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Abstract

Results on horizontal asymmetry and steepness distributions from analyses of ocean wave data collected during 10 severe storms in the

northern North Sea are presented. The data have been collected at a sampling rate of 5 Hz using laser altimeters mounted on a fixed platform

permitting the shapes of individual waves to be quite closely defined. This has allowed the steepness of the fronts and backs of wave crests

and troughs to be examined. It is found that, on an average, as the non-dimensionalised wave height increases, the horizontal asymmetry

becomes more pronounced. That is, the fronts of large wave crests tend to be steeper than their backs. Regression has been used to establish

relationships between individual non-dimensionalised wave heights and steepness measures. The generalised Pareto distribution has then

been used to establish a simple model for predicting the probability of extreme wave steepness conditional on the non-dimensionalised wave

height.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The shape of sea waves is of interest to those involved in

designing and operating ships and offshore structures. Of

particular interest is the steepness of large waves that can

cause significant impact damage and give rise to so-called

greenwater events, where several tonnes of water from the

wave crest can sweep across the deck causing structural

damage and possible flooding. The wave steepness of the

incident waves causes important non-linear effects [3], and a

number of recent incidents of damage in the Atlantic west of

Shetland and in the North Sea have served to focus the

attention of the offshore industry on the question of wave

front steepness. In the deterministic models used for design

purposes, waves are assumed to be symmetrical; and in

random linear theory, wave front steepness is, on an

average, equal to wave back steepness. The same is true

for the random second-order theories that are now becoming

adopted for the design and analysis of deep water structures.

Of course, when waves move into shallow water, their fronts

become much steeper than their backs and they break. It

might thus seem reasonable to assume that during deep

water storms, where waves frequently break that, on an

average, wave fronts would be steeper than wave backs. Yet

Vinje and Haver [12] concluded from an analysis of wave

data collected using laser altimeters mounted on the

Gullfaks platform in the North sea that, on an average, the

horizontal asymmetry is more or less zero. The same is

concluded by Jonathon et al. [4] in their analysis of the

North Sea Tern platform data in support of the New Wave

theory developed by Tromans et al. [11].

In this paper, we describe the statistical analyses that

have been undertaken using wave data collected using wave

altimeters mounted on the North Alwyn platform in the

northern North Sea. We examine 10 severe storms

comprising a total of 217,083 individual waves of heights

ranging up to a maximum of 24 m. We start by introducing

several definitions in the context of time series measure-

ments: six different measures of steepness for the various

parts of the wave; and also two horizontal asymmetry

coefficients, pertaining to crest and trough horizontal
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asymmetry. After a detailed description of the data used for

our analyses, and a discussion on how best to non-

dimensionalise the data, we go on to look at horizontal

asymmetry in waves from 10 storms and examine the

relationship between asymmetry, non-dimensionalised

wave height and wave steepness. We find that greater

average horizontal asymmetry occurs in higher waves. We

use a regression analysis to establish relationships between

the steepness of various parts of the wave and non-

dimensionalised wave height, and then we use a generalised

Pareto distribution (GPD) as the basis for a model to predict

the extremes of wave steepness given wave height.

2. Some definitions

The definitions introduced in this section are appropriate

to the study of horizontal wave asymmetry in deep water

ocean waves. An individual wave is defined as that part of

the surface elevation profile which lies between any two

consecutive zero down-crossings.

Let Hc be the vertical distance from the mean sea level to

the crest maximum, and let Ht be the vertical distance from

the mean sea level to the trough minimum. Both Hc and Ht

are always positive and the wave height is given by their

sum:

H ¼ Ht þ Hc: ð1Þ

Let l and T be the wavelength and wave period,

respectively. The four quarter wavelengths associated with

each wave are defined as: l1; the horizontal distance

between the position of the first zero down-crossing to the

position of the trough minimum; l2; the horizontal distance

between the position of the trough minimum to the position

of the zero up-crossing; l3; the horizontal distance between

the position of the zero up-crossing to the position of the

crest maximum; l4; the horizontal distance between the

position of the crest maximum to the position of the second

zero down-crossing. The four quarter wave periods, Ti; i ¼

1; 2; 3; 4; are defined analogously but in the time domain.

For each wave
P4

i¼1 li ¼ l and
P4

i¼1 Ti ¼ T : These

definitions are shown schematically in Fig. 1.

Traditionally wave steepness is defined by

s ;
H

l
; ð2Þ

but, because the change in height H occurs over the distance

l=2 and not l; s is in fact a measure representative of half of

the spatial gradient likely to be encountered in a wave. To

have a consistent set of wave steepness measures, each

appropriate to different parts of a wave, it is convenient to

define the following:

wave steepness; s0 ; 2s

trough front steepness; s1 ;
Ht

l1

;

Fig. 1. Schematic illustration of definitions of crest height, trough depth and quarter wave lengths and periods. Note the wave is travelling in the negative x-

direction.
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trough back steepness; s2 ;
Ht

l2

;

crest front steepness; s3 ;
Hc

l3

;

crest back steepness; s4 ;
Hc

l4

:

wave front steepness; s23 ;
H

l2 þ l3

:

This set of six wave steepness measures is representative of

the spatial gradients in various parts of a wave. The use of

s0 ¼ 2s serves to relate the results presented here with other

results concerning wave steepness which are traditionally

given in terms of s:

Transforming to the time domain, we assume the linear

dispersion relation, v2 ¼ gk; holds and that the shape of the

wave does not vary significantly over a time scale equal to

the period of the wave. The phase speed of a wave is,

therefore, considered to be constant (at least over one wave

period) and is equal to

c ¼
v

k
¼

gT

2p
:

From this, and the relation l ¼ cT ; the previously defined

wave steepness measures are rewritten in terms of the time

variable as

s ¼
2pH

gT2
; ð3Þ

s0 ¼
4pH

gT2
: ð4Þ

Also, from the relations li ¼ cTi; the crest and trough

steepnesses are rewritten in terms of the time variable as

si ¼
2pHi

gTTi

; i ¼ 1; 2; 3; 4; ð5Þ

where Hi ¼ Ht for i ¼ 1; 2; and Hi ¼ Hc for i ¼ 3; 4:

Finally, the wave front steepness is rewritten as

s23 ¼
2pH

gTðT2 þ T3Þ
: ð6Þ

Other definitions used in this study are those of the

dimensionless quarter periods

ti ¼
Ti

T
; i ¼ 1; 2; 3; 4;

the sum of which equals unity, and the dimensionless partial

period

t23 ¼
T2 þ T3

2T
:

Also defined are the dimensionless trough and crest

horizontal asymmetry coefficients

At ¼ ðT1 2 T2Þ=ðT1 þ T2Þ; ð7Þ

Ac ¼ ðT3 2 T4Þ=ðT3 þ T4Þ: ð8Þ

This definition of Ac has an advantage over the horizontal

asymmetry coefficient defined by Myrhaug and Kjeldsen

[7, page 551] (that is to say, T4=T3) in that for a

statistically stationary Gaussian sea surface profile com-

posed of a linear random sum of symmetric Airy waves,

the distributions of At and Ac will be symmetric about its

mean of zero.

3. The data

The raw data used in this study were collected from

three Thorn EMI infra-red laser altimeters sampling at

5 Hz and mounted on three of the corners of the North

Alwyn fixed steel-jacket oil and gas platform. The Alwyn

North field, operated by TotalFinaElf, is situated in the

northern North Sea about 100 miles east of the Shetland

Islands (60848.50 North and 1844.170 East) in a water

depth of approximately 130 m. There are two jacket

platforms in close proximity connected by a walkway.

The field processing platform, NAA, is the site of all the

sensor and data logging equipment. The logging system is

configured such that each sensor takes five measurement

of the sea surface elevation every second. These are

recorded for a duration of 20 min and the significant wave

height, Hm0
; for this period is calculated as four times

the square root of the variance of the measurements. If

Hm0
is greater than 3 m, all three 20-min sea surface

records are saved to optical disc for detailed analysis. We

define a storm as the period between the start of the first,

and the end of the last, of a continues sequence of 20 min

records each satisfying Hm0
. 3 m:

In this study, we analyse data collected over the

full durations of 10 separate severe storm periods. The

10 storms are of varying bandwidth, but all are

essentially uni-modal wind-driven seas without significant

swell. To ensure the cleanest data, for each storm, we

only use data from the altimeter which is upwind of the

platform.

The raw data were stored as 1,879 20-min records of

surface elevation measurements. Note that all wave

records are wholly unfiltered: not being smoothed by

any means other than that arising from the finite sampling

rate, 5 Hz, of the measurement instruments. This rate of

sampling is sufficiently high to yield an accurate

representation of the sea surface (see Ref. [9] for a

discussion of the effect of sampling rate on the measured

distribution of wave heights). In a preliminary analysis of

these individual 20-min records, the mean surface

elevation was subtracted from each elevation measure-

ment to give a wave record, denoted by hðtÞ; having a

mean elevation of zero. In each wave record hðtÞ; the

times of all zero-crossings were estimated by a linear

interpolation from its positive and negative bracketing
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points by

tðh ¼ 0Þ ¼ ti 2
hidt

hiþ1 2 hi

;

where ti is the time of the ith measurement, and dt ¼

tiþ1 2 ti is the sampling period (equal to 0.2 s). From the

set of zero-crossing times, all zero down-crossing waves

were identified in these records, and the values of T1; T2;

T3 and T4 for each were calculated. Also, the values of Hc

and 2Ht for each wave were taken, respectively, as the

maximum and minimum values of hðtiÞ lying between the

waves’ zero down-crossings. From these basic parameters,

we calculated the six steepness measures and the two

horizontal wave asymmetry coefficients as defined in

Section 2.

A more detailed summary of the data from these storms

is given in Table 1.

4. Scaling and stationarity

The raw data is (in the statistical sense) highly non-

stationary, the values for mean wave height and period

differing widely over the full set of 20-min records

(although the difference is only small between consecu-

tive 20-min records). This makes it impossible to

combine data from different records into a single data

set. In an attempt to overcome this problem, we

examined use of various non-dimensionalised variables.

The result of non-dimensionalising the equations govern-

ing the behaviour of surface gravity waves (see, for

example, Ref. [13, page 434]) shows that the single

dimensionless parameter governing the behaviour of

dynamically similar systems is L=gT2; where T and

L are representative measures of time and distance,

respectively (see Appendix A). Some possible choices for

L are
ffiffiffiffi
m0

p
or Hs; and for T; 2pm0=m1 or 2p

ffiffiffiffiffiffiffiffi
m0=m2

p
;

where mn is the nth spectral moment of the wave record,

defined by

mn ¼
ð1

0
vnSðvÞdv; n ¼ 0; 1; 2;…;

and where SðvÞ is the one-sided frequency spectrum and

v ¼ 2pf is the angular frequency. One may have thought

that choosing spectral measures forL andTwould have the

advantage that they would be directly available from the

frequency spectrum. But in what follows, we analyse

measurements from the time series directly and not from

the energy spectrum. Also, one must be aware that the

relations which relate the spectral measures to the time series

measure1 apply strictly only to Gaussian processes, and

many, only to narrow-banded Gaussian processes. Our wave

data is non-Gaussian and broad-banded. Thus, in this study,

we choose to use the fundamental measures

L ¼ �H;

T ¼ Tz;

where �H is the mean wave height and Tz is the mean zero-

crossing period.

Generally, in the following sections, all variables which

are non-dimensionalised by �H or Tz; or a combination of

these, are denoted with the same symbol as used for the

original variable, but differentiated by the addition of a

superscripted asterisk ( p ). Thus, for each wave record, all

individual wave height and period measures are non-

dimensionalised by dividing, respectively, by L ¼ �H and

T ¼ Tz; where �H and Tz are the means measured from the

Table 1

Summary statistics for the data used in this study

Storm ID No. of 20-min records Total No. of waves No. of waves, Hp
c . 0:1

and Hp
t . 0:1

MeanðHÞ (m) MaxmðHÞ (m) MeanðTzÞ (s)

23 177 21,303 16,927 4.03 21.94 8.4

25 111 13,640 10,658 3.45 15.88 7.73

26 161 20,007 15,105 2.25 9.111 6.56

28 150 18,796 15,701 3.47 19.51 7.89

29 93 11,241 9251 3.51 20.27 7.87

90 310 39,145 33,069 3.65 23.85 8.0

124 173 17,910 15,928 4.9 21.14 9.64

146 91 10,859 7753 2.29 9.151 6.8

149 412 40,529 33,854 4.19 24.19 8.8

195 201 23,653 18,557 3.5 18.72 8.01

Combined 1879 217,083 176,803 – 24.19 –

1 Examples of relations of time series parameters to spectral parameters

are as follows. For a Gaussian process, hðtÞ : stdðhÞ ; ffiffiffiffi
m0

p
; where stdðhÞ

is the standard deviation of the h; Tz ; 2p
ffiffiffiffiffiffiffiffi
m0=m2

p
; where Tz is the mean

zero-crossing wave period; and �T ; 2pm0=m1: If hðtÞ is a narrow band

Gaussian process then: �H ¼
ffiffiffiffiffiffiffi
2pm0

p
; and Hm0

¼ Hsig ¼ 4:004
ffiffiffiffi
m0

p
: Note

that from our data of the measured values of 2pm0=m1 and 2p
ffiffiffiffiffiffiffiffi
m0=m2

p
; the

former seems far closer to Tz than the latter, although the former are

slightly above and the latter slightly below Tz:
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record containing the individual wave. For example, Hp
i ¼

Hi= �H and Tp
i ¼ Ti=Tz:

As each measure of steepness is proportional to a wave

height measure divided by the product of two wave period

measures, all wave steepness measures, si; from the same

record will also be scaled by an amount T2
z = �H and denoted

spi : As we expect the distributions of the various wave

steepness measures to be constant across records with

the same value of L=gT2; we group all wave records based

on their values of �H=T2
z :

We expect some statistical variation in �H=T2
z ; even

between 20-min segments of a continuous stationary wave

Fig. 2. Detail of Storm 25: points are averages over each 20-min record, the solid line is a local regression, and the dashed lines represent its 95% confidence

band. Plots are shown for: the mean wind speed; the significant wave height, Hs; the significant wave steepness, Ss; and the scaling factor �H=T2
z :
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record. The level of this variation is shown in Fig. 2 which

shows, for Storm 25, a local regression2 along with the

average over each 20-min record of the following variables:

the mean wind speed; the significant wave height, Hs

(defined as the average height of the highest third of the

waves); the significant wave steepness Ss (defined by

Ss ¼ 2pHs=gT2
z ); and the scaling factor �H=T2

z : Assuming

our data to be approximately stationary over a 20-min

period, we use the variation in �H=T2
z between consecutive

20-min records as a measure of the size of the natural

statistical variation in �H=T2
z : Analysis of the data has shown

that about 95% of the differences lie between 20.01 and

0.01. Thus, a bin size for �H=T2
z of 0.01 or less would be

adequate.

Another way to calculate the expected variance in the

measurements of �H=T2
z from each record is to estimate its

standard deviation based on the standard deviations of �H

and Tz:
3 For Storm 25, the mean value of stdð �H=T2

z Þ ¼

0:007; which gives a bin width for �H=T2
z of approximately

0.014. This value is in broad agreement with that previously

estimated from the variance of the differences of �H=T2
z

between consecutive records.

Shown in Fig. 3(a) is a histogram of the number of

individual waves plotted against the value �H=T2
z of the

record from which the waves were measured (the

minimum and maximum values are 0.033 and 0.068).

By consideration of this histogram, and in order to obtain

bins with large populations of reasonably stationary wave

Fig. 3. Histogram of the number of individual waves from records with scaling values of �H=T2
z : (a) Histogram of number of waves against scaling factors. (b)

Distributions of dimensionless wave height measures from Bin 2. (c) Distribution of dimensionless quarter periods from Bin 2. (d) Distributions of

dimensionless period from Bin 2.

2 See Section 5 for a description of the local regression algorithm used.

3 That is to say

std
�H

T2
z

� �
<

1

T2
z

�����
�����stdð �HÞ þ

2 �H

T3
z

�����
�����stdðTzÞ;

where stdð �HÞ ¼ stdðHÞ=
ffiffiffi
N

p
; stdðTzÞ ¼ stdðTÞ=

ffiffiffi
N

p
and N is the number of

waves in the record.
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data, we chose to ignore data from records with �H=T2
z ,

0:044 and 0:064 , �H=T2
z : We grouped the remaining data

into three bins of width 2/300. These bin widths are

within the 0.01 width suggested by the analysis of

differences above. Table 2 summarises aspects of the

data after partitioning. Pairwise quantile–quantile plots

(not shown) between various sections of the data from

each bin confirm that the distributions of the dimension-

less parameters Hp; Hp
i ; Tp; Tp

i and spi are, to an adequate

level of approximation, unchanging between records

within each bin.

Other plots in Fig. 3 show the densities of the

dimensionless wave height and wave period measures for

data from Bin 2 only (which are representative of the

other two bins too). They show a high density of very

small waves. This feature has been documented before

(see, for example, Refs. [8,10]) and results from

measurements of data; that is broad-banded. Such data

is not well fitted by a Rayleigh distribution. In the

analysis that follows, we ignore the effects of these

small, waves by considering only those waves for which

either Hp
c , 0:1 or Hp

t , 0:1 (see Table 1).

Since we non-dimensionalise our data using �H and Tz;

and then examine the horizontal asymmetry of

the non-dimensionalised data, it is important that there is

no dependency of the horizontal asymmetry coefficients At

and Ac on either �H or Tz: This is demonstrated in Fig. 4

which shows, via local regressions of At and Ac on �H and Tz

that their is no significant dependency of either At and Ac on

either �H or Tz: Although there does appear to be some slight

increase in both At and Ac with increasing �H greater than

about 6 and increasing Tz greater than about 10, this is not

significant at the 95% level since it is possible to draw a

horizontal line within each of the 95% confidence intervals.

5. The distribution of wave quarter periods conditional

on wave height

In this section, we investigate horizontal asymmetry

by an analysis of the distributions of the dimensionless

quarter periods ti; i ¼ 1; 2; 3; 4; and the asymmetry

coefficients Ac and At; in each case conditional on

wave height.

We first verify that the dimensionless partial periods ti

may reasonably be treated as independent observations. Any

failure of independence is almost certain to show in the

corresponding autocorrelation functions: in particular in the

lag-one autocorrelations. For each of the variables ti; i ¼

1; 2; 3; 4; Ac and At; and for each storm, the above

autocorrelations were all close to zero. For example, for

Storm 23, the lag-one autocorrelations are: R1ðt1Þ ¼

20:102; R1ðt2Þ ¼ 20:134; R1ðt3Þ ¼ 20:134; R1ðt4Þ ¼

20:0884; R1ðAcÞ ¼ 20:0091 and R1ðAtÞ ¼ 20:0108:

These compare to lag-one autocorrelations for wave height

and period of R1ðH
pÞ ¼ 0:317 and R1ðT

pÞ ¼ 0:245; which

indicates that observations of these variables are not

independent—see Ref. [5] for a Markov chain model of

these.

Table 2

Summary of binned data used in this study

Bin Number

of records

Number

of waves

Minð �H=T2
z Þ Meanð �H=T2

z Þ Maxð �H=T2
z Þ

1 386 44,547 0.04402 0.04838 0.05066

2 966 111,099 0.05067 0.05403 0.05732

3 421 49,635 0.05734 0.05975 0.06396

Fig. 4. Local regressions (with 95% confidence intervals) of dimensionless trough (upper line) and crest (lower line) horizontal asymmetry coefficients against

unscaled significant mean wave height and mean zero-crossing wave period (the fitting parameters used were b ¼ 0:5 and D ¼ 1).
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Throughout this study, we make use of a non-

parametric local regression procedure called locfit4 [6].

For each value of a predictor variable, x; locfit estimates

the response variable, y; as y ¼ f ðxÞ þ e ; where f ðxÞ is a

non-parametric function obtained by a local regression

for those observations in the neighbourhood of x and e is

a residual random variable. The locfit procedure has two

tuneable parameters called the bandwidth the degree

fitting parameter, denoted b and D; respectively. One

advantage of using a non-parametric regression is that it

is not required to specify, a priori, the functional form of

f ðxÞ: In particular, the locfit algorithm is very flexible,

making it ideal for modelling complex processes for

which no theoretical models exist. The disadvantage is

that the estimated functions f ðxÞ have no simple

mathematical description.

Fig. 5 shows local regressions of the dimensionless

quarter period measures and the horizontal asymmetry

coefficients against dimensionless wave height. It is

evident from Fig. 5(a) that, for the data from Bin 2,

there is a strong dependency of the horizontal asymmetry

coefficients on dimensionless wave height. Both Ac and At

show a definite and pronounced increase with Hp:

Regression of Ac and At for all bins are shown together

in Fig. 5(c) and (d). It is clear that the data from each bin

shows the same dependency, only the size of the

confidence intervals vary, owing to the smaller size of

the data sample in Bins 1 and 3. Also, it is suggested by

Fig. 5(c) and (d) that there is no significant difference in

Ac or At across bins. This is confirmed by quantile–

quantile plots (not shown).

Fig. 5. Local regressions (with 95% confidence intervals) of dimensionless wave quarter period measures and the horizontal asymmetry coefficients against

dimensionless wave height for the three steepness bins (the fitting parameters used were b ¼ 0:5 and D ¼ 1). (a) Asymmetry parameters for data from Bin 2. (b)

Dimensionless quarter periods for data from Bin 2. (c) Crest asymmetry parameter for data from all bins. (d) Trough asymmetry parameter for data from all bins.

4 Locfit is implemented in the R and S-Plus statistical analysis packages.
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Fig. 5(b) shows local regressions of each dimensionless

quarter periods, ti; against Hp for the data from Bin 3.

There is very clear evidence of horizontal asymmetry, and

this asymmetry is seen to increase with Hp: Generally, and

on an average, for small waves (with Hp , 1), it appears

that t1 < t2 and t3 < t4; whereas for large waves (with

Hp . 2), it appears that t3 , t2 , t4 , t1: These results

are consistent with small waves being symmetric in the

horizontal direction, but asymmetric in the vertical

direction (like a Stokes wave). Large waves, however,

are clearly asymmetric in both the vertical and horizontal

directions (with similar ratios of quarter periods as pictured

schematically in Fig. 1.

6. The distribution of wave steepness conditional

on wave height

We now investigate the distribution of wave steepness

conditional on wave height. The traditional definition of

wave steepness given by Eq. (2) represents an average

steepness over a whole zero-crossing wave. For a Gaussian

probability model of ocean waves, the statistics of the

various wave steepness measures, defined by Eqs. (4)–(6),

will be identical. However, in Section 5, and particularly

Fig. 5(b), it was clearly demonstrated that there is a

significant horizontal asymmetry present in waves for which

Hp . 1:5: We, therefore, treat separately each of the

steepness measures spi ; i ¼ 1; 2; 3; 4; 0; 23; and we consider

models of the form

spi ¼ fiðH
pÞ þ e i; ð9Þ

describing the distribution of spi conditional on wave height

Hp: Here, fiðH
pÞ is a location measure for this conditional

distribution and e i is a residual random variable. In Section

6.1, we consider estimation of the functions fi using both non-

parametric and parametric methods. In Section 6.2, we show

that the distributions of the residual random variables e i have

no significant further dependence on Hp: We use extreme

value theory to model the tails of these distributions. Thus,

from knowledge of the functions fi and of the tails of the

distributions of e i; we may predict the probabilities of

extreme levels of steepness conditional on Hp:

6.1. Local regression of steepnesses on wave height

In this section, we consider estimation of the function fi
defined in Eq. (9). We restrict attention to waves for which

both Hp
c $ 0:1 and Hp

t $ 0:1:

We consider first the locfit non-parametric estimation. In

order to estimate confidence limits, it is important to verify

that the residuals can be treated as observations of

independent random variables. Analysis of the autocorrela-

tion function of each e i strongly suggests that this is the

case. For example, the lag-one autocorrelations are:

R1ðe1Þ ¼ 0:0379; R1ðe2Þ ¼ 0:0603; R1ðe3Þ ¼ 0:0598;

R1ðe4Þ ¼ 0:0588; R1ðe0Þ ¼ 0:122 and R1ðe23Þ ¼ 0:0935:

These values are not zero, but are considered sufficiently

small to make the assumption of independence reasonable.

Further, autocorrelation plots (not shown) give no evidence

of higher-order autocorrelation.

Fig. 6 shows the estimated functions fi together with their

95% confidence envelopes for the data from each bin fitted

separately. There is an interesting structure to these fits of si

and all show the same trends: the differences in fi between

the bins vanish at around Hp ¼ 1; for Hp . 2 the

magnitudes of fi are based on bin order, with the values

from Bin 3 being the largest and those from Bin 1 being the

smallest; for Hp , 1; the converse is true, that is to say, the

magnitudes of fi from Bin 1 are largest and those from Bin 3

are the smallest.

The fact that fi for large waves is higher for bins of

higher �H=Tz is not surprising since �H=Tz is a measure of

average steepness of the waves in the bin. But, the

observation that the difference vanishes and Hp ¼ 1; and

then reverses for Hp , 1 is surprising (this observation

has also been confirmed by using more flexible and

responsive values for the locfit bandwidth and degree

parameters, specifically b ¼ 0:25 and D ¼ 2; and the

same trends were observed).

Fig. 7 shows plots similar to those in Fig. 6 except in this

case only data from Bin 2 is shown and the regressions of

each spi against Hp and Hp
i are shown together on single

plots. From Fig. 7(a), it is clear that for large waves, the

order of the steepness measures within Bin 2 is sp3 . sp2 .

sp23 . sp0 . sp2 . sp1: This result is consistent with the

asymmetry observed in the quarter periods. All regressions

displayed to this point have used Hp; and not Hp
i ; as the

predictor variable. This means that we have eliminated any

effects of vertical asymmetry in the wave. Fig. 7(b) shows

the local regression of spi on Hp
i ; and it can be seen that the

vertical asymmetry has a greater effect than the horizontal

asymmetry on the regressions of spi :

Since parametric estimates are often more useful for

prediction, we also estimate each fi using robust quadratic

regression obtained via iteratively re-weighted least

squares. That is, for each i; we also obtain a robust fit of

the model

spi ¼ ai þ biH
p þ giH

p2 þ e i; ð10Þ

where ai; bi and gi are estimated coefficients, and e i is again

a residual random variable.

For each bin, a model of the form of Eq. (10) was fitted

separately and for all waves for which Hp . 1:25: The

results are displayed in Fig. 8 which shows the values of ai;

bi and gi; and bars representing their standard errors, for

each bin and steepness measure.

Fig. 9 shows the quadratic fits obtained from the data in

Bin 2 superimposed over the corresponding locfit for each of

the steepness measures. In each case, the similarity between

the locfit and the quadratic fits is very high: the latter lying
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within the 95% confidence envelope of the former over the

range Hp . 1:25: This suggests that the simple relation

given by Eq. (10) does in fact appear adequate to model the

process over this range of Hp: The quadratic regressions

provide formulae with which to develop mathematical

models for the variation of steepness with wave height.

Table 3 gives the fitted parameters for the robust quadratic

regression for each of the steepness measures in each bin.

Fig. 6. Local non-parametric regressions (with 95% confidence intervals) of the various steepness measures, spi ; against Hp (the fitting parameters used were

b ¼ 0:25 and D ¼ 1).
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6.2. The distributions of extremes of wave steepness

We now estimate the distribution of the extremes of

wave steepness conditional on wave height. For each

steepness measure, spi ; the distribution of the residuals

e i from the quadratic regression fitted by Eq. (10)

appears, to a good approximation, to be independent of

Hp in the range Hp . 1:25: This is verified graphically

Fig. 7. Local non-parametric regressions (with 95% confidence intervals) of the various steepness measures, spi ; regressed against Hp and Hp
i for the data from

Bin 2 (the fitting parameters used were b ¼ 0:25 and D ¼ 1). (a) spi regressed against Hp: (b) spi regressed against Hp
i :

Fig. 8. Robust regression estimates of the fitted parameters ai; bi and gi for i ¼ 0; 1; 2; 3; 4; 23 for each bin. Error bars of ^1 standard error are also shown.
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as follows. The data are sorted into 20 equally sized

groups according to their values of Hp: For each i

and for each of these groups, Fig. 10 shows a set of

quantiles for the above residuals. These correspond to

the eight probability levels, p ¼ {0:1; 0:3; 0:5; 0:7; 0:8;

0:9; 0:95; 0:99:} For each i and for each probability

level, the quantiles are connected across groups to

obtain a series of probability contours; for Hp . 1:25

and e i . 0; these quantiles indeed appear to be

independent of Hp:

Fig. 9. Local non-parametric (with 95% confidence intervals) and quadratic regressions of the various steepness measures, spi ; against Hp (the fitting parameters

used were b ¼ 0:25 and D ¼ 1).
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In order to estimate extremes, for each bin and each i; we

seek a model for the tail of the distribution of the residuals

e i; valid for all Hp . 1:25: Asymptotic theory [1,2] suggests

that it is appropriate to consider modelling this tail by a

generalised Pareto Distribution (GPD). This theory is

applicable to all distributions, subject only to mild regularity

conditions, even when these distributions arise as mixtures

of those corresponding to different physical conditions. For

the purposes of extrapolation to very extreme values, the

modelling of the tail of a distribution by a GPD may only

work well when there are a sufficiently large number of

observations that may themselves be considered reasonably

extreme. However, our purpose here is essentially that of

interpolation, and the family of GPD distributions is also a

sufficiently large and flexible class for this purpose.

Th GPD has the distribution function FjmsðxÞ ¼ 1 2
�FjmsðxÞ where the complementary distribution function is

given by

�FjmsðxÞ ¼

1 þ
jðx 2 mÞ

s

� �21=j

; if j – 0;

exp 2
x 2 m

s

� �
; if j ¼ 0;

8>>><
>>>:

ð11Þ

and where

x $ m; if j $ 0;

m # x # m2 s=j; if j , 0:

Here j; m and s . 0 are, respectively, shape, location and

scale parameters for the GPD (note in particular that �FjmsðxÞ

is continuous in j at j ¼ 0).

Hence, for each wave steepness measure i; we consider

the model

Prðe i . xÞ ¼ �Fjimisi
ðxÞ; ð12Þ

valid for all x greater than or equal to some appropriately

chosen threshold ui: While various graphical techniques, for

example, mean excess or mean residual plots [1,2], can be

used to assist in the choice of appropriate thresholds, the

resulting plots can in practise be very difficult to interpret

(see Ref. [2]), and we have decided instead simply to choose

the lowest thresholds above which the fits are clearly

satisfactory (see below).

Under the model (12) we have

pi ¼ Prðe i . uiÞ ¼ �Fjimisi
ðuiÞ; ð13Þ

while elementary calculation shows that

Prðe i . ui þ zle i . uiÞ ¼
�Fjimisi

ðui þ zÞ

�Fjimisi
ðuiÞ

; ð14Þ

¼ �Fji0i ~si
ðzÞ; ð15Þ

where

~si ¼ si þ jiðui 2 miÞ: ð16Þ

The parameters pi; ji and ~si may be determined by

maximum likelihood estimation where, for each observation

of spi ; we record whether or not it exceeds the threshold ui

and, if so, the value of its excess (the number of

observations exceeding ui is sufficient for the estimation

of pi from Eq. (13); the values of the excesses are sufficient

for the estimation of ji and ~si). The original (threshold

independent) parameters mi and si may then be recovered

via the relations (11), (13) and (16). Thus, for all ji;

si ¼ ~sip
ji

i ;

mi ¼ ui þ
~si

ji

ðp
ji

i 2 1Þ:

The values of the thresholds and the fitted parameters for

each steepness measure are given in Table 4.5

For each steepness measure spi ; Fig. 11 shows a quantile–

quantile plot comparing the empirical and fitted residual

distributions. For this purpose, we have projected the fitted

GPD below the threshold ui: The linearity of the quantile–

quantile plots above the chosen thresholds shows the choice

of these to be satisfactory. Similarly, Fig. 12 shows kernel

density estimates for each residual distribution together with

the corresponding GPD densities.

These results now enable estimation of the probability of

any given extreme of steepness spi conditional on Hp; for any

Hp . 1:25: Thus, for any Sp

Prðspi . SplHpÞ ¼ �Fjimisi
ðe iÞ; ð17Þ

provided e i ¼ Sp 2 ai 2 biH
p 2 giH

p2 is greater than the

threshold ui: Here, ai; bi and gi are the estimated parameters

Table 3

Values of the fitted parameters for the robust quadratic regression of

steepness on wave height.

Bin index Steepness index i ai bi gi

1 1 0.6752 0.3804 20.02361

2 0.6128 0.4484 20.01919

3 0.6699 0.4904 0.02308

4 0.8253 0.314 0.03417

0 0.5047 0.4615 20.003933

23 0.5755 0.476 0.001079

2 1 0.4906 0.6095 20.07095

2 0.3842 0.7122 20.07264

3 0.2737 0.9193 20.03449

4 0.6954 0.4605 0.0445

0 0.2943 0.6895 20.02652

23 0.2894 0.7788 20.03813

3 1 0.3333 0.7396 20.09106

2 0.4011 0.6489 20.04831

3 0.3907 0.3907 0.04739

4 0.5897 0.5189 0.054

0 0.2023 0.7486 20.02533

23 0.2567 0.7622 20.0172

5 The S-Plus code of Ref. [1] was used to obtain these fits.
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given in Table 3; the functional form of �Fjimisi
ðxÞ is given by

Eq. (11); and estimates of the parameters ji; mi and si are

given in Table 4. For Sp such that e i , ui—corresponding to

less extreme values of steepness—the above probability

may be estimated directly by interpolation from Fig. 10. We

are in general, however, interested in extremes such that

e i . ui. The region of applicability of the model is shown

schematically in Fig. 13.

Fig. 10. Probability contours from data in Bin 2 showing, for each steepness measure i; the dependence on dimensionless wave height of the quantiles of the

distribution of e i: The quantiles of each probability level are joined to form the contours.
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Unconditional probabilities for extremes of steepness are

given by

Prðspi . SpÞ ¼
ð

pðHpÞPrðspi . HplHpÞdHp
;

where pðHpÞ is some probability density function for wave

height such as the Rayleigh density—see Fig. (13).

7. Discussion

The data used here were obtained in wind-driven sea

conditions without significant swell. The significant wave-

height increases from around 3 m at the start of each storm

and rises to a maximum value of up to 13 m before falling

again to around 3 m. The conditions are typical of those

encountered in North Sea storms and the wave spectra have

been found to be modelled well by the JONSWAP spectra.

They are therefore representative of extra-tropical storms

where the fetch is limited. Since the data includes that

obtained during some of the largest storms seen in the

northern North Sea in the last eight years, they are as close

to extreme design conditions as is likely to be recorded

consistent with having a data set of reasonable size and

representation.

Strictly speaking the predictive model (17) is only

applicable to similar storm conditions. Considering Fig. 2

we see that the steepness tends to be higher during the

growth of the storm up to its peak than during its subsequent

decay. By non-dimensionalising the data and splitting it into

bins according to �H=T2
z , we distinguish effectively between

these phases, and, from the ten storms, there are sufficient

numbers of individual waves at all points along the

dimensionless waveheight range for relationships to be

established between waveheight and each measure of

steepness. Thus, the models developed here can be applied

to fetch-limited wind-driven sea conditions where �H=T2
z

varies from around 0.044 to around 0.064 (as specified in

Table 2).

The model (17) is one for the conditional distribution of

steepness measure spi given dimensionless waveheight Hp.

Equivalently, through Eq. (4), it is a model for the

conditional distribution of dimensionless period Tp
i given

Hp. Together with a knowledge of the unconditional

distribution of Hp itself, it may be used to predict the

unconditional distribution of spi or Tp
i , or just the uncondi-

tional means of either of these variables.

It is interesting to note from Figs. 6 and 7 that, for each of

the measures of steepness considered, there is a very clear

trend, with tight confidence intervals, between mean

steepness and wave height for waves with Hp . 1:

Obviously there are few extremely large waves and the

confidence intervals here become wider due to lack of data.

For small waves, with Hp , 1; this trend is reversed. It is

worth noting that from the analysis of wave buoy records

collected under moderate conditions, it has, in the past, been

assumed in ocean engineering practise that wave steepness

is largely independent of wave height. Further, while

vertical wave asymmetry in deep water is well recognised

and reflected in non-linear wave theories, horizontal

asymmetry is not; and the second-order wave theories

now beginning to be adopted by designers do not allow for

Table 4

Thresholds and fitted parameters for the GPD of the tails of wave steepness measures

Bin index Steepness index, i ui ~si ji pi si mi

1 1 1 0.3957 0.1087 0.07335 0.2979 0.1000

2 1 0.4534 0.02106 0.07034 0.4287 20.1704

3 1 0.6550 0.1010 0.1325 0.534 20.1976

4 1 0.6712 0.02356 0.1213 0.6387 20.3815

0 1 0.4296 0.01408 0.05009 0.4119 20.2595

23 1 0.4921 0.007496 0.07727 0.4827 20.2478

2 1 1 0.3827 0.1147 0.06522 0.2798 0.1030

2 1 0.3862 0.03583 0.06215 0.3496 20.02128

3 1 0.6548 0.1047 0.1320 0.5297 20.1947

4 1 0.6382 0.07412 0.1277 0.5479 20.2184

0 1 0.3934 0.01489 0.0468 0.3759 20.1775

23 1 0.4523 0.01672 0.07333 0.4329 20.1562

3 1 1 0.3293 0.1720 0.05587 0.2005 0.2512

2 1 0.3524 0.08917 0.05465 0.2719 0.09773

3 1 0.6906 0.08508 0.1352 0.5825 20.2709

4 1 0.6413 0.1209 0.1258 0.4991 20.1761

0 1 0.3725 0.03942 0.04128 0.3285 20.1158

23 1 0.4484 0.01569 0.07053 0.4301 20.1646
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it. Yet, it has considerable significance for wave impact

forces and greenwater on the decks of floating vessels.

It would be possible to calculate confidence

intervals for the predictions of extreme wave steepness

using bootstrap techniques, but the authors have not

done so as it is not clear how such confidence

intervals could be usefully be employed by designers

in practise.

Fig. 11. Quantile–quantile plots of empirical distributions and GPD fits of steepness residuals e i from the data from Bin 2.
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8. Conclusions

There is horizontal asymmetry in the deep water storm

waves of a wind-driven sea. The average horizontal

asymmetry is not discernible among small waves, but

among waves of mean wave height and greater, it seems to

increase with wave height. There is a clear relationship

between steepness and wave height for waves with dimen-

sionless height H= �H ¼ Hp . 1; with steepness increasing as

wave height increases. A simple statistical model has been

Fig. 12. Empirical and fitted GPD densities of steepness residuals e i from the data from Bin 2.
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developed for predicting the probability of extreme wave

steepness given dimensionless wave height. This model is

applicable to extreme storm conditions of the type encoun-

tered in the northern North Sea, similar to those used in the

analysis.
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Appendix A. Non-dimensionalisation of surface gravity

wave equations

The equations governing the behaviour of water waves

are [13, page 434]

›2

›x2
þ

›2

›y2
þ

›2

›z2

 !
f ¼ 0; 2h0 , z , h; ðA1Þ

›f

›x

›h

›x
þ

›f

›y

›h

›y
þ

›f

›z
¼ 0; z ¼ 2h0 ðA2Þ

›h

›t
þ

›f

›x

›h

›x
þ

›f

›y

›h

›y
2

›f

›z
¼ 0; z ¼ h; ðA3Þ

›f

›t
þ

1

2

›f

›x

� �2

þ
›f

›y

� �2

þ
›f

›z

� �2
" #

þ gz ¼ 0;

z ¼ h;

ðA4Þ

where h ¼ hðx; y; tÞ is the surface elevation, f ¼ fðx; y; z; tÞ

is the velocity potential, g is the acceleration due to gravity,

and z is the distance in the vertical. The dimensions are the

following:

½h� ¼ L;

½f� ¼
L2

T
;

½g� ¼
L

T2
;

One can non-dimensionalise with characteristic length and

time measures to obtain:

x ¼ Lxp;

y ¼ Ly;

z ¼ Lzp;

h0 ¼ Lhp
0;

t ¼ Ttp;

hðx; y; z; tÞ ¼ hðLxp; Lyp;TtpÞ;¼ Lhpðxp; yp; tpÞ;

fðx; y; z; tÞ ¼ fðLxp;Lyp; Lzp;TtpÞ;¼
L2

T
fpðxp; yp; zp; tpÞ;

where all the variables superscripted by asterisk are

dimensionless. Thus, the water wave governing equations

can be written in the dimensionless variables as

›2

›xp2
þ

›2

›yp2
þ

›2

›zp2

 !
fp ¼ 0; 2hp

0 , zp , hp
;

›fp

›xp
›hp

›xp
þ

›fp

›yp
›hp

›yp
þ

›fp

›zp
¼ 0; zp ¼ 2hp

0;

›hp

›tp
þ

›fp

›xp
›hp

›xp
þ

›fp

›yp
›hp

›yp
2

›fp

›zp
¼ 0; zp ¼ hp

;

Fig. 13. Schematic illustration in ðHp; spi Þ-space of the wedge-shaped region of conditional density, given Hp; fitted by the GPD. Also shown is a possible (for

example, Rayleigh) density of Hp:
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›fp

›tp
þ

1

2

›fp

›xp

� �2

þ
›fp

›yp

� �2

þ
›fp

›zp

� �2
" #

þ
gT2

L
zp ¼ 0;

zp ¼ hp
:

We see, from the last term in the last of these equations, that

the condition for dynamical similarity is

gp ¼
gT2

L
¼ constant;

which implies that the scaling relationship T2 ¼ L must be

imposed if the term including the acceleration due to gravity

be equal to g alone.

This is equivalent to the following. If h ¼ hðx; y; tÞ

and f ¼ fðx; y; z; tÞ are solutions to the governing

equations (A1)–(A4) in a reference frame,
P

say, then

in a scaled reference frame,
P

0; defined by the

transformations

x ¼ a2x0;

y ¼ a2y0;

z ¼ a2z0;

t ¼ at0;

which imply

›

›x
¼

1

a2

›

›x0
;

›

›y
¼

1

a2

›

›y0
;

›

›z
¼

1

a2

›

›z0
;

›

›t
¼

1

a

›

›t0
;

then the scaled functions

h0 ¼ Lh ¼ a2h;

f0 ¼
L2

T
f ¼ a3f;

are solutions of the governing equations (A1)–(A4) in
P

0:
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[2] Embrechts P, Klüppelberg C, Mikosch T. Modelling extremal events.

Berlin: Springer; 1997.

[3] Faltinse OM, Greco M, Landrini M. Green water loading on a FPSO.

J Offshore Mech Arctic Engng 2002;124:97–103.

[4] Jonathon P, Taylor PH, Tromans PS. Storm waves in the northern

North Sea. In Proceedings of the 17th International Conference on the

Behaviour of Offshore Structures, Cambridge, MA, USA, vol. 2.;

1994. p. 481–94.

[5] Kimura A. Statistical properties of random wave groups. In

Proceedings of the 17th International Conference on Coastal

Engineering, Sydney, Australia; 1980. p. 2955–73.

[6] Loader C. Local regression and likelihood. Berlin: Springer; 1999.

ISBN 0-387-98775-4.

[7] Myrhaug D, Kjeldsen SP. Steepness and asymmetry of extreme waves

and the highest waves in deep water. Ocean Engng 1986;13(6):

549–68.
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