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Distributed Admission Control

Frank P. Kelly, Peter B. Key and Stan Zachary

Abstract| This paper describes a framework for admis-
sion control for a packet-based network where the decisions

are taken by edge devices or end-systems, rather than re-
sources within the network. The decisions are based on the

results of probe packets that the end-systems send through
the network, and require only that resources apply a mark
to packets in a way that is load dependent. One application

example is the Internet, where marking information is fed
back via an ECN bit, and we show how this approach allows
a rich QoS framework for ows or streams. Our approach

allows networks to be explicitly analysed, and consequently
engineered.

Keywords|Communication system control, packet switch-
ing, distributed control, congestion noti�cation, product
form, shadow prices, loss network.

I. Introduction

The current Internet does not give any Quality of Service
(QoS) guarantees. This is a particular problem for stream-
ing applications. Typical applications are voice or video
streams; however the problem applies much more generally
to transfers of data or ows which have an inelastic com-
ponent, that is which need some minimum level of band-
width to function correctly. Current interest in labelling
and switching ows increases the importance of Quality of
Service questions.
Measurement based admission control (MBAC) research

has shown that it possible to assure Quality of Service for
varying heterogeneous tra�c by inferring information from
on-line measurements. ATM, a connection oriented trans-
fer mode, was a natural setting for early work [1], [2], [3], [4]
with variable bit-rate (VBR) tra�c providing the impetus:
VBR tra�c is hard to characterise and introducing regula-
tors, policers or shapers does not solve the problem since
these also require some characterisation to sensibly set pa-
rameters. MBAC o�ered an attractive solution providing
useful multiplexing gains with minimal assumptions.
The timescale decomposition of Hui [5] shed light on how

to apply theory in practice: connections last for a period
of time and generate periodic bursts of activity, where each
burst of activity consists of a number of cells transmitted
at the line rate. A natural timescale separation follows if
just enough bu�ering is present in the network switches to
absorb cell-scale e�ects (caused by phase e�ects of cells sent
at the peak rate), with admission control limiting the prob-
ability of an excess number of bursts to an acceptably low
level. In other words, the bu�ering in switches is su�cient
to absorb the aggregate cell-delay variation.
Initially intended for real-time streaming applications,

the ideas also apply to non-real time tra�c (`data') pro-
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vided the cell-scale and burst scales are suitably reinter-
preted. MBAC ideas also found a home in the Internet
community [6], [7], [8], and have been proposed as a way of
limiting the number of ows or connections, where a ow
can be a general transfer of data between a source and an
endpoint or endpoints.

It is worthwhile recapping the lessons that have been
learned from the measurement-based research. First, sim-
ple algorithms based solely on load measurements are gen-
erally robust. Secondly, there is a trade-o� between con-
nection blocking and packet loss: most algorithms can be
tuned to improve one at the cost of the other. Thirdly,
the timescale over which load is measured is important,
but little is gained by building history into the inference
process.

A problem nevertheless remains with current MBAC
work: how should decisions be made on an end-to-end ba-
sis? One option is to invoke signalling to pass messages
between resources. However, we propose a di�erent ap-
proach: let the connection decide whether or not it should
enter the network. The connection has to infer information
about aggregate load, for example by sending probe pack-
ets, and necessarily is in a poorer position to deduce state
information about a resource than the resource itself. But,
conversely, it is in a much better position to make timely
end-to-end inferences along a probed path.

In our approach, we require information to be fed back
to the end-systems associated with a potential connection.
The framework is not tied to any particular implementa-
tion, however it is natural to think of the Internet, in which
case the recent RFC on Explicit Congestion Noti�cation,
[9] would provide a mechanism for conveying information
back. Elsewhere[10], [11] it is argued that such a framework
allows a coherent treatment of pricing and QoS issues, in
integrated networks carrying both streaming and data ap-
plications.

Gibbens and Kelly [12] and Tur�anyi and Westberg [13]
have looked at distributed connection admission control
with an edge-device or broker acting as a gateway to de-
termine whether to accept a connection or not, with the
aim of keeping the experienced packet marking rate to an
acceptable level. Thus the gateways act as aggregators
and have access to aggregate information. We go one step
further here, where information is only obtained through
the (noisy) packet marking signal the end-system receives.
Alternative mechanisms for conveying information to end-
systems have been studied by Elek et al. [14], who use
packet loss, and Bianchi et al. [15], who require the net-
work to give lower priority to probe packets.

The organisation of this paper is as follows. In Section II
we describe a model for probabilistic admission to a loss
network. We develop methods for its analysis and approxi-
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mation. Product form distributions and �xed point models
have long been used to model telecommunication networks
(see for example, [16, page 203], [17], and, for a more recent
discussion, [18]), and the implied costs and shadow prices
derived from �xed point models have found extensive use
in studies of design optimization and resource management
for several forms of circuit-switched network (Key [19],
Farago et al. [20], Mitra et al. [21], [22]). Introductions to
the area are provided by Kelly [23] and Ross [24]. We show
that these methods may be generalized to networks where
call admission is probabilistic, and thus allow the analysis
of networks where admission control is measurement-based
and distributed.
In Sections II-A and II-B we develop a simple network

model that admits a product form solution. The simple
model makes strong assumptions on, for example, the ho-
mogeneity of bandwidth requirements, but allows exact
calculations for various quantities of interest. The sim-
ple model leads directly, in Sections II-C, II-D and II-E,
to �xed point approximations for networks carrying large
numbers of connections, or for networks with diverse rout-
ing. The �xed point approximations are applicable more
widely than the product form solutions, and in Sections II-
F, II-G we describe how they emerge from the average
dynamics of a large network, following the work of Hunt
and Kurtz [25] and Zachary [26].
The connection level models of Section II uses a very

simple abstraction of resource behaviour. In Section III we
develop more detailed models of resources, showing how
the abstraction used in Section II may arise from the packet
level dynamics of the resource. We consider models where
the connections generate bursts of activity, as well as mod-
els where connections behave more smoothly. A robust
mechanism to detect approaching tra�c overload, without
the need for source tra�c characterization, is provided by
the Virtual Queue mechanism: a resource marks packets
or not depending on the state of a �ctitious queue, of lower
capacity than the real queue. In Section III-D we use the
many sources asymptotic [27], [28], [29] to provide impor-
tant insights into the relevant packet level timescales, and
thus into the robustness of such mechanisms. Finally, in
Section IV, we conclude.

II. Connection level network models

We now explore more fully how an end-system or user
might decide whether or not to enter the system. In e�ect,
this is admission control performed by the user. We assume
that each arriving call request (where we use the term `call'
to represent a connection or ow) probes the network and
is accepted, that is, decides to enter the network, with a
probability which depends on the current load on resources.
In this section we study a model for such distributed call
acceptance control, in which the load is assumed to be gen-
erated by the calls themselves. We also assume indepen-
dence of the packet level dynamics at each resource, condi-
tional on the current load on the network. We �rst analyse
a speci�c model in which we further assume homogeneity
of bandwidth requirements across di�erent call types, and

also that, for a call to be accepted, each resource along its
route must signal that it is uncongested. This leads to the
product form acceptance probability (1) below, and so to
the product form stationary distribution (3). In Section II-
G, we discuss the analysis of more general models.

A. A simple model

Let J be a set of resources, and R a set of routes, where
r 2 R identi�es a subset of J . Calls requesting route r

arrive as a Poisson stream of rate �r. Each such call probes
the network and is accepted with probability

�ar(m(n)) =
Y
j2r

aj(mj(n)): (1)

Here n = (nr; r 2 R) where nr is the number of calls al-
ready in progress on each route r and m(n) = (mj(n); j 2
J) where mj(n) =

P
r2R:j2r nr is the existing occupancy

of each resource j. For each j, the function aj is non-
increasing and takes values in the interval [0; 1]. We can
interpret aj(mj) as the probability resource j marks none
of a �xed number of probe packets used by a call request-
ing connection through resource j, when mj is the num-
ber of calls already in progress through that resource. The
product form acceptance probability (1) corresponds to the
assumption of independence of the packet level dynamics
at each resource, conditional on the current load, together
with the requirement (in this speci�c model) that, for a call
to be connected, it must be \accepted" by each resource
along its route. As an example, we might take

aj(mj) = PfX(mj; p) < �jg; (2)

for some probability p and threshold �j , where X(mj ; p)
is a binomial random variable|an example we explore in
more detail in Sections III-A and III-B.

Suppose further, without loss of generality, that accepted
calls have holding times with unit mean. Then the station-
ary distribution � of the vector n is given by

�(n) = �(0)
Y
r2R

�nrr
nr!

Y
j2J

mj(n)Y
k=1

aj(k � 1): (3)

In the case of exponential holding times this is immediate
from the reversibility of the Markov process (n(t); t � 0)
giving the number of calls in progress at each time t. More
generally the result follows from the quasireversibility of
this process [30].

Note that this is also the mathematical model which is
appropriate to a traditional uncontrolled loss network with
\hard" capacity constraints, in which each resource j has a
�xed capacity Cj and aj(mj) = 1 if mj < Cj , aj(mj) = 0
otherwise. It turns out that many of the results for such a
loss network generalise to the present model. In particular,
for a large network the stationary distribution above is con-
centrated on the same point as that for the traditional loss
network with appropriately de�ned Cj|see Appendix 1.
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B. The occupancy distribution

We now study the stationary distribution of the resource
occupancy vector m, together with the corresponding call
acceptance probabilities. We give a recursion which enables
the e�cient and exact computation of these quantities|at
least in networks of small to medium capacity|and which
more generally provides insight into the behaviour of the
model (see Section II-C).
For each m, de�ne ��(m) =

P
n : m=m(n) �(n) (where �

is as given by (3)) to be the stationary probability that
the total load on the network is given by the vector m. For
each r 2 R, de�ne the vector �r = (�rs; s 2 R) by �rs = 1 if
s = r, �rs = 0 otherwise; de�ne also the vector er = m(�r).
It follows from (3) that, for each n and for each r,

�(n)nr = �(n� �r)�r�ar(m(n)� er); (4)

where the function �ar is given by (1). (In the case of ex-
ponential holding times, when the process (n(t); t � 0) is
Markov and reversible, the equations (4) are the detailed
balance equations for this process.) Now, for each m and
for each j 2 J , sum the equations (4) over those n such
that m(n) = m and over those r such that j 2 r to obtain,
straightforwardly,

��(m)mj =
X
r : j2r

�r�
�(m� er)�ar(m� er): (5)

The equations (5) enable the recursive determination of
the stationary probabilities ��(m)|for example, by induc-
tion on jmj =

P
j2J mj . They form a natural general-

isation of the Kaufman-Dziong-Roberts recursion for the
direct computation of the exact resource-occupancy distri-
bution in a traditional uncontrolled loss network (see [31]).
There the ultimate goal is usually the computation of the
stationary blocking, or equivalently the stationary accep-
tance, probabilities. For the present model, the stationary
probability that a call of type r is accepted is given byP

m ��(m)�ar(m).

C. A simple �xed point approximation

Simpli�cations arise in large networks, often formalised
for loss networks by a familiar limiting regime in which ar-
rival rates and capacities are allowed to grow in proportion
to some scale parameter N|see Appendix 1 for a formal
result in the context of the current model. Thus suppose
that both the arrival rates �r, r 2 R, and the capacities of
the resources j 2 J (e�ectively de�ned by the functions aj)
are large. We develop a simple �xed point approximation
identifying those regions in which the stationary distribu-
tions of n and m(n) are concentrated, and derive the cor-
responding call acceptance probabilities.
The stationary distribution � of n is given by (3). Since,

for each j, aj(m) is decreasing in m, the function log�
is concave, and so log�(n) is maximised by some unique
n = �n, which, by our above assumptions, will again be
large. Now take logarithms in (3), and use Stirling's ap-
proximation (logn! = 1

2
log 2�n + n logn � n + O(n�1)).

Assume that the functions aj are su�ciently smooth to

permit partial di�erentiation of log�(n) with respect to
each nr (treating the latter as continuous). We then ob-
tain that �n is given, to a good approximation in a large
network, by

�nr = �r�ar(m(�n)); r 2 R: (6)

Further, for each j, by summing these equations over r such
that j 2 r, we obtain

mj(�n) =
X
r:j2r

�r�ar(m(�n)); j 2 J: (7)

The equations (6) and (7) form sets of �xed point equa-
tions for the vectors �n and m(�n) respectively. (Note that
the equations (7) may also be obtained directly from (5)
by making the reasonable assumptions that ��(m) varies
smoothly in m and is maximised, to a su�ciently good ap-
proximation, by m(�n).) Now the stationary distribution of
m typically declines more sharply away from its mode than
does that of n|see [32] and [33] for the analogous results in
the case of a traditional uncontrolled loss network, where
aj(mj) 2 f0; 1g. Further, the size of the set J is usually
less than that of the set R. Hence if, for example, recursive
substitution is used to solve either the equations (6) or (7)
then the latter set may generally be expected to be easier
to solve, after which �n may be obtained from (6).
Again as for of the traditional loss network above, we

may show that, for a large network, �(n) does decrease
su�ciently fast as n moves away from �n that the station-
ary distributions � and �� are e�ectively concentrated in
small neighbourhoods of �n and m(�n) respectively. For each
call type r, the corresponding stationary acceptance prob-
ability is clearly given by E� (nr)=�r, where E� (nr) is the
expectation of nr under the stationary distribution �. The
concentration of � in a small neighbourhood of �n ensures
that E� (nr) is close to �nr and so, from (6) and to a good ap-
proximation in a large network, the stationary acceptance
probability for a call of type r is given by �ar(m(�n)). It now
follows also from (1) that the stationary acceptance prob-
abilities are, approximately, as if each resource j accepts
calls with probability aj(mj(�n)), independently of other
resources. We re�ne these approximations in Section II-D.
Note also that if, for each j, we de�ne Cj = mj(�n), then

comparison of (1), (6) and (7) with the equations of The-
orem 2.1 of [32] shows that �n is also the point on which is
concentrated the stationary distribution of n in the corre-
sponding (traditional) uncontrolled loss network in which
calls are accepted subject only to a hard capacity constraint
Cj on each resource j. We make a further important con-
nection in Appendix 1.

D. A re�ned �xed point approximation

We now give a re�nement of the approximation of the
previous section. For each resource j, let Aj(�j ; �j) be
the stationary acceptance probability when that resource
is o�ered a single Poisson stream of call tra�c of rate �j
and operates with a threshold parameter �j . (We show in
Section III-B how the parameter �j arises in the binomial
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model: more generally we use this parameter as a proxy for
the capacity of resource j.) Then Aj(�j ; �j) is readily com-
puted exactly via the relation �jAj(�j ; �j) =

P
n�0 n�j(n)

where, from (3),

�j(n) = �j(0)
�nj

n!

nY
k=1

aj(k � 1);
X
n�0

�j(n) = 1: (8)

We treat the network call acceptance probabilities as if,
under stationarity, the network resources accept calls in-
dependently of each other|as was shown to be true, to
a good approximation, in the previous section. However,
we use the result above to re�ne the resource acceptance
probabilities. We thus associate with each resource j a sta-
tionary acceptance probability Aj given by the solution of
the �xed point equations

Aj = Aj(�j ; �j) j 2 J

where

�j =
X
r:j2r

�r
Y

i2r�fjg

Ai j 2 J:

Thus the tra�c o�ered to each resource is viewed as a sum
of Poisson streams from those routes using it, and each of
these streams has a rate thinned by the acceptance prob-
abilities for the other resources along the corresponding
route. The stationary acceptance probability for a call of
type r is then taken to be

Q
j:j2r Aj . This approxima-

tion becomes exact in the case of a single-resource network.
For an uncontrolled loss network with hard constraints, it
is the well-known Erlang �xed-point, or reduced load, ap-
proximation. Conditions for this approximation to be ac-
curate include the case of diverse routing, where di�erent
resources within the network have only a small proportion
of their load arising from the same calls, as well as the large
network regime considered in Appendix 1.
The �xed point equations above have a unique solution,

identi�ed by the solution of the problem

Minimize
X
r

�r exp

0
@�X

j2r

yi

1
A+

X
j

Z yj

0

Uj(z) dz

over yj � 0; j 2 J;

where Uj(y) = �jAj(�j ; �j) is the mean utilization at re-
source j, when �j is the solution of Aj(�j ; �j) = e�y. This
follows, as in [32], since the earlier condition that aj(�)
is monotone decreasing ensures that the stationary accep-
tance probability of resource j is monotone decreasing, and
the mean utilization of resource j is monotone increasing,
in the o�ered tra�c (by a coupling argument), and hence
Uj(y) is increasing. The function displayed above is then
strictly convex, and the stationarity conditions identifying
the unique minimum are just the �xed point equations.

E. Optimization of routing and capacity

How should calls be routed or capacity allocated so as
to improve the performance of the network? For exam-
ple, there may be a number of routes r that carry tra�c

between the same two end points, and we might be inter-
ested in varying the amounts of tra�c �r o�ered to each
of these routes. Or we might be interested in how to allo-
cate additional capacity over the resources of the network.
What is the e�ect on the performance of the network of
changes in the parameters � or �? To make some progress
with these issues, let us suppose that a call carried on route
r generates an expected revenue wr (or, equivalently, inter-
pret wr as the cost of losing a call on route r). Extend the
de�nition of the functions Aj(�j ; �j) to non-integral values
of �j in such a manner that the functions have continuous
derivatives. Let A = (Aj ; j = 1; 2; : : : ; J) be the unique
solution to the �xed point equations of Section II-D. To
emphasize its dependence on the parameter vectors � and
�, write A = A(�; �). Under the �xed point approximation
the rate of return from the network is given by

W (�; �) =
X
r

wr�r (9)

where

�r = �r(1� Lr); 1� Lr =
Y
j

Aj (10)

and A = A(�; �). Thus Lr; �r are the stationary loss prob-
ability and carried tra�c respectively on route r, as calcu-
lated from the approximation. Let

�j = �Aj(�j ; �j)�2 @Aj(�j ; �j)

@�j

and let

�j = �Aj(�j ; �j)
@Aj(�j ; �j)

@�j

�
@Aj(�j ; �j)

@�j

��1

:

Then, by proceeding as in [34], we may calculate

d

d�r
W (�; �) = (1� Lr)sr (11)

and

d

d�j
W (�; �) = �jcj ; (12)

where s = (sr; r 2 R), c = (cj ; j 2 J) are the unique
solution to the linear equations

sr = wr �
X
j2r

cj (13)

cj = �j
X
r:j2r

�r(sr + cj): (14)

We can interpret sr as the surplus value of a call on route
r: if such a call is accepted it will earn wr directly, but
at an implied cost of cj for each circuit used from link j.
The implied costs c measure the expected knock-on e�ects
of accepting a call upon later arrivals at the network, and,
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through the derivative (12), they give information on the
e�ect of increasing the capacity of resources. Note that the
implied costs cj are derived from the stationary acceptance
probabilities Aj , and so represent information integrated
over many call holding times. This is in contrast to the
probabilities aj , which uctuate with the number of calls
in progress.

F. Dynamics

The shadow prices described in Section II-E are useful
for certain forms of longer-term static optimization: for ex-
ample, for the allocation of tra�c across routes, or for ca-
pacity expansion decisions. In this section we explore how
the connection-level dynamics of the network may also be
interpreted in terms of an implicit, and di�erent, optimiza-
tion problem. Consider the system of di�erential equations

d

dt
xr(t) = �r

Y
j2r

aj

0
@X
s:j2s

xs(t)

1
A� xr(t) (15)

for r 2 R. We may motivate the system (15) as describing
average dynamics, with x(t) = n(t), in a large network.
These ideas are formalized in [25]|see also Appendix 1
for a limiting result. In Appendix 3 it is shown that the
strictly concave function

U(x) =
X
r2R

(xr log �r � xr logxr + xr) +

X
j2J

Z P
s:j2s

xs

0

log aj(y)dy (16)

is a Lyapunov function for the system of di�erential equa-
tions (15). The unique value x = �x maximizing U(x) is a
stable point of the system, to which all trajectories con-
verge. Further, under the identi�cation x(t) = n(t) above,
�x is the �xed point �n given by the solution of the equa-
tions (6). (This follows on noting that �x is given by setting
the right hand side of the equations (15) equal to zero.)
This result establishes a stability property of the network
dynamics under the given call acceptance strategy|a re-
sult which need not be true for all control strategies. Fur-
ther, for other models (for example, those in which di�er-
ent call types have di�erent bandwidth requirements) and
for other call acceptance strategies, consideration of net-
work dynamics is often the only way to derive equilibrium
behaviour|see the discussion of Section II-G.
We can view the connection-level dynamics of the system

as implicitly attempting to choose the ows xr; r 2 R, to
maximize an aggregate utility made up of a bene�t to users
on route r of xr log �r�xr logxr+xr for each route r 2 R,
less a cost to the network of the negative of the �nal term in
expression (16), providing a connection with the economic
framework of [10], [35], [11].

G. More general models

It is natural to consider also more general models|for
example, those incorporating heterogeneity of bandwidth

requirements or more general call acceptance strategies.
An example of the latter occurs when the condition for
a call to enter the network is that total number of probe
packets marked by all resources along its route should not
exceed a given number. For such models we do not in
general have the simple product form stationary distribu-
tion (3). Observe, however, that we may still consider av-
erage dynamics in a large network. The analogue of the
di�erential equations (15) is here

d

dt
xr(t) = �r�ar(x(t)) � xr(t) (17)

for r 2 R, where x(t) = (xr(t); r 2 R) and xr(t) may
again be identi�ed with the number of calls of type r in
progress at time t. Again �r is the arrival rate for calls of
each type r, while �ar(x) is the corresponding acceptance
probability when the state of the system is given by x. In
the case where, for a call of type r to be accepted, each
resource along its route must signal that it is uncongested,
then the function �ar factorizes as before|this again follows
from the assumed conditional independence of packet level
dynamics at each resource. For an interpretation of (17) in
terms of a functional law of large numbers for a traditional
loss network, again see [25].

Fixed points of the network are given by setting the right
hand side of the equations (17) equal to zero, providing a
generalization of the �xed point (6). Equations (17) also
permit an analysis of the stability of �xed points, although
in general it is di�cult to �nd Lyapunov functions to es-
tablish global stability. However, extensive analysis of the
corresponding models for traditional loss networks suggests
that, in all but the most badly controlled systems, there will
be a single stable �xed point, to which all trajectories of
the dynamics converge. This �xed point then determines
stationary loads and stationary call acceptance probabili-
ties. Thus, for large networks at least, we are able to deal
with design and optimization issues.

The approach of [10], [35], [11] envisages using marks not
just for inelastic connections but also for adaptive streams
and for short transfers. For such heterogeneous mixes of
tra�c an analysis at the level of detail of Sections II-A, II-
B is unattainable, but models of the form (15), (17) may
well be tractable, and a simple example is given in [36].

III. Packet level resource models

In this section we develop several more detailed repre-
sentations of resources, modelling behaviour at the burst
and packet level. We consider the behaviour of an isolated
resource conditional upon its current load, and calculate
acceptance probabilities a(�) which can then be integrated
into a connection model using the results of Section II.
Since we are considering an isolated resource, we drop j

from the notation and set m = n, and � = ��.

The �rst example, the binomial model used extensively
in [3], allows us to explore numerically and analytically
some of the consequences of a particular form for the
function a(�), and to consider the conditions under which
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timescale separation might take place. The second exam-
ple, an M/M/1 queue, allows us to obtain straightforward
analytical forms for various quantities concerned with sys-
tem sizing. These two examples assume particular source
tra�c characterizations, where it is reasonably easy to un-
derstand the behaviour of the resource at the packet level.
A robust mechanism to detect approaching tra�c overload,
without the need for source tra�c characterization or even
call homogeneity, is provided by the Virtual Queue mecha-
nism, previously used in [10], [12]. In Section III-D we use
the insight provided by the many sources asymptotic into
the behaviour of this mechanism.

A. Origins of the binomial model

The binomial model (2) arises naturally as follows. Sup-
pose that connections last for a period of time and generate
periodic bursts of activity, where each burst of activity con-
sists of packets transmitted at a constant rate. Then the
binomial model would result from a timescale separation
where bursts are long in comparison with queue dynam-
ics at resources, but short in comparison with the periods
between connection arrivals and departures. A resource
would then see a stream of packets whose rate was given
by the number of active bursts and various simple marking
mechanisms would either mark all packets or none, depend-
ing on whether the number of active bursts was above or
below a threshold.
How reasonable is the modelling assumption of a

timescale separation? An example may help clarify this
question. Suppose that connections have an average hold-
ing time of about 200 seconds, and alternate between `on'
and `o�' periods each of mean 500 milliseconds, with pack-
ets emitted in a periodic fashion, every 25 milliseconds,
during an `on' period. (These numbers are chosen to be
broadly comparable with those used in studies of both
ATM and IP networks|see [37, Section 8.14], [38].) If
m is the number of connections carried through a resource,
then the number of bursts, or `on' periods, in progress is
aboutm=2. The number of connections in progress changes
about every 100=m seconds, while the number of bursts
in progress changes about every 1=(2m) seconds. Fluctu-
ations in the number of bursts thus occur a few hundred
times faster than uctuations in the number of connections
carried. At the packet level, our stylized model allows the
resource to deduce the number of active bursts by count-
ing the number of packets arriving over a measurement
interval of length 25 milliseconds; and the number of pack-
ets arriving in a measurement interval of length t � 25
milliseconds, is binomially distributed, with parameters m
and t=50. The resource may improve its estimate of the
number of connections by counting packets over a longer
measurement interval, but in [3], Section V, it is shown
that the potential for improved performance is minimal.
Thus we may conclude that for this example and with a

small enough measurement interval (t � 25 milliseconds
and t � 100=m seconds) there is a clear separation of
timescales, and that successive acceptance decisions at a
resource are, conditional on the connection load, approxi-

mately independent. Further, if di�erent resources within
the network have, with high probability, only a small pro-
portion of their load arising from the same connections (the
diverse routing condition familiar for loss networks), then
the acceptance decisions at di�erent resources are again,
conditional on current load, approximately independent.
These observations motivated the assumption, made in Sec-
tion II, of conditional independence of acceptance decisions
(or more generally marking behaviour) at each resource and
for each arriving call request.

B. Analysis of the binomial model

The binomial model is de�ned by acceptance probabili-
ties given by

a(m) = PfX(m; p) < �g (18)

for some probability p and threshold �, where X(m; p) is a
binomial random variable. This model arises, for example,
as in the previous section. Here, in a given measurement
interval, each of the m connections already carried by the
resource sends a packet with probability p; the random
variable X(m; p) is then the total count of such packets.
In [3], this model was studied for a single resource,

where the problem was to estimate p, the peak to mean
ratio of a connection, in a robust way. The trade-o� be-
tween call blocking and cell-loss was made explicit through
a Bayesian decision-theoretic framework. Both the case
where the resource knows the number of connections m,
and the case where the resource has only aggregate load
measurements, were considered: it was noted that lack of
knowledge of the number of connections did not degrade
the performance greatly. In the current framework, the
number of connections m is unknown to both the resource
and to end-systems.
It is possible to exactly mirror the approach of [3]: apply

priors to the o�ered load as well as the burstiness param-
eter p, and push through a Bayesian analysis to determine
optimal thresholds �. However it is more natural to see the
marking strategy as under the network's control, whilst the
decisions are the responsibility of the end-systems or users
and the main focus of this paper. One of the key-insights
of the previous work was to show that � is a robust control
with respect to varying arrival rates.
Now, for each m, X(m; p) has mean mp and variance

mp(1�p). Hence nearly all its distribution is concentrated
within, say, 3 standard deviations of mp. Thus a(m) =
PfX(m; p) < �g tends rapidly to 0 or 1 outside the region
m 2 (�=p) � (3

p
(1� p)�=p) + o(

p
�). (In Appendix 2 a

Cherno� bound is used to further explore the fall o� in
a(m) above �=p.)
As an illustration, consider an isolated resource sys-

tem with p = 0:5. The rejection probabilities 1 � a(m)
are shown in Figure 1(a), the solid line corresponding to
� = 10, and the broken line corresponding to � = 201.

1A threshold of � = 15 corresponds to an optimal choice for a
system with capacity 25, p = 0:5, � = 50 and packet loss target 10�3

or less, using the methodology of [3].
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Fig. 1. (a) Rejection probabilities (upper �gure) for thresholds of
� = 10 (solid line), and � = 20 (broken line). (b) Cumulative
occupancy distributions with o�ered rate � = 50.

Note that both curves are `s-shaped', and, as shown above,
the curves atten out with increasing �. Suppose now that
calls are o�ered at rate � = 50: the cumulative proba-
bility distributions for the stationary distribution � of the
number of calls in progress (given by (8)) are shown in
Figure 1(b). The corresponding probability density func-
tions �(m) are shown in Figure 2(a). Figure 2(b) shows
the density functions in the case � = 100, illustrating the
robustness against o�ered load. In e�ect, to reach a high
number of calls in progress the o�ered load would have to
be extremely high.
The admission strategy thus has the e�ect of truncat-

ing the number of calls in progress, largely independently
of the o�ered load. This is illustrated graphically in Fig-
ure 3, showing how the stationary distribution � gradually
spreads out and approaches an unconstrained Poisson dis-
tribution as the threshold � increases.
Of course, the number of calls m admitted is very sensi-

tive to p, since it is concentrated in the region �=p, but the
expected load generated, E(mp) is not (see [3] for a fuller
discussion).

C. A simple continuous-time packet model

In this section we explore a contrasting packet level re-
source model, and look in detail at the marking strategy.
To make progress, we assume the resource is modelled by
an M/M/1 queue2, with tra�c intensity

� = m� (19)

where m is the number of connections, and � is the load
imposed by a single connection. For example we might

2We could, with some loss of tractability, use an M/D/1 or
N*D/D/1 model to link in with Section III-B
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0.15

0.2

π (m)

10 20 30 40 50 60 70 80
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0.15

0.2

π (m)

Fig. 2. (a) Occupancy density functions �(m) for � = 50, � = 10; 20.
(b) �(m) for high o�ered load � = 100, � = 10; 20.

20
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Fig. 3. Density Functions �(m) for varying � from 1 to 60, � = 50,
p = 0:5

assume exponential packet sizes, and a Poisson packet gen-
eration process per stream.

As a motivational example, suppose streams generate
packets at the rate of 40 pps, for nominal 200 byte packets,
which would correspond to PSTN quality speech with sim-
ple PCM encoding. Thus with capacities of a small leased
line, legacy LAN or Backbone taken to be 2, 10 or 600
Mb/s respectively, the loads produced by a stream are of
the order �s = 1

30
, �LAN = 1

150
, �B = 1

9000
. The recip-

rocals 1=� can thus be regarded as a measure of system
size, or how many streams of a particular type can be �t-
ted onto a system. If the bit-rate of streams is an order
of magnitude larger, corresponding to video for example,
then the e�ective system size becomes much smaller, with
1=� given by 3, 15 or 900 respectively.

An acceptance strategy is the following: accept a call
if none of a sequence of M probe packets is marked. If
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the packets are marked with probability P (�), then the
acceptance probabilities for M = 1 are given by

a(m) = 1� P (m�): (20)

ForM greater than 1, marking will in general be positively
correlated between packets unless the probe packets are
sent at intervals long compared to the critical timescale of
the queue. In the latter case the approximation

a(m) � (1� P (m�))
M
: (21)

may be reasonable, and in general we would expect a(m)
to lie between the values given in expressions (20) and (21).
A simple marking strategy is to mark all packets when

the queue exceeds some threshold K, much as RED
does [39]. However, any threshold marking scheme acts
as an integral controller, since it is based on queue length,
and hence is slow to react. One way around this is to
use a Virtual Queue marking strategy [12], where we run a
queue at a reduced service rate (and usually with a reduced
bu�er) and mark as though the demand is o�ered to the
Virtual Queue, for example when a threshold is exceeded
in the Virtual Queue. The intuitive idea, which we clar-
ify later, is that the Virtual Queue anticipates the onset of
congestion.
Let the rate and bu�er size of the Virtual Queue be cv; bv,

with cv � c, bv � b, where c; b are the rate and bu�er size
of the real queue. How should the parameters cv; bv be
chosen? To make progress with this question, suppose that
a packet arriving to �nd K or more packets already in the
real queue incurs damage (for example, incurs unacceptable
delay). Then from the stationary distribution of an M/M/1
queue, pK(�) = �K is the probability that a packet incurs
such damage, and the rate at which packets arrive to incur
damage is �pK(�). The expected impact of an additional
packet (the shadow price discussed in [10]) is just

d

d�
�pK(�) = (K + 1)�K : (22)

Now suppose that the Virtual Queue serves at a fraction
� < 1 of the real queue rate, so that � = cv=c, and suppose
further that arriving packets are marked if the �ctitious
queue has K or more packets already present. Then the
marking probability is pK(�=�), and equating this to the
expression (22) gives

� = (K + 1)
�1=K

: (23)

There is a trade o� between utilisation and threshold.
For the Virtual Queue typical values of K, � are shown in
Table I. Notice that the rate reduction � is more dramatic
for small K, where the virtual queue has a rate less than
80% of the rate of the real queue. Table I also gives values
for load � for the real queue to give a marking probability
of pK(�=�) = 0:2 or 0.5. Note that this loading is relatively
insensitive to the marking probability.
We have shown how given a K, � can be chosen. How

might K be �xed? This is, in our view, an important area

TABLE I

Virtual queue thresholds and loads

K � �; p = 0:2 �; p = 0:5
5 .699 .506 .608
10 .787 .670 .734
20 .859 .792 .830
50 .924 .895 .912
100 .955 .940 .948
1000 .993 .992 .992

for further research. For a real time service,K might bound
the acceptable per hop delay, and so might scale with link
capacity. Table I shows the trade-o� between utilisation
and delay: the last line (K = 1000) illustrates how little
we gain by having an extreme value of K. A typical router
in the current Internet might have bu�ering per output
link equivalent to between 60 and 240KB, equating to 300
to 1200 packets in our nominal units units, corresponding
to a maximum delay of 30ms for a backbone link. We
would advocate a smaller value for the threshold K. More
generally, this marking scheme applies to a heterogeneous
network where adaptive and non-adaptive tra�c is mixed
together. For adaptive tra�c, it is important to keep K

small to avoid oscilliatory behaviour.
With this Virtual Queue marking, for M = 1 the accep-

tance probabilities are given by

a(m) = max

�
0; 1�

�m�
�

�K�
(24)

= max
�
0; 1� (K + 1)(m�)

K
�
: (25)

Figure 4 is analogous to Figure 1, but using Virtual
Queue marking strategies with K = 5 and K = 10. As be-
fore, Figure 4(a) shows the rejection probabilities 1�a(m)
and Figure 4(b) the cumulative occupancy distribution.
There are some di�erences: the acceptance curve 1 � a

is now convex rather than s-shaped below a = 0 for small
K, which makes the � distribution less symmetric (because
of harder truncation). Figure 5 is analogous to Figure 2,
giving the stationary occupancy distribution �(m) for dif-
fering loads.
The �gures are remarkably similar to those of Section III-

B, despite the di�erent marking behaviour and assump-
tions. Note that for this example the key parameters are
K and �. The parameter 1=� is e�ectively the system
size|because the load of the system cannot go above 1,
and limits the maximum number of connections.
From Table I, for K = 10, � = 0:79 and we aim to

keep the system loading below 79%. Hence, the e�ective
capacity of the system is C = 0:79=�. For a particular
value of o�ered load �, we can compare the stationary re-
jection probability E(1 � a(m)) under our proposal with
that obtained if we can count connections, and limit their
number to C 0. The rejection probability under the lat-
ter scheme is Erl(�; C 0), Erlang's formula for the block-
ing of Poisson tra�c rate � o�ered to C 0 circuits. Ta-
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Fig. 4. (a) Rejection probabilities, and (b) Cumulative dccupancy
distribution for � = 50, 1=� = 60, Virtual Queue marking with
K = 5; 10 .
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Fig. 5. (a) Occupancy density function �(m) for 1=� = 60, Virtual
Queue marking with K = 5; 10, � = 50; (b) Occupancy density
�(m) at high o�ered load � = 100.

TABLE II

Rejection probabilities for K = 10, M = 1, 1=� = 60 and

capacity savings with a counting scheme.

� E(1 � a(m)) Capacity Savings
20 0.001 25%
30 .024 17%
40 .106 13%
50 .215 8%
60 .313 6%

15 20 25 30 35 40 45 50
ν

0.02

0.04

0.06

0.08

0.1
Pr

M=5 Marks
M=5 Rej
M=1

Fig. 6. Expected rejection and expected marking probabilities
against varying �, with K = 10, � = 1=60 for M = 1 (solid
line), and M = 5 (broken lines)

ble II gives the rejection probabilities and percentage ca-
pacity reduction 100(C � C 0)=C if C 0 is chosen such that
Erl(�; C 0) = E(1�a(m)). The Erlang limit is in some sense
the best that be accomplished, and Table II shows an up-
per bound on the capacity savings if connections could be
counted.

We have said little about how the user might choose M ,
the number of probe packets to o�er to the network. Fig-
ure 6 shows stationary rejection probabilities, E(1�a(m)),
and expected marking probabilities, E(P (m�)), for M = 5
(the broken lines) compared to M = 1 (solid line) as � is
varied, computed using relations (21) and (20) respectively.
For M = 1, the expected rejection probability is the same
as the expected marking rate, shown as the solid line. For
M = 5, the rejection probability is increased, while the
marking rate is reduced (lower dashed line) compared to
M = 1. In e�ect, a higher value of M protects against
higher marking rates: if more probe packets are used by
all potential connections, then the network stabilises with
a lower packet marking rate. Varying M between di�erent
types of connections will produce service di�erentiation.

D. Time scales for Virtual Queues

It is interesting to compare the binomial model of Sec-
tions III-A and III-B with the M/M/1 model of Section III-
C, where arrivals at the queue form a Poisson process
of rate proportional to the number of connections. The
workload arrival process at the resource under the latter
model exhibits short-range order, and the resource is able
to learn about its load relatively quickly, on the packet
timescale. Under the binomial model, in contrast, arrivals
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at the queue exhibit a more complex structure. Over small
time intervals, less than the packet spacing within a burst,
the packet arrival process exhibits negative correlations.
But over longer periods the packet arrival process exhibits
long-range order, varying slowly as the number of active
bursts changes. The resource may well mark packets when
the number of connections is quite low, or fail to mark pack-
ets when the number of connections is quite high, since its
marking strategy depends on the random number of active
bursts. In general, the timescales at which queue overload
occurs depend subtly upon the statistical properties of in-
dividual streams and the amount of tra�c aggregation, as
well as upon the capacity and bu�er size of the resource,
and it would not be appropriate to use a �xed measure-
ment interval, as in Section III-A, for heterogeneous mixes
of tra�c or for poorly characterized sources. In this sec-
tion we shall explore the robustness of marking mechanisms
based on Virtual Queues.
Suppose that the resource can serve packets at rate c

and has a bu�er size b. Let n be the number of connec-
tions, and let P (c; b; n) be the proportion of packets that
are lost. For simplicity of exposition we assume the con-
nections are all of the same type: the argument is identical
with multiple tra�c types, at the cost of a more elaborate
notation. Suppose a connection generates a workload for
the resource of X [0; t] in time [0; t]: assume X has station-
ary increments, and that the workloads generated by di�er-
ent connections are independent. Then the many sources
asymptotic regime [27], [28], [29] shows that for large sys-
tems

logP (c; b; n) � sup
t
inf
s
fstn�(s; t)� s (b+ ct)g : (26)

where

� (s; t) =
1

st
log E

h
esX[0;t]

i
0 < s; t <1 (27)

is the e�ective bandwidth of an individual source. Let
(s�; t�) be an extremal pair for Equation (26): then t� is
the critical timescale of the resource, giving the most likely
timescale on which the bu�er threshold is exceeded [40]. As
an example, suppose the workload generated by a connec-
tion is Gaussian, with

X [0; t] = �t+ Z(t) (28)

where Z(t) is normally distributed with zero mean. If

varZ(t) = �2t2H (29)

then the process represents fractional Brownian motion
with Hurst parameter H , and long-range dependence if
H > 1

2
. For this model [41]

t� =
b

c� n�

H

1�H
: (30)

Thus, for this example, the critical time scale t� is linear in
the bu�er size b, and increases with the Hurst parameter
H .

While the formalization of the result (26) requires a lim-
iting regime with small overload probabilities, the time
scale t� identi�ed by the theory is useful in a much wider
range of settings. For example, in the case where tra�c is
Gaussian, t� is precisely the value t which maximizes the
probability that the workload arriving in a period of length
t will exceed the maximal capacity of the resource to accept
input, ct+ b.

Write t� = t�(c; b; n) to emphasise the dependence of
the critical time scale on the capacity and bu�er of the
queue. Now suppose that marking is determined by a Vir-
tual Queue, of reduced rate �c and reduced bu�er size �b.
Then observe, from relation (30) and more generally from
relation (26), that

t�(�c; �b; �n) = t�(c; b; n): (31)

Thus the critical time scale for the Virtual Queue is the
same as it would be for the real queue if the load on the
real queue were a factor 1=� larger. The Virtual Queue
thus provides an early warning of overload, and implicitly
and robustly tunes the time period over which overload is
detected to the statistical properties of the tra�c sources.

IV. Concluding remarks

The framework we have presented is general, and can
be analysed in detail. We have assumed the marking rate
is determined by the number of connections alone. More
generally, the marking rate can depend on a weighted sum
mj =

P
r:j2r �rnr reecting di�ering bandwidth require-

ments. Di�ering user behaviour naturally translates into
user dependent responses to marks: for example the user
or system may adopt a more complicated acceptance strat-
egy, such as deciding to enter if no more than a speci�ed
number of packets is marked, where the number is greater
than 1. For these extensions the product form solution
breaks down, without certain side conditions that essen-
tially preserve reversibility. However, �xed-point approxi-
mations in the spirit of Section II can still be constructed,
and complete networks analysed.

We have said little about why a connection should chose
to react in the way described in the paper. If the con-
nection is an application running on the end-system, then
the behaviour could be embedded in a protocol stack, with
behaviour mandated, much as the behaviour of TCP con-
nections is under the control of the operating system. Dif-
ferent types of connection (voice, video, streamed data etc)
could have di�erent mandated reactions to the receipt of
probe packets. Viewed in this light, our scheme can repre-
sent a lightweight signalling system with soft guarantees,
which could be used in an Intranet for example, sharing
bandwidth within a Virtual Path. An alternative and more
controversial scenario would see the marked packets as rep-
resenting some cost or charge to the user, which might
represent real money or a distributed mint. In this case,
the probing phase enables the user to form an estimate of
the likely charge of a connection. Some possible user reac-
tions are investigated in [42]. This is a natural framework
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for heterogeneity, where di�erent users can have di�erent
strategies for choosing whether or not to enter the network.
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Appendix 1

Consider the simple model of Section II-A. Suppose that
the network is large, and that, for each resource j, the func-
tion aj(�) decreases rapidly from 1 to 0 in the neighbour-
hood of some \capacity" Cj . This is so in the case of each
of the models studied in Section III. For example, in the bi-
nomial model of Section III-B we have Cj = �j=p|see the
discussion there. We show here that, to a good approxima-
tion, the stationary acceptance probabilities and the corre-
sponding �xed point �n of Section II-C are the same as for
a traditional uncontrolled loss network with hard capacity
constraints Cj , j 2 J . These are therefore independent of
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the more detailed structure of the functions aj(�). We also
discuss briey limiting dynamics.
To make these ideas more formal, consider a sequence

of networks, indexed by some scale parameter N . All
members of the sequence have a common incidence matrix

� = (�jr ; j 2 J; r 2 R), where �jr = 1 if j 2 r and �jr = 0
otherwise: we assume the matrix � is of full rank. The
N th member of the sequence has arrival rates �Nr = N�r,
r 2 R, and acceptance functions aNj (�) satisfying

lim
N!1

aNj (N(Cj � �)) = 1; lim
N!1

aNj (N(Cj + �)) = 0;

(32)

for all � > 0; de�ne also �nN to be the corresponding solu-
tion of the �xed point equations (6) of Section II-C.
Let (Aj ; j 2 J) be the unique solution in Aj 2 (0; 1],

j 2 J , of the equationsX
r:j2r

�r
Y
i2r

Ai � Cj ; j 2 J; (33)

X
r:j2r

�r
Y
i2r

Ai = Cj if Aj < 1; j 2 J (34)

(the uniqueness here follows from Theorem 2.1 of [32]). For
each r, de�ne also xr = �r

Q
j2r Aj .

Theorem 1: Under the above limiting regime,

lim
N!1

aNj (mj(�n
N )) = Aj ; j 2 J; (35)

lim
N!1

�nN

N
= xr; r 2 R: (36)

Proof: From (3), (6) and (7) we have, for the N th

member of the sequence,

1

N
mj(�n

N ) =
X
r:j2r

�r
Y
i2r

aNi (mi(�n
N )); j 2 J; (37)

1

N
�nNr = �r

Y
j2r

aNj (mj(�n
N )); r 2 R: (38)

Now consider any subsequence in which (aNj (mj(�n
N )); j 2

J), is convergent. Then, for all j, limN!1mj(�n
N )=N �

Cj (for otherwise, from (32), limN!1 aNj (mj(�n
N )) = 0,

leading to a contradiction for the jth member of (37)). Fur-
ther, for j such that limN!1mj(�n

N )=N < Cj , it follows
from (32) that limN!1 aNj (mj(�n

N )) = 1. It now follows
from the uniqueness of (Aj ; j 2 J) above that, in the entire
sequence, the result (35) holds, and (36) is now immediate
from (38).
Finally, we may show as in [32] that, under the above lim-

iting regime, the �xed point approximation of Section II-
C for the acceptance probabilities becomes asymptotically
exact. It then follows from Theorem 1 that the limiting
acceptance probability for a call of type r is

Q
j2r Aj .

We mention also the limiting dynamics (x(t); t � 0),
where x(t) = n(t)=N , under the above regime. These are
as given by (15), but since here, in the limit, each func-
tion aj(�) jumps from 1 to 0 as its argument passes through
Cj , it is necessary to use stochastic averaging as described

in [25]. Using the techniques of [26], we may show that the
appropriate Lyapunov function for the limiting dynamics
is again given by the function U de�ned by (16), where
here we take the integrand log aj(y) = 1 for all y. This
is as might be expected: the limiting dynamics x(�) are of
course constrained to satisfy

P
r:j2r xr(t) � Cj for all j.

Appendix 2

How rapidly does the product of acceptance probabilities
in (3) decay, when given by the binomial probabilities (2)?
Well, if mp > �,

a(m) � exp

�
�
�
(m� �) log

m� �

m(1� p)
+ � log

�

mp

��

by a Cherno� bound on the Binomial distribution. Hence

n+1Y
k=�=p

a(k � 1) �

exp

(
�
Z n

�=p

�
(x � �) log

x� �

x(1� p)
+ � log

�

xp

�
dx

)

= exp

�
�1

2

�
(n� �)2 log

(n� �)p

�(1� p)
�

n2 log
np

�
+ �

�
n� �

p

���
;

indicating a rather rapid decay in the product form above
n = �=p. Similarly, there is a rapid approach to unity of
the product

Qn
k=1 a(k � 1) below n = �=p.

Appendix 3

We prove the result of Section II-F. Assume �r > 0
for r 2 R, and that aj(y) is a non-negative continuous
decreasing function of y, not identically zero, for j 2 J .
Then we may establish the following result.
Theorem 2: The function (16) is a Lyapunov function

for the system of di�erential equations (15). The unique
value x maximizing U(x) is a stable point of the system, to
which all trajectories converge.

Proof: The assumptions on �r; r 2 R, and aj ; j 2 J ,
ensure that U(x) is strictly concave on the positive orthant
with an interior maximum; the maximizing value of x is
thus unique. Observe that

@

@xr
U(x) = log

�r

xr
+
X
j2r

log aj

�X
s:j2s

xs

�
; (39)

setting these derivatives to zero identi�es the maximum.
Further

d

dt
U
�
x(t)

�
=

X
r2R

@U
@xr

� d
dt
xr(t):

Next note that expression (39) necessarily has the same
sign as expression (15) for each r 2 R, establishing that
U(x(t)) is strictly increasing with t, unless x(t) = x, the
unique x maximizing U(x). The function U(x) is thus a
Lyapunov function for the system (15), and the theorem
follows.


