Number of triangles

M
e
s
h
 q

u
a
lit

y

Figure 3.3: Histograph of Mesh Quality for mesh of Fig. 3.1, produced by using
Algorithm 1.
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An extensive treatment on the Finite Element Method can be found in [12], [18].

Definition 3.2.5. [12]. Let (K,P ,N ) be a finite element space. The basis {φ1, φ2, . . . , φn}
of P dual to N is called the nodal space, Ni(φj) = δij.

Example 1. Let KI = [x0, x1] be a one dimensional interval and the space of poly-

nomials

Pk(K) := {v : v =
k∑
i=0

aix
i, x ∈ K}.

For the case that k = 1 we get the space of linear polynomials. The linear polynomials

v ∈ P1(I), see Figure 3.4, can be uniquely determined by the values of of v on x0, x1.

If we set N0(v) = v0 = v(x0) , N1(v) = v1 = v(x1) then we can write

v = v0φ0(x) + v1φ1(x)

where {φ0, φ1} is the nodal basis for P1(KI), with φi(xj) = δij and

φ0(x) =
x1 − x
x1 − x0

, φ1(x) =
x− x0

x1 − x0

.
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Figure 3.4: Hat functions in 1-dimension

The most commonly used types of Finite Elements are:

1. Triangular Finite Elements, defined over triangles or tetrahedra in 2 and 3

dimensions correspondingly and where the space of shape functions consist of

polynomials of degree ≤ k, Pk, see Figure 3.5.

2. Rectangular Elements, defined over rectangles or parallelepipeds in 2 and 3

dimensions correspondingly and where the space of shape function consist of

polynomials,

Qk = {
k∑
i=0

aipiqi, pi, qi ∈ Pk}.

The Qk elements are used for example for parallel implementations associated

with the deal.II finite element library [7].
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Figure 3.5: Piecewise linear Hat function 2D

Remark 3.2.6. The shape elements Ki of triangulation of Th can be seen as an affine

transformation from a reference element K̂ to Ki.

FKi : K̂ → Ki FKi(x) = AKixi + bKi . (3.3)

The affine mappings are also commonly used in many other areas like in the field of

computer vision and for the navigation of mobile robots in 2 or 3 dimensions, [74].

For example, for the triangular Pk finite elements we can take as a reference element

K̂ = {(ξ, η) ∈ R2, 0 < ξ, η < 1, ξ + η < 1} (3.4)

and for the rectangular Qk finite elements we can take as a reference element

K̂ = {(ξ, η) ∈ R2,−1 < ξ, η < 1}. (3.5)

Now we can define the finite element space Vh on which we will approximate our

solutions. For the one dimensional case, let I = [a, b] that is partitioned in to n

elements where Ki = [xi−1, xi], with x1 < x2 < . . . < xn. We can define the space of

the piecewise continuous polynomials of order k,

V k
h = {u ∈ C0(I) such that u|Ki ∈ Pk(Ki)}

and

V k
0 = V k

h ∩H1
0 = span{φi}ni=1.

For k = 1 we have the space of piecewise linear functions,

φi(x) =


(x− xi−1)/hi if xi−1 ≤ x ≤ xi

(xi+1 − x)/hi+1 if xi ≤ x ≤ xi+1

0 otherwise

(3.6)
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with u =
∑n

i=0 aiφi where ai = u(xi). For problems like (2.8) Ω ⊂ Rd, where d=2,3.

1. For triangular Pk finite elements we define,

V k
0 = V k

h ∩H1
0 , where, V k

h = {u ∈ C0(Ω) such that u|Ki ∈ Pk(Ki)}

2. For rectangular Qk finite elements we define,

V k
0 = V k

h ∩H1
0 , where, V k

h = {u ∈ C0(Ω) such that u|Ki ∈ Qk(Ki)}

Remark 3.2.7. In the finite element context, the weak formulation of problem (2.10)

reads: find uh ∈ V k
0 such that

a(uh, vh) = (f, vh) for all vh ∈ V k
h . (3.7)

Let {φi}mii=1 be a basis of V k
0 , then uh =

∑mi
i=1 xiφi and we we can write our problem

in matrix form as

Ax = b, (3.8)

where Aij = a(φi, φj), bi = (f, φ)L2 and x = [x1, . . . xmi ]
T .

3.2.1 Assembly of the Galerkin Systems

For the case of the Poisson problem with Dirichlet or Robin boundary conditions we

are interested mainly in the assembly of the mass matrix M and the stiffness matrix

A. The mass matrix M is constructed by the L2 inner product between each pair of

the basis functions. On the other hand the stiffness matrix A is constructed by the

L2 inner product between the gradient of each pair of the basis functions.

Hence each element of the mass matrix is given by

Mij =

∫
Ω

φiφjdx,

and for the stiffness matrix A,

Aij =

∫
Ω

∇φi∇φjdx.

We calculate the mass and stiffness matrix element-wise by the following formulas,∫
Ω

φiφjdx =
∑
K∈Th

∫
K

φiφjdydx,

∫
Ω

∇φi∇φjdydx =
∑
K∈Th

∫
K

∇φi∇φjdydx.
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As an example we use the case of P1 elements in 2 dimensions. For the reference

element K̂ in (3.4), the corresponding basis functions are, φ∗1(x̂, ŷ) = 1 − x̂ − ŷ,

φ∗2(x̂, ŷ) = x̂ and φ∗3(x̂, ŷ) = ŷ.

If we assume that we have the triangle Ki with vertices (x1, y1), (x2, y2), (x3, y3),

then we define the affine transformation F : K̂ → Ki as,

F (x̂) =

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

][
x̂

ŷ

]
+

[
x1

y1

]
(3.9)

Moreover,

F−1(x) =
1

2|Ki|

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

][
x− x1

y − y1

]
where

2|Ki| = det

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
We also define the gradients as, ∇ = [∂x, ∂y]

T , ∇̂ = [∂x̂, ∂ŷ]
T . Hence we can write φi

in the following expression,

φi = φ∗i ◦ F−1

Then by change of variables we get that,∫
Ki

φjφjdydx = 2

∫
K̂

φ∗iφ
∗
j |Ki|dŷdx̂ (3.10)

For the P1 it’s easy to calculate the integrals in (3.10) explicitly, for higher order

elements we can use the Gaussian quadrature over triangles. Here we calculate the

integrals,∫ 1

0

∫ 1−x

0

(1− x̂− ŷ)2dŷdx̂ =

∫ 1

0

∫ 1−x

0

x̂2dŷdx̂ =

∫ 1

0

∫ 1−x

0

ŷ2dŷdx̂ =
1

12∫ 1

0

∫ 1−x

0

(1− x̂− ŷ)x̂dŷdx̂ =

∫ 1

0

∫ 1−x

0

(1− x̂− ŷ)ŷdŷdx̂ =

∫ 1

0

∫ 1−x

0

x̂ŷdŷdx̂ =
1

24

Hence,

MKi =
2|Ki|

24

2 1 1

1 2 1

1 1 2


Then, we can assemble M as,

M =
∑
Ki∈Th

RT
i MKiRi (3.11)

where RT
i , Ri are the binary, prolongation and restriction operators from the local to
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global numbering and vice versa. It is easy to prove that M is symmetric and positive

definite.

Remark 3.2.8. The matrix M is not in general diagonal but this is a property that can

achieved by what is called “lumping” of matrix M . The “lummped” mass matrix M̃

can be seen as the result of applying the trapezoidal rule for the numerical integration

of (φi, φj)L2(Ki) =
∫
Ki
φiφjdx. Another way to obtain M̃ is by using a higher order

quadrature and then by summing the rows of the matrix,

M̃ii =
d∑
j=1

Mij

and

M̃ij = 0 for j 6= i.

Definition 3.2.9. Two symmetric positive definite bilinear forms are called spectrally

equivalent on the space V k
h , if there exists C1 > C0 > 0 s.t.

C0b(uh, uh) ≤ a(uh, uh) ≤ C1b(uh, uh) ∀uh ∈ Vh. (3.12)

Definition 3.2.10. Let the matrix E ∈ Rn×n and I be the identity matrix. Then we

define

c1 ≤ E ≤ c2

to be equivalent to

c1v
T Iv ≤ vTEv ≤ c2v

T Iv for all v ∈ Rn.

Proposition 3.2.11. Assume that Th is quasi-uniform triangulation. The mass ma-

trix M is spectrally equivalent with the identity.

Proof. The condition number for positive definite matrices is defined as κ(M) =

‖M‖‖M−1‖ = λmax
λmin

and

λmin(M) = min
uTMu

uTu
, λmax(M) = max

uTMu

uTu
.

From (3.11) we get that M can be written as

M =
∑
Ki∈Th

RT
i MKiRi.

From the quasi-uniformality of the mesh and the fact the each MKi is proportional

to to the area of each element Ki we get that,

chd ≤MKi ≤ Chd
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which leads to,

chd
∑
Ki

uTi ui ≤M ≤ Chd
∑
Ki

uTi ui d = 2, 3.

Moreover, we can set uTDu =
∑

Ki
uTi ui, where D = diag(d1, d2, . . . , dn) and

di ∈ Z is the multiplicity of each node. Since we have chosen the mesh to be quasi-

uniform the multiplicity of each node is bounded. Hence,

1 ≤ di ≤ dmax.

Finally if follows that

chduTu ≤ uTMu ≤ Chddmaxu
Tu.

We continue with the assembly of the stiffness matrix A. In (3.9) we set

DKi =

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
.

Then the inverse of DKi can be written as

D−1
Ki

=
1

det (DKi)

[
y3 − y1 −x3 + x1

−y2 + y1 x2 − x1

]
.

For the case of the stiffness matrix A we have that

Aij =

∫
Ki

∇φi∇φj = | det(DKi)|
∫
K̂

∇̂(φi ◦ F )∇̂(φj ◦ F ) =

| det(DKi)|
∫
K̂

((D−1
Ki

)T ∇̂φ∗i )T ((D−1
Ki

)T ∇̂φ∗j).

If we calculate the gradient for the basis functions and the corresponding integrals for

the P1 case elements we get that the local stiffness matrix for element Ki is,

AKi =
b1

c

 0.5 −0.5 0

−0.5 0.5 0

0 0 0

+
b3

c

 0.5 0 −0.5

0 0 0

−0.5 0 0.5

+
b2

c

 1.0 −0.5 −0.5

−0.5 0 0.5

−0.5 0.5 0


where, a11 = y3 − y1, a12 = x1 − x3, a21 = y1 − y2, a22 = x2 − x1, c = det(D−1D

−T
) =

((a22a11)− (a12a21)), b1 = a2
11 + a2

12, b2 = a11a21 + a12a22, b3 = a2
22 + a2

21. In Algorithm

3 we present an implementation of the global matrix A, in C++.
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Proposition 3.2.12. [69] Let Th be a shape regular triangulation, the conforming

finite element space V k
h (Ω) with k ≥ 1 and Ω ⊂ Rd, d = 2, 3, then we have the

following well known error estimates. For the energy semi-norm,

|u− uh|H1(Ω) ≤ C1h
s−1|u|Hs(Ω), d/2 ≤ s ≤ k + 1 (3.13)

and if additionally Ω is convex we get the error estimate for the L2 norm,

‖u− uh‖L2(Ω) ≤ C2h
s|u|Hs(Ω). (3.14)

From the error estimates (3.13, 3.14), we observe that we can achieve a better

approximation of the continuous solution by decreasing the diameter of the elements

h, (h method) increasing the order or the polynomial space p, (p method), or both at

the same time (h-p methods).

Proposition 3.2.13. [69] (Inverse Inequalities) Let Th be a shape regular triangu-

lation and the conforming finite element space V k
h (Ω). Let s ≥ t ≥ 0 be two real

numbers. Then, for K ∈ Th, there exist constants C1, C2 depending only on s, t, k

and the aspect ratio CK of K which is defined in Definition 3.2.3, such that

|uh|Hs(K) ≤ C1h
−(s−t)
K |uh|Ht(K), ∀uh ∈ Vh,

and if Th is quasi-uniform

|uh|Hs(K) ≤ C2h
−(s−t)|uh|Ht(K), ∀uh ∈ Vh.

Comments on the Implementation

The first step in our finite element code is to provide a seed mesh T0, of T0 elements

and P0 nodes, that describes the general geometry of the mesh. In order to provide

this original seed mesh we use one of the following methods:

1. The API functions provided by the Triangle 2D Mesh Generator and Delaunay

Triangulator [63].

2. Read the mesh from a ”*.msh” file that is created by the Gmsh, which is a

2D and 3D finite element mesh generator with built-in pre and post-processing

facilities, [32].

3. Read from an ”*.m” file that contain in the first line the number of elements

and number of nodes followed by the elements and the nodes of the initial mesh.

Then we uniformly refine the mesh, in order to reach the desired level of refinement.

In Algorithm 2 we present an implementation of the uniform refinement of the mesh
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in C++. In line 12 we preallocate a vector E of size m, where the size m is equal to 3

times the number of triangles of the input mesh. Each element of the vector E, holds

an std class member of type pair that is a tuple that contains a 2 dimensional vector

and an integer. In this vector of pairs we store the edges of the triangle elements of

the input mesh with an associated integer for each edge.

In line 27 we sort the edges in lexicographical order by using the custom sort

function SortPair in line 3. We order the edges but the associated integer shows the

initial position of each edge in the unsorted E. The array en holds the numbering of

the edges. Some edges appear twice in the en list so we need assure that duplicate

nodes are assigned to the same number. Vector x holds a map from the original

position of the edges, in the E vector, to the numbering after the sorting.

Finally we create the coordinates of the new nodes from line 37 to 52 and then we

use the map x in order to create the triangular element of the mesh. As an output we

get the public variables of vector < double >, P and T , which hold the elements

and the nodes that fully characterise the uniformly refined mesh.

Moreover, we include an implementation of the Global Assembly of the parallel

2D stiffness matrix, Algorithm 3, which is part of the Galerkin Assemblance class.

As an input we give the elements T and the nodes P in a vector form and the array

∗epart that holds the partition number that defines which processor each element

belong to. In order to partition the mesh we have created Partition class that uses

the METIS APIs, [42]. We can partition the mesh in contiguous or non-contiguous

subdomains and we start the numbering from zero,

int options[METIS_NOPTIONS];

METIS_SetDefaultOptions(options);

options[METIS_OPTION_CONTIG]=1;

options[METIS_OPTION_NUMBERING]=0;

METIS_PartMeshNodal(&nt,&nv,eptr,eind,NULL,NULL,\

&n_partitions,NULL,options,&edgecut,epart,npart);

This Partition class plays a central role in the implementation, since after the decom-

position of the domain it handles all the parallel and sequential parts of the algorithm

related to the mesh manipulation.

Since we have decomposed the domain Ω, we check if (epar[i] = rank), in order

to force each processor to add the correct local contributions to the Global Stiffness

matrix. The variable “rank” defines the associated number of each process in the

global MPI communicator MPI COMM WORLD. Here, we can note that even if the degrees

of freedom that correspond to the partition of the parallel Matrix does not exactly

coincides with the one that is provided by METIS, PETSC in step,

MatAssemblyBegin(AII,MAT_FINAL_ASSEMBLY);
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MatAssemblyEnd(AII,MAT_FINAL_ASSEMBLY);

handles any necessary communication between the processors.
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Algorithm 2 Uniform Refinement function.

1 /* Uniform refinment function , part of the Refinement class */

2
3 bool SortPair(const pair <vector <int >, int > &i, const pair <vector <int >, int > &j ) { return i.first < j.first; }

4
5
6 int Refinement :: uniform (){

7
8 int m,n;

9 m=T.size ();

10 n=P.size ();

11 std::vector <int > myVec (2,0);

12 vector <pair <vector <int >, int > > E (m, std:: make_pair(vector <int >(2), 0));

13 pair <vector <int >,int > tmpPair;

14
15 int a,b;

16
17 for (int i = 0; i < m/3; ++i) {

18 for (int j = 0; j < 3; ++j) {

19 a = T[3 * i + j];

20 b = T[3 * i + ((j + 1) % 3)];

21 myVec [0] = std::min(a,b);

22 myVec [1] = std::max(a,b);

23 tmpPair=make_pair(myVec ,3*i+j);

24 E[3*i+j]= tmpPair;

25 }

26 }

27 std::sort(E.begin(),E.end(),SortPair );

28 int *en = new int [m]; // number the initial edges

29 en[0] = 0;

30 int *x = new int [m];

31 x[E[0]. second ]=en[0];

32 for (int i = 1; i < m; i++) {

33 en[i] = en[i - 1] + ((E[i-1]. first <E[i]. first) || (E[i-1]. first >E[i].first ));

34 x[E[i]. second ]=en[i];

35 }

36
37 int c;

38 a = E[0]. first [0];

39 b = E[0]. first [1];

40 c = en[0];

41 P.push_back( 0.5 * (P[2 * a] + P[2 * b]));

42 P.push_back( 0.5 * (P[2 * a + 1] + P[2 * b + 1]));

43
44 for (int i = 1; i < m; i++) { // Creating the part of matrix P with the new vertices.

45 a = E[i].first [0];

46 b = E[i].first [1];

47 c = en[i];

48 if(c!=en[i-1]){

49 P.push_back( 0.5 * (P[2 * a] + P[2 * b]));

50 P.push_back( 0.5 * (P[2 * a + 1] + P[2 * b + 1]));

51 }

52 }

53
54 int n_temp;

55 vector <int > T0(T);

56 T.clear ();

57 int n0=n/2,m0=m/3;

58 for (int i = 0; i < m0; i++) {

59 a = x[3 * i];

60 b = x[3 * i + 1];

61 c = x[3 * i + 2];

62
63
64 T.push_back(T0[3 * i]);

65 T.push_back( a + n0);

66 T.push_back( c + n0);

67
68
69 T.push_back(T0[3 * i + 1]);

70 T.push_back(b + n0);

71 T.push_back(a + n0);

72
73
74 T.push_back( T0[3 * i + 2]);

75 T.push_back(c + n0);

76 T.push_back(b + n0);

77
78 T.push_back(a + n0);

79 T.push_back( b + n0);

80 T.push_back( c + n0);

81
82 }

83 T0.clear ();

84 delete [] en;

85 delete [] x;

86
87 return 0;

88 }
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Algorithm 3 Assembly of Global stiffness matrix.

1 int Galerkin_Assemblance :: Siffness_Matrix2DP1Parallel(std::vector <int > &T,std::vector <double > &P,int *epart){

2
3 int size_mat;

4 PetscInt Istart ,Iend;

5 PetscScalar ftemp;

6 int size_boundary;

7 size_boundary =0;

8 int temp;

9 temp=P.size ()/2;

10 int m=T.size ()/3;

11 std::vector <int > renumber(temp ,-1);

12 int rank;

13 MPI_Comm_rank(PETSC_COMM_WORLD ,&rank);

14 int count =0;

15 for(int i=0;i<temp;i++){

16 if(boundary[i]==0){

17 renumber[i]= count;

18 count=count +1;

19 }else {size_boundary=size_boundary +1;}

20 }

21
22 PetscInt local_size;

23 size_mat=temp -size_boundary;

24 PetscScalar Val;

25 VecCreateMPI(PETSC_COMM_WORLD ,PETSC_DECIDE ,size_mat ,&RHSI);

26 VecSetOption(RHSI , VEC_IGNORE_NEGATIVE_INDICES ,PETSC_TRUE );

27 VecZeroEntries(RHSI);

28 VecGetLocalSize(RHSI ,& local_size );

29
30 MatCreate(PETSC_COMM_WORLD ,&AII);

31 MatSetType(AII ,MATAIJ );

32 MatSetSizes(AII ,local_size ,local_size ,size_mat ,size_mat );

33
34 PetscInt *o_nnz=new PetscInt[size_mat ];

35 PetscInt *d_nnz=new PetscInt[size_mat ];

36 for(int i=0;i<size_mat;i++) d_nnz[i]= static_cast <PetscInt >(ceil(nnz[i]));

37 for(int i=0;i<size_mat;i++) o_nnz[i]= static_cast <PetscInt >(ceil(nnz[i]));

38 MatSeqAIJSetPreallocation(AII ,NULL ,d_nnz);

39 MatMPIAIJSetPreallocation(AII ,NULL ,d_nnz ,NULL ,o_nnz );

40 MatSetFromOptions(AII);

41 MatGetOwnershipRange(AII ,&Istart ,&Iend);

42
43 for(int i=0;i<m;i++){

44 if(epart[i]== rank){

45 LocalP1MASS (3*i,T,P);

46 for(int j=0;j<9;j++){

47 Val=Aloc[j];

48 int ind1=renumber[Localrows[j]];

49 int ind2=renumber[Localcolumn[j]];

50 MatSetValues(AII ,1,&ind1 ,1,&ind2 ,&Val ,ADD_VALUES );

51 }

52 for(int j=0;j<3;j++){

53 int ind2=renumber[T[3*i+j]];

54 ftemp=RHSloc[j];

55 VecSetValues(RHSI ,1,&ind2 ,&ftemp ,ADD_VALUES );

56 }

57 }

58 }

59 MatAssemblyBegin(AII ,MAT_FINAL_ASSEMBLY );

60 MatAssemblyEnd(AII ,MAT_FINAL_ASSEMBLY );

61
62 VecAssemblyBegin(RHSI);

63 VecAssemblyEnd(RHSI);

64 /*if(rank ==0) VecView(RHSI , PETSC_VIEWER_STDOUT_SELF );

65 MatView(AII , PETSC_VIEWER_ASCII_MATLAB );

66 PetscViewer viewer;

67 PetscViewerASCIIOpen (PETSC_COMM_WORLD , "Dmat.m", &viewer );

68 PetscViewerSetFormat ( viewer , PETSC_VIEWER_ASCII_MATLAB );

69 MatView(AII ,viewer );

70
71 VecView(RHSI , PETSC_VIEWER_STDOUT_WORLD );*/

72
73 return 0;

74
75 }
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Krylov Subspace Methods

4.1 Iterative methods and Projection methods

The ability to solve efficiently and accurately large sparse systems is crucial in many

different steps of our methods. After the discretisation of the problem by using a

suitable method, like the Finite Element Method, we obtain three different types

of matrices. The first type is obtained from the discretisation of the local Robin

subproblems and the matrices are symmetric and positive definite. The second type

are indefinite matrices related to the symmetric 2-Lagrange multiplier method (1.3).

Finally, the third type are non-symmetric matrices with complex eigenvalues which

have positive real part, related to the non-symmetric 2-Lagrange multiplier method

(1.4).

In order to solve efficiently these large sparse systems, we use Krylov Subspace

methods like MINRES [53] and GMRES [59]. Additionally we use suitable precon-

ditioning techniques for each problem. Hence some background on Krylov subspace

methods is necessary, in order to understand the convergence and scaling properties

of our methods. In this chapter we will make a small review of Krylov Subspace

methods with an emphasis on the GMRES method.

Let A be an n × n large sparse matrix with the real vector b of size n. We seek

the solution x in

Ax = b. (4.1)

The basic idea of iterative methods is to create an approximation xk of the solution

of the linear system. This approximation improves in each step of the algorithm. One

way to derive such methods is to start by splitting matrix A in two distinct matrices

M,N , where A = M −N . Then, the successive iterations are given by

Mxk+1 = Nxk + b. (4.2)
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We can rewrite this as

xk+1 = xk +M−1(b− Axk), (4.3)

or

xk+1 = M−1Nxk +M−1b. (4.4)

As in [61] let,

T = M−1N = I −M−1A and c = M−1b.

Then the iteration xk+1 = Txk + c can be seen as an iteration method to solving the

system

(I − T )x = c. (4.5)

After substituting T and c in (4.5) the system can be rewritten as,

M−1Ax = M−1b. (4.6)

The system (4.6) has the same solution as (4.1) and is called the preconditioned

system.

The most obvious splitting, is probably the one for which

M = I and N = I − A. (4.7)

In (4.2) we get

xk+1 = (I − A)xk + b = xk + b− Axk =

xk + (b− Axk) = xk + rk (4.8)

where rk = b − Axk is called the residual at step k. From [72] we get that if we

multiply (4.8) by −A and add b we have,

b− Axk+1 = b− Axk − Ark

or equivalently,

rk+1 = (I − A)rk = (I − A)k+1r0 = Pk+1(A)r0. (4.9)

We observe that Pk+1 is a polynomial of degree k + 1, with Pk+1(0) = 1.

If we assume that A has n eigenvectors vj and the corresponding eigenvalues are

λj, then we can write r0 as a linear combination of the eigenvectors of A,

r0 =
n∑
j=1

ajvj. (4.10)
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Moreover, Pk(A)vi = (I − A)kvi = (I − A)n−1(vi − λivi) = . . . = (1 − λi)kvi. Hence

we can rewrite (4.9) as

rk = Pk(A)r0 =
n∑
j=1

ajPk(λj)vj. (4.11)

Now, from (4.11), it is clear that the convergence of the iteration algorithms to the

solution of (4.1), depends on how well the roots of the polynomial Pk approximate

the spectrum of A.

We assume for simplicity that x0 = 0, then from (4.8) we get that

x1 = r0

x2 = x1 + r1 = r0 + r1

and if we continue recursively we get that,

xj+1 = r0 + r1 + . . .+ rj

=

j∑
k=0

(I − A)kr0 ∈ span{r0, Ar0, . . . , A
jr0} = Kj+1

Definition 4.1.1. [72] The n-dimensional space spanned by b, Ab,A2b, . . . , An−1b, is

called the n-dimensional Krylov subspace, generated by A and b and we denote it by

Kn(A; b) ⊂ Rn, Kn(A; b) = span{b, Ab,A2b, . . . , An−1b}.

From definition (4.1.1) we get that in the kth iteration of a Krylov method, the

approximate solution will have the form

xk = Sk(A)r0,

where Sk is and arbitrary polynomial of degree k. Then we can write rk+1 as,

rk+1 = b− Axk+1 = (I − ASk+1(A))r0 = Jk+1(A)r0, (4.12)

with Jk+1(0) = 1.

In the next simple 2×2 example we observe that the solution of the system Ax = b

can be written as the linear combination of b and Ab. These two vectors span K2(A, b).

Example 2. Consider the Linear system Ax=b. Where,

A =

[
0 3

−2 5

]
and b =

[
1

2

]
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We find that the characteristic polynomial of A is,

p(λ) = λ2 − 5λ+ 6

From the Cayley-Hamilton theorem, [15], we know that p(A) = 0. That is,

A2 − 5A+ 6I = 0

and hence

A−1 =
5I

6
− A

6

Finally,

x = A−1b =
(5I

6
− A

6

)
b =

5b

6
− Ab

6
.

Hence x ∈ K2(A; b).

A drawback that we face when we use Kn(A; r0) = {r0, Ar0, A
2r0, . . . , A

nr0} with-

out any modification, is that in many cases Akr0 tends to the major dominant eigen-

vector of A. This means that the elements of the basis tend to be parallel, something

that in practice leads to bad approximations and unstable methods.

For example, in the case when A is diagonalisable with eigenvalues

|λ1| > |λ2| > . . . > |λn|

we have that |λn||λ1| < 1. If we use (4.10), we get that

Akr0 = Ak
n∑
j=1

ajvj =
n∑
j=1

ajA
kvj =

n∑
j=1

ajλ
k
jvj = a1λ

k
1v1 + λk1(

n∑
j=2

aj(
λj
λ1

)kvj).

For k → ∞, Akr0 tends to the dominant eigenvector. This “bad” behaviour of the

basis leads to poor approximations of the original solution of the system.

One way to solve this problem, is to construct a stable orthonormal basis of

Kn. This can be done for example by using Arnoldi’s orthogonlisation method [3].

Arnoldi’s method [3] starts with the initial vector q1 = r0/||r0||2, then in each step

we compute z = Aqj and make it orthonormal to qj−1, qj−2 . . . , q0. The procedure

continues in the same manner until j = n, except in the case when ||z|| becomes zero,

where the algorithm stops. The orthogonalisation can also be done with some other

variant of the Gram-Schmidt method.

Here we will state three key propositions for the Arnoldi method, their proofs can

be found in [61].

Proposition 4.1.2. Assume that Algorithm 4 does not stop before the n-th step. Then
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Algorithm 4 Arnoldi’s Orthogonalisation Procedure

1: Choose a vector v and set q1 = v/||v||
2: for j = 1, 2, . . . , n do
3: Compute zj = Aqj
4: for i = 1, 2, . . . , j do
5: Hij = qTi zj
6: zj = zj −Hijqi
7: end for
8: Hj+1,j = ||zj||
9: if Hj+1,j = 0 then
10: quit
11: end if
12: qj+1 = zj/Hj+1,j

13: end for

the vectors v1, v2, v3, . . . , vn form an orthogonal basis of the Krylov subspace,

Km = span{v1, Av1, . . . , A
n−1v1}.

Proposition 4.1.3. Denote by Vm the n×m matrix with column vectors v1, . . . , vm

and by H̃m, the (m+1)×m Hessenberg matrix, with nonzero entries Hij as defined in

Algorithm 4. The matrix Hm is obtained by deleting the last row of H̃m. The following

relations hold:

AVm = VmHm + zme
T
m = Vm+1H̃m, (4.13)

V T
mAVm = Hm. (4.14)

4.1.1 Projection Methods

The basic iterative methods for solving the system (4.1), such as Richardson , Gauss-

Seidel and SOR are in general “cheap” in terms of computation and memory require-

ments, but with the disadvantage that the have slow to converge rates [45]. Never-

theless, other faster iterative methods have been designed, based on the requirement

that the residual r = b − Ax is orthogonal to an appropriate subspace. The Krylov

subspace methods and especially the GMRES method, which is of great importance,

can be categorized and analysed as projection methods.

Definition 4.1.4. [61] Let the spaces K,L ⊂ Rn. A projection technique onto the

subspace K and orthogonal to L is a process which finds an approximate solution x̂ to

(4.1) by imposing the conditions that x̂ belongs to K and that the new residual vector

should be orthogonal to L.

b− Ax̂⊥L (4.15)

The subspace K is called the trial or search space and the subspace L is called a
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test or restriction space. Moreover a projection method is called orthogonal, when L

and K are identical and oblique if K and L are different.

Remark 4.1.5. We can write the definition in a matrix form as: find x̂ = x0 + V y

with the restriction W TAV y = W T b. The matrices V , W hold the basis for K and L,

respectively. If W TAV is invertible, the we can write x̂ as

x̂ = x0 + V (W TAV )−1W T b (4.16)

4.2 The Generalized Minimal residual method

We use (4.1.5) to derive the GMRES oblique projection method where K = Km and

L = AKm. We assume that x̂ ∈ Km and also without loss of generality that x0 = 0.

Then, Vm holds the basis of K and x̂ can be written as x̂ = Vmy. In order for the

orthogonality condition to hold we want

(AVm)TAVmy = (AVm)T b,

which is a least-squares problem equivalent to minimising

||b− AVmy||2.

From Proposition 4.1.3 we get that the orthogonal basis for the Krylov subspace

Km, with basis vectors v1, . . . , vm leads to the following expression,

AVm = Vm+1H̃m.

Let µ = ||b− Ax0||2, we can derive that

||b− Ax̂||2 = ||b− AVmy||2 (4.17)

= ||µv1 − Vm+1H̃my||2 = ||µVm+1e1 − Vm+1H̃my||2 (4.18)

and since Vm+1 is unitary we get,

||b− Ax̂||2 = ||µe1 − H̃my||2. (4.19)

The norm (4.19) can be minimised by solving the least square problem for the

matrix H̃my and with right hand side µe1
1 .

The GMRES approximation [61] is the unique vector x̂ ∈ K that minimises (4.19)

1The minimiser is inexpensive to compute due to the fact that requires the solution of an (m +
1)×m least square problem.
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This approximation can obtained by x̂ = Vmym if x0 = 0 or x̂ = x0 + Vmym if x0 6= 0.

The methods can be written in the following form,

xm = x0 + Vmym,where

ym = argmin
y
||µe1 − H̃my||2.

Algorithm 5 GMRES [59]

1: Start: r0 = b− Ax0 and µ = ||r0||.
2: for m = 1, 2, . . . ,mmax do
3: Compute step m of Arnoldi algorithm 4 for A and v = r0/||r0||.
4: Incrementally compute the QR factorisation of the (m + 1) ×m Hessenberg

matrix H̃m = {Hij}1≤i≤m+1,1≤j≤m by given rotations.
5: Test if ||rm|| = ||µe1−H̃my|| = µ|eTm+1Qm+1e1| < tol, where tol is the tolerance

parameter provided by the user. If the desirable tolerance is achieved compute
ym and return xm = x0 + Vmym.

6: end for

There are a lot of different variations of GMRES algorithm, [59], which include

restarting or different methods in implementing the orthogonalisation step. Two

examples are the truncated GMRES and the Flexible GMRES (FGMRES) [58].

When we increase the size of m with full orthogonalisation of Km, the memory

requirements increase, making the method impractical. Thus it is common to use the

GMRES variant with restart, which means that we do not perform a full orthogo-

nalisation, but we restart the orthogonalization procedure after every l steps of the

algorithm. Here l is defined by the user or is set by default in the solver. For example

PETSc KSPGMRES solver has a default restart value equal to 30.

Algorithm 6 GMRES(k), with restart. [59]

1: Start: r0 = b− Ax0 and µ = ||r0||.
2: for m = 1, 2, . . . , k do
3: Compute step m of Arnoldi algorithm 4 for A and v = r0/||r0||.
4: Incrementally compute the QR factorisation of the (m + 1) ×m Hessenberg

matrix H̃m = {Hij}1≤i≤m+1,1≤j≤m by given rotations.
5: Test if ||rm|| = ||µe1−H̃my|| = µ|eTm+1Qm+1e1| < tol, where tol is the tolerance

parameter provided by the user. If the desirable tolerance is achieved compute
ym and return xm = x0 + Vmym.

6: end for
7: Restart: Compute ||rk|| = ||µe1 − H̃ky|| = µ|eTk+1Qk+1e1|
8: if tolerance is satisfied then return xk = x0 + Vkyk.
9: else x0 := xk, v := rk/||rk||, go to 2.
10: end if

The Krylov subspace methods and in particular, the GMRES method, have proved

very successful, especially since the mid 70’s, [73], when they started to be used along
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with effective preconditioners which drastically reduced the number of iterations for

large problems. In the case of a modified Krylov subspace method we solve a modified

system.

We define the left preconditioned system,

M−1Ax = M−1b, (4.20)

and the right preconditioned system,

AM−1u = b, where u = Mx. (4.21)

In the case of Flexible GMRES, Algorithm 8, we can allow the preconditioner M to

vary between each outer iteration step. For the case of a left preconditioner for GM-

RES, leads to the preconditioned Krylov subspace, span{r0,M
−1Ar0, . . . , (M

−1A)m−1r0}.
Moreover we can split matrix A as A = D + L + LT where D is a diagonal and

F is a lower diagonal matrix. Then we can define some simple and well studied

preconditioners like,

1. Jacobi M = D,

2. Gauss-Seidel M = D + L,

3. SOR M = 1
ω

(D + ωL).

In Figure 4.2 we include some parallel experiments of solving the Poisson problem

on a rectangular domain with a circular hole and zero boundary conditions, see Figure

4.1. In order to solve the discrete system we use the parallel variant of GMRES,

KSPGMRES provided by the PETSc library, with restart 500, absolute tolerance 10−7

and relative tolerance 10−6. For the experiments we used 8 cores and we solved the

system without a preconditioned M , PCNONE, Jacobi PCJACOBI, Gauss-Seidel PCSOR

ω = 1 and SOR PCSOR with ω = 1.1. Moreover we tried the Additive Schwarz

PCASM with two different levels of overlap and 8 subdomains. We used PCASM of

type PC ASM BASIC which means full interpolation and restriction for the local sub-

problems. In order to create the overlap we used the Algorithm 7 which is implemented

in C++.

Remark 4.2.1. Assume that we have a varying right preconditioner Mj. When we

apply FGMRES Algorithm 8 on our problem we get

zj = M−1
j vj

and finally we can calculate xm as,

xm = x0 + Zmym.
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Algorithm 7 Algorithm that creates the overlap that used on experiments in figure
4.2.

1 // Create partitioning for 2D mesh , with minor changes should work also for the 3D case //

2 // input: Elements , size of overlap //

3 // Anastasios Karangelis Octomber 2014

4 int Partition :: create_overlap(const std::vector <int > &T0,const int level_overlap ,const std::vector <int > &boundary ){

5
6 int rank;

7 int size_of_local_mesh;

8 MPI_Comm_rank(PETSC_COMM_WORLD ,&rank);

9 int Elements_on_local_mesh;

10 int temp;

11 std::set <it64 > myset;

12 std::set <it64 >:: iterator it;

13 std:: unordered_map <it64 ,it64 > edge_triangle;

14 std::vector <PetscInt > myvector (3);

15 PetscInt number_of_triangles;

16 number_of_triangles=T0.size ()/3;

17 std::vector <PetscInt > overlap_epart;

18
19 //We create an initial the initial set with the overlap indices and

20 //we set the initial set of edges //

21 overlap_npart.clear ();

22 for(int i=0;i<number_of_triangles;i++){

23 overlap_epart.push_back(epart[i]);

24 overlap_npart.push_back(npart[i]);

25 }

26 for(int j=0;j<level_overlap;j++){

27 edge_triangle.clear ();

28 myset.clear ();

29 for(int i=0;i<number_of_triangles;i++){

30 myvector [0]=T0[3*i]; myvector [1]=T0[3*i+1]; myvector [2]=T0[3*i+2];

31 std::sort(myvector.begin(), myvector.end ());

32 if(rank== overlap_epart[i]){

33 overlap_indices.insert(myvector [0]);

34 overlap_indices.insert(myvector [1]);

35 overlap_indices.insert(myvector [2]);

36 myset.insert (( myvector [0] * pow(10, static_cast <int >( log10(myvector [1])+1)) + myvector [1]));

37 myset.insert (( myvector [0] * pow(10, static_cast <int >( log10(myvector [2])+1)) + myvector [2]));

38 myset.insert (( myvector [1] * pow(10, static_cast <int >( log10(myvector [2])+1)) + myvector [2]));

39
40 }else{

41 auto p1 = std:: make_pair (( myvector [0] * pow(10, static_cast <int >( log10(myvector [1])+1)) + myvector [1]),i);

42 auto p2 = std:: make_pair (( myvector [0] * pow(10, static_cast <int >( log10(myvector [2])+1)) + myvector [2]),i);

43 auto p3 = std:: make_pair (( myvector [1] * pow(10, static_cast <int >( log10(myvector [2])+1)) + myvector [2]),i);

44 edge_triangle.insert (p1);

45 edge_triangle.insert (p2);

46 edge_triangle.insert (p3);

47 }

48 }

49 for (auto& x: myset){

50 if(edge_triangle.find (x)!= edge_triangle.end ()){

51 temp=edge_triangle.at(x);

52 myvector [0]=T0[3* temp]; myvector [1]=T0[3* temp +1]; myvector [2]=T0[3* temp +2];

53 std::sort(myvector.begin(), myvector.end ());

54 myset.insert (( myvector [0] * pow(10, static_cast <int >( log10(myvector [1])+1)) + myvector [1]));

55 myset.insert (( myvector [0] * pow(10, static_cast <int >( log10(myvector [2])+1)) + myvector [2]));

56 myset.insert (( myvector [1] * pow(10, static_cast <int >( log10(myvector [2])+1)) + myvector [2]));

57 overlap_epart[temp]=rank;

58 overlap_indices.insert(T0[3* temp ]);

59 overlap_indices.insert(T0[3* temp +1]);

60 overlap_indices.insert(T0[3* temp +2]);

61 }

62 }

63 }

64
65 int count =0;

66 std::vector <int > temp_vec;

67 temp_vec.clear ();

68
69 for (auto& x: boundary)

70 if(!x){

71 temp_vec.push_back(count);

72 count=count +1;

73 }else{

74 temp_vec.push_back (-1);

75 }

76 renumbered_overalp_indices.clear ();

77 for (auto& x: overlap_indices)

78 if(boundary[x]==0){

79 renumbered_overalp_indices.push_back(temp_vec[x]);

80 }

81
82 return 0;

83
84 }
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Figure 4.1: Rectangular domain with a circular hole used for the experiments in
Figure 4.2.

Since the preconditioner varies we have to hold the sequence of vectors zj in a matrix

form as

Zm = [z1, z2, . . . , zm].

Hence for the FGMRES algorithm we have that

AZm = Vm+1H̃m.

Moreover, as we have noticed from our large scale numerical experiments in [40] on

problem (2.8), FGMRES algorithm can lead to better numerical results in the case

when we calculated the preconditioner M−1 by an inexact solver like CG. Additionally

we have observed that the extra memory cost is manageable since we just have to

reserve memory for the matrix containing the zj vectors, Zm.

4.3 Convergence of GMRES

The convergence analysis in this section is based on [71], [22] and [46]. The GMRES

approximation can be reduced to a polynomial similar to (4.12) with the advantage

that the coefficients of the polynomial are optimal, since they are derived from the

least squares problem (4.19) . Hence, we have that at step k, xk = Pk(A)r0 and the

corresponding residual is rk = (I − ASk(A))r0 = Jk(A)r0 where Jk(z) = 1− zq(z) of

degree smaller or equal to k and Jk(0) = 1.

Hence, the GMRES approximation problem can be seen as a problem to find a
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Figure 4.2: Solving the Poisson problem in a rectangular domain with a circular hole,
by using the PETSc library.

polynomial

Jk ∈ Pk = { polynomials p of degree ≤ k with p(0) = 1}.

such that the norm

||Jk(A)r0||2

is minimised. From now on in order to simplify the notation we set || · || = || · ||2 The

crucial question that we need to ask is: How many steps are needed in order that

|rn||/||b|| reaches a satisfactory level of accuracy? Here we can start with some very

interesting observations,

1. The value of ||rk|| is non increasing as k gets larger since the space Kk increases

by one dimension in each step and hence the approximation improves gradually.

2. In at most n steps the algorithm should converge to the real solution since the

Krylov space will have the same dimension as the actual system. In this sense,

GMRES can be seen as an exact solver. When Kn has the same dimension as

the system then we recover the exact solution of the problem.

From the inequality

||rk|| = ||Jk(A)r0|| ≤ ||Jk(A)||||r0||,
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Algorithm 8 FGMRES [59]

1: Start: r0 = b− Ax0 and µ = ||r0||.
2: for m = 1, 2, . . . ,mmax do
3: Compute step , of Arnoldi algorithm 4 for A and v1 = M1r0/||r0|| with varying

right preconditioner Mm and zm = M−1
m vm.

4: Incrementally compute the QR factorisation of the (m + 1) ×m Hessenberg
matrix H̃m = {Hij}1≤i≤m+1,1≤j≤m by given rotations.

5: Test if ||rm|| = ||µe1−H̃my|| = µ|eTm+1Qm+1e1| < tol, where tol is the tolerance
parameter provided by the user. If the desirable tolerance is achieved compute
ym and return xm = x0 + Zmym.

6: end for
7: Restart: Compute ||rk|| = ||µe1 − H̃ky|| = µ|eTk+1Qk+1e1|
8: if tolerance is satisfied then return xk = x0 + Zkyk.
9: else x0 := xk, v := rk/||rk||, go to 2.
10: end if

if we divide both sides by ||r0|| we see that we can bound ||rn||
||r0|| from ||Jk(A)||,

||rk||
||r0||

≤ inf
Jk∈Pk

||Jk(A)||. (4.22)

So the convergence rate depends on how small the value of ||Jk(A)||2, for polynomial

Jk(A) can be, for a given matrix A and integer k.

If we assume that A is non-singular and we use the diagonalisation of A, then A

can be written as A = V ΛV −1, where Λ is diagonal.

Theorem 4.3.1. [71], [46], Let σ(A) be spectrum of A, assume A is diagonalisable

and define

||J ||Λ(A) = sup
λi∈σ(A)

{J(λi)}.

At step k of the GMRES iteration, the residual rk satisfies

||rk||
||r0||

≤ inf
Jk∈Pk

||Jk(A)|| ≤ κ(V ) inf
Jk∈Pk

||Jk||Λ(A). (4.23)

where κ is the 2-norm condition number of V

Proof.

||rn|| = inf
JK∈Pk

||Jk(A)r0|| ≤ ||V || ||V −1|| ||r0|| inf
JK∈Pk

||Jk||Λ(A).

≤ κ(V ) inf
JK∈Pk

||Jk||Λ(A)||r0||.

If A is a normal matrix then it can be written as A = UΛUT where U is unitary

matrix with columns the eigenvectors of A and where Λ is a diagonal matrix with the
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eigenvalues of A on the diagonal. Hence when A is normal we have,

||rk||
||r0||

≤ inf
Jk∈Pk

||Jk||Λ(A). (4.24)

4.3.1 Convergence of GMRES, connection with potential the-

ory

In [22] the authors manage to connect the convergence of the GMRES method with

potential theory. They do that by applying conformal mappings from a compact ap-

proximation of the spectrum of the operator to the exterior of the unit disk. They

provide estimates for the convergence of GMRES, derived in a very elegant way. Al-

though the reader might be more familiar with convergence proofs related to Cheby-

shev polynomials, we think that it could be beneficial to see the convergence thought

this different perspective. Thus in this section we briefly present some results from

[22].
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Figure 4.3: A compact set S ⊂ C that approximates the spectrum of σ(A), A ∈
R100×100.

Let S ⊂ C be a compact set that approximates the spectrum σ(A) of A with

0 /∈ S. Then our main question is to find how small can J(z) ∈ Pk be on S. Let us

define the norm,

||J ||S = sup
z∈S
|J(z)|. (4.25)

Then, we want to find the minimum of the quantities,

Ek(S) = min
J∈Pk
||J ||S for k = 1, 2, . . . . (4.26)
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The sequence {Ek(S)} decreases geometrically with k at some rate

ρ = lim
k→∞

(Ek(S))1/k < 1 (4.27)

from [22]. The limiting value ρ, is called the estimated asymptotic convergence factor

and always exists. Unless S completely surrounds the origin the value of ρ is smaller

than one.

As we can see from (4.23) the convergence of the Krylov space iteration improves

depending on how well the polynomials J(z) approximate the spectrum of the matrix.

Moreover, from [22] we get that in many cases,

||rk||
||r0||

≈ ρk (4.28)

is a reasonable approximation.

We assume that S consists of a finite collection of simply connected components

with a piecewise smooth boundary. In order to make the connection with potential

theory, firstly we consider the monic polynomial

p(z) =
N∏
k=1

(z − zk) (4.29)

where zk are complex roots counted with multiplicity. Hence we get that,

|p(z)| =
N∏
k=1

|(z − zk)| (4.30)

and we want to minimise |p(z)|/|p(0)|, or equivalently to minimize

log |p(z)| − log |p(0)| =
N∑
k=1

log(
∣∣∣z − zk

zk

∣∣∣). (4.31)

The minimisation of (4.31) is difficult and hence we consider the case where N →
∞. If we scale by dividing by N (4.31) we get,

φ(z) = N−1

N∑
k=1

(log(|(z − zk)|) + C (4.32)

This function is harmonic in the complex plane except at points {zk}.
We can interpret (4.32) as an electrostatic potential [22] : φ(z) is the potential

corresponding to point charges at {zk} each of strength −N−1. As N → ∞ we can

imagine that the negative unit charge is distributed in a continuous fashion in the

complex plane.
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Next, we define the set S0 = S \ {isolated points} and we want to minimise

maxz∈S0φ(z) − φ(0). Due to the properties of continuous charge, we get that the

minimum will be achieved when φ(z) is constant on ∂S0. Hence we can subtract a

constant C ′ from this potential in order that φ(z)|∂S0 = 0. Then if we go back to

(4.27) we get

(EN(S0))1/N =
(

min max
z∈S0

∣∣∣p(z)

p(0)

∣∣∣)1/N

=
(

min max
z∈S0

∣∣∣eNφ(z)

eNφ(0)

∣∣∣)1/N

= e−φ(0).

Hence, the asymptotic convergence factor is equal to, ρ = e−φ(0).

When S0 is connected, the potential φ(z) can be seen as a level curve function

of a conformal map. Let S0 be connected compact subset of C \ {0} with piecewise

smooth boundary. If we consider the extended complex plain C = C∪{∞}, then the

exterior of S0 is a simply connected set, [22].

We define

Φ(z) = e(φ(z)+ih(z))

in the exterior of S0, where φ(z) is the potential and h(z) is the harmonic conjugate

of φ(z), single-valued except for increasing by 2πi with each counterclockwise circuit

around S0.

Theorem 4.3.2. [22] Let S0 be connected and let Φ(z) be a conformal map of the

exterior of S0 to the exterior of the unit disk ∆ with Φ(∞) = ∞. The asymptotic

convergence factor of S is

ρ =
1

|Φ(0)|
(4.33)

Again from [22], we have two significant examples of convergence factors ρ.

1. When S = S0 is the disk |z − z0| ≤ R for R < |z0|, a conformal mapping from

the exterior of S to the exterior of the disk is Φ(z) = (z−z0)
R

. We find that for

this case the asymptotic convergence is ρ = 1
Φ(0)

= R
|z0| .

Let κ be the condition number that is defined by the ratio of the biggest to the

smallest elements of S0. Then we can write z0 = a(κ+1)/2 and R = |a|(κ−1)/2,

where a is a real positive constant. By substituting R and r0 get that,

ρ =
κ− 1

κ+ 1
. (4.34)

2. Let S = S0 be an interval we derive estimates related with positive definite

and negative definite matrices. The conformal map for this set is the inverse

of a Joukowski map, which maps ellipses to circles. Let S = [1, κ] for some
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κ > 1.Then,

Φ(z) =
2z − κ− 1 + 2

√
z2 − (κ+ 1)z + κ)

κ− 1
.

For z = 0,

Φ(0) =
−κ− 1 + 2

√
κ

k − 1
= −
√
κ+ 1√
κ− 1

hence,

ρ =
1

|Φ(0)|
=

√
κ− 1√
κ+ 1

. (4.35)

As we mentioned in the introduction of this section, many readers are more familiar

with convergence proofs related to Chebyshev polynomials. Hence, although we have

proved the estimate (4.35) for the symmetric and positive definite A, by using potential

theory, we will present a different approach based on article [33]. First we introduce

the Chebyshev polynomials.

Definition 4.3.3. The Chebyshev polynomials are,

Tk(x) := cos(k arccos(x)) x ∈ [−1, 1], k = 0, 1, 2, 3, . . .

They satisfy the three terms recursion property, Tk(x) = 2xTk−1(x) − Tk−2(x) for

k ≥ 2.,

We define,

Jk(x) =
Tk(

2x−λmax−λmin
λmax−λmin )

Tk(
−λmax−λmin
λmax−λmin )

(4.36)

where Jk is the scaled and shifted Chebyshev polynomial on the interval [λmin, λmax].

The bound for the numerator in (4.36) is 1 since

|Tk(x)| ≤ 1. (4.37)

This bound is attained at the endpoints of the interval. To estimate the size of the

denominator we have to extended the polynomial outside the interval [−1, 1], [33].

In this case we have Tk(z) = cosh(k arccosh z), where cosh z = ez+e−z

2
, and if we set

z = cosh(log x) = 1
2
(x+ x−1) then we get Tk(z) = 1

2
(xk + x−k).

Hence we set

− λmax + λmin
λmax − λmin

=
1

2
(x+ x−1). (4.38)

In the case when A is Hermitian positive definite we know that the condition number

can be written as κ = λmax
λmin

. Then (4.38) can we rewritten as

κ+ 1

κ− 1
=

1

2
(x+ x−1). (4.39)
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If we solve (4.39) for x we get that

x = −
√
κ+ 1√
κ− 1

or x = −
√
κ− 1√
κ+ 1

. (4.40)

Finally, from (4.24), (4.37) and (4.40), we get the following estimate,

||rk||
||r0||

≤ min
Jk∈Pk

max
z∈Λ(A)

||Jk||Λ(A) (4.41)

≤ 2
[(√κ+ 1√

κ− 1

)k
+
(√κ− 1√

κ+ 1

)k]−1

(4.42)

≤ 2
(√κ− 1√

κ+ 1

)k
. (4.43)

We can observe that the estimate (4.43) is identical with estimate (4.35) derived us-

ing Theorem 4.3.2 where we used as a conformal mapping the inverse of the Joukowski

map and S0 is an interval.

4.3.2 Convergence for Non HPD Matrices

In this section we include estimates and important remarks related to the convergence

properties of GMRES, for some general cases other than the case of Hermitian and

positive definite matrices.

An important class of problems arise from the discretazation of partial differential

equations and saddle point problems. For example, the stable mixed finite element

methods for the Poison problem or the Stokes problem, [57],[64] lead to Hermitian

indefinite operators.

In order to estimate the convergence rate of GMRES for a matrix A we need to

find the smallest possible polynomial on the spectrum of A polynomial J(z) such

that J(0) = 1 and J(z) is the smallest possible polynomial on the spectrum of A,

see (4.24). As we have seen in the previous subsection for HPD matrices we have a

satisfying “complete” solution, for a given condition number κ, and the convergence

estimates can be given in terms of Chebyshev polynomials.

For indefinite matrices we can use a similar approach by using J(z2) and try to find

the smallest possible polynomial on the square root of the spectrum of the indefinite

matrix with J(0) = 1. For this case the estimate (4.1.3) becomes,

||rk||
||r0||

≤ 2
(κ− 1

κ+ 1

)k/2
. (4.44)

This estimate is not necessarily sharp, especially when the spectrum of A is highly
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non symmetric. For example, if A has a single eigenvalue at −1 and then consists

only of positive spectrum, then MINRES on A will converge in terms of
√
κ, estimate

(4.1.3), since the isolated eigenvalue −1 will not affect the convergence rate signif-

icantly. It is very hard to give a detailed analysis in the fully general case where

eigenvalues are in (a, b) union (c, d), where a < b < 0 < c < d. However, the following

result of Greenbaum is a significant improvement on the naive estimate above. As far

as we know there is no sharper known result.

If we assume that the eigenvalues are contained in two intervals I+, I−, [33],

I− ∪ I+ = [λmin, λn] ∪ [λn+1, λmax]

where λmin ≤ λn ≤ 0 ≤ λn+1 ≤ λmax. When λn − λmin = λmax − λn+1, then in [33] it

has been shown that,

min
Jk∈Pk

max
z∈Λ(I−∪I+)

||Jk||Λ(A) ≤ 2
(√|λminλmax| −√λnλn+1√
|λminλmax|+

√
λnλn+1

)
. (4.45)

According to [33], the kth order polynomial on I− ∪ I+ with Jk(0) = 1, that has

maximum deviation from 0 equal to 1 at z = 0, is given by,

Jk(z) = T[k/2](q(z))/T[k/2](q(0)) (4.46)

with q(z) = 1 + 2(z−λn)(z−λn+1)
λminλmax−λnλn+1

and where [k/2] is the integer part of k/2. Similar to

the case of the HPD operator, the numerator of (4.46) is bounded by 1, since for the

Chebyshev polynomial of order [k/2], |T[k/2]| ≤ 1. Moreover, following the procedure

in (4.38), we set q(0) = 1
2
(x+ x−1) and hence T[k/2](q(0)) = 1

2
(x[k/2] + x−[k/2]).

When

q(0) = 1 + 2
λmaxλmin + λnλn+1

λmaxλmin − λnλn+1

=
1

2
(x+ x−1) = 0. (4.47)

that leads to the quadratic equation,

1

2
x2 − q(0)x+

1

2
= 0. (4.48)

The solutions of (4.48) are x =
√
λmaxλmin−

√
λnλn+1

√
λmaxλmin+

√
λnλn+1

and x =
√
λmaxλmin+

√
λnλn+1

√
λmaxλmin−

√
λnλn+1

. Fi-

nally, we get the estimate for the kth step of GMRES,

||rk||
||r0||

≤ 2
(√λmaxλmin −√λnλn+1√

λmaxλmin +
√
λnλn+1

)[k/2]

(4.49)

In the case when the intervals are symmetric around the origin, for example when
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−λmin = λmax and −λn = λn+1 then we get,

||rk||
||r0||

≤
(κ(A)− 1

κ(A) + 1

)[k/2]

. (4.50)
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Figure 4.5: Convergence of GMRES for indefinite matrices

As it is mentioned in [33], [46], we observe that GMRES for the indefinite operator

with condition number κ(A) needs much more steps to reach the prescribed tolerance

compared to a Hermitian positive definite operator with condition number κ(AHPD) =

κ(A)2. Something that shows that Hermitian symmetric indefinite problems are a very

challenging type of problems and an active field of research. Finally if A is a general

normal matrix, meaning that κ(V ) = 1, then again the behaviour depends mainly on

the spectrum of A but on the contrary, when A is far from normal then convergence

estimates based on Theorem 4.3.1 are most likely to fail to predict the behaviour of

the GMRES method. For more details see [33], [46].
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Figure 4.6: Convergence of GMRES for indefinite matrices

Remark 4.3.4. Let δk = minJk∈Pk maxz∈Λ(A) ||Jk||Λ(A), in Section 3 of [57] we can

find some interesting observations about the convergence rate for Hermitian indefinite

matrices. The authors note that for the general case of two intervals I+, I− with I =

I− ∪ I+, although it is hard to derive sharp estimates, they were able to present some

interesting properties. They suggest that with proper scaling of the polynomials Pk,

we obtain that δk(aI) = δ(I) for any a 6= 0 and also that if Ĩ ⊂ I them δk(Ĩ) ≤ δk(I).

Hence the estimate (4.24) indicates that when we shrink the intervals I+, I−, GMRES

converges faster.

Let S be a compact subset of the complex plane that approximates the spectrum

Λ(A) , S ⊂ C. Then for the case of non-Normal matrices we can try to estimate the

worst case convergence for GMRES by,

||rk||
||r0||

≤ min
J∈Pk
||J(A)|| ≤ c min

J∈Pk
max
λ∈S
|J(λ)|. (4.51)

We can choose S to be the ε-pseudospectrum of A, [46],[70]. Then for ε > 0 the

ε-pseudospectrum of A is defined by,

Λε(A) = {z ∈ C : ||(zI − A)−1|| ≥ ε−1}, (4.52)

or alternately,

Λepsilon(A) = {z ∈ C : z is an, eignenvlaues of A+E for some E with ||E|| ≤ ε}.
(4.53)

where the convention is used that ||(zI − A)−1|| =∞ if z is an eigenvalue of A.

Then we define the boundary ∂Λε(A) of Λε(A), on which the resolvent norm is

constant, ||(zI − A)−1|| = ε−1. The polynomial J(A) can be written as a Cauchy
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integral,

J(A) =
1

2πi

∫
∂Λε(A)

J(λ)(λI − A)−1dλ. (4.54)

Finally we derive the following bound,

min
J∈Pk
||J(A)|| ≤ L(∂Λε(A))

2π
) max
λ∈∂Λε(A)

||J(λ)(λI − A)−1|| (4.55)

≤ L(∂Λε(A))

2πε
min
J∈Pk

max
λ∈∂Λε(A)

|J(λ)|. (4.56)

Another approach to obtain residual bounds according to [33],[46],[10], is based

on the field of values of matrix A.

F(A) = {vTAv : ||v|| = 1, v ∈ Cn}. (4.57)

An alternative equivalent definition is

F(A) = {v
TAv

vTv
: v ∈ Cn, v 6= 0}, (4.58)

where F(A) is a convex set that contains the convex hull of the eigenvalues of A.

When A is normal, then F(A) is exactly the convex hull of the eigenvalues. We define

ν(A) = max{|z| : z ∈ F(A)}

as the numerical radius of F(A).

From [25] by using the field of values of A the authors derive the following estimate.

Let D = {z ∈ C, |z − c| ≤ r} be the disk with centre c and radius r. If the field of

values F(A) is contained in this disk, then we get

||rk||
||r0||

≤ 2
( r
|c|

)k
. (4.59)

If A is a normal matrix and its spectrum is contained in an ellipse, we have the

following result due to [60]. In the case that we have an “almost real spectra”, such

that the eigenvalues are contained in an ellipse with centre c, foci c + ε and major

semi-axis a > 0, then from Theorem 4.4 in [60] we get

||rk||
||r0||

≤ Tk(a/ε)

|Tk(c/ε)|
,
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Figure 4.7: GMRES Disk eigenvalues

which is asymptotically equivalent to,

||rk||
||r0||

≤
[ a+

√
a2 − ε2

|c|+
√
c2 − ε2

]k
. (4.60)

Since for normal matrices the operator norm equals the spectral radius from 4.57 we

get that that σ(A) = F(A).
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Figure 4.8: GMRES Ellipse Eigenvalues

Remark 4.3.5. An interesting observation also made in [60], is that for the case

of an degenerate ellipse which lies on the real axis, we get exactly the same estimate

with the one that we have derived by Chebyshev polynomial for the case of symmetric

positive definite matrices. Indeed, let the spectrum of A be [λmin, λmax], in the case of

the degenerate ellipse, we have that ε = a = λmax−λmin
2

, c = λmax+λmin
2

. If we substitute

c, a, ε with the ones above and divide the numerator and the denominator of the
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estimate (4.60) by λmin we get,

ρ =
λmax − λmin

λmax + λmin + 2
√
λmaxλmin

=
λmax−λmin

λmin

λmax+λmin+2
√
λmaxλmin

λmin

=
κ− 1

κ+ 1 + 2
√
κ

=

√
κ− 1√
κ+ 1

(4.61)

where κ = λmax
λmin

, which agrees with the estimate (4.35).

Moreover, in the case when the major and the minor semi-axis of the ellipse are

equal, we get that the convergence asymptotic estimate is ρ = (a
c
), which agrees with

the estimate (4.59). In general, we observe that we start from good convergence prop-

erties for the positive definite case and the convergence rate becomes worse as the field

of values moves away from the degenerate ellipse case and closer to a disk formation.
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Figure 4.9: GMRES Ellipse Eigenvalues

Remark 4.3.6. We finish this chapter with a remark that can be found in Section 3

of article [9]. This remark can also be useful in order to attempt to explain the better

performance of the non-symmetric over the symmetric 2-Lagrange multiplier method,

since we use a similar transformation that reflects the eigenvalues to positive part of

the axis.

The authors, in [9], consider a large class of saddle point problems. After the

discretization of this problems by a suitable method, like the finite element method, we

obtain Hermitian indefinite matrices. Assume that we have a matrix A such that,

A =

[
H BT

B −C

]
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where H ∈ Rn×n is symmetric positive definite, B ∈ Rn×m has full rank and C ∈
Rm×m is symmetric positive semidefinite. The matrix A is a Hermitian indefinite

matrix. The authors provide a plethora of examples where there has been observed that

when we apply a simple linear transformation J on A, then we get complex eigenvalues

of JA that lie on the right part of the complex plane, (they have real positive part).

Let A∗ = JA where

J =

[
In 0

0 −Im

]
.

In many cases it has been observed that when the eigenvalues have positive real

part, then the convergence of GMRES is faster, [9]. This might be related with the

fact that, as we have seen previously, when the spectrum is clustered in two distinct

sets, I− with negative real part and I+ with positive real part, it is harder to be

approximated by polynomial Pk, at least compared with the case that the eigenvalues

have positive real part and are clustered away from the origin.
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2-Lagrange Multiplier

methods-Optimized Schwarz

methods

5.1 The 2-Lagrange Multiplier methods

The 2-Lagrange multiplier methods belong to the class of non-overlapping domain

decomposition methods for solving numerically large scale elliptic problems. The

symmetric 2-Lagrange multiplier method is a linear system of the form

(Q−K)λ = hs, (5.1)

where Q is symmetric and positive definite, K is an orthogonal projection, λ is the

unknown and hs = −Qg is the data. Matrix Q is block diagonal and hence the

calculation of the matrix-vector product Qλ can be calculated efficiently in parallel.

As regards the matrix K, this matrix is not block diagonal but is extremely sparse,

hence it can be assembled in a parallel space matrix format, e.g in a compressed row

format (CRS) which is the default sparse matrix representation in PETSc [6].

These “one-level” methods were introduced and extensively analysed in [48], based

on the related methods introduced in [26]. One of the main goals of domain decom-

position methods is to solve efficiently problems such as (5.1) in parallel. To achieve

that, we use Krylov subspace solvers such as MINRES [53] and GMRES [59]. It

has been shown in [48] that the condition number increases unboundedly when the

number of subdomains p increases.

Methods like (5.1) are often called one-level methods. These one-level methods

are effective for small problems but they fail for large scale problems, [65]. In order to

achieve scalable methods we introduce a “coarse grid” preconditioner P , which leads

to two-level algorithms with very good parallel scaling properties.
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It is known, [30], that the 2-Lagrange multiplier methods are very closely related

with the non-overlapping Optimized Schwarz methods. These methods have been

used in order to solve a large spectrum of problems like the Helmholtz problem and

convection-diffusion related problems, [24], [29], [48]. We define the initial domain

Ω which is decomposed in p subdomains Ω =
p⋃

k=1

Ωk and the artificial interface Γ =

p⋃
k=1

∂Ωk\∂Ω. For each vertex xj ∈ Γ, we let mj be the number of subdomains adjacent

to xj. If mj = 2 then xj is a regular interface vertex, otherwise if mj > 2 then xj is

a cross point. For example in Figure 5.1 vertex x5 is a cross point. In the case that

there are no cross points and we have a non-overlapping partition of the initial domain

Ω, we essentially have partitioned the domain into strips [69]. Moreover, in the case

that our domain is decomposed into strips, there are two Lagrange multipliers per

interface point, something that explains the nomenclature.
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Figure 5.1: Domain Ω divided in three non-overlaping subdomains

In the non-overlapping domain decomposition methods we subdivide the domain

in a way that the data are shared in a balanced way among the processors. Then,

instead of solving the large elliptic problem on the whole subdomain, we are able to

solve the much smaller local sub-problems in parallel. This might not be so obvious in

the 2-Lagrange multiplier methods, since in equation (5.1), we need to solve a linear

system defined on the whole artificial interface. Nevertheless, due to the fact that Q

is block diagonal, in order to calculate the matrix-vector product Qλ, we can solve

local Robin subproblems corresponding to each subdomain independently in parallel.

In this Section we see that the symmetric and non-symmetric 2-level 2-Lagrange

muliplier methods scale weakly, which means that the condition number remains

bounded as we increase the number of processors and the size of the problem. We

also emphasise on the connection between these methods and the OSM method. Fi-

nally we present a set of numerical experiments that confirm the theoretical results.

The massively parallel implementation and the large scale experiments performed on
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HECToR supercomputer are presented in Chapter 6.

The 2-Lagrange multiplier methods apply to general self-adjoint and coercive el-

liptic partial differential equations. In order to present our methods we will consider

the model problem

−∆ũ = f̃ in Ω ⊂ Rd , d = 2, 3 and ũ = 0 on ∂Ω. (5.2)

In order to solve problem (5.2) numerically, we discretise by using a suitable finite

element method, discussed in Chapter 3, or a finite difference method [68]. After the

discretisation we get the global discrete system,

Au = f, (5.3)

where A is a large symmetric and positive definite sparse matrix, f is the load vector

and u is the desired discrete solution of our problem. We use the notation ũ = ũ(x) for

the solution ũ ∈ H1
0 (Ω) and u for the corresponding finite element coefficient vector.

As regards the restrictions on the type of meshes and domain decompositions that

can be used with our methods we need the following. From the point of view of

ensuring that the linear algebra works we expect quasi uniform, conforming meshes,

this is so that we can easily assemble the K matrix which is a continuous and coercive

operator. As regards the domain decomposition is simply a partition of the triangula-

tion Th into non overlapping subdomains formed by the union of then finite elements

ti ∈ Th.

5.1.1 Obtaining the S2LM system from the global system

(5.2)

We partition domain Ω into p non-overlapping subdmains Ω1, . . . ,Ωp. From now on

we assign each subdomain to a separate processor and we assume that the number

of processors coincides with the number of subdomains. Next we define the artificial

interface

Γ =

p⋃
k=1

∂Ωk \ ∂Ω

where the set ∂Ω is called the natural boundary of Ω.

The main idea of the 2-Lagrange Multiplier methods is to replace the original

system (5.3) with the 2-Lagrange multiplier systems of smaller dimension. These

systems are: the indefinite system that corresponds to the Symmetric 2-Lagrange

multiplier method,

AS2LMλ = hs; (5.4)

and the non-symmetric system that corresponds to the non-Symmetric 2-Lagrange
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multiplier method,

AN2LMλ = hn, (5.5)

where the λ is the Lagrange multipliers vector. Since systems (5.4), (5.5) can still be

too large to be solved by a direct solver, we are interested in implementing a parallel

iterative solver that exploits the decomposition of the domain Ω.

We start the analysis of the methods, by deriving analytically the 2-Lagrange

multiplier methods, by splitting the original problem (5.2) to an equivalent system of

local Robin subproblems,
−∆ũk = f̃k in Ωk,

ũk = 0 on ∂Ωk ∩ ∂Ω,

(a+Dν)ũk = λ̃k on ∂Ωk ∩ Γ;

(5.6)

where a > 0 is the Robin parameter, k = 1, . . . , p, Dν denotes the directional deriva-

tive in the direction of the exterior unit normal ν of ∂Ωk, and λ̃k is the Robin flux

data imposed on the “artificial interface” ∂Ωk ∩ Γ.

By multiplying subproblems (5.6) by a test function v ∈ Vk and then using Green’s

formula, we obtain the weak formulation of the local Robin subproblems.

Find ũk ∈ Vk such that,∫
Ωk

∇ũk∇vdx+ a

∫
∂Ωk∩Γ

ũkvdx =

∫
Ωk

f̃kvdx+

∫
∂Ωk∩Γ

λ̃kvdx (5.7)

holds for all v ∈ Vk, where Vk = {v ∈ H1(Ωk) | v = 0 on ∂Ωk ∩ ∂Ω}.
In principle, the term

∫
∂Ωk∩Γ

ũkvdx would give rise to a mass matrix on the artificial

interface ∂Ωk ∩ Γ. However, we know from (3.2.11) that for a quasi- uniform meshes

the mass matrix is spectrally equivalent to the identity matrix by some h factors,

which have been absorbed into the a parameter.

If we discretise (5.6) using the finite element method, we have the following coupled

systems, [
AIIk AIΓk

AΓIk AΓΓk + aI

][
uIk

uΓk

]
=

[
fIk

fΓk

]
+

[
0

λk

]
. (5.8)

Here, the subscript I denotes the nodes that are in the interior of Ωk, while the

subscript Γ denotes the nodes on Γ ∩ ∂Ωk; this notation is consistent with existing

literature, see [69].

Remark 5.1.1. For each subdomain Ω1, . . . ,Ωp the corresponding restriction matrices

R1, . . . , Rp are obtained. We have seen that the discretization of the model problem

(5.2) leads to a linear system of the form

Au = f.
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By using the restriction matrices we can write the global matrix A in (5.3), as a linear

combination of the restriction and interpolation of the local Neumann matrices ANk

for each subdomain Ωk. Let,

ANk =

[
AIIk AIΓk

AΓIk AΓΓk

]
and fk =

[
fIk

fΓk

]
, (5.9)

then the global matrix A can be written as a linear combination of the restriction and

interpolation of local Neumann matrices (5.9) for each subdomain Ωk,

A =
∑
k

RT
kANkRk (5.10)

in the same manner f now can be written as,

f =
∑

RT
k fk. (5.11)

The matrix ANk is obtained by discretizing the bilinear form
∫

Ωk
∇u · ∇v.

Remark 5.1.2. The procedure in order to eliminate the interior degrees of freedom

and to derive the Schur complement of (5.9) is the following,[
I 0

AΓIkA
−1
IIk I

][
AIIk AΓIk

0 AΓΓk − AΓIkA
−1
IIkAIΓk

][
uIk

uΓk

]
=

[
fIk

fΓk

]

or equivalently,

[
AIIk AΓIk

0 AΓΓk − AΓIkA
−1
IIkAIΓk

][
uIk

uΓk

]
=

[
I 0

−AΓIkA
−1
IIk I

][
fIk

fΓk

]

and we finally get,[
AIIk AΓIk

0 Sk

][
uIk

uΓk

]
=

[
fIk

fΓk − AΓIkA
−1
IIkfIk

.

]
By using the same procedure as in Remark (5.1.2) for the Schur complement, we

eliminate the interior nodes of equation (5.8) to get the equivalent system

S+aI︷ ︸︸ ︷
S1 + aI

. . .

Sp + aI


uG︷ ︸︸ ︷
uΓ1

...

uΓp

 =

g︷ ︸︸ ︷
g1

...

gp

+

λ︷ ︸︸ ︷
λ1

...

λp

 . (5.12)
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In a more compact form,

(S + aI)uG = g + λ, (5.13)

where S = diag{S1, . . . , Sp} with symmetric and semidefinite Schur complements

Sk = AΓΓk − AΓIkA
−1
IIkAIΓk; the column vector uG = [uTΓ1, . . . , u

T
Γp]

T is the multi-

valued trace, with one value per interface vertex per adjacent subdomain, the “Robin

data” λ = [λT1 , . . . , λ
T
p ]T and the “accumulated fluxes” are gk = fΓk − AΓIkA

−1
IIkfIk.

We can rewrite (5.13) as

auG = Q(g + λ). (5.14)

where Q is the scaled “Robin-to-Dirichlet” map Q = diag{Q1, . . . , Qp}, where Qk =

a(Sk + aIk)
−1. We call uG the multi-valued trace, since it can be interpreted as the

trace of a finite element function which is discontinuous along Γ. Moreover, as we can

also see in detail in Theorem 5.1.3, we can enforce the continuity and flux transmission

conditions by,

KuG = uG (5.15)

and

K(SuG) = Kg. (5.16)

Where K is an orthogonal projection that averages the function values for each in-

terface vertex, presented in Remark 5.1.4.

Adding equations (5.14) and (5.15) and substituting (5.16) we produce the Sym-

metric 2-Lagrange multiplier system,

AS2LM︷ ︸︸ ︷
(Q−K)λ = −Qg. (5.17)

Left multiplying (5.17) by (I − 2K), gives the Nonsymmetric 2-Lagrange multiplier

system,
AN2LM︷ ︸︸ ︷

(I − 2K)(Q−K)λ = −(I − 2K)Qg. (5.18)

We define that (5.17) or (5.18) are equivalent in the following sense. If we solve

either equation (5.17) or (5.18), then in order to find the local solutions uk of each

subdomain, we substitute the resulting λk, k = 1 . . . p in (5.8) and then we get the

local solution u1, . . . , up. For each element on the local solutions uk we have a local

to global numbering map, that associates the local indices Ωk to the global indices of

the global domain Ω. By gathering all the local solutions together we assemble the

global vector u by using the local to global numbering. The solution u that we have

derived is the original solution of the global system Au = f .

Theorem 5.1.3. Let E be the orthogonal projection onto the kernel of I−Q. Assume

that Q−K is nonsingular and ‖EK‖ < 1. The problem (5.3) is equivalent to (5.17).
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Proof. Let us assume that we decompose our domain Ω in p non-overlaping subdo-

mains. Then we get p local Robin subproblems with a set of Lagrange multipliers

λi on the artificial interface of each subdomain Ωi. In order to prove that the global

problem (5.2) is equivalent to (5.17) we need to check that the values of the La-

grange multipliers λi i = 1 . . . p give rise to their corresponding “ primal” solutions ui

i = 1 . . . p, which are continuous and their fluxes match.

By imposing the continuity condition (5.15) we get

Ka(S + aI)−1(λ+ g) = a(S + aI)−1(λ+ g)

and since Q = a(S + aI)−1,

KQ(λ+ g) = Q(λ+ g). (5.19)

Alternatively we can rewrite (5.19) as,

(I −K)Qλ = (K − I)Qg. (5.20)

Imposing only the continuity condition on the solution is not sufficient, we must

also ensure that the “fluxes” match, condition (5.16). Since u is continuous on the

artificial interface, there is a unique u and restriction matrices Rj such that

uj = Rju , j = 1, . . . p. (5.21)

Hence, we can expand Au in the following way,

f = Au =

p∑
k=1

RT
kANkRku.

From (5.21) we have

f =

p∑
k=1

RT
kANkuk

and from (5.8) we get

f =

p∑
j=1

RT
j

(
fIk

fΓk

)
+

p∑
k=1

RT
k

(
0

λk − auΓk

)
.

Since from (5.1.1)

f =

p∑
k=1

RT
k

(
fIk

fΓk

)
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we derive that
p∑

k=1

RT
k

(
0

λk − auΓk

)
=

(
0

λ− auΓ

)
.

Finally, if we multiply both sides by the orthogonal averaging operator K, we get

that

Kλ− aKuG = 0.

Hence using (5.14)

−Kλ+KQλ+KQg = 0;

we get that

K(Q− I)λ = −KQg. (5.22)

Now if we add (5.20) and (5.22) we get (5.17).

Remark 5.1.4. In this remark we will look in some more detail the averaging orthog-

onal operator and the restriction matrices Ri. In Figure 5.1 we divide the domain in

three non-overlapping subdomains and points xi, i = 1 . . . 13. We have two points in

the interior of each subdomain Ωi, i = 1, 2, 3 and 5 nodes on the artificial interface

Γ, denoted by the dashed lines. In this case we have six regular interface vertices,

vertices shared between two subdomains, and only one cross point x5, which is shared

between more than two subdomains, in this case between three subdomains.

As an example, we will present the restriction matrix R2 for subdomain Ω2,

R2 =



0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0


.

The matrix R2 acts on the global vector u over the global domain Ω and restricts it to

the degrees of freedom that correspond to subdomain Ω2,

R2u =



uΓ1

uΓ2

uΓ3

uI1

uI2

uΓ4

uΓ5


.
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We want to point out, that in the case of p subdomains, for each subdonain we get a

local solution vector ui, i = 1 . . . p. Each ui can be decomposed in an interior part of

the solution uIi and the part that lies on the artificial interface uΓi. If we concatenate

all the uIi in a single vector, we get a global vector uG that is continuous inside Ωi,

but has jumps on the degrees of freedom corresponding to vertices on the artificial

interface.

The operator K is an averaging operator that is applied on the degrees of freedom

that belong on the artificial interface, in order to enforce the continuity on global vector

uG, we refer to uG as the multi-valued trace, [48].

From a different perspective, matrix K or the projection on the null space of K,

I −K, can be seen as the graph Lapclacian on the interface Γ. We define G to be an

undirected graph defined by a set N = 1, 2, ..., N of N nodes and the set E ⊂ N ×N
of edges. With an edge we define the link between the two nodes of the graph xj ∼ xi.

Moreover we say that G is connected if for every pair of nodes xi, xj there is a finite

sequence of nodes such that xi ∼ xi+1 ∼ . . . ∼ xj.

Now consider the case where we have three subdomains as in Figure 5.1. Since

the nodes on the artificial interface Γ are shared between two or more domains, we

have fifteen degrees of freedom, five for each sobdomain, and x5 is the only cross point

shared between all subdomains.

Assume that vertices of the graph that correspond to each degree of freedom are y1,

y2, y3, y5 for subdomain Ω1 and y6, y7,y8, y9,y10 for subdomain Ω2 and y11, y12, y13,

y14,y15 for subdomain Ω3 .

We define yi ∼ yj if they are shared between two subdomains. In the standard

notation we define L as the adjacency matrix where Lij = 1, if yi ∼ yj and Lij = 0

else. Also let W be a diagonal matrix of weights, where wi = Wii = 1/2 if the node yi is

shared between 2 subdomains and Wii = 1/3 if the node shared between 3 subdomains,

meaning that it is a cross point. Then K can be written as K = WL.
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K =



1/2 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0

0 1/2 0 0 0 0 0 0 0 0 0 1/2 0 0 0

0 0 1/3 0 0 1/3 0 0 0 0 0 0 1/3 0 0

0 0 0 1/2 0 0 1/2 0 0 0 0 0 0 0 0

0 0 0 0 1/2 0 0 1/2 0 0 0 0 0 0 0

0 0 1/3 0 0 1/3 0 0 0 0 0 0 1/3 0 0

0 0 0 1/2 0 0 1/2 0 0 0 0 0 0 0 0

0 0 0 0 1/2 0 0 1/2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1/2 0 0 0 0 1/2 0

0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 1/2

1/2 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0

0 1/2 0 0 0 0 0 0 0 0 0 1/2 0 0 0

0 0 1/3 0 0 1/3 0 0 0 0 0 0 1/3 0 0

0 0 0 0 0 0 0 0 1/2 0 0 0 0 1/2 0

0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 1/2



.

We have y = [y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15], hence the ma-

trix vector product Ky we gives

Kx = W



y1 + y11

y2 + y12

y3 + y6 + y13

y4 + y7

y5 + y8

y6 + y3 + y13

y7 + y4

y8 + y5

y9 + y14

y10 + y15

y11 + y1

y12 + y2

y13 + y3 + y6

y14 + y9

y15 + y10



.

Then if we calculate the yTKy product and set it to zero we get

y′Ky = w1(y1 + y11)2 + w2(y2 + y12)2 + . . .+ w15(y15 + y10)2 = 0,
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where wi = 1/2 or wi = 1/3, which means that wi > 0 for i = 1 . . . 15. Hence,

y1 = −y11 and y2 = −y13, y3 = −(y6 + y13) and we observe that the nullspace of K

can be defined as

null(K) = {y ∈ Rm st. yi = 0 ifyi 6∼ yj and
∑
yi∼yj

(yi) = 0.} (5.23)

5.2 Connections of 2-Lagrange Multiplier methods

and the Optimized Schwarz method

In this section we will discuss the connections between the Optimized Schwarz method

and the 2-Lagrange multiplier methods. It is known that these methods are closely

related, [30], [48], [34]. More precisely in the case when the subdomains are arranged

in strips, it is known that the Richardson iteration applied to the non-symmetric

Lagrange multiplier system (5.18) is equivalent to the Optimized Schwarz method

[66], [48]. An extended and concrete presentation and analysis of Optimized Schwarz

methods can be found in [29].

In the introduction of this chapter, we present the Classical Schwarz methods.

Then we present the Optimized Schwarz methods and finally the intrinsic connection

between the optimized Schwarz method and the 2-Lagrange multiplier methods.

One of the main motivations for the development of Optimized methods, was

the fact that the classical Schwarz methods failed to converge for the case of non-

overlapping domains, [29]. J.L. Lions pointed out this disadvantage and proposed in

1988, [47], for the first time, the optimized variant of the classical Schwarz methods.

Althought the classical Schwarz methods are considered as the origin of the do-

main decomposition methods, there has been a variety of new methods which are

efficient and widely used, developed during recent decades. Many of them have bet-

ter convergence properties than classical Schwarz methods. Nevertheless, classical

Schwarz methods are well understood, with a solid theoretical framework and they

have a relatively simple implementation. Moreover, the are already a variety of classi-

cal Schwarz parallel implementations, capable to solve large scale problems efficiently

in parallel, for example the PCASM preconditioner in the PETSc library.

The convergence properties of the classical Schwarz methods have been studied

extensively, for example in [65], [69]. In Figure 5.2 we can see the simple case of

two overlapping subdomains, where a domain Ω is divided in two subdomains, Ω1,

Ω2, such that Ω1 ∪ Ω2 = Ω. The overlap has width δ and the diameter of Ω1,Ω2 is

equal to H. The classical Schwarz method originates from H. A. Schwarz work in

his celebrated paper, [62]. There he proposes an iterative method commonly referred

to as Schwarz alternating method, while he tries to construct harmonic solutions of
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elliptic PDEs on irregular domains by subdividing these domains into simple regular

domains like circles and squares.

Ω
1Ω

2

Ω
1
∩Ω

2

δ

H

Figure 5.2: Divive Ω in two overlaping subdomains

At the continuous level, the Schwarz alternating method can be written as an

iterative procedure over subdomains, e.g [69], Ω1, Ω2 with Γi = Ω∩∂Ωi. We start from

an initial guess u0
2 and we repeat sequentially the following steps, For n = 1, 2, 3, . . .

Step 1:

∆ũn1 = f̃1 in Ω1 (5.24)

ũn1 = g̃1 on ∂Ω1 \ Γ1 (5.25)

ũn1 = ũn−1
2 |Γ1 onΓ1 (5.26)

Step 2:

∆ũn2 = f̃2 in Ω2 (5.27)

ũn2 = g̃2 on ∂Ω2 \ Γ2 (5.28)

ũn2 = ũn1 |Γ2 onΓ2 (5.29)

If we discretise equations (5.24), (5.27) by a suitable method like the finite element

method we get, for n = 1, 2, 3, . . .
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Step 1:

Aun1 = f1 in Ω1 (5.30)

un1 = g1 on ∂Ω1 \ Γ1 (5.31)

un1 = un−1
2 onΓ1 (5.32)

Step 2:

Aun2 = f2 in Ω2 (5.33)

un2 = g2 on ∂Ω2 \ Γ2 (5.34)

un2 = un1 onΓ2. (5.35)

Let us assume that we work on matching grids Ω1 and Ω2 and their corresponding

restriction operators are R1, R2, with Ri : Ωi → Γi, i = 1, 2. If we assume that

we have homogeneous Dirichlet boundary conditions, we can write the systems in a

matrix form as

A =

[
AIΩ1 AΓ1R1

AΓ2R2 AIΩ2

][
un1

un2

]
=

[
f1

f2

]
.

Moreover we get that A = RT
1A1R1 + RT

2A2R2. If we apply the preconditioned

Richardson iteration procedure (4.3), on systems (5.30)(5.33) we can write these sys-

tems equivalently as

un1 = un−1
1 + A−1

IΩ1
(f1 − (AIΩ1u

n−1
1 + AΓ1R1u

n−1
2 )) (5.36)

un2 = un−1
2 + A−1

IΩ2
(f1 − (AIΩ2u

n−1
2 + AΓ2R2u

n
1 )). (5.37)

Two widely used variants of the Alternating Schwarz method (5.37), are the Multi-

plicative and the Additive Schwarz methods. The Multiplicative Schwarz method can

be seen as an iterative solver. Moreover the Multiplicative and the Additive methods

can be used as parallel preconditioners for a Krylov subspace solver like GMRES. For

the analysis and the convergence properties and more information on these methods

we refer to [65],[69].

The multiplicative Schwarz method can be written as
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un+1/2 = un +RT
1A
−1
1 R1(f − Aun) (5.38)

un+1 = un+1/2 +RT
2A
−1
2 R2(f − Aun+1/2) (5.39)

or as a one step procedure as

un+1 = un + (RT
1A
−1
1 R1 +RT

2A
−1
2 R2 −RT

2A
−1
2 R2AR

T
1A
−1
1 R1)(f − Aun). (5.40)

We can define the Multiplicative Schwarz preconditioner as

P−1
m = (RT

1A
−1
1 R1 +RT

2A
−1
2 R2 −RT

2A
−1
2 R2AR

T
1A
−1
1 R1), (5.41)

which can be applied in a Krylov subspace method, like GMRES. The multiplicative

Schwarz preconditioner is not symmetric. Hence, this gives motivation to use the

Additive Schwarz preconditioner, which is obtained by removing the multiplication

part in (5.41) and then we have

P−1
a = (RT

1A
−1
1 R1 +RT

2A
−1
2 R2). (5.42)

Multiplicative Schwarz and Additive Schwarz preconditioners, due to their struc-

tural properties, are related to the block Jacobi and the block Gauss-Siedel precon-

ditioners respectively.

As regards the convergence properties it is well known that for these one-level

methods, [65],[69], the number of iterations grows proportionally to 1/H, where H

is the Euclidean diameter of the subdomains. Which clearly indicates that these

methods do not scale weakly (as H → 0, 1
H
→∞).

Moreover, another important property of these methods is, that the convergence

rate vastly improves as the overlap δ region increases in size, [65]. This behaviour

is expected since if with think in terms of projection methods, this is equivalent to

increasing the dimension of the search spaces, something that naturally leads to faster

approximations. In order for these methods to scale weakly, we need the numbers of

iterations to remain bounded as we increase the number of subdomains and the size

of the problem, [65].

To make our methods scale weakly we need to add a coarse grid correction. As

mentioned in [65], for the case that we have an elliptic PDE like (5.2), the solution at

a point x0 depends strongly on the value of the load function f at points close to x0.

In one level methods the information about values of f is not transferred fast enough

between the subdomains. In higher level methods where we have introduced a coarse

grid correction, we essentially interpolate between the coarse and the fine grid such
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that the information is spread faster between the subdomains.

Optimized Schwarz method

Following the notation in [67], let L be an elliptic operator and B the boundary

operator on Ω. We define the steady state elliptic problem

Lũ = f̃ in Ω (5.43)

Bũ = g̃ on ∂Ω (5.44)

which after discretisation, by the finite element method, leads to an algebraic system

of the form

Au = f. (5.45)

Then if we apply the preconditioned Richardson equation, on system (5.45) we

get

un+1 = un +M−1(f − Aun)

where the M , for example, can be the Additive or the Multiplicative Schwarz precon-

ditioner, (5.41), (5.42).

The Optimized Schwarz method at the continuous level for the case of two non-

overlapping subdomains Ω1, Ω2 and artificial interface Γ = (∂Ω1 ∪ ∂Ω2) \ ∂Ω, can be

written as follows, for n = 1, 2, 3 . . .

Step 1:

Lũn+1
1 = f̃1 in Ω1 (5.46)

Bun+1
1 = g̃1 on ∂Ω ∩ ∂Ω1 (5.47)

B12ũ
n+1
1 = B12ũ

n
2 on Γ (5.48)

Step 2:

Lũn+1
2 = f̃2 in Ω2 (5.49)

Bũn+1
2 = g̃2 on ∂Ω ∩ ∂Ω2 (5.50)

B21ũ
n+1
2 = B21ũ

n
1 on Γ (5.51)

In the optimized Schwarz methods, as in 2-Lagrange multiplier methods, the Dirichlet

boundary conditions on the interface Γ are replaced by Robin boundary conditions,

B12, B21, with parameters that are tuned in a way that optimal convergence properties
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are obtained, cf. [29]. We will prove the equivalence between the Optimized Schwarz

methods and the 2-Lagrange Multiplier methods in the case of two non-overlapping

subdomains.

In order to be able to prove the equivalence of the OSM and the 2-Lagrange

multiplier methods, we introduce the Optimized Schwarz method in the 2-Lagrange

multiplier framework for the Poisson problem (5.2). We have

−∆uki = f in Ωi (5.52)

(a+Dni)u
k
i = λ on Γi with λ = (a+Dn3−i)u

k−1
3−i (5.53)

uki = 0 on ∂Ωi ∩ ∂Ω. (5.54)

Assume uki ∈ H1
0 (Ω) ∩H1(Ωi), the weak formulation for problem (5.52) reads∫

Ωi

φfdΩ =

∫
Ωi

−φ∆uki dΩi (5.55)

for all φ ∈ H1
0 (Ω) ∩H1(Ωi). From Green’s formula we have that∫

Ωi

−φ∆uki dΩi =

∫
Ωi

∇φ∇uki dΩi −
∫
∂Ωi

φDnu
k
i d`.

Then we use that ∂Ωi can be split into (∂Ωi ∩ ∂Ω) ∪ Γi and from standard measure

theory and (5.54), we get that∫
∂Ωi

φDniu
k
i d` =

∫
∂Ωi∩∂Ω

φDniu
k
i d`+

∫
Γi

φDniu
k
i d`.

From (5.53), we get Dniu
k
i = λ− auki and hence∫

Γi

φDniu
k
i d` = −a

∫
Γi

uki φd`+

∫
Γi

λφ`.

This leads to ∫
Ωi

−φ∆uki dΩi =

∫
Ωi

∇φ∇uki dΩi + a

∫
Γi

uki φd`−
∫

Γi

λφ`. (5.56)

Finally from (5.55) and (5.56), we get the weak formulation of (5.52) as∫
Ωi

φfdΩ +

∫
Γi

λφd` =

∫
Ωi

∇φ∇uki dΩi + a

∫
Γi

uki φd`. (5.57)
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From (5.53) and since Dni = −Dn3−i we get∫
Γi

λφd` =

∫
Γi

(a+Dn3−i)u
k−1
3−i φd` (5.58)

= a

∫
Γi

uk−1
3−i φd`−

∫
Γi

Dniu
k−1
3−i φd`. (5.59)

In order to eliminate the dual variable λ we start from the following,∫
Ωci

−∆uk−1
3−i φdΩc

i =

∫
Ωci

fφdΩc
i ,

∫
Ωci

−∆uk−1
3−i φdΩc

i =

∫
Ωci

∇φ∇uk−1
3−i dΩc

i −
∫

Γi

Dn3−iu
k−1
3−i φd`.

Then from (5.58) we get that∫
Ωci

−∆uk−1
3−i φdΩc

i =

∫
Ωci

∇φ∇uk−1
3−i dΩc

i +

∫
Γi

Dniu
k−1
3−i φd`,

∫
Ωci

fφdΩc
i =

∫
Ωci

∇φ∇uk−1
3−i dΩc

i +

∫
Γi

Dniu
k−1
3−i φd`,

∫
Γi

λφd` = a

∫
Γi

φuk−1
3−i d`+

∫
Ωci

fφdΩc
i −
∫

Ωci

∇φ∇uk−1
3−i dΩc

i . (5.60)

If we substitute (5.60) back into (5.57), we get∫
Ωi

φf∂Ω + a

∫
Γi

φuk−1
3−i d`−

∫
Ωci

∇φ∇uk−1
3−i dΩc

i =

∫
Ωi

∇φ∇uki dΩi + a

∫
Γi

uki φd`. (5.61)

5.3 Algebraic form of OSM

In this section write (5.61) in an algebraic form. Assume that

Vhi = span{φi} ⊂ H1
0 (Ω) ∩H1(Ωi),

where

Vh ⊂ H1
0 (Ω) and Vhi = Vh|Ωi .

We use the finite element method in order to discretise each component of (5.61). We

start from ∫
Ωi

∇φ∇uki dΩi + a

∫
Γi

uki φd`
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which becomes (
ANi + a

[
0 0

0 Bi

])
uki .

Moreover we can rewrite
∫

Ωci
∇φ∇uk−1

3−i as

−
∫

Ωci

∇φ∇uk−1
3−i dΩc

i = −
∫

Ω

∇φ∇ũk−1
3−i dΩ +

∫
Ωi

∇φ∇ũk−1
3−i dΩi

and after the discretisation becomes

−RiAR
T
3−iu

k−1
3−i + ANiRiR

T
3−iu

k−1
3−i .

Finally, ∫
Ω

φfdΩ + a

∫
Γi

φuk−1
3−i d`

becomes

RiF + a

[
0 0

0 Bi

]
RiR

T
3−iu

k−1
3−i .

Hence we get the OSM method in an algebraic form as

(
ANi+a

[
0 0

0 Bi

])
uki = RiF+a

[
0 0

0 Bi

]
RiR

T
3−iu

k−1
3−i−ANiRiR

T
3−iu

k−1
3−i +RiAR

T
3−iu

k−1
3−i .

(5.62)

From Proposition 3.2.11 we see that the mass matrix Bi is spectrally equivalent

to the identity and hence we can set Bi = I in order to get

(
ANi + a

[
0 0

0 I

])
uki = RiF + a

[
0 0

0 I

]
RiR

T
3−iu

k−1
3−i −ANiRiR

T
3−iu

k−1
3−i +RiAR

T
3−iu

k−1
3−i .

(5.63)

Remark 5.3.1. Assume that R1 and R2 and the restriction operators from Ω to

subdomains Ω1 and Ω2 respectively then

A =
∑
i

RT
i ANiRi,

AN1R1 +R1R
T
2AN2R2 = R1A,

AN1R1 = R1A−R1R
T
2AN2R2,
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R2R
T
1AN1R1 = R2A− AN2R2.R1R

T
2AN2R2 = R1A− AN1R1. (5.64)

If we apply (5.64) to (5.63) we get,

(
ANi + a

[
0 0

0 I

])
uki = RiF + a

[
0 0

0 I

]
RiR

T
3−iu

k−1
3−i −RiR

T
3−iAN3−iu

k
3−i. (5.65)

5.4 Equivalence between 2LM and OSM.

Theorem 5.4.1. The sequence of iterates uk1 and uk2 produced by the OSM method

(5.63) is the same as the sequence of iterates that are produced if we apply the damped

Richardson method to the non-symmetric 2-Lagrange multiplier system (5.18), (ω =

2).

Proof. In the 2-Lagrange multiplier methods notation, we define the systems of equa-

tions of the Poisson problem for 2-subdomains with Robin data by

( AN1︷ ︸︸ ︷[
AII1 AIΓ1

AΓI1 AΓΓ1

]
+a

[
0 0

0 I

]) vk1︷ ︸︸ ︷[
vkI1
vkΓ1

]
=

[
fI1

fΓ1

]
+

[
0

λk1

]
, (5.66)

( AN2︷ ︸︸ ︷[
AII2 AIΓ2

AΓI2 AΓΓ2

]
+a

[
0 0

0 I

]) vk−1
2︷ ︸︸ ︷[
vk−1
I1

vk−1
Γ2

]
=

[
fI2

fΓ2

]
+

[
0

λk−1
2

]
. (5.67)

In the case of 2 non-overlapping subdomains the averaging operator K has the form

K =
1

2

[
I I

I I

]
.

In the 2-Lagrange multiplier methods matrix Q as defined in (5.14) is

Qk = a(Sk + aI)−1, for k = 1, 2.

Moreover we have seen that the non-symmetric Lagrange multiplier system is given

by

(I − 2K)(Q−K)λ = −(I − 2K)Qg. (5.68)

Hence for two subdomains the right side of (5.68) becomes

(I − 2K)(Q−K) =
([I 0

0 I

]
−

[
I I

I I

])([Q1 0

0 Q2

]
− 1

2

[
I I

I I

])
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=

[
1
2
I −(Q2 − 1

2
I)

−(Q1 − 1
2
I) 1

2
I

]
=

1

2

[
I I − 2a(S2 + aI)−1

I − 2a(S1 + aI)−1 I

]
.

The relaxed Richardson method for arbitrary system Ax = b is

λk+1 = λk + 2(b− Aλk).

Let b = −(I − 2K)Qg, then for the case of system (5.68), the relaxed Richardson

method takes the form,

λk+1 =

[
I 0

0 I

]
λk +

(
2b−

[
I I − 2a(S2 + aI)−1

I − 2a(S1 + aI)−1 I

]
λk

)
,

equivalent to[
λk+1

1

λk+1
2

]
=

[
0 2a(S2 + aI)−1 − I

2a(S1 + aI)−1 − I 0

][
λk1

λk2

]
+ 2

[
b1

b2

]
. (5.69)

From the right side of (5.68) we get

b = −(I − 2K)Qg =

[
0 I

I 0

][
Q1 0

0 Q2

]
g =

[
0 Q2

Q1 0

]
g,

end so [
b1

b2

]
=

[
Q2g2

Q1g1

]
.

Hence the b1, b2 in (5.69) can be written as,[
b1

b2

]
=

[
a(S2 + aI)−1g2

a(S1 + aI)−1g1

]
. (5.70)

Finally, we can rewrite (5.69) as a system of equations

λk+1
1 = 2a(S2 + aI)−1λk2 − λk2 + 2b1, (5.71)

λk+1
2 = 2a(S1 + aI)−1λk1 − λk1 + 2b2. (5.72)

Moreover, from (5.13), we have that

(S + aI)uG = g + λ, (5.73)

uG = (S + aI)−1(g + λ), (5.74)
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where

gk = fΓk − AΓIkA
−1
IIkfIk (5.75)

and

Sk = AΓΓk − AΓIkA
−1
IIkAIΓk. (5.76)

Hence, from (5.73) we get

uk+1
Γ1

= (S1 + aI)−1(λk+1
1 + g1), (5.77)

uk+1
Γ1

= (S1 + aI)−1λk+1
1 + (S1 + aI)−1g1, (5.78)

λk+1
1 = (S1 + aI)uk+1

Γ1
− g1 (5.79)

and in the same manner

ukΓ2
= (S2 + aI)−1(λk2 + g2), (5.80)

ukΓ2
− (S2 + aI)−1g2 = (S2 + aI)−1λ2, (5.81)

λk2 = (S2 + aI)ukΓ2
− g2. (5.82)

If we substitute (5.82) into (5.71) we get

λk+1
1 = 2aukΓ2

− 2a(S2 + aI)−1g2 − ((S2 + aI)ukΓ2
− g2) + 2b1. (5.83)

Moreover from (5.79) and (5.83) we have that

(S1 + aI)uk+1
Γ1
− g1 = 2aukΓ2

− 2a(S2 + aI)−1g2 − (S2 + aI)ukΓ2
+ g2 + 2b1. (5.84)

From (5.66) and (5.67) we have that the solutions that correspond to the interior

nodes, uI1 and uI2, satisfy the following equations:

AII1u
k+1
I1 + AIΓ1u

k+1
Γ1

= fI1; (5.85)

AII2u
k
I2 + AkIΓ2u

k
Γ2 = fI2. (5.86)

Hence from (5.76) and (5.85), (5.86) we get that

S1u
k+1
Γ1 = AΓΓ1u

k+1
Γ1
− AΓI1A

−1
II1fI1 + AΓI1u

k+1
I1 (5.87)

and

S2u
k
Γ2 = AΓΓ2u

k
Γ2
− AΓI2A

−1
II2fI2 + AΓI2u

k
I2. (5.88)
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If we substitute (5.87), (5.88) into (5.84) we get

AΓΓ1u
k+1
Γ1
− AΓI1A

−1
II1fI1 + AΓI1u

k+1
I1 + auk+1

Γ1
− g1

= 2aukΓ2
− 2a(S2 + aI)−1g2 − AΓΓ2u

k
Γ2

+ AΓI2A
−1
II2fI2 − AΓI2u

k
I2 − aukΓ2

+ g2 + 2b1.

(5.89)

Then if we substitute g1 and g2 form (5.75) into (5.89) we derive

AΓΓ1u
k+1
Γ1

+ AΓI1u
k+1
I1 + auk+1

Γ1
=

aukΓ2
− 2a(S2 + aI)−1fΓ2 + 2a(S2 + aI)−1(AΓI2u

k
I2

+AΓI2A
−1
II2A

k
IΓ2u

k
Γ2)− AΓΓ2u

k
Γ2
− AΓI2u

k
I2 + fΓ1 + fΓ2 + 2b1. (5.90)

Moreover, from (5.66) we have that

AII1u
k+1
I1 + AIΓ1u

k+1
Γ1

= fI1. (5.91)

Finally, from (5.90) and (5.91) we get the equivalence between the non-symmetric

2-Lagrange multiplier method and OSM,

( AN1︷ ︸︸ ︷[
AII1 AIΓ1

AΓI1 AΓΓ1

]
+a

[
0 0

0 I

]) uk+1
1︷ ︸︸ ︷[
uk+1
I1

vk+1
Γ1

]
= a

[
0 0

0 I

]
R1R

T
2 u

k
2−R1R

T
2AN2u

k
2+RiF. (5.92)

In order to derive the right side of equation (5.92) we have used the following

Remark 5.4.2.

−2a(S2 +aI)−1fΓ2−2a(S2 +aI)−1(AΓI2u
k
I2 +AΓI2A

−1
II2(fI2−AII2ukI2)+fΓ1 +fΓ2 +2b1

(5.93)

= −2a(S2 + aI)−1fΓ2 + 2a(S2 + aI)−1AΓI2A
−1
II2fI2 + 3fΓ1 + fΓ2

−2a(S2 + aI)−1(fΓ2 − AΓI2A
−1
II2fI2) + fΓ1 + fΓ2 + 2b1

If we use (5.70) to substitute b1 we get,

= −2a(S2 + aI)−1g2 + fΓ1 + fΓ2 + 2a(S2 + aI)−1g2 (5.94)

= fΓ1 + fΓ2 = fΓ.
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5.5 Weak scalability of the 2-Level 2-Lagrange mul-

tiplier methods

In this section we prove the weak scalability of the 2-Lagrange multiplier methods. An

important element of the 2-Lagrange multiplier methods and in general for the most

non-overlapping Domain Decomposition methods is the Schur complement. The Schur

complement is considered as the discrete equivalent of the Steklov-Poincaré operator

[2]. Let Ω ⊂ Rd, d = 2, 3 and Ω = ∪Ωi, i = 1, . . . , p, we define the subdomains

Ωi as floating subdomains if ∂Ω ∩ ∂Ωi = ∅. An important issue that arises in non-

overlapping methods is that the Schur complement for the case of floating subdomains

is singular. The advantage of the 2-Lagrange multiplier methods is that the Robin-

boundary conditions that we imposed on the artificial interface helps us to remove

this singularity in a very simple and efficient way.

We start by some important properties of the Schur complement and then we

prove that, under some assumptions, the condition number of the Schur compliment

for the case of elliptic problems with coercive and self-adjoint weak formulation, is

bounded by O(H
h

). Then we use this result in order to prove the scalability of the

methods.

The main contribution of this work, is that we provide a coarse grid correction

preconditoner for the 2-Lagrange multiplier methods, which makes the methods scal-

able and opens the doors for the massively parallel implementation of these methods.

In order to prove the scalability, we provide the condition number estimates for the

symmetric and the non-symmetric 2-Lagrange Multiplier methods and we explore

experimentally the convergence properties by using the GMRES solver [59].

In this chapter we provide two sets of experiments that support the theoretical

findings. Large scale experiments and the implementation of the methods in C/C++

with the use of parallel libraries like MPI and PETSc are provided in Chapter 6.

5.5.1 Schur complement properties

The left side of the discretised system (5.3) can be written as

A =

p∑
i=0

RT
i ANiRi, (5.95)

where Ri are the restriction binary matrices which restrict a n-dimensional vector

v, from the whole domain Ω, to an ni-dimensional vector Riv, containing only the

vertices that belong to subdomain Ωi. Moreover the local Neumman matrices can be
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written as

ANi =

[
AIIi AIΓi

AΓIi AΓΓi

]
. (5.96)

Moreover let A be the global matrix after the discretization of (5.2). Then A can be

written in the form

A =

[
AII AIΓ

AΓI AΓΓ

][
uI

uΓ

]
=

[
fI

fΓ

]
. (5.97)

Before we proceed to the analysis of our methods we would like to make some useful

comments on the Schur complement, i.e invertability, condition number etc., in order

to understand better the properties of the 2-Lagrange methods.

If we use block Gaussian Elimination in order to eliminate the interior degrees of

freedom we get that uI = A−1
II (fI − AIBuΓ). Substituting back to row 2 of (5.97) we

get the system on the artificial interface

SuΓ = gΓ,

where S = AΓΓ − AΓIA
−1
II AIΓ and gΓ = fΓ − AΓIA

−1
II fI .

Proposition 5.5.1. Let uh = (uI , uΓ) ∈ Rn on Ω. It is said to be discrete harmonic

if

AIIuI + AIΓuΓ = 0

and [
AII AIΓ

AΓI AΓΓ

][
uI

uΓ

]
=

[
0

λΓ

]
(5.98)

for λΓ ∈ Rm where m is the number of dofs on the artificial interface Γ. Then the

Schur complement energy satisfies

s(u, v) = uTΓSuΓ =

[
uI

uΓ

]T [
AII AIΓ

AΓI AΓΓ

][
uI

uΓ

]
. (5.99)

Proof. Let uh be discrete harmonic then uI = −A−1
II AIΓuΓ, the right side of (5.99)

becomes [
uI

uΓ

]T [
AIIuI + AIΓuΓ

−AΓIA
−1
II AIΓuΓ + AΓΓuΓ

]
=

[
uI

uΓ

]T [
0

−AΓIA
−1
II AIΓuΓ + AΓΓuΓ

]
= uTΓSuΓ.
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Remark 5.5.2. In the case of a floating subdomain (see Fig. 5.3) the local Neumman

problems (5.96) are singular with

null(ANi) = {(1, 1, . . . , 1)T ∈ Rn}

and that same is true for the corresponding Schur complement

null(Si) = {(1, 1, . . . , 1)T ∈ Rm}.

Hence the addition of the Robin parameter a > 0 is essential to guarantee the in-

vertibility of the local Schur complements Sk and the local Robin subproblems (5.8).

Figure 5.3: Floating subdomains

Definition 5.5.3. Let Ω be a Lipschitz domain with non-overlapping subdomains Ωi,

i = 1 . . . p. Moreover, let A be symmetric and positive definite. The resulting Schur

complement is positive semi-definite. We define smin > 0 as the smallest non-zero

eigenvalue of S, and smax the largest eigenvalues of S. We define the condition number

κ0(S) = smax
smin

. Finally we define the optimal Robin parameter as aopt =
√
smaxsmin.

Lemma 5.5.4 ([69]). Let uh be discrete harmonic for each Ωi. Then there exist con-

stants c, C independent of the grid parameter h and the diameter of the subdomains,

such that

c|uΓ|2H1/2(∂Ωi∩Γ) ≤ |uh|
2
H1(Ωi)

≤ C|uΓ|2H1/2(∂Ωi∩Γ) (5.100)

and hence

c|uΓ|2H1/2(∂Ωi∩Γ) ≤ uΓiSiuΓi ≤ C|uΓ|2H1/2(∂Ωi∩Γ) (5.101)

where uΓi is the restriction of the finite element trace of uh on ∂Ωi ∩ Γ.

Now we are going to estimate the condition number of the Schur complement for

regular domains.

Lemma 5.5.5. We have a regular domain decomposition when the following proper-

ties hold. Let Ω be a domain of unit diameter, Th be a quasi uniform triangulation
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with h > 0 and the typical subdomain size H > 0. In addition the following (1)-(4)

properties hold.

1. Assume that Ω1, . . . ,Ωp are polygons or polyhedra of a globally conforming mesh

Th with diameter Hi < H.

2. For i = 1, . . . p, either Ωi is a floating subdomain or the size of the intersection

of ∂Ωi with the measure of ∂Ω is comparable to ∂Ωi.

3. The matrix A is the finite element discretization of the bilinear form

a(u, v) =

∫
Ω

a(x)∇u(x)∇v(x)dx

and where

Aij =

∫
K

a(x)∇φi∇φj(x)dx.

4. The inverse inequality holds for all uh in the finite element basis Vh,

|uΓi |H1/2(∂Ωi) ≤
c1√
h
||uΓi ||L2(∂Ωi).

For regular domains there is constant C̃ which depends on the shape of the domain

Ω and the shape of the non-overlapping subdomains Ωi, i = 1 . . . p but not on the grid

parameters h, H, such that the following inequality holds,

κ0(S) ≤ C̃
H

h
. (5.102)

Proof. The Sobolev space H1(Ω) and H1/2(Ω) have been defined in Chapter 2 over

subdomains with diameter H = 1. By using a simple dilation, as in Chapter 4

[69], we can replace the domains Ωi by the subodmains 1
hi

Ωi. Assume that uh =

(uI , uΓ) defined on Ωi, is discrete harmonic, with uΓ the trace on ∂Ωi. Then from the

assumption 4 and [69, Lemma A.17], we get that

|uΓi |H1/2(∂Ωi) ≤
c1√
h
||uΓi ||L2(∂Ωi), (5.103)

||uΓi ||L2(∂Ωi) ≤ c2|uΓi |H1/2(∂Ωi). (5.104)

From 5.101 we get that

c|uΓ|2H1/2(∂Ωi∩Γ) ≤ uΓiSiuΓi ≤ C|uΓ|2H1/2(∂Ωi∩Γ).

Hence combining (5.103), (5.104) and (5.101) we get the following,
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h
κ0(S) 0.062500 0.031250 0.015625 0.007813 0.003906
H = 0.5000 22.033364 44.942523 90.349765 180.938463 361.998007
H = 0.2500 18.878024 39.820895 80.985800 162.722751 325.842387
H = 0.1250 39.820895 80.985800 162.722751
H = 0.0625 39.820895 80.985800

c

c2
2

||uΓi ||L2(∂Ωi ≤ uΓiSiuΓi ≤
Cc2

1

h
||uΓi ||L2(∂Ωi .

Since uΓi is the trace of a finite element function uh on Γ and from the properties

of the mass matrix we get that that ||uΓi||L2(∂Ωi) will be equivalent up to a scaling

factor to the Euclidean norm of uh restricted to Γi. Therefore, the estimate (5.102)

holds.
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Figure 5.4: Loglog plot of the condition number κ0(S)

Remark 5.5.6. The spectrum of matrix Q, defined in (5.14), can be written as

σ(Q) =
α

σ(S) + α
=
{ α

z + α
: s = 0, smin, . . . , smax

}
,

if we set q = α
z+α

, then q attains the following values:

• If z = 0, then q = 1.

• If z > 0, then q ∈ (0, 1).

• If z < smax, then q ≥ α
smax+α

and if we set a = aopt, see Definition 5.5.3,

q ≥
√
sminsmax

smaxs+
√
sminsmax

.
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Hence, K(Q) =
smax+

√
smaxsmin√

smaxsmin
=
√
κo(S) + 1.

5.5.2 Methods that scale weakly

Proposition 5.5.7 (The matrix AS2LM). Let ε > 0. Assume that the matrix Q is

symmetric and positive definite, with the spectrum σ(Q) ⊂ [ε, 1− ε] ∪ {1}, 0 < ε < 1
2
.

Also assume that K is an orthogonal projection.

From Lemma 5.5.5 and Remark 5.5.6

1

ε
= O

(√
H

h

)
, (5.105)

where H is the Euclidean diameter of a typical subdomain Ωk, and h is the diameter

of the fine grid discretizing (5.2). Therefore, ε is a quantity that “scales” in the sense

that if we increase the parallelism by shrinking h while keeping H/h bounded, the

quantity ε remains bounded away from 0.

Definition 5.5.8 (Weak scaling). We say that a method scales weakly if the con-

dition number depends only on ε and not on the spectral norm ‖EK‖ (the spectral

norm is the largest singular value).

In domain decomposition, the definition of a method that scales weakly is one

where the condition number depends on the ratio H/h, but not on h or H individually.

Thus, our definition of weak scaling is justified by the case considered in [48] with ε

given by (5.105). We now present methods that scale weakly.

Remark 5.5.9. We now briefly discuss how the condition number of Q − K grows

unboundedly if ‖EK‖ → 1.

Recall that E is an orthogonal projection. After a suitable orthogonal change of

basis, we may assume that E =

[
O O

O I

]
. In this basis, we have that Q =

[
Q1

I

]
,

since E is the orthogonal projection onto the kernel of I −Q. As a result, the matrix

AS2LM has the form

AS2LM = Q−K =

[
Q1 −K11 K12

K21 I −K22

]
.

Note that K is symmetric and hence UK22U
T is diagonal for a suitable orthogonal

matrix U . Conjugating Q − K by the matrix

[
I

U

]
if necessary, we may assume

that K22 is diagonal. If the spectral radius ρ(K22) = 1 then one of the diagonal entries

must be one. For simplicity, assume that this is the bottom-right entry of K22.
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If an orthogonal projection (such as K) has a one on its diagonal, then the corre-

sponding row and column must have zeros everywhere else. Thus, the entire last row

and column of Q−K is 0; in other words, Q−K is singular.

Thus, if ‖EK‖ =
√
ρ((EK)(EK)T ) =

√
ρ(EKE) =

√
ρ(K22) approaches 1

when we refine the grid, we must have that the condition number of AS2LM = Q−K
grows unboundedly; this shows that bounding ‖EK‖ away from 1 is necessary for weak

scaling.

Motivation for the 2-Level methods

In Section 5.1.1 we have defined the Symmetric 2-Lagrange multiplier method as

AS2LM︷ ︸︸ ︷
(Q−K)λ = −Qg (5.106)

and the non-Symmetric 2-Lagrange multiplier method as

AN2LM︷ ︸︸ ︷
(I − 2K)(Q−K)λ = −(I − 2K)Qg. (5.107)

We will prove that AS2LM and AN2LM methods do not scale weakly something

that motivated us to develop higher level methods in order to overcame the lack of

scalability. These methods are the symmetric and non-Symmetric 2-level 2-Lagrange

multiplier methods. We will define and analyse the 2-level 2-Lagrange multiplier

methods in detail and we will prove that they scale weakly. In Chapter 6 we include

various sets of experiment that support our findings.

In order to prove that the one-level methods do not scale weakly we start from

finding the condition number of the Symmetric 2-Lagrange multiplier method. The

spectrum of S+aI is σ(S+aI) = {z+a : z ∈ σ(S)}, and the matrix Q = a(s+aI)−1

in the right side of the symmetric system (5.17) has spectrum σ(Q) =
{

a
z+a

: z ∈

σ(S)
}

. Since S is positive semi-definite we get that 0 < a
z+a
≤ 1 and hence we

have that σ(Q) ⊂ (0, 1]. Moreover since K is an orthogonal projection we have that

σ(K) = {0, 1} and consequently that σ(Q−K) ⊂ [−1, 1].

If 1 /∈ σ(Q) and 0 < ε ≤ 1
2
, we will see that the spectral condition number κ(Q−K)

is bounded by (1− ε)/ε. On the other hand, in the case that 1 ∈ σ(Q) then κ(Q−K)

also depends on ‖EK‖, where E is the orthogonal projection onto the kernel of I−Q,

where I is the identity matrix of appropriate size. Since the one level methods depend

on ‖EK‖ we will provide an estimate for this norm based on article [48]. Let ρ be

the spectral radius ρ = max{|λ1, . . . , |λn|}, where λi i = 1, . . . n are the eigenvalues of
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a square matrix n× n matrix, then

‖EK‖ =
√

(ρ(EK)(EK)T ) =
√
ρ(EKE) (5.108)

or equivalently

ρ(EKE) =

[
0 0

0 I

][
K11 K12

K21 K22

][
0 0

0 I

]
=

[
0 0

0 K22

]
= ρ(K22).

Let Ω ⊆ Rd, d = 2, 3, Ω =
p⋃

k=1

Ωk and the artificial interface Γ =
p⋃

k=1

∂Ωk \ ∂Ω.

Then K22 can be written as K22 = JKJT , where J is a matrix whose columns form

an orthogonal basis for the range of E. The range of E consists of piecewise constant

many-sided traces and hence matrix J can be written explicitly as,

J := blkdiag(
1
√
nΓ1

1nΓ1
, . . . ,

1
√
nΓp

1nΓp
), (5.109)

where nΓk is the number of vertices on the artificial interface ∂Ωk ∩ Γ. Moreover

ρ(K22) = ρ(JTKJ) = λmax(J
TKJ) = 1− λmin(I − JTKJ). (5.110)

We now estimate the smallest eigenvalue of Z = I − JTKJ . The estimate of this

eigenvalue done in [48] is correct in spirit has some minor errors. We have corrected

these minor errors below; our estimate of the smallest eigenvalue of Z is very similar,

but not exactly the same as [48].

Recall that the columns of J are the indicating functions of the floating subdo-

mains, scaled so that JTJ = I:

J =


m
−1/2
Γ1 f1

. . .

m
−1/2
Γn fn

O

 ,

where f1, . . . , fn are suitable vectors of ones and mΓk = ‖fk‖1 is the number of vertices

on Γk = ∂Ωk ∩ Γ. The large O at the bottom of J encompasses all subdomains that

are not floating.

We now estimate the smallest eigenvalue of Z. We can embed the matrix Z into

a matrix Z̃ as follows. Let J̃ denote the matrix whose columns are the indicating

functions of all subdomains, floating or not, normalized so that J̃T J̃ = I and let

Z̃ = I − J̃TKJ̃ . In what follows, we need to be careful about the physical grid,

with grid points {xk}, versus the “Tearing and Interconnecting”, where grid points

along subdomains are duplicated for each subdomain. To be concrete, if we denote
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by uG some multi-valued trace on Γ, we will write [j] to signify the grid point [j] = xk

corresponding to [uG]j.

Lemma 5.5.10. The entries of Z̃ij are

Z̃ij = δij −
Cij√
mΓimΓj

where Cij =
∑

xk∈Γi∩Γk

1

mxk

. (5.111)

In the expression for Cij, mxk denotes the number of subdomains adjacent to the grid

vertex xk.

Proof. Note that J̃ej is simply a column of J̃ , which is an indicating function of a

subdomain, scaled by m
−1/2
Γj :

(J̃ej)k =

m
−1/2
Γj if k belongs to the subdomain Ωj;

0 otherwise.

The matrix K acts on J̃ej by averaging, and hence

(KJ̃ej)k =

m−1
[k]m

−1/2
Γj if [k] ∈ Γj,

0 otherwise;

where we have denoted by m[k] the number of subdomains adjacent to the vertex [k].

Note that there are precisely m[k] entries of the vector λ that correspond to [k] so

eTi J̃KJ̃ej = [KJ̃ei]
T [KJ̃ej] =

∑
k s.t. [k]∈Γi∩Γj

m−1
[k]m

−1/2
Γi m−1

[k]m
−1/2
Γj =

∑
xk∈Γi∩Γk

1

mxk

√
mΓimΓj

,

as required.

Lemma 5.5.11. Let D = diag(
√
mΓ1, . . . ,

√
mΓp), where p is the total number of

subdomains. DZ̃D is diagonally semidominant.

Proof.

(DZ̃D)ij = mΓiδij − Cij where Cij =
∑

xk∈Γi∩Γj

1

mxk

. (5.112)

Since mxk is the number of subdomains adjacent to xk, we find that

∑
j

Cij =
∑
j

∑
xk∈Γi∩Γj

1

mxk

=
∑

k s.t. xk∈Γi

mxk terms︷ ︸︸ ︷∑
j s.t. xk∈Γj

1

mxk

= mΓi.
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As a result,

(DZ̃D)ii −
∑
j 6=i

|(DZ̃D)ij| = mΓi −
∑
j

Cij = 0.

We now give a “semidefinite superposition representation” of DZ̃D:

DZ̃D = X +R,

where X and R are diagonally semidominant (and hence semidefinite).

Definition 5.5.12 ((L1, `) path cover). Let Ω1, . . . ,Ωp be the subdomains. A path

of length `, γ = (γ1, . . . , γ`) is a subset of {1, . . . , p} such that, for each k,

Cγk,γk+1
> L1 min

k
mΓk > 0. (5.113)

In particular, Ωγk and Ωγk+1
are adjacent. We further require that Ωγ1 is a subdomain

that does not float.

An (L1, `) path cover {γ(k)} is a disjoint cover of {1, . . . , p} by paths of lengths

{`k} at most `. After relabelling the subdomains if necessary, we may assume that

each path is a consecutive run of integers:

γ(k) = (qk + 1, qk + 2, . . . , qk + `k),

and the paths are ordered γ(1) < γ(2) < . . . < γ(m); in other words, qk =
∑

j<k `j. We

then say that the labelling of the subdomains is standardized by γ.

The idea here is for L1 to be a “reasonable” constant that merely captures how

well-connected are neighboring subdomains. For example, if each subdomain is a

quadrilateral sharing about one quarter of its boundary vertices with each adjacent

subdomain, then L1 ≈ 0.25. On the other hand, if one of the paths in the chosen

path cover {γ(k)} goes through a very narrow interface ∂Ωi ∩ ∂Ωj, L1 will have to

be chosen much smaller. This means that the mesh partitioning software should

avoid generating nearly degenerate domain decompositions, where one subdomain is

adjacent to a very large number of subdomains but only shares a few vertices with

each individual adjacent subdomain.

Lemma 5.5.13. Let γ = {γ(1), . . . , γ(m)} be an (L1, `) path cover, and that the la-
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belling of the subdomains is standardized by γ. Put

X =
(
L1 min

k
mΓk

)
Y (`1)

. . .

Y (`m)

 where (5.114)

Y (`k) =



1 −1

−1 2 −1
. . . . . . . . .

. . . . . . . . .

−1 2 −1

−1 1


∈ R`k×`k (5.115)

Put R = DZ̃D−X. Then, R is diagonally semidominant (and hence positive semidef-

inite).

Proof. Set R = DZ̃D −X and consider first an off-diagonal entry Rij. If |i− j| > 2

then clearly Rij = (DZ̃D)ij ≤ 0 since X is tridiagonal. Because the labels are

standardized by γ, we have that γ
(j)
k+1 = γ

(j)
k + 1 and hence C

γ
(j)
k ,γ

(j)
k+1

is the first

superdiagonal of C; thus we may apply (5.113). Combining with (5.112) we find that,

for the first superdiagonal, Ri,i+1 < 0. Since R is symmetric, the first subdiagonal

must also be negative. Finally, note that the row sums of both DZ̃D and X are zero,

hence the row sums of R are also zero. Since all the off-diagonal entries of R are

nonpositive, we conclude that the diagonal of R is nonnegative, and R is diagonally

dominant.

Lemma 5.5.14. Assume that the domain decomposition admits an (L1, `) path cover

γ. Then,

λmin(Z) ≥ L1
minkmΓk

maxkmΓk

(
2− 2 cos

(
π

2(`− 1)

))
Proof. Since Z is a submatrix of Z̃, the “Rayleigh quotient” is bounded by

uTZu

uTu
=
ũT Z̃ũ

ũT ũ
≥ ũTD−1/2X

v︷ ︸︸ ︷
D−1/2ũ

ũT ũ
=
vTXv

vTDv
,

where ũ has zero entries for the non-floating subdomains, and coincides with u for the
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floating subdomains. As a result, we arrive at an eigenvalue problem for the matrix

Ŷ (`) =



2 −1

−1 2 −1
. . . . . . . . .

. . . . . . . . .

−1 2 −1

−1 1


∈ R(`−1)×(`−1)

This can be regarded as a finite-difference approximation of the second derivative in

one dimension, with Dirichlet condition on the left and Neumann condition on the

right. This is a slightly nonstandard elementary problem, but it diagonalizes with the

following “sine transform” matrix:

S =
[
sin
(

(2j−1)πi
2(`−1)

)]`−1

i,j=1

The eigenvector with the smallest eigenvalue is
[
sin
(

(2j−1)πi
2(`−1)

)]`−1

i=1
and the correspond-

ing eigenvalue is

λ = 2− 2 cos

(
π

2(`− 1)

)
As a result,

uTZu

uTu
≥
(
λL1 min

k
mΓk

) vTv

vTDv
≥
(
λL1 min

k
mΓk

) 1

(maxkmΓk)

vTv

vTv
,

as required.

As we have already mentioned, our proof is a corrected version of the one appearing

in [48]. Our estimate shows that the smallest eigenvalue depends on the “condition

number” maxkmΓk

minkmΓk
, which is a property of the domain decomposition. If using an

automatic mesh partitioner, this number would be large if the smallest subdomain

had very few interface points compared to the largest subdomain.

Theorem 5.5.15. Assume that the domain decomposition admits an (L1, `) path

cover γ. Then, ‖EK‖ < 1 and, as `→∞,

‖EK‖ ≈ 1− L1
minkmΓk

maxkmΓk

π2

8
`−2 +O(`−3).

Proof. By (5.110), we arrive at

‖EK‖ =
√

1− λmin(Z) =

√
1− L1

minkmΓk

maxkmΓk

(
2− 2 cos

(
π

2(`− 1)

))
< 1,
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and hence ‖EK‖ < 1, as required.

We have proven that, for the one-level 2LM methods, the quantity ‖EK‖ ap-

proaches 1 as ` = O(1/H) tends to infinity. As per our definition of weak scaling, and

as per Remark 5.5.9, we find that the one-level 2LM methods do not scale weakly.
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Figure 5.6: Loglog plot of eigenvalues of Q, Q−K

In Figure 5.5, we split the domain from 4 to 256 non-overlapping subdomains and

we plot the condition number of Q with respect to the ratio H/h. By using the least

squares fitting we obtain that the condition number of Q scales like (H/h)s where

s = 0.47 very close to 1/2, as we expected when a is close to the optimal Robin

parameter aopt which is defined in (5.5.3).

Definition 5.5.16 (2-Level 2-Lagrange multiplier methods). Let Q,K be as in Def-

inition 5.5.7. Let E be the orthogonal projection onto the kernel of I − Q. Assume

that ‖EK‖ < 1. We define the coarse grid preconditioner as

P = I − EKE, (5.116)
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h
cond(Q) 0.062500 0.031250 0.015625 0.007813 0.003906
H = 0.5000 6.4940 9.788505 14.422220 20.993163 30.316758
H = 0.2500 6.2103 8.806499 12.238890 16.972340 23.617418
H = 0.1250 8.806499 12.238890 16.972340
H = 0.0625 8.806499 12.238890

h
cond(Q−K) 0.062500 0.031250 0.015625 0.007813 0.003906
H = 0.5000 7.789970 11.235631 15.971733 22.617308 31.996406
H = 0.2500 7.608107 10.272807 14.133839 19.676555 27.585407
H = 0.1250 27.496822 38.137578 53.313436 74.900548 75.314923
H = 0.0625 105.524846 148.349634 209.068938

leading to the preconditioned matrices

A2LS2LM = P−
1
2 (Q−K)P−

1
2 and A2L2LM = P−

1
2 (I − 2K)(Q−K)P−

1
2 . (5.117)

The terminology “2-level” comes from the fact that the action of the preconditioner

P−1 on a residual can be efficiently computed by projecting onto a coarse grid defined

by the subdomains.

Remark 5.5.17. The matrix P is the “action of Q−K on the range of E”. Indeed,

if we choose an orthonormal basis such that

E =

[
O O

O I

]
, Q =

[
Q0 O

O I

]
and K =

[
K11 K12

K21 K22

]
, (5.118)

and where σ(Q0) ⊂ (ε, 1− ε), then we observe that

P =

[
I O

O I −K22

]
and Q−K =

[
Q0 −K11 −K12

−K21 I −K22

]
. (5.119)

In other words, the preconditioner P was obtained by “zeroing out” the off-diagonal

blocks of Q−K and replacing the top-left block by I.

Remark 5.5.18. The “coarse space” is the range of E. For the model problem (5.2),

the coarse space consists of piecewise constant functions, with one degree of freedom

per floating subdomain (subdomains are said to be floating when they do not touch the

natural boundary). Since nonzero piecewise constant functions are never continuous

and K is an averaging operator, the condition ‖EK‖ < 1 is automatically satisfied.

Remark 5.5.19. From (5.119) we see that P is symmetric. Furthermore, P is pos-

itive definite provided that λmax(K22) < 1. Note that K22 is the lower-right block

of EKE and so ‖K22‖ ≤ ‖EK‖‖E‖ = ‖EK‖. For the elliptic case ‖EK‖ < 1 is
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guaranteed see Remark 5.5.18. Hence the matrix square roots P−1/2 are well defined.

Instead of computing inverse square roots of P , one would instead implement “left

preconditioning”:

P−1(Q−K) and P−1(I − 2K)(Q−K).

These matrices can then be used inside a suitable implementation of GMRES or sim-

ilar Krylov space method as a precoditioner.

Remark 5.5.20. The matrix A2LS2LM is symmetric and indefinite, while the matrix

A2L2LM is nonsymmetric. We will see in Subsection 5.5.4 that A2LS2LM and A2L2LM

have equivalent condition numbers. Despite this spectral equivalence, we will see in

Subsection 5.7.3 that GMRES tends to perform better with A2L2LM than on A2LS2LM

– this may be explained by the spectral properties of A2L2LM. Therefore, in practice

it may be preferable to use the nonsymmetric matrix A2L2LM instead of the indefinite

matrix A2LS2LM.

5.5.3 The condition number of A2LS2LM

We start from the following lemma,

Lemma 5.5.21 (A special case of [38, Corollary 6.3.4]). Let X and Y be symmetric

matrices of the same size. Let 0 < α < β < γ be real numbers. Assume that the

spectrum σ(X) of X is contained in the interval [−α, α], while |σ(Y )| ⊂ [β, γ]. Then,

|σ(X + Y )| ⊂ [β − α, γ + α]. (5.120)

In order to estimate the condition number of A2LS2LM, we first consider the simplest

case of κ(Q−K) when 1 is not in the spectrum of Q, hence (cf. Definition 5.5.7) we

have the spectral estimate σ(Q) ⊂ [ε, 1− ε].
The operator K is an orthogonal projection, hence σ(K) = {0, 1}. In order to use

Lemma 5.5.21 we will set X := Q− 1
2
I and and Y := −K + 1

2
I. Then we will apply

(5.120). We have that σ(X) = [ε − 1
2
, 1

2
− ε], σ(Y ) = {−1

2
, 1

2
} and |σ(Y )| = {1/2}.

Hence |σ(Q−K)| ⊂ [ε, 1− ε], 0 < ε ≤ 1
2
.

When 1 ∈ σ(Q) unfortunately the result is not so trivial. When we apply the

same shift, of 1
2
I, we get that 1/2 ∈ σ(X) and −1/2 ∈ σ(Y ), which means that it is

possible to have a cancellation.

We have defined E as the orthogonal projection onto the kernel of I − Q, hence

if we shift more than 1
2
I in the E component in order to obtain σ(X) ⊂ (−1/2, 1/2)

we avoid any cancellations.

In order to estimate the spectrum of Y , one can use the following canonical form

for pairs of orthogonal projections.
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Lemma 5.5.22 (Halmos [35], see Appendix B). Let E and K be orthogonal projec-

tions. There is an orthogonal matrix U which simultaneously block diagonalizes E

and K into 1×1 and 2×2 blocks. If we denote the kth block of the block-diagonalized

E by Ek, and the kth block of the block-diagonalized K by Kk, we further have that

Ek ∈

{
0, 1,

[
1 0

0 0

]}
and Kk ∈

{
0, 1,

[
c2
k cksk

cksk s2
k

]}
, (5.121)

where ck = cos(tk) 6= 0 and sk = sin(tk) 6= 0 with real tk ∈ (0, π/2) for each k.

The ranges of E and K are hyperspaces, and the angles {tk} are the “principal

angles” between these two hyperspaces.

Theorem 5.5.23 (Condition number and weak scaling of P−
1
2 (Q − K)P−

1
2 ). Let

0 < ε < 1
2

and assume that Q and K are as in Definition 5.5.7 and that E and P are

as in Definition 5.5.16. Then we have the following spectral estimate:

|σ(P−
1
2 (Q−K)P−

1
2 )| ⊂ 1

2

[√
4 + ε2 − 2 + ε,

√
4 + ε2 + 2− ε

]
. (5.122)

In particular,

κ(P−
1
2 (Q−K)P−

1
2 ) ≤

√
4 + ε2 + 2− ε√
4 + ε2 − 2 + ε

≤ 4

ε
, (5.123)

recall 1
ε

=
√

H
h

.

Proof. We have defined P = I −EKE. In order to estimate the condition number of

P−
1
2 (Q−K)P−

1
2 , (5.124)

we add and subtract P−
1
2EP−

1
2 to (5.124) we get

P−
1
2 (Q−K)P−

1
2 = P−

1
2 (Q− E)P−

1
2 + P−

1
2 (E −K)P−

1
2 . (5.125)

We set F = P−
1
2 (E−K)P−

1
2 and Z = P−

1
2 (Q−E)P−

1
2 . From (5.119) we know that

after reordering

P =

[
I O

O I −K22

]
(5.126)

and from (5.118), that

Q− E =

[
Q0 O

O O

]
. (5.127)

Therefore if we combine (5.126) and (5.127), we conclude that Z = Q−E and (5.125)
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can be rewritten as

P−
1
2 (Q−K)P−

1
2 = (Q− E) + F.

From Lemma (5.5.22) we have that E,K, F can all be block-diagonalize simultane-

ously by an orthogonal matrix U . Matrix F can be simultaneously block diagonalized

with E and K since it is a product of the block diagonal matrix P−1/2 by (E −K)

and E, K are both diagonalizable by the orthogonal projection U . Furthermore we

can present the blocks Fk of F as functions of blocks Ek and Kk of operators E and

K respectively. More precisely, we get the following cases for each block Fk,

Fk =



0 if Ek = Kk = 0,

−1 if Ek = 0 and Kk = 1,

1 if Ek = 1 and Kk = 0, 1 −ck
−ck −s2

k

 in the 2× 2 case.

(5.128)

Since ||EK|| < 1, the case where Ek = 1 and Kk = 1 is excluded. Let us assume

that x, y are real positive parameters. In order to use Lemma (5.5.21), we rewrite

P−
1
2 (Q−K)P−

1
2 = (Q− E) + F = X + Y (5.129)

where

X = (Q− E)− x(I − E) + yE (5.130)

and

Y = F + x(I − E)− yE. (5.131)

Moreover, we choose

x = x(ε) =

√
4 + ε2 − ε

4
and y = y(ε) =

4− 3ε−
√

4 + ε2

4
. (5.132)

We define hull(H) := [inf H, supH] for any subset H ⊂ R. Since X can be written

in a block diagonal form and Q0 is the upper left block of matrix Q, we can easily

estimate the spectrum of X =

[
Q0 − xI 0

0 yI

]
as σ(X) ⊂ hull{ε − x, 1 − ε − x, y}

and if (5.132), we get

σ(X) =

[
5

4
ε− 1

4

√
4 + ε2,

α(ε)︷ ︸︸ ︷
1− 3

4
ε− 1

4

√
4 + ε2

]
. (5.133)

Moreover, we have to estimate the eigenvalues of (5.131). This can be done by

using the block diagonal decompositions of F , E and K as given by (5.128) and
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Figure 5.7: Functions x(ε), y(ε) of (5.132), ε ∈ (0, 0.5].

(5.5.22). Hence combining the sub-blocks Fk, Kk, Ek, we get that the spectrum of Yk

is

σ(Yk) =



{x} if Ek = Kk = 0,

{x− 1} if Ek = 0, Kk = 1,

{1− y} if Ek = 1, Kk = 0,

{φ±(c2
k)} (2× 2 case),

(5.134)

where

φ±(z) :=
1

2
(z + x− y ±

√
z2 + 2(x+ y)z + (x+ y − 2)2). (5.135)

Since y < x, (see Fig. 5.7), function φ+ is positive, (see Fig. 5.8) and we can

prove that it is also monotonically increasing. We have that ∂φ+

∂z
= 1

2
(1 + (z2 + 2(x+

y)z + (x+ y − 2)2)−
1
2 (z + x+ y)). If we use (5.132) in order to substitute x and y we

get

∂φ+

∂z
=

1

2

√
(1 + z − ε)2 + 4ε+ (1 + z − ε)√

(1 + z − ε)2 + 4ε
> 0

and hence φ+(z) is monotonically increasing with respect to z. As a result

φ+(z) ∈ [φ+(0), φ+(1)] =
1

4
[3ε+

√
4 + ε2, ε+ 3

√
4 + ε2] ⊂ (0,∞). (5.136)
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Figure 5.8: Functions φ+, φ−, defined in (5.135)

In the same manner φ−,

∂φ−
∂z

=
1

2
(1− (z2 + 2(x+ y)z + (x+ y − 2)2)−

1
2 (z + x+ y)).

using (5.132)

∂φ−
∂z

=
1

2

>1+z−ε>0︷ ︸︸ ︷√
(1 + z − ε)2 + 4ε−(1 + z − ε)√

(1 + z − ε)2 + 4ε
> 0

and hence φ−(z) is monotonically increasing in z. Therefore,

φ−(z) ∈ [φ−(0), φ−(1)] =
1

4

[
−ε− 4 +

√
4 + ε2, ε−

√
4 + ε2

]
⊂ (−∞, 0). (5.137)

If we combine, (5.132), (5.134), (5.136) and (5.137), we obtain

σ(Yk) ⊂
{ β(ε)︷ ︸︸ ︷

1

4

√
4 + ε2 − ε

4

}
∪
[

3

4
ε+

1

4

√
4 + ε2,

γ(ε)︷ ︸︸ ︷
1

4
ε+

3

4

√
4 + ε2

]
(5.138)

∪ 1

4

[
−ε− 4 +

√
4 + ε2, ε−

√
4 + ε2

]
.

Finally, from (5.138) we get |σ(Y )| ⊂ [β(ε), γ(ε)] and from (5.133), σ(X) ⊂
[−α(ε), α(ε)], and the result (5.122) follows from Lemma (5.5.21).
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Figure 5.9: Right-hand-sides of (5.133) (lightly shaded area) and (5.138) (dark areas,
including the dark curve β(ε)).

Example 3. Let Q(q1), K(θ) and P (θ) be defined by

Q(q1) =

[
q1 0

0 1

]
, K(θ) =

[
c2 cs

cs s2

]
, P (θ) =

[
1 0

0 c2

]
, (5.139)

where c = cos θ and s = sin θ for some real parameter θ. Note that ‖EK‖ = |s|.
Setting z := c2, we find that σ(P−

1
2 (θ)(Q(q1)−K(θ))P−

1
2 (θ)) = {ψ±(q1, z)} where

ψ±(q1, z) =
1

2

(
1 + q1 − z ±

√
z2 − 2(1 + q1)z + q2

1 − 2q1 + 5

)
. (5.140)

For q1 = 1− ε ∈ (0, 1), letting z → 0 shows that (5.122) is sharp.

The condition number estimate (5.123) depends only on ε and hence, according

to Definition 5.5.8, the 2-Level symmetric 2-Lagrange multiplier method is weakly

scalable.

Remark 5.5.24. The shifts x, y given by (5.132) were found using the following

procedure. According to the discussion at the beginning of the present subsection, it is

reasonable to want that X ≈ Q− 1
2
I and Y ≈ −K+ 1

2
I when ε is small. By inspection

of (5.5.3), we see that this means that x, y ≈ 1
2
. We hypothesized that good choices of

x, y would occur when some of the eigenvalue estimates of X and Y would coincide

or equioscillate. We picked a small ε and some values of x, y slightly smaller than 1
2
,

which seemed to indicate that the eigenvalues 1 − ε − x and y of X should coincide,

and the eigenvalues x and φ−(1) of Y should cancel: x+ φ−(1) = 0 in detail:
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2x+ 2φ−(1) = 0 (5.141)

2x+ 1 + x− y −
√

[1 + 2(x+ y) + (x+ y − 2)2 = 0 (5.142)

Now we use that 1− ε− x = y,

2x+ 1 + x− 1 + ε+ x−
√

1 + 2(1− ε) + (−1− ε)2 = 0 (5.143)

4x+ ε−
√

4x+ ε2 = 0 (5.144)

and finally,

x =

√
4x+ ε2

4
.

The values for y can be now easily obtained by the equality 1 − ε − x = y, and

hence we derive (5.132). Having found these values of x, y, we then verified that they

indeed produce the estimates (5.122) and (5.123).

5.5.4 The condition number of A2L2LM

Note that

A2L2LM =

Z︷ ︸︸ ︷
P−

1
2 (I − 2K)P

1
2 A2LS2LM (5.145)

Lemma 5.5.25. Assume that ‖EK‖ < 1 and let Z = P−
1
2 (I − 2K)P

1
2 . Then,

κ(Z) ≤
√

2 + 1√
2− 1

< 5.83. (5.146)

Proof. We block diagonalize Z using Lemma 5.5.22 and (5.116). The blocks Zk of Z

are as follows:

Zk =



1 if Ek = Kk = 0,

−1 if Ek = 0 and Kk = 1,

1 if Ek = 1 and Kk = 0, 1− 2c2
k −2ck

−2s2
kck 1− 2s2

k

 in the 2× 2 case;

(5.147)

where the case Ek = Kk = 1 is excluded by the hypothesis that ‖EK‖ < 1. Replacing
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s2
k = 1− c2

k, we compute the singular values Σ(Zk) of Zk to obtain

Σ(Zk) ⊂

{
1,

√
1 + 2c6

k ± 2c3
k

√
1 + c6

k

}
. (5.148)

Optimizing ck ∈ [0, 1] in (5.148) for the largest possible condition number (which

occurs at ck = 1) gives (5.146).

We now prove our second main result.

Theorem 5.5.26 (Condition number of A2L2LM = P−
1
2 (I − 2K)(Q − K)P−

1
2 ). Let

0 < ε < 1
2

and assume that Q and K are as in Definition 5.5.7 and that E and P are

as per Definition 5.5.16. Then, we have the following condition number estimate:

κ(A2L2LM) <
23.32

ε
. (5.149)

Proof. We use the submultiplicativity of condition numbers on (5.145) combined with

the estimates (5.123) and (5.146).

According to Definition 5.5.8, A2L2LM scales weakly.

5.6 Motivation for the non symmetric System

In Section 5.4, we discussed the relationship between A2L2LM and the Optimized

Schwarz method which is one motivation for the study of A2L2LM. In the present

section, we discuss another reason to prefer A2L2LM over A2LS2LM related to the spec-

tral properties of these matrices.

The matrix A2LS2LM is symmetric but typically indefinite (when K is a nontrivial

projection) despite the fact that the initial problem (5.2) was symmetric and positive

definite. Because A2LS2LM is indefinite, it cannot be used with CG [37] but a method

such as GMRES or MINRES (which also has a two-term recurrence) can be used.

The performance of CG depends on the square root of the condition number, whereas

the performance of MINRES depends on the condition number (without a square

root). For instance, in the elliptic case, the matrix A2LS2LM has the condition number

O(
√
H/h) (using (5.123), provided (5.105) holds), using GMRES or MINRES on

A2LS2LM may have a performance comparable to using CG on, e.g., additive Schwarz

with minimal overlap, which has a condition number of O(H/h) [69, Theorem 3.13].

Note that in exact arithmetic, GMRES and MINRES applied to a symmetric

indefinite matrix such as A2LS2LM produce the same iterates. In machine arithmetic,

MINRES suffers from a “loss of orthogonality” [61, p. 195] which means that its

performance is usually worse than that of GMRES. We have briefly discussed MINRES
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Figure 5.10: Spectrum and pseudospectrum of A2L2LM.

because it is the go-to solver for symmetric indefinite systems, but in order to avoid

these numerical complications, we focus on GMRES for the remainder of the thesis.

The matrix A2L2LM is nonsymmetric1. There is no concrete result linking the con-

dition number κ(A2L2LM) to the performance of GMRES, since it is no-symmetric,

but our numerical experiments suggest that GMRES applied to A2L2LM is much

more efficient than GMRES applied to A2LS2LM. Note that the transformation from

A2LS2LM to A2L2LM by left-multiplying by the reflection matrix I − 2K is very similar

to the positive definite reformulation of saddle point problems, which is experimen-

tally known to be better for iterative solvers, even though there is no analysis, see

Remark 4.3.5. Our experiments suggest the performance of GMRES may depend

on
√
κ(A2L2LM) = O((H/h)1/4), a significant improvement over O(

√
H/h). In Fig.

5.10, we have plotted the spectrum and pseudospectrum of A2L2LM, computed numer-

ically from an example for the problem (5.2) on the unit square with h = 1/32 and

H = 1/4. In principle, the performance of GMRES can be analyzed by bounding the

set of eigenvalues and using potential theory as in Section 4.3.1. In this context, our

eigenvalue set consists of complex eigenvalues of mild moduli (those will not signif-

icantly impact convergence), and real or nearly-real eigenvalues that approach zero.

Hence, the convergence behavior suggested by Fig. 5.10 is expected to be comparable

to the case where the eigenvalues are in some interval [δ, 1.5], plus a few iterations

to take care of the mild complex eigenvalues. We confirm this good behavior with

numerical experiments in Section 5.7.3.

1Unless Q and K commute. This is unlikely to happen for a “random” matrix Q but can
exceptionally happen, e.g., if there are two subdomains and Q1 = Q2.
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Figure 5.11: Condition numbers of A2LS2LM for random choices of Q and K for various
values (m,n, k) (dots) compared to (5.123) (solid curve). Top-left: n = 4, k = 3,m =
2; top-right: n = 8, k = 4,m = 4; bottom-left: n = 15, k = 8,m = 7; bottom-right:
n = 30, k = 18,m = 15.

5.7 Numerical experiments

In this section we present three sets of experiments. In the first set (the “algebraic

case”), we generate random matrices Q and K to validate (5.123). In the second

set of experiments (the “elliptic case”), we use the model problem (5.2) with various

values of h and H to validate the estimates (5.105), (5.123), (5.149). In the third set

of experiments, we measure the performance of GMRES and GMRES(10) on A2LS2LM

and A2L2LM.

In the next chapter we will present one more set of large scale experiments per-

formed on HECToR (High End Computing Terascale Resources) supercomputer. The

purpose of these experiments is to check the scalability of the two-level 2-Lagrange

multiplier methods. Our massively parallel implementation described in Section 6.2.

5.7.1 Algebraic case

Our first series of numerical experiments (see Fig. 5.11) consists of generating random

matrices Q and K and verifying the estimate (5.123). For each plot we generate 1000

random matrices Q and K. For each matrix Q we fix the ambient dimension n, the
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Table 5.1: Condition numbers for the 2-Level symmetric 2-Lagrange multiplier ma-
trix A2LS2LM for the model problem (5.2).

h
0.1250 0.0625 0.0313 0.0156 0.0078

H = 0.2500 7.1927 9.6909 13.2186 18.1121 25.0399
H = 0.1250 9.3567 12.2031 16.4196 22.3863
H = 0.0625 9.8847 12.8234 17.2216

Table 5.2: Condition numbers for the 2-Level nonsymmetric 2-Lagrange multiplier
matrix A2L2LM for the model problem (5.2).

h
0.1250 0.0625 0.0313 0.0156 0.0078

H = 0.2500 6.1508 8.4162 11.6954 16.3073 22.9120
H = 0.1250 7.3623 9.9804 13.8537 19.3739
H = 0.0625 7.6480 10.3564 14.3824

parameter ε > 0 and the number k of eigenvalues of Q that are less than 1. We then

set the smallest eigenvalue to ε, the largest eigenvalue smaller than 1 to 1 − ε, and

the remaining k − 2 eigenvalues are picked randomly and uniformly in the interval

[ε, 1− ε]. The matrix Q is then taken to be the corresponding block diagonal matrix.

We also generate K randomly as follows. First, we fix the dimension m of the

range of K. Then we generate a matrix V of dimension n × m whose columns are

orthonormal, and we set K = V V T . The matrix V is generated randomly with the

MATLAB command orth(rand(n,m)-0.5).

Each such experiment produces a condition number for P−
1
2AS2LMP

− 1
2 which is

plotted as a dot against the value of ε in Fig. 5.11. Although the resulting probability

distribution of points does depend on the parameters (k,m, n), we find that the bound

(5.123) (plotted as a solid line in Fig. 5.11) holds and seems to be sharp.

5.7.2 Elliptic case

Our second set of experiments is on the model problem (5.2). We have discretized

the unit square with a regular grid of the fine grid diameter h. We have partitioned

this square into square subdomains of side H, with up to 256 subdomains. We then

assembled the matrices A2LS2LM and A2L2LM and computed the condition numbers

using MATLAB’s cond.2 The results are summarized in Tables 5.1 (symmetric case)

2We found that cond(X) gives much less accurate results when X is a sparse matrix. This is
because cond then uses the approximate condition number estimate condest(X). In order to obtain
more accurate results, we stored A2LS2LM and A2L2LM as dense matrices.
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and 5.2 (nonsymmetric case).

The estimate (5.105) implies that the condition numbers along the diagonals of

Tables 5.1 and 5.2 should be bounded, which appears to be the case (this is “weak

scaling”). Furthermore, the estimate (5.105) implies that moving one column to the

right ought to increase the condition number by a factor of
√

2 ≈ 1.4, which is also

approximately verified. Indeed, the relative increases for the last column of Table 5.1

compared to the penultimate column are 1.38, 1.36, 1.34. The corresponding ratios in

Table 5.2 are 1.41, 1.40, 1.39.

We highlight the fact that this set of numerical experiments include many cross

points and a large number of floating subdomains. Our new 2-Level method is able

to deal with these challenging situations without difficulty and with good scaling

properties.

We also note that our estimate (5.149) of the condition number of A2L2LM is

5.83× worse than the estimate (5.123), but this is not borne out in our numerical

experiments. Indeed, the matrix A2L2LM appears to be better conditioned than the

matrix A2LS2LM. Our estimate of the condition number of A2L2LM was obtained using

the “rough” idea of the submultiplicativity of condition numbers, which is apparently

very conservative in the present situation.

5.7.3 Performance with GMRES and GMRES(10)

Our third set of experiments (see Fig. 5.12) consists of using the GMRES and

restarted GMRES(10) iterations on the matrices of Section 5.7.2, and where the ini-

tial residual is a column vector of ones. We now briefly discuss these results, starting

with GMRES. Since A2LS2LM is symmetric, we can use standard theory to estimate the

convergence of GMRES (which in this case is equivalent to MINRES). A worst-case

bound is, from (4.50),

‖rk‖2

‖r0‖2

= O

((
κ− 1

κ+ 1

)k/2)
, (5.150)

where k = 0, 1, . . . is the iteration count, rk is the corresponding residual and the con-

dition number κ = 12.8 from Table 5.1 was used. This is quite a slow convergence and

this estimate is known not to be sharp when the spectrum exhibits some asymmetry

about the origin. Indeed, we see that when h is large, GMRES on A2LS2LM performs

even better than

‖rk‖2

‖r0‖2

= O

((
κ− 1

κ+ 1

)k)
, (5.151)
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Figure 5.12: Convergence of the relative residual norm in the GMRES (top) and
GMRES(10) (bottom) iterations (to a relative tolerance of 10−6) with grid parameters
h = 1

4
H = 1

16
(circles), h = 1

4
H = 1

32
(stars) and h = 1

4
H = 1

64
(triangles). The solid

lines correspond to A2LS2LM, while the dashed lines correspond to A2L2LM. In the top
figure, the dotted line is (5.151) and the dot-dashed line is (5.152).
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As can be observed, see Fig. 5.12, the linear estimate (5.151) is very pessimistic when

h is large. As a result, the scalability of the algorithm is only apparent when h is very

small.

As mentioned in Section 5.6, the matrix A2L2LM has much better spectral proper-

ties. The present experiments suggest that the correct linear estimate for the conver-

gence of GMRES applied to A2L2LM is

O

((√
κ− 1√
κ+ 1

)k)
. (5.152)

(The value κ = 10.4 from Table 5.2 was used.) This may be related to the fact that

the spectrum of A2L2LM is essentially a positive interval plus some complex eigenvalues

of mild moduli, see Fig. 5.10.

We now turn to the GMRES(10) experiments (Fig. 5.12, bottom). The restarted

GMRES algorithm can be used when the storage requirements of the full GMRES

algorithm are too high. We have used the GMRES(10) algorithm, which restarts every

tenth iteration. Although the performance of A2LS2LM appears scalable, the iteration

counts are now much higher. By contrast, the matrix A2L2LM is scalable in all cases

and the iteration counts are nearly the same as in the full GMRES algorithm (less

than 20 in all cases).
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Massively parallel Implementations

and Experiments

In this chapter we will discuss the parallel implementation of the 2-Level 2 Lagrange

multiplier methods and the corresponding parallel experiments. We mainly refer to

our work based on articles [41], [40] that correspond to Sections 6.1 and 6.2 respec-

tively. We include the details of the parallel implementation and the large scale

experiments that confirm the good scaling properties of the 2 level 2 Lagrange multi-

plier methods. The numerical experiments were run on the HECToR supercomputer,

a Cray XE6 with 2816 compute nodes each comprising of two 16-core AMD Opeteron

Interlagos processors. Each of the 16-core sockets is coupled with a Cray Gemini

routing and communications chip.

6.1 First Implementation and Experiments

We have implemented the symmetric and nonsymmetric 2LM methods in C using

the PETSc library [6]. We implemented three matrices K, Q and the coarse grid

preconditioner P . The matrices P , Q are implemented as PETSc shell matrices while

the K matrix is assembled into a seqaij matrix. In other words, the matrix K is

assembled into PETSc’s parallel compressed row storage sparse matrix format, while

the matrices P and Q are not assembled but instead a matrix-vector multiplication

routine is provided to PETSc. The matrices P and Q are not assembled because they

are not sparse.

We use a PETSc parallel Krylov space solver on (5.17) or (5.18) as an “outer

iteration”. Each step of the outer iteration requires multiplying a given vector by the

matrices P,Q,K. The matrix-vector product Kλ is a straightforward sparse matrix-

dense vector product. The matrix-vector product Qλ requires solving subdomain

problems as per (5.8). These subdomain problems can in principle become large.

Thus, (5.8) is solved using a PETSc sequential Krylov space solver (ie. a single-

120



Chapter 6: Massively parallel Implementations and Experiments

processor solver) on (5.8). This is an “inner iteration” which occurs at each step of

the outer iteration. Hence the overall algorithm has an inner-outer iteration structure.

In our test implementation we use a finite difference implementation with a square

domain and rectangular subdomains, with one domain assigned per MPI task with

affinity to a single core.

The matrix K

The solution λ to the linear systems (5.17) or (5.18) is a multi-valued trace, with one

function value per artificial interface point per subdomain. In PETSc, the rows of

λ are distributed such that the indices of the same domain are assigned to a single

processor,

λ =


λ1

λ2

...

λp

 .
Each entry in λ corresponds to an artificial interface grid point. When two or more

subdomains are adjacent, then some entries of λ correspond to the same artificial

interface point.

Each processor lists the physical grid points on its artificial interface and this in-

formation is shared with neighboring subdomains using MPI explicitly. When solving

subdomain problems we work with small-dimensional local vectors. The Robin data

λj on subdomain Ωj has length nΓj; we write λj = (λ
(j)
i )

nΓj

i=1. Mapping from the “local

index” i to a “global offset” is achieved with the function Fj(i) = i+
∑

k<j nΓk. The

size of the matrix K is
∑p

k=1 nΓk. Given this information, each processor is able to

assemble its own rows of K.

The matrix Q

We begin by showing that the matrix-vector product λk 7→ Qkλk can be computed by

solving a local sparse problem. Setting f = 0 (and hence g = 0) in (5.8) and (5.13)

shows that Qkλk = auΓk, where uΓk is defined by,[
AIIk AIΓk

AΓIk AΓΓk + aI

][
uIk

uΓk

]
=

[
0

λk

]
. (6.1)

Thus, in order to calculate the matrix-vector product Qλ, each processor solves the

Robin local problem (6.1) and outputs Qkλk = auΓk.

The local problem (6.1) can in principle be solved using e.g. a Cholesky decom-

position. However, we found that using a Cholesky decomposition leads to large

amounts of fill-in and poor performance. Thus, we solve the local problem (6.1) using
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the Conjugate Gradient method with relative convergence tolerance 1e-10 and abso-

lute convergence tolerance 1e-9. For the local problem (6.1) we use the incomplete

Cholesky ICC(`) preconditioner [16]. The incomplete Cholesky preconditioner is a

compromise between higher fill-in (leading in the limit to a direct solver) and lower

fill-in (leading in the limit to a diagonal preconditioner). We found that a “factor

level” ` = 10 gives better overall performance for our problem sizes.

The preconditioner P

The coarse grid preconditioner matrix P defined in (5.5.16) is in principle an enormous

parallel matrix. Nevertheless, we will describe an efficient way to compute the matrix-

vector product λ 7→ P−1λ on a single processor (with some global communication).

For j = 1, . . . , p we denote nΓj the number of vertices on the artificial interface

∂Ωj ∩Γ and we define the matrix J := diag( 1√
nΓ1

1nΓ1
, . . . , 1√

nΓp
1nΓp

) where 1j denotes

the jth dimensional column vector of ones. The columns of J span the “coarse space”

of piecewise constant functions, which are constant on each local artificial interface

Γk = ∂Ωk ∩ Γ. The coarse space for the preconditioner (5.116) is the kernel of S,

which is contained in the column span of J . Thus, we define E := JJT and,

P−1 := (I − EKE)−1 = I − JJT − J(

L︷ ︸︸ ︷
JTKJ − I)−1JT .

Note that although P−1 is dense, we can compute λ 7→ P−1λ efficiently, in a matrix-

free way, via the formula P−1λ = λ− J(JTλ)− J(L−1(JTλ)).

Given the assembled parallel sparse matrix J and its transpose JT and the assem-

bled (sparse) local matrix L, the algorithm for computing the matrix-vector product

λ 7→ P−1λ in a matrix-free way is as follows:

1. Given λ, compute the p-dimensional “coarse” vector λc = JTλ and collect its

entries on a single processor as a sequential vector.

2. Define uc by solving the locally, sparse linear problem Luc = λc.

3. Output P−1λ = λ − Jλc − Juc. Note that multiplication by J involves broad-

casting the small local vectors λc and uc to large parallel vectors Jλc and Juc.

The outer solve

The implementations of the shell matrices P and Q and the assembly of the sparse

matrix K have been described. Building on these base implementations, we fur-

ther form the shell matrices λ 7→ (Q − K)λ (implemented as QminKmul) and λ 7→
(I − 2K)(Q −K)λ (implemented as Imin2KQminKmul). The PETSc library enables

us to use a variety of different solvers. For the outer iteration we experimented with
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the Generalized Minimal Residual KSPGMRES and the Flexible Generalised Minimal

Residual method KSPFGMRES on shell matrices QminKmul and Imin2KmulQminK, with

the preconditioner P . For the KSPFGMRES solver we set the relative convergence tol-

erance 1e− 7 and the absolute convergence tolerance 1e− 6.

Recall that GMRES is an iterative method that computes the approximate solution

xk ∈ x0 + span{r0, Ar0, . . . A
kr0} which minimizes the residual norm ‖b−Axk‖2. The

efficient implementation of the least-squares problem relies on the identity

AVk = Vk+1H̃k, (6.2)

where Vk is an orthonormal basis of the Krylov space and H̃k is an upper Hessenberg

matrix (see [59] for details). The Flexible GMRES algorithm [58] replaces (6.2) by

AZm = Vk+1H̃k, (6.3)

and allows one to vary the preconditioner at each iteration, which required testing

since our matrix-vector products are inexact.

Experiments at large scale

Results for the iteration counts of the S2LM and 2LM methods are presented. In both

cases the Flexible GMRES algorithm for the outer solver and the Conjugate Gradient

algorithm for the inner solver were used. The preconditioner for the outer solve is the

shell matrix P , while the preconditioner for the inner solve is the incomplete Cholesky

ICC(10) of (6.1).

The implementation used here is limited to a square domain in two dimensions

using a finite difference discretization. This choice was made entirely for the simplicity

of implementation. The domains vary from 1002 to 100002 grid points (and hence the

largest problem has 108 degrees of freedom). These domains are partitioned into

64 to 4096 subdomains, which again is limited to a square number. This domain

decomposition is mapped to the MPI decomposition on the HECToR.

The symmetric (5.17) and nonsymmetric systems (5.18) are solved, with relative

convergence tolerance 1e − 7 and the absolute convergence tolerance 1e − 6. The

outer iteration counts are reported in Tables 6.1 and 6.2. The computational cost per

outer iteration for a fixed domain and subdomain is constant. The inner iterations are

not reported as the ICC preconditioner is used for simplicity rather than the optimal

multigrid which would be used as first choice in a production implementation. In

addition to these raw iteration counts, we also plot the scaling of the methods against

the ratio H/h in Figs. 6.1 and 6.2

The S2LM performance is well explained by the condition number estimate of
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Table 6.1: Iteration counts for S2LM.

Domain size
# Procs. 1002 3002 10002 30002

64 216 409 952 2472
256 173 316 782 1753
1024 144 220 411 1090
4096 - - 301 665

Table 6.2: Iteration counts for 2LM.

Domain size
# Procs. 1002 3002 10002 30002 100002

64 30 58 114 229 -
256 37 35 72 135 -
1024 47 44 42 76 -
4096 - - 53 50 82

Theorem 5.5.23. Indeed, the S2LM matrix is symmetric and indefinite and for such

systems, one can show that the number of iterations is bounded by a quantity pro-

portional to the condition number. This bound is only sharp when the spectrum of

the matrix is perfectly symmetric about the origin. We find that some of our smaller

systems perform slightly better than this theoretical estimate.

The 2LM performance appears to be between O(H/h)1/3 and O(H/h)1/2. The

2LM matrix is nonsymmetric. For nonsymmetric matrices, the condition number

does not necessarily predict the performance of the GMRES algorithm. However,

in our case, we find that the condition number explains well the performance of the

algorithm and that we further get “Krylov acceleration” – the performance may be

almost as good as O(H/h)1/3.

6.2 Second Implementation: A Massively parallel

implementation “black-box” solver

In our second implementation we created a “black-box” solver by using the MATIS1

type matrix of PETSc library, such that the user gives as input a matrix of type

MATIS that contains the local Neumman problem and information about the global

numbering of the nodes of type IS and then without any other information it is able

to solve the problem and provide the local solutions for each subdomain.

1http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATIS.html
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Figure 6.1: Scaling of S2LM.
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Figure 6.2: Scaling of 2LM.

We present the parallel implementation of the 2LS2LM and 2L2LM methods with

cross points and with the coarse grid preconditioner (5.116) described by systems

P−1(Q−K)λ = −P−1Qg, (6.4)

P−1(I − 2K)(Q−K)λ = −P−1(I − 2K)Qg. (6.5)

We implemented these methods in C using the PETSc [6] library. Our code works

for general domains Ω and subdomains Ωi of arbitrary shapes.

Our objective was to create a 2-Lagrange multiplier “black-box solver” that takes

as an input a parallel distributed matrix which holds the ”splitting” (5.10). Then

the solver functions algebraically on the given input information, in order to solve

numerically problem (5.3), using either the 2LS2LM or the 2L2LM methods. The

PETSc type MATIS is used as an input for our solver since it can efficiently encode

and store (5.10).

Moreover we have implemented our own parallel mesh generation and partition-

ing algorithm, that has been used along with the Triangle 2D Mesh Generator and

Delaunay Triangulator [63] and gives as an output (5.10).
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6.2.1 Mesh Generation and assembly of local Neumann prob-

lems

We start from a seed mesh T0 that describes the general geometry of our problem.

Then by further refinement of T0 a new coarse mesh TH is created. Each triangle of TH
becomes a subdomain and is assigned to a unique processor. The user provides the

number m, of vertices to be generated on each edge of the coarse mesh TH and the

mesh is refined accordingly, in order to create the desired refined mesh Th. The fine

mesh can be in general very large so is created on a per subdomain basis.

Since Th is not globally assembled, only the local numbering of the nodes is known

to each processor. In order for each processor to acquire the global numbering of its

nodes, without any communication cost, we designed the following algorithm.

For each subdomain Ωi of the fine mesh we can compute the number of vertices

that belong to it. Each vertex of the fine mesh νi is labeled with an integer i =

1, . . . , n. Each processor has a corresponding subdomain Ωi with neighbours Ωj. For

the subdomain Ωi and its neighbours Ωj such that j < i the fine mesh is created, see

Fig. 6.3. The information in Fig. 6.3 is sufficient to compute the global labels `i of

the vertices νi ∈ Ωi, without assembling the global fine mesh and without any MPI

communication.

Next, we assign each of the fine vertices to a single owner subdomain in the

following way. Vertices that lie in the interior of a subdomain Ωi are assigned to

subdomain Ωi. Vertices along an edge ∂Ωi∩∂Ωj but not at a cross point are assigned

to the subdomain Ωmin(i,j). Vertices at a cross point v∗ ∈ ∂Ωi ∩ ∂Ωj ∩ . . . ∩ ∂Ωk are

assigned to the subdomain Ωmin(i,j,...,k).

Each subdomain Ωi consists of vertices vi ∈ Ωi, some of which have been assigned

to subdomain Ωj while others to the neighbouring subdomains with smaller number-

ing. This way, the precise ownership of each vi ∈ Ωi can be computed locally without

the need of assembling the global fine mesh.

Once the global labels of the vertices of the fine mesh are computed, a “local

to globlal mapping” which specifies the binary restriction matrices Ri is defined.

Because Ri restricts to Ωi, only the labels of the vertices in Ωi are required and hence

no communication is needed in order to assemble Ri.

Likewise, the Neumann matrices ANi are computed and assembled as seqaij

matrices without communication. The resulting objects {Ri, ANi} form the PETSc

distributed matrix of type MATIS.

6.2.2 The 2LS2LM and 2L2LM “black-box” solver

The solver takes as an input a matrix of type MATIS that contains the information

about the local Neumann problems ANi and the restriction matrices Ri. The matrices
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Figure 6.3: Processor that has been assigned the “gray” subdomain Ω9, refines all the
neighbouring subdomains Ωj with j < 9.

K,Q and P in (6.4) and (6.5) are implemented. Matrix K is assembled as a parallel

mpiaij matrix, in a compressed row storage matrix format. Since P,Q are dense

matrices, they are not assembled explicitly but instead are implemented as PETSc

“matrix-free” matrices by defining the matrix vector products Pλ and Qλ respectively.

The matrix K is assembled as a parallel sparse matrix and is defined from the

following product of matrices,

K = WRΓR
T
Γ , where RΓ =


RΓ1

...

RΓp

 , (6.6)

W = (diag(RΓR
T
Γ1))−1 and 1 corresponds to a vector of ones.

The matrix Q is implemented in a “matrix-free” form. Since Q is a block diagonal

matrix of submatrices Qk, it is implemented as the matrix vector product λk 7→ Qkλk.

This product can be computed by solving the local sparse Robin problem[
AIIk AIΓk

AΓIk AΓΓk + aI

][
uIk

uΓk

]
=

[
0

λk

]
(6.7)

for each λk of the mutli-valued trace vector λ.

Remark 6.2.1. The solution λ of either (6.4) or (6.5) is a many-sided trace with one

function value per artificial interface point per subdomain. The vector λ is a PETSc

parallel vector object, the rows of which are distributed in a way such that the indices

of the same domain are assigned to a single processor.

The coarse grid preconditioner P defined in (5.116), can be assembled in a “black-

box” manner. Let 1nk denote the nkth dimensional column vector of ones, where

nk is the size of ANk, see (5.9). Since 1nk spans kerANk, we can detect the floating

subdomains by checking if the product ANk1nk = 0, with some tolerance.
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Then we are able to produce the basis of the coarse space as

J := blkdiag(
1
√
nΓ1

1nΓ1
, . . . ,

1
√
nΓp

1nΓp
),

where nΓk is the number of vertices on the artificial interface ∂Ωk ∩Γ. This orthonor-

mal basis for the range of E gives the formula E = JJT , allowing us to implement

P−1 in a matrix-free way. We now use the block notation (5.119). Note that in this

basis J =

[
O

I

]
. We find that:

P−1 =

[
I O

O (I −K22)−1

]
=

[
I O

O (I − JTKJ)−1

]
=

I−E︷ ︸︸ ︷[
I O

O O

]
+

J(I−JTKJ)−1JT︷ ︸︸ ︷[
O O

O (I − JTKJ)−1

]
.

Thus,

P−1 = I − JJT + J(I − JTKJ)−1JT . (6.8)

The matrix J and JT and the p× p coarse problem L = I − JTKJ are assembled

explicitly. Given λ, we compute the p-dimensional vector λc = JTλ and we gather

its entries on a single processor as a sequential vector. Then, we solve the coarse

problem Luc = λc using LU decomposition. The sequential vector uc is scattered to

all processors and finally we get the desired output from,

P−1λ = λ− Jλc + Juc.

We also define the matrices for (Q−K) and (I − 2K)(Q−K) in a “matrix-free”

form with the corresponding matrix-vector product operations, λ 7→ (Q − K)λ and

λ 7→ (I − 2K)(Q−K)λ.

In order to solve the systems (6.4), (6.5) we use the parallel Generalised Minimal

Residual Krylov subspace method KSPGMRES provided by the PETSc library with the

preconditioner P given by (6.8).

Finally, once the solution λ of either (5.17) or (5.18) is obtained, the solution of

the global problem Au = f is recovered locally by solving (6.7). This is due to the

fact that the final step of solving (6.7) requires only the local part λk of the parallel

vector λ.

6.2.3 Large scale experiments on HECToR supercomputer

In this subsection we present some results of the iteration counts and the walltime

that correspond to the massively parallel implementation of A2L2LM and A2LS2LM

described in Section 6.2. We solve the problem (5.3) with the constant function f = 1
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as a right hand side, where Ω is the wrench-shaped domain in Fig.6.4. In this set of

experiments in order to solve systems involving A2L2LM or A2LS2LM with the coarse

grid preconditioner (5.116), we have used the generalized minimal residual method

KSPGMRES, with 1e-7 relative tolerance and 1e-6 absolute tolerance, respectively.

The number of grid points in the domains varies from 105 to 108 grid points.

Moreover, the domains are partitioned from 51 to 3264 subdomains. The experiments

were performed on the HECToR supercomputer where one subdomain is assigned

to each processor. The results in terms of iteration counts and the walltime are

presented in Tables 6.3, 6.4, 6.5, 6.6. The full code for our A2L2LM or A2LS2LM solver

implementation can be found online at https://bitbucket.org/modios/matis_2lm.

We see that the nonsymmetric method 2L2LM produces very moderate iteration

counts (103 iterations in the very worst case) while the symmetric method 2LS2LM

produces many more iterations. In principle this suggests one should use the non-

symmetric method to obtain better performance. However, the higher number of

iterations is not always reflected in the wall clock time. This is partially because

the HECToR supercomputer requires a significant amount of time to distribute our

tasks to all the nodes in the cluster (for smaller problems, this is essentially all of our

running time). However, for the largest problems we gain one order of magnitude in

the wall clock time simply by using the nonsymmetric method.

The scaling properties are also better in the nonsymmetric method. For the sym-

metric method, going from 7 · 106 to 2 · 107 grid points increases the iteration counts

by factors of 1898/947 ≈ 2.004 and 1108/617 ≈ 1.796. By comparison, the nonsym-

metric method with the same number of processors only increases the iteration counts

by factors of 1.209 and 1.396 respectively, so we have much better scaling properties

from the 2L2LM method than the 2LS2LM method.

The communication overheads for PETSc on HECToR were significant and we can

see in some cases that problems of a certain size require a longer wall clock time when

processors are added. Although we made some effort to optimize this, we concluded

that significant engineering efforts would be required to extract the most performance

from this hardware.

6.2.4 More details on the parallel implementation

In this subsection we will present in detail the structure of our massively parallel

implementation. We will emphasize on the most significant functions of our algorithm,

which parts of the code are new and which ones are based on existing libraries. As

we have discussed in the introduction of Section 6.2 the algorithm is implemented in

the C language and the external libraries that we used are the following:
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Table 6.3: Iteration counts for 2LS2LM.

Number of grid points ≈
# Procs. 105 4 · 105 106 7 · 106 2 · 107

51 489 859 1369 1438 -
204 445 597 888 1363 -
816 316 510 616 947 1898
3264 - - - 617 1108

Table 6.4: Walltime for for 2LS2LM.

Number of grid points ≈
# Procs. 105 4 · 105 106 7 · 106 2 · 107

51 27s 30s 54s 167s -
204 27s 28s 35s 62s -
816 43s 53s 61s 83s 172s
3264 - - - 610s 1055s

Table 6.5: Iteration counts for 2L2LM.

Number of grid points ≈
# Procs. 105 4 · 105 106 7 · 106 2 · 107 108

51 43 50 58 72 - -
204 44 51 64 77 92 -
816 41 48 55 67 81 103
3264 - - - 48 67 83

Table 6.6: Walltime for 2L2LM.

Number of grid points ≈
# Procs. 105 4 · 105 106 7 · 106 2 · 107 108

51 25s 26s 30s 48s - -
204 26s 27s 27s 29s 51s -
816 28s 28s 29s 31s 36s 68s
3264 - - - 90s 118s 135s
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Figure 6.4: Wrench-shaped domain Ω.

Figure 6.5: 2-Level 2-Lagrange Multiplier solver diagram.

• MPICH 2, a high performance and widely portable implementation of the mes-

sage passing interface (MPI) standard.

• PETSc 3, a portable, extensible toolkit for scientific computation.

• Triangle 4, a two-dimensional quality mesh generator and delaunay triangulator.

The massively parallel implementation of the 2-Level 2-Lagrange Multiplier meth-

ods solver code can be split in three main layers. The first layer is the group of

functions that are used in order refine and distribute the mesh, create the Neumann

matrices, create the local to global numbering and find the interface vertices, ini-

tialise the Preconditioner P , create the parallel vector g in the right side of systems

(6.4), (6.5) and finally create the LU decomposition for each local matrix Qi of the

2http://www.mpich.org/
3http://www.mcs.anl.gov/petsc/index.html
4https://www.cs.cmu.edu/~quake/triangle.html
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parallel block diagonal matrix Q. In the second layer, depending on the selection

of the method (2LS2LM or 2L2LM), we initialize the appropriate Symmetric or non

Symmetric systems. Finally in the third layer we solve the system and each processor

retrieves the local discrete solution.

We can see these three layers in Figure 6.5 where we have created a diagram

of the functions that are included in the main.c file. In the main.c file we start

by defining the number of the refinement level of the mesh triangles, the number

of subdomains, the Robin parameter and the type of the method that should be

used, 2LS2LM or 2L2LM. Then we initialise the MPI COMM WORLD communicator using

PetscInitialize, a function provided by the PETSc library. In the next steps of our

code we create the mesh, the local Neumann matrices and finally we solve in parallel

systems (6.4), (6.5).

Now we give some more details for each function of the diagram in Figure 6.5. We

have implemented the function Assemble Neumman which takes as inputs the proces-

sor id, the level of refinement and the number of subdomains; in our experiments the

number of subdomains is equal to the number of processors. As we can see from the

diagram in Figure 6.6 Assemble Neumman contains several functions. The most impor-

tant function that is included in Assemble Neumman is function Proc Stiffness Mat.

In the Proc Stiffness Mat function we create the initial coarse mesh which is iden-

tical for every processor. In order to create the coarse mesh and also have some

flexibility on the geometries that we could test in large scale environments we have

implemented the following three different functions. The function Uniform Mesh re-

fines uniformly our initial 2D mesh. The functions Disk Mesh and Square Mesh are

essentially wrappers for the Triangle library [63]. We define some input parameters, for

example the center and the length of the radius for the case of a disk, and then we use

the Triangle library in order to get the Delaunay triangulation for these simple geome-

tries. Additionally we have implemented the Create Offset and Set Global Offset

to create and set the offset of the vertices as described in detail in Subsection 6.2.1.

The function Create Sequential Triangle refines the initial triangles of the

coarse mesh in a way that the numbering of the vertices follow a particular pat-

tern, something that helps us to find the local and global numberings of the vertices

when this is needed. Finally we calculate the elements of the Stiffness matrix A and

then we use the functions provided by PETSc in order to set these values and create

the local Neumann matrices ANi.

The Find IS Interface function finds the interface points of the global mesh. We

use the IS data structure, provided by PETSc, in order to store the local to global

mapping of the interface vertices for each subdomain Ωi. In this function we have also

used the PETSc Vector data structure and the provided functions to do operations

on them like addition and multiplication and to scatter and gather the local values of
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Figure 6.6: Assemble Neumann function diagram.

the vectors between the processors.

In Assemble MATIS we create the parallel stiffness matrix of type MATIS, a data

structure provided by the PETSc library and holds the local to global numbering of

the vertices and the local Neumann matrices ANi.

In Preconditioner X we have implemented the Preconditioner P−1, (6.8), as

PETSc Shell matrix following the procedure in Subsection 6.2.2. This procedure

includes the implementation of the J and JT matrices as parallel MATMPIAIJ PETSc

matrices. We have implemented the Preconditioner P in 3 different ways, hence we

change the letter X such that the function corresponds to a different implementation

of the Preconditioner.

In function G vector we have implemented the g vector which is a common com-

ponent of the right hand side for both systems (6.4) and (6.5) as a parallel PETSc

vector.

After the implementation of the six functions of the first layer we have implemented

the four functions of the second layer of our algorithm. The user can choose between

2LS2LM and 2L2LM hence we needed to provide the corresponding implementation

for both. In function QMINK we implement the Q−K matrix as a PETSc Shell matrix

and we also implement the right hand side of 2LS2LM in funtion RhS Symmetric.

For the non symmetric system 2L2LM, we implement (I−2K)(Q−K) in function

IminKQMINK and the corresponding right hand side RhS NonSymmetric.

In the fourth layer of our algorithm we implement the function Solver KSP where

we use the parallel GMRES solver (KSPGMRES) which is provided by the PETSc, in

order to solve the systems that we implemented in the second layer. Finally the
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function Recover Solution recovers the local solution ui for any of the subdomains.

6.2.5 Comments on Scalability for the Massively Parallel Ex-

periments

We observe that our massively parallel experiments in Subsection 6.2.3, the higher

number of iterations is not always reflected in the total cpu time (wall clock time).

This is partially because a significant time of our algorithm was spent in order to

initialize matrices K, P , Q and for the case of the massively parallel experiments

a significant amount of work was spent on the distribution of our tasks among the

nodes. Here we split the cpu time cost in the following three different steps:

Step 1: Mesh manipulation and the assembly of the local Neumann matrices ANi for

each subdomain.

Step 2: Initialization of matrices K, P , Q.

Step 3: GMRES parallel solver on 2L2LM.

Then we are able to estimate the cpu time costs for each category separately. In

order to estimate the above costs we use the 2-Level 2-Lagrange multiplier method

in order to solve problem (5.3) with the constant function f = 1 as a right hand

side and Ω a square domain. We split Ω in 2, 4 and 8 subdomains and we solve the

corresponding problems in parallel. The size of the meshes that we use varies from

104 to 106 vertices.

In Figures 6.7, 6.8, 6.9 we can see the results of our experiments. With blue color

we see the cost in cpu time of the mesh manipulation which includes the creation of

the coarse mesh, the refinement of the local mesh that is assigned to each processor

and the assembly of the local Neumann matrices ANi for each subdomain. With green

color we observe the cost that it is associated with the initialization of the parallel

matrices K, Q and the preconditioner P . Finally with red color we see the amount

of cpu time that was needed by the parallel GMRES solver in order to solve the non-

symmetric 2-Lagrange multiplier system. All the above cpu time costs are counted in

seconds.

From Figures 6.7, 6.8, 6.9 we observe that the most significant time is spent for

the initialisation of matrices K, Q, P . This cost can be associated with the time that

is needed to create a parallel matrix explicitly, for the matrix K and the time that is

needed to define the PETSc Shell matrices Q and P . For matrix Q for example each

processor performs the LU decomposition of the local Robin problem (5.8).

The time that is needed by the GMRES solver (Step 3) in order to solve the 2L2LM

system in parallel is minimal compared to the two previous steps. For example for

the case that we have 8 subdmains and 106 vertices the total cost in terms of cpu time

was 17.530 seconds. From this time 10.46 seconds were spent for the initialization
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of matrices K, Q, P , 5.483 seconds for the operations related to the mesh and

the assembly of the local Neumann problems ANi and 1.587 seconds needed by the

GMRES solver in order to solve the 2L2LM system. This means that around 60% of

the time was spent on the second matrices K, Q, P , around 31% was spent for the

mesh manipulation and the assembly of the local Neumann problems and only 9% of

the time was needed by the GMRES solver to solve the 2L2LM system in parallel.

From these experiments we conclude that the scalability of the current implemen-

tation is not limited by the underlying 2LM algorithms, but rather by setup costs. In

future work, we hope to further parallelise these steps.
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Figure 6.7: Total CPU time in seconds vs Mesh size for the 2L2LM parallel imple-
mentation, two subdomains
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Figure 6.8: Total CPU time in seconds vs Mesh size for the 2L2LM parallel imple-
mentation, four subdomains
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Figure 6.9: Total CPU time in seconds vs Mesh size for the 2L2LM parallel imple-
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Conclusion and Future work

The symmetric 2-Lagrange multiplier method (2SLM) is a linear equation of the form

(Q−K)λ = −Qg (7.1)

and the non-symmetric 2-Lagrange multiplier method (2LM) is a linear system of the

form

(I − 2K)(Q−K)λ = −(I − 2K)Qg. (7.2)

where Q is symmetric positive definite, K is an averaging operator, g is the data and

λ is the unknown. From the solution λ we can can recover the solution of a problem

Au = f arising from the discretization of an elliptic problem for example

∆ũ = f̃ in Ω and ũ = 0 on ∂Ω (7.3)

where the domain Ω ∈ Rd, d = 2, 3. In Chapter 3 we have developed the necessary

background on Sobolev spaces for the solutions of elliptic PDEs and in Chapter 4 we

have presented the discretization procedure for elliptic equations of elliptic problems

such as (7.3), via the Finite Element Method (FEM). Moreover in Section 5.1.1 we

have shown how we can obtain the 2SLM and 2LM.

One of the main goals of domain decomposition methods is to decompose the

original initial domain Ω into smaller subdomains Ωi, i = 1, . . . , p and then to solve

problems such as (7.3) in parallel using a solver such as GMRES or MINRES. In

Theorem 5.5.15 , [48], it is proved that the condition number of 2SLM and 2LM

increases unboundedly when the number of subdomains p increases. In this Thesis

we introduced the new 2-level 2-Lagrange multiplier methods featuring a coarse grid

correction. The symmetric 2-Level 2-Lagrange multiplier method (2L2SLM) is a linear

equation of the form,

P−1(Q−K)λ = −P−1Qg
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and the non-symmetric 2-Lagrange multiplier method (2L2LM) is a linear system of

the form

P−1(I − 2K)(Q−K)λ = −P−1(I − 2K)Qg. (7.4)

The preconditiner P , a “coarse grid correction”, leads to algorithms that scale

weakly. We have estimated the condition number of our new methods and we have

shown that the condition numbers scales weakly. This opens the door for the mas-

sively parallel implementation of these methods. Our algebraic estimates apply to the

elliptic case for general domains and subdomains with general elliptic PDEs and the

cross points do not pose any special difficulty. The theory has been confirmed by sev-

eral sets of numerical experiments. The large scale implementation of 2LS2LM and

2L2LM is provided and massively parallel experiments performed on the HECToR

supercomputer on thousands of processors. For the massively parllel implementation

we have used the PETSc library, [6]. From these experiments we have concluded that

the combination of the GMRES solver (with or without restart) with the 2L2LM is

superior to 2LS2LM. The numerical experiments suggest that iteration count for the

2-Level non-symmetric method is O(H/h)1/4.

The communication overhead for PETSc on HECToR were significant, and we

observed that in some cases that problems of a certain size require a longer wall clock

time when more processors are added.

The slow down is caused by expensive setup costs that are not yet efficiently par-

allelised. Future work will include parallelising the setup costs and finding specialized

preconditioners, e.g for heterogeneous and multiscale problems.
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Appendix A

Notes on Massively Parallel

Implementation

In this Appendix we include some parts of the code related to the parallel implemen-

tation that corresponds to Section 6.2 and article [41]. We will try to provide some

insight on how we used PETSc in order to implement our methods. Additionally, we

have tried to combine the code that we used for our massively parallel implementation

with the deal.II library and we have also worked on a C++ parallel library that we

call femH, inspired by deal.II [7] and the ifem [17] libraries. Some functions part of

C++ classes of the femH code are included in Chapters 4 and 5.

All codes are open-source and available on-line in our repository: https://bitbucket.

org/modios. All experiment where conducted in Unix/Linux environments.

During the progress of this thesis we found that the following list of libraries and

tools, were very useful, in order to implement Domain Decomposition methods and

then to visualise the results.

1. Message Passing Interface (MPI): http://www.mpich.org/

2. Portable, Extensible Toolkit for Scientific Computation: http://www.mcs.anl.

gov/petsc/

3. Triangle, a Two-Dimensional Quality Mesh Generator and Delaunay Triangu-

lator: https://www.cs.cmu.edu/~quake/triangle.html

4. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and

post-processing facilities: http://geuz.org/gmsh/

5. METIS - Serial Graph Partitioning and Fill-reducing Matrix Ordering: http:

//glaros.dtc.umn.edu/gkhome/metis/metis/overview

6. Boost, free peer-reviewed portable C++ source libraries.: http://www.boost.

org/
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7. deal.II, an open source finite element library: https://www.dealii.org/

8. ParaView, an open-source, multi-platform data analysis and visualization ap-

plication: http://www.paraview.org/

A.1 MATIS “black box” solver

To run the MATIS code we need to have properly installed the MPICH and PETSc

libraries in our system. In the PETSc web page there is a detailed documentation on

how to install Petsc on the system, http://www.mcs.anl.gov/petsc/documentation/

installation.htmltml

As we have explained in detail in Chapter 6, the user provides a PETSc matrix of

type MATIS and then the solver uses the information is stored in the MATIS matrix,

which includes the local Neumman problems and the local to global mapping of the

nodes. Then the 2-Level 2 Lagrange multiplier methods are used to return the desired

local solution for each subdomain.

In Algorithm 9 we include the main function. In the main.c file the steps of this

implementation are clearly presented.

In lines 1 to 10 we include the necessary libraries. The “triangle.h” provides the

API function calls for the Triangle library, “petsc.h” is necessary in order to include

the PETSc libary and in “Functions2LM.h” we have “squeezed” all the necessary

functions that we needed to implement our problem.

In line 14 the user initialises the number of nodes on the edges of the triangles.

For example, triangles with 3 nodes per edge will be consisted in total from 15 nodes,

since we have 3 times the number of edges, which is 9, plus the interior nodes, which

is 3, plus the initial vertices of the triangle which are again 3. A formula that gives

directly the number of node of the triangle if we know the number of nodes per edge

is: NEdges(NEdges − 1)/2. In line 15, we set the number of times that we apply

uniform refinement on the seed mesh in order to obtain the triangles of the coarse

mesh. The number of triangles of the coarse mesh should be equal to the number of

processors. In lines 28 to 32 we initialise the global communicator PETSC COMM WORLD

and then we get the rank and the size of this communicator. We also set the Robin

parameter to be equal to
√

1/NEdges.

Function Assemble Neumann, assembles the Local Neumann Stiffness matrices for

each subdomain and provides the global numbering of the mesh. In Assemble MATIS

we use the information from Assemble Neumann to assemble the MATIS matrix. Func-

tion Find IS Interface takes the MATIS matrix as an input and extracts all the

necessary information that is needed in order to proceed. This information consists

of the interface nodes, the interior nodes and the size of the arrays that hold their

values.
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Algorithm 9 main.c for the MATIS solver.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include <stdbool.h>

5 #include <math.h>

6 #include <assert.h>

7 #include <time.h>

8 #include "triangle.h"

9 #include "petsc.h"

10 #include "Functions2LM.h"

11
12
13 int main(int argc ,char** argv){

14 int NEdges =7;

15 int subdivisions =1;

16
17 int sizeALoc ,precon =0;

18 int *localnumber ,* globalumber ,sum ,*interface ,* interfaceloc ,count_interface ,c ount_interior ,* interiorloc;

19
20 PetscScalar Robin_par =0.73;

21 PetscMPIInt rank ,size;

22 Mat M,K,Q,QminK ,P;

23 Mat A;

24 Vec w,f,g,rhs;

25 KSP solver;

26 int n=1;

27 Vec solution ,lambda;

28
29
30 PetscInitialize (&argc ,&argv ,(char *)0,help);

31 MPI_Comm_rank(PETSC_COMM_WORLD ,&rank);

32 MPI_Comm_size(PETSC_COMM_WORLD ,&size);

33 PetscOptionsGetInt(NULL ,"-n" ,&n,NULL);

34 Robin_par=sqrt (1.0/( NEdges ));

35
36
37 Assemble_Neumann(rank ,subdivisions ,NEdges ,\

38 &localnumber ,& globalumber ,&sizeALoc ,&A,&f);

39
40 Assemble_MATIS(A,localnumber ,globalumber ,sizeALoc ,&M);

41
42
43 Find_IS_Interface(M,&sum ,&interface ,& interfaceloc ,& count_interface ,&w,& interiorloc ,& count_interior );

44
45 Assemble_K(sum ,interface ,count_interface ,&K,rank ,size ,w);

46
47 Preconditioner_3 (&P,M,count_interface ,K,rank ,size);

48
49 G_Vector(M,&g,f,interfaceloc ,count_interface ,interiorloc ,count_interior );

50
51
52 Assemble_QLU(M,interface ,interfaceloc ,count_interface ,Robin_par ,&Q,& solver );

53
54 if(n==0){

55 QMINK(&QminK ,K,Q,count_interface );

56 RHSSymetric (&rhs ,Q,g,count_interface );

57 if(rank ==0) puts("=======         Symmetric 2LM Choosen       ========");

58 }else{

59 IminKQMINK (&QminK ,K,Q,count_interface );

60 RHSNONSymetric (&rhs ,Q,K,g,count_interface );

61 if(rank ==0) puts("=======        Non -Symmetric 2LM Choosen     ========");

62 }

63
64
65 Solver_KSP(QminK ,P,count_interface ,rank ,precon ,rhs ,& lambda );

66
67 Recover_Sulution(solver ,f,lambda ,&solution ,interfaceloc ,count_interface );

68
69 MatDestroy (&K);

70 MatDestroy (&P);

71 MatDestroy (&Q);

72 MatDestroy (& QminK);

73 VecDestroy (&rhs);

74
75 PetscFinalize ();

76 return 0;

77 }
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In Asseble K we use the interface points vector in order to determine what is the

multiplicity of each node, or in different words how many triangles share each node.

This information together with the total number of interface points counted with

their multiplicity, is adequate in order to assemble the average orthogonal projection

matrix K. Moreover function Preconditioner3 defines the preconditioner as PETSc

shell matrix. Since we use iterative solvers like GMRES for the outer iterations, we

don’t have to assemble explicitly the matrices.

The next step is to assemble the right hand side vector g, of “cumulative fluxes”.

Then, in a similar way like the case like the one of preconditioner P , we define Q

as a shell matrix, and we use LU decomposition for the local robin sub-problems.

In order to retrieve the solution, since the local Robin sub-problems are Positive

definite, in this step instead of using an LU decomposition we can use either the

Cholesky decomposition or any other non direct method that applies to symmetric

and positive definite matrices, like the Conjucate Gradient method.

Since matrices K and Q has been already defined or assembled, we can create the

shell matrices that correspond to Q − K and (I − 2K)(Q − K), which are named

QMINK and IminKKQMINK respectively. The user has the option to decide which one of

the two 2-Lagrange multiplier methods, the symmetric or non-symmetric, wants to

use.

Finally we use the function Solver KSP, a function that gets as an input the

matrices, Q − K, the preconditioner P−1 and the right hand side vector G, and

uses a parallel GMRES solver as an outer iteration in order to return the Lagrange

multipliers for each processor, something that eventually leads to the approximate

solution of the problem.

In order to get the “primal” solution u, we will substitute the acquired Lagrange

multiplier vector λ on each local Robin sub-problem, and we will solve for each sub-

domain. In the last few lines of the code, we free the dynamically allocated memory

and we terminate the MPI execution environment.

On the following subsection we will present some key functions of the“MATIS black

box solver” code.

Finding the Interface

In Algorithm 10 we assume that the user has provided the MATIS matrix. The function

Find IS Interface in line 14 uses the PETSc function, MatISGetLocalMat(M,&C),

in order to extract the local Neumann matrix C. In the next line we get the local to

global mapping and we assign it to variable ltog, through function

MatGetLocalToGlobalMapping(C,&ltog,&ltog). In lines 35 to 37 we create a vector

x that holds the multiplicity of each interface node, i.e if node i is an artificial interface

point and is shared between 4 subdomains, hence x[i] = 4. Then we get the vector w of
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Algorithm 10 Find IS Interface function.

1 extern PetscErrorCode Find_IS_Interface(Mat M,int *sumf ,\

2 int **interfacef ,int** interfacelocf ,int*count_interfacef ,\

3 Vec *wf,int** interiorlocf ,int* count_interiorf ){

4 Mat C;

5 Vec x,y,w;

6 IS is1;

7 PetscInt n,*interface ,* interfaceloc ,count_interface ,i,* interiorloc;// step =1,

8 ISLocalToGlobalMapping ltog;

9 PetscErrorCode ierr;

10 PetscScalar one=1.0, zero =0.0, sumt;

11 int sum =0;

12 PetscScalar *w_array;

13 PetscInt *globalnumbering ,* localnumbering;

14 MatISGetLocalMat(M,&C); // Get the local matrix

15 MatGetLocalToGlobalMapping(C,&ltog ,&ltog); // get the global to local indices

16 ISLocalToGlobalMappingGetSize(ltog ,&n);

17
18 ierr = VecCreate(PETSC_COMM_WORLD ,&x); CHKERRQ(ierr);

19 ierr = VecSetSizes(x,n,PETSC_DECIDE ); CHKERRQ(ierr);

20 ierr = VecSetFromOptions(x); CHKERRQ(ierr);

21 ierr = VecSetLocalToGlobalMapping(x,ltog); CHKERRQ(ierr);

22 for (i=0; i<n; i++) {

23 ierr = VecSetValuesLocal(x,1,&i,&one ,INSERT_VALUES ); CHKERRQ(ierr);

24 }

25 ierr = VecAssemblyBegin(x); CHKERRQ(ierr);

26 ierr = VecAssemblyEnd(x); CHKERRQ(ierr);

27 VecSum(x,&sumt);

28 VecDestroy (&x);

29 sum=sumt;

30 ierr = VecCreate(PETSC_COMM_WORLD ,&x); CHKERRQ(ierr);

31 ierr = VecSetSizes(x,PETSC_DECIDE ,sum); CHKERRQ(ierr);

32 ierr = VecSetFromOptions(x); CHKERRQ(ierr);

33 ierr = VecSet(x,zero); CHKERRQ(ierr);

34 ierr = VecSetLocalToGlobalMapping(x,ltog); CHKERRQ(ierr);

35 for (i=0; i<n; i++) {

36 ierr = VecSetValuesLocal(x,1,&i,&one ,ADD_VALUES ); CHKERRQ(ierr);

37 }

38 /* ****** We Assemble x and duplicate x to w ********* */

39 ierr = VecDuplicate(x,&w); CHKERRQ(ierr);

40 ierr = VecAssemblyBegin(x); CHKERRQ(ierr);

41 ierr = VecAssemblyEnd(x); CHKERRQ(ierr);

42 /* ******* The vector W and we make it local ******* */

43 ierr = VecSet(w,one); CHKERRQ(ierr); CHKERRQ(ierr);

44 ierr = VecPointwiseDivide(w,w,x); CHKERRQ(ierr);

45
46
47 /* ************************************************* */

48 PetscMalloc(n*sizeof(PetscInt),& globalnumbering );

49 PetscMalloc(n*sizeof(PetscInt),& localnumbering );

50 PetscMalloc(n*sizeof(PetscScalar ),&w_array );

51 for(i=0;i<n;i++){

52 localnumbering[i]=i;

53 }

54 ISLocalToGlobalMappingApply(ltog ,n,localnumbering ,globalnumbering );

55 ISCreateGeneral(MPI_COMM_SELF ,n,globalnumbering ,PETSC_COPY_VALUES ,&is1);

56 VecGetSubVector(w,is1 ,&y);

57 VecGetArray(y,& w_array );

58
59 count_interface =0;

60 for(i=0;i<n;i++){

61 if(w_array[i]<1){

62 count_interface=count_interface +1;

63 }

64 }

65 /* ************** Interface Vertices **************** */

66 PetscMalloc(count_interface*sizeof(PetscInt),&interface );

67 PetscMalloc(count_interface*sizeof(PetscInt),& interfaceloc );

68 PetscMalloc ((n-count_interface )* sizeof(PetscInt),& interiorloc );

69 count_interface =0;

70 int count_interior =0;

71 for(i=0;i<n;i++){

72 if(w_array[i]<1){

73 interface[count_interface ]= globalnumbering[i];

74 interfaceloc[count_interface ]=i;

75 count_interface=count_interface +1;

76 }else{

77 interiorloc[count_interior ]=i;

78 count_interior=count_interior +1;

79 }

80 }

81 /* print_array_int (interfaceloc ,count_interface ,1); //TO REMOVE;

82 print_array_int (interiorloc ,count_interior ,2); */

83 PetscFree(localnumbering );

84 PetscFree(globalnumbering );

85 VecRestoreArray(y,& w_array );

86 VecRestoreSubVector(w,is1 ,&y);

87 VecDestroy (&y);

88 VecDestroy (&x);

89 ISDestroy (&is1);

90 PetscFree(w_array );

91 VecDestroy (&x);

92 ISLocalToGlobalMappingDestroy (&ltog);

93
94
95
96 *wf=w;

97 *count_interfacef=count_interface;

98 *interfacef=interface;

99 *interfacelocf=interfaceloc;

100 *interiorlocf=interiorloc;

101 *count_interiorf=count_interior;

102 *sumf=sum;

103
104 return (0);

105 }
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weights, that will be used in order to assemble the averaging operator K. Afterwards

we observe that it is easy to identify the interior points, since if w array[i] = (1/x[i]) <

1 holds, this means that the node i lays on the artificial interface Γ.

Assembly of Matrix K

Assume that G is the interface interpolation operator that interpolates from the global

interface node to the local ones and W is a diagonal matrix with the vector of weights

w, as it is defined in the previous subsection, in the diagonal. Then we can formulate

K as K = WGGT . This is exactly what we do in Algorithm 11, we assemble the

diagonal parallel matrix W , and the matrices G and GT . Then we use the MatMatMult

PETSc function in order to calculate the product K = WGGT and finally we retrieve

K.

Assembly of Matrix Q as a PETSc Shell Matrix

The Matrix Q is not assembled explicitly, instead we define this matrix as a PETSc

Shell matrix, cf. Algorithms 12 and 13. In order to define the Q matrix as a PETSc

Shell matrix, we need to define some basic properties of the matrix, such as the lo-

cal and the global size the matrix. Pointer ∗datainQ holds the information that is

necessary for the matrix-vetor multiplication routine which we have to define and is

passed to the Shell matrix through function

MatCreateShell(PETSC COMM WORLD, count interface

count interface, PETSC DETERMINE, PETSC DETERMINE, datainQ,&Q).

Function MatShellSetOperation(Q, MATOP MULT, (void(∗)(void))QLUmult), sets the

matrix-vector multiplication operations that describe matrix Q and which are imple-

mented in function QLUmult.

Since Q is block-diagonal we can easily calculate its blocks independently in par-

allel. Each block of Q is defined as Qk = a(Sk + aIk)
−1. Hence in order to calculate

the product Qkλk we define the QLUmult function. From system 6.1 we have that

Qkλk = auΓk, hence in this function, instead of assembling or defining the local Schur

complements, we perform an equivalent operation by solving,[
AIIk AIΓk

AΓIk AΓΓk + aI

][
uIk

uΓk

]
=

[
0

λk

]
and then we scale uΓk by the robin parameter a.

Next, depending on which of the two 2-Lagrange multiplier methods we want to use

the, Symmetric or Non-symmetric, we choose functions QMINK(&QminK, K, Q, count interface)

and RHSSymetric(&rhs, Q, g, count interface) or,

IminKQMINK(&QminK, K, Q, count interface) and
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Algorithm 11 Assembly of Matrix K.

1 extern PetscErrorCode Assemble_K(PetscInt sum ,int* interface , \

2 int count_interface ,Mat *Kf,int rank ,int size ,Vec w){

3 Mat G,GT,W,K,GW;

4
5 int flag =1;

6 int i,rowStartG ,rowEndG ,row ,col ,count ,rowStartW ,rowEndW;

7 PetscScalar one=1.0,val;

8
9

10 MatCreate(PETSC_COMM_WORLD ,&G);

11 MatSetSizes(G,count_interface ,PETSC_DECIDE ,PETSC_DETERMINE ,sum);

12 MatSetType(G,MATAIJ );

13 MatSetUp(G);

14 // MatMPIAIJSetPreallocation (G,1,NULL ,1,NULL );

15 MatSetFromOptions(G);

16 MatGetOwnershipRange(G,&rowStartG ,& rowEndG );

17
18
19 count =0;

20 for(i=rowStartG;i<rowEndG;i++){

21 col=interface[count];

22 count=count +1;

23 MatSetValues(G,1,&i,1,&col ,&one ,INSERT_VALUES );

24 }

25
26
27 MatAssemblyBegin(G,MAT_FINAL_ASSEMBLY );

28 MatAssemblyEnd(G,MAT_FINAL_ASSEMBLY );

29
30
31 MatCreate(PETSC_COMM_WORLD ,&W);

32 MatSetSizes(W,PETSC_DECIDE ,PETSC_DECIDE ,sum ,sum);

33 MatSetType(W,MATAIJ );

34 // MatSetUp(W);

35 MatMPIAIJSetPreallocation(W,1,NULL ,1,NULL);

36 MatSetFromOptions(W);

37 MatGetOwnershipRange(W,&rowStartW ,& rowEndW );

38
39 for(i=rowStartW;i<rowEndW;i++){

40 val =0.0;

41 MatSetValues(W,1,&i,1,&i,&val ,INSERT_VALUES );

42 }

43
44 MatAssemblyBegin(W,MAT_FINAL_ASSEMBLY );

45 MatAssemblyEnd(W,MAT_FINAL_ASSEMBLY );

46 MatDiagonalSet(W,w, INSERT_VALUES );

47 VecDestroy (&w);

48
49 MatCreate(PETSC_COMM_WORLD ,&GT);

50 MatSetSizes(GT ,PETSC_DECIDE ,count_interface ,sum ,PETSC_DETERMINE );

51 MatSetType(GT,MATAIJ );

52 MatSetUp(GT);

53 // MatMPIAIJSetPreallocation (G,1,NULL ,1,NULL );

54 MatSetFromOptions(GT);

55
56 int j;

57 // MatSetOption (GT ,MAT_ROW_ORIENTED , PETSC_FALSE );

58 MatGetOwnershipRangeColumn(GT ,&rowStartG ,& rowEndG );

59
60 count =0;

61 for(j=rowStartG;j<rowEndG;j++){

62 row=interface[count];

63 col=j;

64 MatSetValues(GT ,1,&row ,1,&col ,&one ,INSERT_VALUES );

65 count=count +1;

66 }

67
68 MatAssemblyBegin(GT,MAT_FINAL_ASSEMBLY );

69 MatAssemblyEnd(GT ,MAT_FINAL_ASSEMBLY );

70
71 // MatView(GT , PETSC_VIEWER_STDOUT_WORLD );

72 MatMatMult(G,W,MAT_INITIAL_MATRIX ,PETSC_DEFAULT ,&GW);

73 MatDestroy (&G);

74 MatDestroy (&W);

75 MatMatMult(GW,GT,MAT_INITIAL_MATRIX ,PETSC_DEFAULT ,&K);

76 // MatView(K, PETSC_VIEWER_STDOUT_WORLD );

77 MatDestroy (&GW);

78 MatDestroy (&GT);

79 *Kf=K;

80 return 0;

81 }
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Algorithm 12 Assembly of Matrix Q (Shell Matrix routines).

1 typedef struct{

2 PetscScalar Robin_parin;

3 Vec temp ,z;

4 //IS is;

5 int *interfaceloc;

6 int sizeinterface;

7 KSP solver;

8 }QLUdata;

9
10 extern int QLUmult(Mat A,Vec lambda ,Vec Qlambda ){

11
12 QLUdata *data;

13 PetscScalar *values ,val ,* values2;

14 int i,m,Rlow ,Rend;

15 VecGetOwnershipRange(lambda ,&Rlow ,&Rend);

16 MatShellGetContext(A,&data);

17 VecGetArray(lambda ,& values );

18 for(i=0;i<(data ->sizeinterface );i++){

19 val=values[i];

20 m=data ->interfaceloc[i];

21 VecSetValues(data ->temp ,1,&m,&val ,INSERT_VALUES );

22 }

23 VecRestoreArray(lambda ,& values );

24 PetscFree(values );

25 VecAssemblyBegin(data ->temp);

26 VecAssemblyEnd(data ->temp);

27
28 KSPSolve(data ->solver ,data ->temp ,data ->z);

29
30 VecScale(data ->z,data ->Robin_parin );

31 PetscMalloc(data ->sizeinterface*sizeof(PetscScalar ),&values2 );

32 VecGetArray(data ->z,& values2 );

33 for(i=Rlow;i<Rend;i++){

34 m=data ->interfaceloc[i-Rlow]+Rlow;

35 val=values2[i-Rlow];

36 VecSetValues(Qlambda ,1,&m,&val ,INSERT_VALUES );

37 }

38 VecAssemblyBegin(Qlambda );

39 VecAssemblyEnd(Qlambda );

40 VecRestoreArray(data ->z,& values2 );

41
42 return 0;

43 }

RHSNONSymetric(&rhs, Q, K, g, count interface). The matrices Q − K and (I −
2K)(Q−K) are defined as PETSc Shell matrices.

To recover the full local solution we substitute back into the initial local Robin

system and we use a PETSc KSP solver in order to solve the local Robin system.

Assembly of peronditioner P as a PETSc Shell Matrix

In Algorithms 17, 18, 19 and 20 we include the functions an all the routines that are

necessary in order to define the PETSc Shell matrix P .

A.2 The deal.II Implementation

We assumed that it might be useful for some users, to use a modified parallel 2-

Lagrange implementation along with a well established open source Finite element

library, like deal.ii. Hence we modified the above functions and in order to get a more

user friendly code where it is easier to run for different examples and geometries in 2D

and 3D. In Algorithm 21 we present the central class of the code named L2Solver. The

full code can be found in the repository: https://bitbucket.org/modios/deal_2lm
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Algorithm 13 Assembly of Shell Matrix Q (main part of the function).

1
2 extern PetscErrorCode Assemble_QLU(Mat M,int* interface ,int* interfaceloc ,\

3 int count_interface ,PetscScalar Robin_par ,Mat *Qf,KSP* solverf ){

4 Mat Q,RobI;

5 int i,m,n;

6 Mat FC;

7 Vec temp ,z;

8 PetscInt nz=10,col;

9 PetscScalar one =1.0;

10 KSP solver;

11 PC pc;

12 QLUdata* datainQ;

13
14
15 MatISGetLocalMat(M,&FC); // Get the local matrix

16
17 MatGetSize(FC ,&m,&n);

18 VecCreateSeq(PETSC_COMM_SELF ,n,&temp);

19
20 VecDuplicate(temp ,&z);

21 MatCreate(PETSC_COMM_SELF ,&RobI);

22 MatSetSizes(RobI ,m,n,m,n);

23 MatSetType(RobI ,MATSEQAIJ );

24 MatSeqAIJSetPreallocation(RobI ,nz,NULL);

25
26 for(i=0;i<count_interface;i++){

27 col=interfaceloc[i];

28 MatSetValues(RobI ,1,&col ,1,&col ,&Robin_par ,INSERT_VALUES );

29 }

30 MatAssemblyBegin(RobI ,MAT_FINAL_ASSEMBLY );

31 MatAssemblyEnd(RobI ,MAT_FINAL_ASSEMBLY );

32 MatAXPY(RobI ,one ,FC,DIFFERENT_NONZERO_PATTERN );

33 MatDestroy (&FC);

34
35 KSPCreate(PETSC_COMM_SELF ,& solver );

36 KSPSetType(solver , KSPPREONLY );

37 KSPGetPC(solver ,&pc);

38 PCSetType(pc,PCLU);

39 KSPSetOperators(solver ,RobI ,RobI ,SAME_PRECONDITIONER );

40 KSPSetUp(solver );

41
42 PetscMalloc(sizeof(QLUdata),&datainQ );

43 datainQ ->Robin_parin=Robin_par;

44 datainQ ->interfaceloc=interfaceloc;

45 datainQ ->sizeinterface=count_interface;

46 datainQ ->temp=temp;

47 datainQ ->z=z;

48 datainQ ->solver=solver;

49 MatCreateShell(PETSC_COMM_WORLD ,count_interface ,count_interface ,PETSC_D ETERMINE ,\

PETSC_DETERMINE ,datainQ ,&Q);

50 MatShellSetOperation(Q,MATOP_MULT ,(void (*)( void)) QLUmult );

51 MatSetFromOptions(Q);

52 MatDestroy (&RobI);

53 *Qf=Q;

54 *solverf=solver;

55
56 return 0;

57 }
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Algorithm 14 Assembly of Shell Matrix Q−K
1 typedef struct{

2 Mat K,Q;

3 Vec z,ll,lm,lz;

4 }QminKdata;

5
6
7 extern PetscErrorCode QminKmul_func(Mat QminKmul ,Vec x, Vec y){

8
9 QminKdata *QmK;

10 PetscScalar minusOne =-1.0;

11
12 MatShellGetContext(QminKmul ,&QmK);

13 MatMult(QmK ->K,x,QmK ->z);

14 MatMult(QmK ->Q,x,y);

15 VecAXPY(y,minusOne ,QmK ->z);

16
17 return 0;

18 }

19 extern PetscErrorCode QMINK(Mat *QminKf ,Mat K, Mat Q,int count_interface ){

20
21 QminKdata *datain;

22 Mat QminK;

23 Vec z;

24
25 PetscMalloc(sizeof(QminKdata),&datain );

26 datain ->K=K;

27 datain ->Q=Q;

28 VecCreate(PETSC_COMM_WORLD ,&z);

29 VecSetSizes(z,count_interface ,PETSC_DECIDE );

30 VecSetFromOptions(z);

31 VecAssemblyBegin(z);

32 VecAssemblyEnd(z);

33 datain ->z=z;

34 MatCreateShell(PETSC_COMM_WORLD ,count_interface ,count_interface ,PETSC_DETERMINE ,\

35 PETSC_DETERMINE ,datain ,&QminK);

36 MatShellSetOperation(QminK ,MATOP_MULT ,(void (*)( void)) QminKmul_func );

37 MatSetFromOptions(QminK);

38 *QminKf=QminK;

39 return 0;

40 }

Algorithm 15 Assembly of Shell Matrix (I − 2K)Q−K
1 extern PetscErrorCode IminKmulQminK_func(Mat IminKmulQminK ,Vec x, Vec y){

2
3 QminKdata *QmK;

4 PetscScalar minusOne ,minusTwo;

5
6 MatShellGetContext(IminKmulQminK ,&QmK);

7
8 MatMult(QmK ->K,x,QmK ->ll);

9 MatMult(QmK ->Q,x,QmK ->z);

10 minusOne =-1.0;

11 minusTwo =-2.0;

12
13 VecWAXPY(QmK ->lz,minusOne ,QmK ->ll ,QmK ->z);

14 MatMult(QmK ->K,QmK ->lz,QmK ->lm);

15
16 VecCopy(QmK ->lz,y);

17 VecAXPY(y,minusTwo ,QmK ->lm);

18
19 return 0;

20 }

21
22
23
24 extern PetscErrorCode IminKQMINK(Mat *IminQminKf ,Mat K, Mat Q,int count_interface ){

25
26 QminKdata *datain;

27 Mat QminK;

28 Vec z;

29
30 PetscMalloc(sizeof(QminKdata),&datain );

31
32 datain ->K=K;

33 datain ->Q=Q;

34 VecCreate(PETSC_COMM_WORLD ,&z);

35 VecSetSizes(z,count_interface ,PETSC_DECIDE );

36 VecSetFromOptions(z);

37 VecDuplicate(z,&(datain ->ll));

38 VecDuplicate(z,&(datain ->lz));

39 VecDuplicate(z,&(datain ->lm));

40 datain ->z=z;

41 MatCreateShell(PETSC_COMM_WORLD ,count_interface ,count_interface ,PETSC_DETERMINE ,\

42 PETSC_DETERMINE ,datain ,&QminK);

43 MatShellSetOperation(QminK ,MATOP_MULT ,(void (*)( void)) IminKmulQminK_func );

44 MatSetFromOptions(QminK);

45
46 *IminQminKf=QminK;

47 return 0;

48 }
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Algorithm 16 Assembly of Shell Matrix (I − 2K)(Q−K)

1 int RecoverSulution(KSP solver ,Vec f,Vec l,Vec* solution ,int* interface ,int size_intinterface ){

2 Vec temp;

3 PetscScalar *lambdarray ,one =1.0;

4 VecDuplicate(f,&temp);

5 VecZeroEntries(temp);

6 VecGetArray(l,& lambdarray );

7 VecSetValues(temp ,size_intinterface ,interface ,lambdarray , INSERT_VALUES );

8 VecAYPX(f,one ,temp);

9 KSPSolve(solver ,f,temp);

10 VecView(temp ,PETSC_VIEWER_STDOUT_SELF );

11 VecDestroy (&l);

12 VecDestroy (&f);

13 return 0;

14 }

Algorithm 17 Preconditioner support functions

1 static PetscErrorCode LExpicit(Mat *Lf,Mat J,Mat JT ,Mat K,int count_interface ,int size){

2 Mat C,Ident ,KJ;

3 int rowStart ,rowEnd ,i;

4 PetscScalar minusone =-1.0,one =1.0;

5
6 MatCreate(PETSC_COMM_WORLD ,&Ident);

7 MatSetSizes(Ident ,PETSC_DECIDE ,PETSC_DECIDE ,size ,size);

8 MatSetUp(Ident);

9 MatSetFromOptions(Ident);

10 MatGetOwnershipRange(Ident , &rowStart ,& rowEnd );

11
12 for (i=rowStart; i<rowEnd; i++){

13 MatSetValue(Ident ,i,i,one ,INSERT_VALUES );

14 }

15 MatAssemblyBegin(Ident ,MAT_FINAL_ASSEMBLY );

16 MatAssemblyEnd(Ident ,MAT_FINAL_ASSEMBLY );

17 MatMatMult(K,J,MAT_INITIAL_MATRIX ,PETSC_DEFAULT ,&KJ);

18 MatMatMult(JT,KJ,MAT_INITIAL_MATRIX ,PETSC_DEFAULT ,&C);

19 MatAXPY(C,minusone ,Ident ,DIFFERENT_NONZERO_PATTERN );

20 MatDestroy (&Ident);

21 MatDestroy (&KJ);

22 *Lf=C;

23 return 0;

24 }

25
26 int MatParToSeq(Mat *OUTMAT ,Mat INMAT ,int size ,int rank){

27 PetscInt rowStartK ,rowEndK ,Globalrows ,Globalcolumns;

28 Mat *Lseq ,F;

29 PetscErrorCode ierr;

30 IS *is;

31
32 ierr= MatGetSize(INMAT ,&Globalrows ,& Globalcolumns ); CHKERRQ(ierr);

33 ierr=MatGetOwnershipRange(INMAT ,&rowStartK ,& rowEndK ); CHKERRQ(ierr);

34 PetscMalloc(sizeof(IS **),&is);

35
36 ISCreateStride(PETSC_COMM_WORLD ,Globalcolumns ,0,1,is);

37
38 MatGetSubMatrices(INMAT ,1,is ,is,MAT_INITIAL_MATRIX ,&Lseq);

39 ISDestroy(is);

40 PetscFree(is);

41 MatDuplicate(Lseq[0], MAT_COPY_VALUES ,&F);

42 MatDestroyMatrices (1,&Lseq);

43 *OUTMAT=F;

44 return 0;

45 }
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Algorithm 18 Preconditioner Shell Matrix routines

1 typedef struct{

2 Mat J,JT;

3 Vec TempJ ,TempJT ,z,z1;

4 int count_interface ,flag ,Rlow ,RlowJ ,RendJ ,size ,rank;

5 KSP solver;

6 }Precondata3;

7
8 extern PetscErrorCode Precon3_func(Mat P,Vec lambda , Vec y){

9
10 Precondata3 *datain;

11 PetscScalar minusone =-1.0,one =1.0,*avec ,*bvec;

12 Vec vout ,f;

13 int i;

14 IS isscat;

15
16 MatShellGetContext(P,& datain );

17 ISCreateStride(PETSC_COMM_WORLD ,datain ->rank ==0? datain ->size:0,datain ->rank ==0?0: datain ->size ,1,& isscat );

18 MatMult(datain ->JT,lambda ,datain ->TempJ);

19 VecGetSubVector(datain ->TempJ ,isscat ,&vout);

20
21 if(datain ->rank ==0){

22 VecGetArray(vout ,&avec);

23 VecCreateSeqWithArray(PETSC_COMM_SELF ,1,datain ->size ,avec ,&f);

24 KSPSolve(datain ->solver ,f,datain ->z1);

25 VecRestoreArray(vout ,&avec);

26 VecDestroy (&f);

27 }

28 VecRestoreSubVector(datain ->TempJ ,isscat ,&vout);

29 if(datain ->rank ==0){

30 VecGetArray(datain ->z1 ,&bvec);

31 for(i=0;i<datain ->size;i++){

32 VecSetValue(datain ->z,i,bvec[i],INSERT_VALUES );

33 }

34 VecRestoreArray(datain ->z1 ,&bvec);

35 }

36 VecAssemblyBegin(datain ->z);

37 VecAssemblyEnd(datain ->z);

38 MatMult(datain ->J,datain ->z,datain ->TempJT );

39 MatMult(datain ->J,datain ->TempJ ,y);

40 VecAXPBYPCZ(y,one ,minusone ,minusone ,lambda ,datain ->TempJT );

41 ISDestroy (& isscat );

42 return 0;

43 }

A.3 The femH parallel C++ FEM library

This is a work in progress, with femH we try to create a parallel finite elements

library inspired from our Matlab codes, ifem and deal.ii and tailored for overlapping

and non-overlapping domain decomposition methods. Some classes of this library

are presented during the Finite Element Methods Chapter of the Thesis and have

been used for the PCASM experiments in Chapter 4.This code can be found at https:

//bitbucket.org/modios/femh/.
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Algorithm 19 Assembly of Shell Matrix P , part 1.

1 PetscErrorCode Preconcondioner_3(Mat *Pf,Mat M,int count_interface ,Mat K,int rank ,int size){

2 Mat J,JT,P,TempA ,L,LE;

3 Vec z,z1,out ,TempJ ,TempJT;

4 int n,flag ,rowStartJ ,rowEndJ ,i,cumsum =0;//,rowId ,colId;,m,

5 PetscScalar norm ,one=1.0,val;//,zero =0.0;

6 Precondata3 *datain;

7 KSP solver;

8 PC pc;

9
10 MatISGetLocalMat(M,&TempA);

11 MatGetSize(TempA ,&n,&n);

12 VecCreate(PETSC_COMM_SELF ,&z);

13 VecSetSizes(z,n,n);

14 VecSetFromOptions(z);

15 VecSet(z,one);

16 VecDuplicate(z,&out);

17 MatMult(TempA ,z,out);

18 // VecView(out , PETSC_VIEWER_STDOUT_SELF );

19 VecNorm(out ,NORM_2 ,&norm);

20 //if(norm <1e -12){ flag =1;

21 if(norm <1e-6){ flag =1;

22 }else{ flag =0;}

23 // printf ("%f\n",norm );

24 int *totalcount=malloc(sizeof(int)*size);

25 MPI_Allgather (& count_interface , 1, MPI_INT ,totalcount ,1,MPI_INT ,

26 PETSC_COMM_WORLD );

27 if(rank >0){

28 for(i=0;i<rank;i++){

29 cumsum=cumsum+totalcount[i];

30 }

31 }

32 // printf (" RANK %d %d\n",rank ,cumsum );

33 VecDestroy (&z);

34 VecDestroy (&out);

35
36 MatCreate(PETSC_COMM_WORLD ,&J);

37 MatSetSizes(J,count_interface ,1,PETSC_DETERMINE ,PETSC_DETERMINE );

38 MatSetType(J,MATMPIAIJ );

39 MatMPIAIJSetPreallocation(J,1,NULL ,1,NULL);

40 MatSetFromOptions(J);

41
42
43 MatCreate(PETSC_COMM_WORLD ,&JT);

44 MatSetType(JT,MATMPIAIJ );

45 MatSetSizes(JT ,1,count_interface ,PETSC_DETERMINE ,PETSC_DETERMINE );

46 MatSetUp(JT);

47
48
49 MatGetOwnershipRange(J,&rowStartJ ,& rowEndJ );

50
51 if(flag){

52 for(i=rowStartJ;i<rowEndJ;i++){

53 val =1./ sqrt(count_interface );

54 MatSetValues(J,1,&i,1,&rank ,&val ,INSERT_VALUES );

55 }

56 }

57
58 MatAssemblyBegin(J,MAT_FINAL_ASSEMBLY );

59 MatAssemblyEnd(J,MAT_FINAL_ASSEMBLY );

60
61 if(flag){

62 for(i=cumsum;i<cumsum+count_interface;i++){

63 val =1./ sqrt(count_interface );

64 MatSetValues(JT ,1,&rank ,1,&i,&val ,INSERT_VALUES );

65 }

66 }

67 MatAssemblyBegin(JT,MAT_FINAL_ASSEMBLY );

68 MatAssemblyEnd(JT ,MAT_FINAL_ASSEMBLY );
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Algorithm 20 Assembly of Shell Matrix P , part 2.

1
2 VecCreate(PETSC_COMM_WORLD ,&TempJ);

3 VecSetSizes(TempJ ,1, PETSC_DECIDE );

4 VecSetFromOptions(TempJ);

5
6 VecDuplicate(TempJ ,&z);

7
8 VecCreate(PETSC_COMM_SELF ,&z1);

9 VecSetSizes(z1 ,size ,size);

10 VecSetFromOptions(z1);

11
12
13
14 VecCreate(PETSC_COMM_WORLD ,& TempJT );

15 VecSetSizes(TempJT ,count_interface ,PETSC_DECIDE );

16 VecSetFromOptions(TempJT );

17
18
19
20 LExpicit (&LE,J,JT,K,count_interface ,size);

21 MatParToSeq (&L,LE,size ,rank);

22 MatDestroy (&LE);

23
24
25 KSPCreate(PETSC_COMM_SELF ,& solver );

26 KSPSetOperators(solver ,L,L,SAME_PRECONDITIONER );

27 KSPSetType(solver , KSPPREONLY );

28 KSPGetPC(solver ,&pc);

29 // PCSetType (pc , PCCHOLESKY );

30 PCSetType(pc,PCLU);

31 KSPSetFromOptions(solver );

32 KSPSetUp(solver );

33
34
35
36
37 PetscMalloc(sizeof(Precondata3 ),&datain );

38 datain ->JT=JT;

39 datain ->J=J;

40 datain ->TempJ=TempJ;

41 datain ->TempJT=TempJT;

42 datain ->z=z;

43 datain ->z1=z1;

44 datain ->rank=rank;

45 datain ->size=size;

46 datain ->solver=solver;

47
48
49 MatCreateShell(PETSC_COMM_WORLD ,count_interface ,count_interface ,PETSC_DETERMINE ,\

50 PETSC_DETERMINE ,datain ,&P);

51 MatShellSetOperation(P,MATOP_MULT ,(void (*)( void)) Precon3_func );

52 MatSetFromOptions(P);

53 MatDestroy (&L);

54
55 *Pf=P;

56
57 return 0;

58 }
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Algorithm 21 Main class for the deal.ii 2 Lagrange multiplier solver

1 template <int dim >

2 class L2Solver

3 {

4 public:

5 L2Solver ();

6 ~L2Solver ();

7 void run ();

8 private:

9 void make_grid ();

10 void initialise_solution ();

11 void renum_mesh ();

12 void find_GG ();

13 void setup_system ();

14 void output_results () const;

15 void create_K ();

16 void create_AN ();

17 void penalty_AN ();

18 void Q_LU ();

19 void Precondtioner ();

20 void QMINK ();

21 void IminKQMINK ();

22 void G_Vector ();

23 void RHSSymetric ();

24 void RHSNONSymetric ();

25 void RecoverSulution ();

26 void Gather_solution ();

27
28 void write_coordinates ();

29 void write_vector(Vector <double > & v, std:: string filename );

30 void write_vector (std:: vector <bool > &v, std:: string filename );

31 void write_vector (std:: vector <PetscInt > &v, std:: string filename );

32 void Solver_KSP ();

33
34 Mat K;

35 Mat AN;

36 Mat Q;

37 Mat Precond;

38 Mat QminK ,IminKQminK;

39 Vec l;

40 Vec local_solution;

41 Vec final_solution;

42
43 const PetscScalar minusone =-1.0,one=1.0, zero =0.0;

44
45 Triangulation <dim > triangulation;

46 FE_Q <dim > fe;

47 DoFHandler <dim > dof_handler;

48
49 Vec SQrhs ,rhs;

50
51 ConstraintMatrix constraints;

52
53
54 MPI_Comm mpi_communicator;

55
56 IndexSet locally_owned_dofs;

57 PETScWrappers ::MPI:: Vector Mmod;

58 PETScWrappers ::MPI:: Vector result;

59 KSP KspRobin;

60 Vec tempsolution;

61
62 const unsigned int n_mpi_processes;

63 const unsigned int this_mpi_process;

64 ConditionalOStream pcout;

65 TimerOutput computing_timer;

66
67
68 std:: vector <PetscInt > global_to_local;

69 std::vector <PetscInt > local_indices;

70 std::vector <PetscInt > interface ,local_interface ,local_to_global_interface;

71 std::vector <PetscInt > local_boundary ,local_interior;

72 std::vector <PetscScalar > w;

73 PetscScalar Robin_par =0.75;

74 };
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Proof of Theorem 5.5.22

In this Appendix we provide the proof of Theorem 5.5.22 in a Matrix representation

framework.

Lemma B.0.1 (Halmos [35]). Let E and K be orthogonal projections. There is an

orthogonal matrix U which simultaneously block diagonalizes E and K, into 1×1 and

2× 2 blocks. If we denote the kth block of the block-diagonalized E by Ek, and the kth

block of the block-diagonalized K by Kk, we further have that

Ek ∈

{
0, 1,

[
1 0

0 0

]}
and Kk ∈

{
0, 1,

[
c2
k cksk

cksk s2
k

]}
, (B.1)

where ck = cos(tk) 6= 0 and sk = sin(tk) 6= 0 with real tk ∈ (0, π/2) for each k.

The ranges of E and K are hyperspaces, and the angles {tk} are the “principal

angles” between these two hyperspaces.

Proof. Assume that E has the form,

E =

[
0 0

0 I

]

and we write the orthogonal projection in a blocks form with X,Z diagonalisable

matrices

K =

[
X Y

Y T Z

]
.

If we apply the singular value decomposition on matricesX, Z we getX = UΣ1U
T ,

Y = UTY V and Z = V Σ2V
T . If we set

M =

[
U 0

0 V

]
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we get

MTKM =

[
UTXU UTY V

V TY TU UTZU

]
:= K̃

and let X̃ = UTXU and Z̃ = UTZU , where both X̃, Z̃ are diagonal matrices. We

use that K2 = K, since K is an orthogonal projection and we get[
X̃2 + Ỹ Ỹ T X̃Ỹ + Ỹ Z̃

Ỹ T X̃ + Z̃T Ỹ T Z̃2 + Ỹ Ỹ T

]
= K̃.

To make the notation simpler we drop the tildes for the rest of the proof. Since

X and Y are diagonal we get that

(XY + Y Z)ij = Yij

which leads to

XiiYij + YijZjj = Yij.

Hence, if Yij 6= 0 then we should have Xii + Zjj = 1 else, if Yij = 0, Xii, Zjj are

arbitrary. Grouping repeated eigenvalues together leads to,

K̃ =



x1I1 Y11 Y12 · · · Y1n

x2I2
...

...
...

...
. . .

...
...

...
...

xmIm Ym1 Ym2 · · · Ymn

Y11 Y21 · · · Yn1 z1Im+1

...
...

...
... z2Im+2

...
...

...
...

. . .

Y1m Y2m · · · Ynm znIn


By the preceding, we have that Yij = 0 unless xi,zj 6= 0. Hence we can also block

diagonalize the matrix Y . Permuting again the rows and columns of K we get a block

diagonal projection matrix with blocks[
xjIj Yj

Y T
j zjIm+j

]
. (B.2)

If we use singular the value decomposition on matrix Yj in (B.2) one attains[
xj σ

σ zj

]
. (B.3)

In order to get a better insight of 2×2 projections we categorise them in the following

way.
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1. Rank 0 projection: the only choice here is the Zero matrix.

2. Rank 2 projection: the only choice is the identity matrix I, with λ1 = λ2 = 1.

3. Rank 1 projection: Here we can either have λ = 0 or λ = 1. Since the projection

is symmetric, each block of K can be written as Kk = Q

[
1 0

0 0

]
QT , where Q is

orthogonal [
c

s

]
with c2 + s2 = 1, is the left column of Q, then

Q =

[
c ∗
s ∗

]
.

Finally we get that

Kk =

[
c2 cs

cs s2

]
.
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