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Abstract

This paper studies the connection between the dynamical and equilibrium be-
haviour of large uncontrolled loss networks. We consider the behaviour of the number
of calls of each type in the network, and show that, under the limiting regime of Kelly
(1986), all trajectories of the limiting dynamics converge to a single fixed point, which
is necessarily that on which the limiting stationary distribution is concentrated. The
approach uses Lyapunov techniques and involves the evolution of the transition rates
of a stationary Markov process in such a way that it tends to reversibility.
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1 Introduction

In a loss network calls, or customers, of various classes are accepted for service provided
that service can commence immediately; otherwise they are considered lost. Such networks
have been widely studied, with applications to telecommunication systems and elsewhere.

Early studies focused on the stationary, or equilibrium, behaviour of loss networks.
Motivated by applications, where the physical networks to be modelled are frequently
very large, particular attention was paid to two limiting regimes. In the first, studied
by Kelly (1986), capacities and offered traffic are allowed to grow in proportion to some
scale parameter N with all other features of the network held constant. In the second,
considered by Whitt (1985) (who also considered network dynamics) and further by Ziedins
and Kelly (1989), the number of distinct resources in the network is allowed to grow while
an appropriate measure of the traffic offered to each is held constant.

More recent work has further considered network dynamics, with attention again paid
to these two limiting regimes. In particular, for the first regime, Hunt and Kurtz (1994)
consider a suitably normalised measure xN (t) of the number of calls of each type in the N th

network at time t. They prove a functional law of large numbers describing the behaviour
of the limit (x(t), t ≥ 0) of the processes (xN (t), t ≥ 0). (In fact, for some models, this
limit process is not always uniquely defined and the result strictly describes the behaviour
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of the limit in any convergent subsequence.) Hunt and Laws (1993) establish a similar
functional law of large numbers for the second of the above limiting regimes.

A study of dynamical behaviour is important for three reasons. First, in many ap-
plications, network descriptions—in particular input rates—may change faster than the
networks are able to come to equilibrium. An example is that of a telephone network sub-
jected to a sudden overload. This may effectively break down before achieving its (new)
equilibrium distribution, and it may be important to know just how breakdown occurs.
Second, under certain circumstances (usually when they are inappropriately controlled)
network dynamics may exhibit unstable behaviour. In particular, depending on its ini-
tial value, the measure of the number of calls of each type in the network may tend to
one of a number of “quasi-stationary” states. Here the formal stationary distribution of
this measure (which may be expected to be concentrated on some convex combination of
the quasi-stationary states) is an inappropriate measure of network performance. Finally,
even where the stationary distribution of the network is of interest, often it may only be
obtained through a study of the network dynamics—see the further discussion at the end
of this section.

The latter two issues are considered by Bean et al. (1997) who further study dynamics
under the first of the above limiting regimes. They give a simple example of unstable
behaviour (in a single-resource network) and show how, when the limiting dynamics are
suitably stable, stationary behaviour may be deduced.

This paper is concerned with the relationship between the dynamical and equilibrium
behaviour of loss networks in the very important special case where calls are not subject
to acceptance controls. We again consider the first of the above limiting regimes. Kelly
(1986) shows that, for this regime, the stationary distribution of the number of calls of each
type in progress, again suitably normalised, converges to a single point x̄. The point x̄
maximises a concave function f on the limiting, convex, state space. In Section 2 we study
the corresponding limiting dynamics. We discuss the extent to which these are uniquely
defined for the current model. We show that for the limit process (x(t), t ≥ 0) (in any
convergent subsequence) f(x(t)) is strictly increasing with t, except where x(t) = x̄. The
function f thus acts as a Lyapunov function for the limiting dynamics and x̄ is the unique
fixed point of these dynamics. We then give a formal proof of the convergence of x(t) to x̄,
by showing that the rate of increase of f(x(t)) is bounded away from zero while x(t) lies
outside any given neighbourhood of x̄. We thus establish an important stability property
of such networks.

As is frequently the case with loss networks, the results involve an interesting interplay
between the limit process (x(t), t ≥ 0) and the associated family of “free capacity” Markov
processes, whose rates are indexed by x(t) and which serve as control processes for the
the limit process. (The general relationship between these processes is described by Hunt
and Kurtz (1994) and reviewed briefly in Section 2.) For the present model, for each t,
the free capacity process is a stationary Markov process which is not in general reversible.
However, the transition rates of the free capacity process evolve in such a way that it
tends to a reversible process (and for x(t) = x̄ is a reversible process). Indeed the rate of
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increase of f(x(t)) is a measure of the extent to which the free capacity process at time t
fails to be reversible.

The result has applications which extend well beyond uncontrolled loss networks. Most
controlled loss networks use call admission rules which depend on the current state of
the network. For many such states the effect of the admission rule is simply to restrict
acceptance of calls to those belonging to some subset of the set of call types. Thus,
the dynamics of such a network may well be such that, in most states, it behaves as an
uncontrolled network, albeit one whose description is state-dependent. An example is
given by Zachary and Ziedins (2000), who consider virtual partitioning controls (a form of
dynamic trunk reservation). Here, in many cases, results for uncontrolled networks may
be used to provide a complete description of network dynamics and so also of stationary
behaviour. Similar results hold in many other cases where trunk reservation strategies are
used.

For reviews of loss networks, see, in particular, Kelly (1991) and Ross (1995).

2 Uncontrolled loss networks

Consider now the standard limiting regime introduced by Kelly (1986). This consists of
a sequence of networks, indexed by a scale parameter N , in which all members of the
sequence are identical except in respect of capacities and call arrival rates, and are iden-
tically controlled. Resources (or links) are indexed in a finite set J and call types in a
finite set R. For the Nth member of the sequence, each resource j ∈ J has integer capac-
ity Cj(N), and calls of each type r ∈ R arrive as a Poisson process of rate κr(N). Each
such call simultaneously requires an integer Ajr units of the capacity of each resource j for
the duration of its holding time, which is exponentially distributed with mean 1/µr. The
call is accepted if and only if this capacity is available. All arrival streams and holding
times are independent. Finally we suppose that, as N →∞, for all j ∈ J , r ∈ R,

1
N
Cj(N)→ Cj,

1
N
κr(N)→ κr, (2.1)

where we take Cj > 0 and κr > 0.
Let nN (t) = (nNr (t), r ∈ R), where nNr (t) is the number of calls of type r in progress

at time t, and let xN (t) = nN (t)/N . We are interested in both the dynamic and the
stationary behaviour of the sequence of processes xN (·).

Any limit of the above sequence necessarily takes values in the space X = {x ∈
R
R
+ :

∑
r Ajrxr ≤ Cj for all j ∈ J}. For each K ⊆ J , define alsoXK = {x ∈ X :

∑
r Ajrxr =

Cj for all j ∈ K}; write Xj for each X{j}, j ∈ J . Note in particular that X∅ = X and
that XK ⊂ XK′ whenever K ′ ⊂ K. We assume that the matrix (Ajr) of capacity re-
quirements is such that, for each K with XK 6= ∅ and for each (mj, j ∈ K), there exists
n ∈ ZR with

∑
r∈RAjrnr = mj for all j ∈ K. This implies in particular that the matrix

(Ajr, j ∈ K, r ∈ R) has rank |K|. This assumption is without any real loss of generality—
see the discussion following Theorem 3 of Hunt and Kurtz (1994). We do not, however,
assume that the matrix (Ajr, j ∈ J, r ∈ R) necessarily has rank |J | as this would exclude
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many interesting models. An example is that considered by Mitra (1987) in which each
call type requires capacity from both a dedicated and a common resource.

Define the (real-valued) concave function f on X by

f(x) =
∑
r∈R

(xr log κr − xr log µrxr + xr) (2.2)

and let x̄ be the value of x which maximizes f(x) in the set X. Then Kelly (1986) shows
that x̄ is the unique solution in X of

µrx̄r = κr
∏
j

p̄
Ajr
j , r ∈ R, (2.3)

for some, unique, (p̄j , j ∈ J) with

0 < p̄j ≤ 1, j ∈ J, (2.4)

and

x̄ ∈ Xj if p̄j < 1, j ∈ J. (2.5)

Kelly further shows that, as N → ∞, the stationary distribution of the process xN (·)
converges to that concentrated on the single point x̄.

We now consider the dynamics of the sequence of processes xN (·). Let E = (Z+ ∪
{∞})J . For each r ∈ R, let Ar = {m ∈ E : mj ≥ Ajr for all j ∈ J} (where ∞ ≥ Ajr for
all j and for all r). For each x ∈ X, let mx(·) be the Markov process on E with transition
rates given by, for each r ∈ R,

m→

m−Ar at rate κrI{m∈Ar}

m+Ar at rate µrxr,
(2.6)

where Ar denotes the vector (Ajr, j ∈ J), I is the indicator function, and ∞ ± a = ∞
for any a ∈ Z+. Note that the process mx(·) is reducible, and so does not always have a
unique stationary distribution. Hunt and Kurtz (1994, Theorem 3) show that, provided
the distribution of xN (0) converges weakly to that of x(0), the sequence of processes xN (·)
is relatively compact in DRR [0,∞) and any weakly convergent subsequence has a limit x(·)
which obeys the relation

xr(t) = xr(0) +
∫ t

0

(
κrπu(Ar)− µrxr(u)

)
du, (2.7)

where, for each t, πt is some stationary distribution of the Markov process m
x(t)(·) and

additionally satisfies, for all j,

πt{m : mj =∞} = 1 if x(t) /∈ Xj . (2.8)

Thus, at each time t, the stationary distribution πt acts as a control for the limit pro-
cess x(·), corresponding to a limiting acceptance rate for calls of each type. For a discussion
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of this result, which involves a separation of the time scales of the process x(·) and each
of the processes mx(·), see Hunt and Kurtz (1994) and Bean et al. (1995).

For each K ⊆ J , and for each x ∈ XK , let πK
x

be the stationary distribution, where
it exists, of the Markov process mx(·) on E which assigns probability one to the set
EK = {m ∈ E : mj <∞ if and only if j ∈ K}. Our earlier assumption about the matrix
of capacity requirements (Ajr) implies that the restriction of the process mx(·) to EK

is irreducible, so that the stationary distribution πK
x

is unique. Define also X ′K = {x ∈
XK : πK

x
exists}. Note in particular that the distribution π∅

x
exists for all x ∈ X, assigning

probability one to the single point (∞, . . . ,∞) (so that π∅
x
(Ar) = 1 for all r ∈ R), and

thus X ′∅ = X∅ = X. It now follows, using (2.8), that, for each t,

πt =
∑

K⊆J : x(t)∈X′K

λK(t)πK
x(t),

where

λK(t) ≥ 0 for all K with x(t) ∈ X ′K ,
∑

K⊆J : x(t)∈X′K

λK(t) = 1. (2.9)

Thus the equation (2.7) above may be rewritten as

xr(t) = xr(0) +
∫ t

0

∑
K⊆J : x(u)∈X′K

λK(u)
(
κrπ

K
x(u)(Ar)− µrxr(u)

)
du (2.10)

(see Bean et al., 1997, for some further discussion here).
Note that, by identifying EK with Z

K
+ , the distribution πK

x
may also be thought of as

the stationary distribution of the obvious projection of the process mx(·) onto ZK+ . Thus,
using also the definition of the sets Ar, we see that the stationary distribution πK

x
in fact

depends only on the subset K of the set J of resource constraints. Our results depend on
an analysis of πK

x
separately for each K ⊆ J , and for each x ∈ X ′K . However, it is more

convenient to continue to work with EK rather than Z
K
+ , though the coordinates j /∈ K

play no real part in the analysis.
There now arises the question of whether the functions λK(·), K ⊆ J , (with the

convention that λK(t) = 0 whenever x(t) /∈ X ′K), and so the limiting dynamics x(·),
are uniquely determined. If so, we then have convergence of xN (·) to x(·) in the entire
sequence of networks defined above. In many examples it is indeed possible to determine
the functions λK(·) uniquely (for almost all t), often using no more than the additional
observation that any limit process x(·) must remain within the set X. In particular
Hunt and Kurtz (1994, Lemma 4) show uniqueness of the limiting dynamics for all single
resource networks (with the acceptance controls of the present model). Similarly, Zachary
(1996, Theorem 3.1) generalises a result of Moretta (1995) to show uniqueness for two-
resource networks in the case where A1r = A2r for those call types r such that A1r ∧
A2r > 0. Particular examples of models with more than two resources may be similarly
analysed, but general results appear more difficult to obtain. While there exist examples of
nonuniqueness in networks with acceptance controls more complex than those considered
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here (see Hunt, 1995), we conjecture that, for the present model, we always do have
uniqueness of the limiting dynamics—see also Hunt and Kurtz (1994, Conjecture 5).

Theorem 2.3 below is independent of these uniqueness considerations, in that it uses a
Lyapunov technique to show that, in any subsequence of the above sequence of networks
such that xN (·) converges to a limit process x(·), all trajectories of the latter process
converge to the fixed point x̄ identified above. (This result of course lends further support
to the uniqueness conjecture above.) The result establishes an important stability property
of uncontrolled networks. It may also be used to identify limiting dynamics in certain
networks which are more generally controlled than those considered here (see the discussion
of Section 1).

The formal convergence result is established, in complete generality, in Theorem 2.3.
Theorem 2.2, which is considerably simpler to prove, gives a slightly weaker version of
the result, which shows that x̄ is the unique fixed point of the process x(·) and which is
sufficient to establish the full result in the single-resource case |J | = 1.

We require first Lemma 2.1 below. For each K ⊆ J with XK 6= ∅, let xK be the value
of x which maximises f(x) in the set YK = {x ∈ RR+ :

∑
r Ajrxr = Cj for all j ∈ K} (note

that XK = YK ∩X). Then, since (Ajr, j ∈ K, r ∈ R) has rank |K|, it follows easily that
xK is the unique solution in YK of

µrx
K
r = κr

∏
j∈K

(pKj )Ajr , r ∈ R, (2.11)

for some, unique, (pKj , j ∈ K) with

pKj > 0, j ∈ K. (2.12)

Lemma 2.1. For any K ⊆ J with XK 6= ∅, xK = x̄ if and only if xK ∈ X and pKj ≤ 1
for all j ∈ K. Further, if xK ∈ X ′K , then xK = x̄.

Proof. The first assertion follows by defining pKj = 1 for j /∈ K and comparing (2.3)–(2.5)
with (2.11) and (2.12). Now suppose xK ∈ X ′K . From (2.6) and (2.11), the (unnormalised)
measure π′ on EK given by π′(m) =

∏
j∈K(pKj )mj , m ∈ EK , is invariant for the restriction

to EK of the free capacity process m
x
K (·). The condition xK ∈ X ′K implies in particular

that πK
x

exists, and so pKj < 1 for all j ∈ K. The result now follows from the first assertion
of the lemma.

Remark. Observe in particular that we have xK̄ ∈ X ′
K̄

(and so xK̄ = x̄) for K̄ = {j ∈
J : p̄j < 1}.

Throughout the rest of this section we take x(·) to be the limit of the processes xN (·)
in any (fixed) convergent subsequence. Note that elementary arguments show that there
exists some p > 0 such that

πK
x

(Ar) ≥ p for all K ⊆ J , x ∈ X ′K , r ∈ R. (2.13)
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It follows straightforwardly from (2.10) that, for all t > 0,

f(x(t)) = f(x(0)) +
∫ t

0

∑
K⊆J : x(u)∈X′K

λK(u)gK(x(u)) du, (2.14)

where, for each K ⊆ J , the function gK on X ′K is given by

gK(x) =
∑
r

log(κr/µrxr)
(
κrπ

K
x

(Ar)− µrxr
)
. (2.15)

For x ∈ X ′K such that xr = 0 for some r, we define gK(x) = ∞, so that, with respect
to the usual topology on R ∪∞, the function gK is continuous on X ′K . This definition is
primarily a matter of convenience, since, from (2.13), we have xr(t) > 0 for all t > 0 and
for all r.

We now show that f is a Lyapunov function for the process x(·). Recall that x̄ max-
imises the function f in X. For each K ⊆ J , define the set ZK = {n ∈ ZR :

∑
r Ajrnr =

0 for all j ∈ K}.

Theorem 2.2. The function f(x(t)) is strictly increasing in t whenever x(t) 6= x̄, and
thus x̄ is the unique fixed point of the limit process x(·).

Proof. From (2.9) and (2.14), it is sufficient to show that, for each K ⊆ J with X ′K 6= ∅,
gK(x) > 0 for all x ∈ X ′K with x 6= x̄. Thus fix both K and x ∈ X ′K (with xr > 0 for all
r ∈ R). Recall that πK

x
is then the stationary distribution on EK of the process mx(·).

Now, for any bounded function φ on EK ,∑
m∈EK

πK
x

(m)
∑
r

[
κrI{m∈Ar} {φ(m−Ar)− φ(m)}+ µrxr {φ(m+Ar)− φ(m)}

]
= 0.

(2.16)

(In the case where φ is the indicator function associated with any given state m ∈ EK ,
the result (2.16) is just the balance equation associated with that state for the stationary
distribution πK

x
, and so the general result follows easily.) The result (2.16) further extends

to any function φ such that, for all r, φ(m+Ar)− φ(m) is bounded over m ∈ EK : this
follows by considering a sequence of truncated functions converging to φ and using the
dominated convergence theorem (with the above bound as the dominating function). Now
consideration of the stationary balance equations for πK

x
shows that log πK

x
(m +Ar) −

log πK
x

(m) is bounded over m ∈ EK . Hence, from the above results,

∑
m∈EK

πK
x

(m)
∑
r

[
κrI{m∈Ar} log

πK
x

(m−Ar)
πK
x

(m)
+ µrxr log

πK
x

(m+Ar)
πK
x

(m)

]
= 0.

Rearranging, we obtain

∑
r

∑
m∈EK

[
πK
x

(m+Ar)κr − πKx (m)µrxr
]

log
πK
x

(m+Ar)
πK
x

(m)
= 0. (2.17)
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Now, from (2.15) and (2.17),

gK(x) =
∑
r

∑
m∈EK

[
πK
x

(m+Ar)κr − πKx (m)µrxr
]

log
πK
x

(m+Ar)κr
πK
x

(m)µrxr
(2.18)

≥ 0,

with equality if and only if

πK
x

(m+Ar)κr = πK
x

(m)µrxr for all r ∈ R, m ∈ EK . (2.19)

Define a loop l in EK to be a sequence of jumps δ1Ar1 , . . . , δdArd in EK such that, for
1 ≤ i ≤ d, ri ∈ R, δi = ±1, and also

d∑
i=1

δiAjri = 0 for all j ∈ K, (2.20)

B
(l,i)
j ≥ 0 for all j ∈ K, (2.21)

where

B(l,i) =
i∑

h=1

δhArh . (2.22)

For each r ∈ R, let nr(l) = −
∑

i : ri=r
δi, and observe that the condition (2.20) is then

equivalent to ∑
r

Ajrnr(l) = 0 for all j ∈ K.

Now, for each n ∈ ZK , clearly we can find a loop l such that n = n(l) = (nr(l), r ∈ R). If
gK(x) = 0, then, from (2.19), by considering m = B(l,i) for successive i, it follows that∑

r

nr log
κr
µrxr

= 0 for all n ∈ ZK , (2.23)

and so, from the definition of ZK , log(κr/µrxr) =
∑

j∈K yjAjr for all r ∈ R and some
(yj , j ∈ K). This implies that x = xK (with pKj = exp(−yj), j ∈ K). (Conversely, if
xK ∈ X ′K , then πK

x
K is as given in the proof of Lemma 2.1 and it is easily verified from

(2.11) that (2.19) holds with x = xK , and so gK(xK) = 0.) The required result now
follows on using the last assertion of Lemma 2.1.

The above result does not quite guarantee the convergence of all trajectories of the
limit process x(·) to x̄. This convergence is straightforward to show in the single-resource
case |J | = 1. Here, from (2.14),

f(x(t)) = f(x(0)) +
∫ t

0
g(x(u)) du, (2.24)

where, for each x ∈ X,

g(x) =

g1(x) if x ∈ X ′1,

g∅(x) otherwise
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—see, for example, Hunt and Kurtz (1994, Lemma 4) or Bean et al. (1997). The function g∅
is continuous on the closed set X ′∅ = X. Further, it is straightforward to show that
restriction of the function g to the closed set X1 is continuous, including on the boundary
in this set of the (not necessarily closed) set X ′1—see Bean et al. (1995). The proof of
Theorem 2.2 shows that g∅(x) > 0 for all x ∈ X with x 6= x̄, and also that g(x) > 0
for all x ∈ X1 with x 6= x̄. The above continuity results now imply that, for any given
neighbourhood N of x̄, we have inf

x/∈X\N g(x) > 0.
It seems likely that such continuity arguments can be extended to the case where

|J | > 1, but it also seems difficult to make this approach rigorous. We use an alternative
argument to prove the general result (Theorem 2.3). The proof of the theorem is in effect
an extension of that of Theorem 2.2.

Theorem 2.3. All trajectories of the the limit process x(·) converge to x̄.

Proof. Again from (2.9) and (2.14), it is sufficient to show that, for each fixed K ⊆ J

with X ′K 6= ∅, there exists a strictly positive lower bound for the function gK on the set
X ′K \N , where N is again any given neighbourhood of x̄. To do this we show that (i) for
any given neighbourhood NK of xK , the function gK is bounded away from zero on the
set X ′K \NK ; (ii) if xK 6= x̄, then there is some neighbourhood of xK which lies wholly
outside the set X ′K . In the case xK = x̄, the required result then follows from (i), while
in the case xK 6= x̄ it is immediate from (i) and (ii). We assume also that |K| < |R|:
if |K| = |R| then, by our earlier assumption about the matrix (Ajr) and Lemma 2.1,
X ′K = {xK} = {x̄} and there is nothing to prove.

To show (i), for any loop l = δ1Ar1 , . . . , δdArd in EK (defined as in the proof of
Theorem 2.2) define the function θl on XK by

θl(x) = min
ρ0,... ,ρd>0
ρ0=ρd=1

1
d

d∑
i=1

[ρi−1qri(−δi)− ρiqri(δi)] log
ρi−1qri(−δi)
ρiqri(δi)

, (2.25)

where, for each r,

qr(δ) =

µrxr if δ = 1,

κr if δ = −1;

for x ∈ XK such that xr = 0 for some r, take θl(x) =∞, so that θl is then continuous—
again with respect to the usual topology on R ∪ ∞. Clearly θl(x) ≥ 0 for all x ∈ XK

and an elementary calculation (analogous to that of the derivation of Kolmogorov’s cri-
terion for reversibility—see, for example, Kelly, 1979) shows that θl(x) = 0 if and only if∑d

i=1[log qri(−δi)− log qri(δi)] = 0, that is,∑
r

nr(l) log
κr
µrxr

= 0. (2.26)
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Now, for x ∈ X ′K and for each i, 1 ≤ i ≤ d, it follows from (2.18) that,

gK(x) ≥
∑
m∈EK

[
πK
x

(m+B(l,i))qri(−δi)− πKx (m+B(l,i−1))qri(δi)
]

× log
πK
x

(m+B(l,i))qri(−δi)
πK
x

(m+B(l,i−1))qri(δi)

(where B(l,i) is as given by (2.22)). Summing over i and using (2.25), we obtain

gK(x) ≥
∑
m∈EK

πK
x

(m)θl(x) = θl(x) for all x ∈ XK . (2.27)

Now consider loops l1, . . . , la (where a = |R| − |K|), such that {n(li), 1 ≤ i ≤ a} form a
basis for ZK . Then, from (2.27),

gK(x) ≥ max
1≤i≤a

θli(x), for all x ∈ X ′. (2.28)

However, on the closed set XK , the function max1≤i≤a θli(x) is continuous, nonnegative,
and, by (2.26), is equal to zero if and only if the condition (2.23) holds, that is, if and only
if x = xK . We thus finally obtain that, for any neighbourhood NK of xK , gK is bounded
away from zero on X ′K \NK , establishing the result (i) as required.

To show (ii), suppose now that xK 6= x̄. In the case xK /∈ XK the result (ii) follows
immediately since the set XK is closed. Hence suppose also xK ∈ XK . By Lemma 2.1,
xK /∈ X ′K and also pKj > 1 for some j ∈ K. Thus not only does πK

x
K fail to exist, but

we might intuitively expect πK
x

to fail to exist for all x in some neighbourhood of xK in
XK . To make this rigorous, we re-express the non-ergodicity of the process m

x
K (·) on

EK in terms of the properties of a suitable Lyapunov function h̄K on EK , and use simple
continuity arguments to show that h̄K also serves as a Lyapunov function to establish the
non-ergodicity of mx(·) on EK for all x in some neighbourhood of xK as required.

Thus consider the process (m
x
K (t), t ≥ 0). Regard this as being defined on a prob-

ability space (Ω,F , P ). Let the filtration (Ft, t ≥ 0) be that generated by m
x
K (0) and

the obvious 2|R| Poisson processes of total rate α =
∑

r(κr + µrx
K
r ) on [0,∞) (which

together are sufficient to generate (m
x
K (t), t ≥ 0)). For each i > 0, let τi be the time of

the ith Poisson event. Let Pm and Em denote probability and expectation conditional on
m
x
K (0) = m. For each t, define

hK(t) =
∑
r

nr(t) log(κr/µrxKr ), (2.29)

where, for each r, nr(t) is the number of (type r) jumps m→m−Ar minus the number
of (type r) jumps m → m +Ar which have occurred by time t. Recall that xK ∈ XK′

for all K ′ ⊆ K. Observe that, from (2.15), for any K ′ ⊆ K such that xK ∈ X ′K′ ,

E
πK
′

x
K

[hK(t)] = gK′(xK)t > 0 for all t > 0, (2.30)

where EπK′
x
K

denotes expectation under the stationary distribution πK
′

x
K of the restriction

to EK′ of the process m
x
K (·), and where the inequality in (2.30) follows as in the proof of
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Theorem 2.2 (since xK 6= x̄). We show that there exists a stopping time T (with respect
to (Ft, t ≥ 0)) defined on

⋃
K′⊆K{mx

K (0) ∈ EK′}, which is the time of some Poisson
event and is such that, for all K ′ ⊆ K,

T ≤ τMK′ on {m
x
K (0) ∈ EK′}, for some constant MK′ > 0, (2.31)

and, for all m ∈ EK′,

Em [hK(T )] ≥ α−1g∅(x
K). (2.32)

We establish these results by induction on |K ′|. Recall that if m
x
K (0) ∈ EK′, then

m
x
K (t) ∈ EK′ for all t ≥ 0. Since E∅ contains the sole element m = {∞, . . . ,∞}, the

observation (2.30) shows that (2.31) and (2.32) are trivially true, respectively for K ′ = ∅
and m ∈ E∅ (with M∅ = 1 and equality in (2.32)), provided we here take T to be the
time of the first Poisson event. For general K ′ ⊆ K, assume the results (2.31) and (2.32)
to be established for all K ′′ ⊂ K ′, K ′′ 6= K ′ and m ∈ EK′′ (where in each case T is
the time of some Poisson event). We now construct T on the set {m

x
K (0) ∈ EK′} so

that (2.32) holds for all m ∈ EK′ , the result (2.31) for K ′ also following directly from
the construction. Note that the jumps of the process m

x
K (·) are bounded. It follows

that, for each j ∈ K ′, the result (2.32) holds for all m ∈ EK′ such that mj is sufficiently
large, by defining T as for the initial state m′ ∈ EK′\{j} where m′ is obtained from m

by setting m′j = ∞. Thus it remains to establish (2.32) only for m belonging to a finite
set DK′ ⊂ EK′ . In the case where xK ∈ X ′K′ (that is, the stationary distribution πK

′

x
K

exists), the result (2.32) follows easily, for m ∈ DK′ and T = τM ′ for some sufficiently
large M ′, from (2.30), the convergence of the initial distribution of the process m

x
K (·) to

its stationary distribution, and the boundedness of the increments of the process hK(·).
In the case where xK /∈ X ′K′ , define a sequence of stopping times 0 = U0 ≤ U1 ≤ . . . as
follows: if m

x
K (Ui) ∈ DK′ , take Ui+1 to be the time of the first Poisson event subsequent

to that at time Ui; if m
x
K (Ui) = m′ /∈ DK′ take Ui+1 = Ui + T ′ where T ′ is defined

analogously to T but in terms of the history of the process subsequent to time Ui, so that
then, by the already established result (2.32) for such m′,

E [hK (Ui+1)− hK(Ui)|mx
K (Ui) = m′] ≥ α−1g∅(x

K).

Note also that, for each i, Ui+1 −Ui corresponds to a bounded number of Poisson events.
Hence, for m ∈ DK′ , and since also Pm(m

x
K (t) ∈ DK′)→ 0 as t→∞, the result (2.32)

follows straightforwardly by taking T = Ui for sufficiently large i. Thus, finally, by the
above construction, (2.31) and (2.32) follow for K ′ and all m ∈ EK′ and the induction is
complete.

Finally, define the function h̄K on the set EK by h̄K(m) =
∑

j∈Kmj log pKj . Ob-
serve that, when m

x
K (·) ∈ EK , then, from (2.29) and (2.11), hK(t) = h̄K(m

x
K (t)) −

h̄K(m
x
K (0)) for all t ≥ 0. Hence, from (2.32),

Em [h̄K(m
x
K (T ))− h̄K(m

x
K (0))] ≥ α−1g∅(x

K) for all m ∈ EK . (2.33)
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Now consider any ε such that 0 < ε < α−1g∅(xK). It follows from the continuity in x of the
transition probabilities of the process mx(·), their spatial homogeneity, and the condition
(2.31), that there exists some neighbourhood NK of xK such that, for all x ∈ NK , the
result (2.33) also holds when the process m

x
K (·) is replaced by the process mx(·) and

α−1g∅(xK) is replaced by ε. Here Em now denotes expectation, conditional on the initial
state m in the probability space appropriate to the process mx(·), and the stopping time
T is the same function as previously of the history of the generating processes. Thus, for
x ∈ NK , by the strong Markov property, and using again (2.31), we can define a sequence
of bounded stopping times 0 = T0 ≤ T1 ≤ . . . such that, for some M , for all i ≥ 0, and
for all m ∈ EK ,

E [h̄K (mx(Ti+1))− h̄K(mx(Ti))|mx(Ti) = m] ≥ ε,
E [|h̄K (mx(Ti+1))− h̄K(mx(Ti))| |mx(Ti) = m] < M.

The function h̄K thus serves as a Lyapunov function which establishes the non-ergodicity
of the process mx(·) on EK , for all x ∈ NK . (See, for example, Theorem 2.1.3 of Fayolle et
al. (1995), which is immediately applicable to the process sampled at the above stopping
times.) Hence NK ∩X ′K = ∅ as required.
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