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Abstract

We consider the problem of classifying Markov chains on the quarter

plane Z�
� which possess a property of partial spatial homogeneity� Such chains

arise frequently in the study of queueing and loss networks and have been pre�

viously studied� notably by Malyshev and Menshikov and by Fayolle� However

existing results are either given under restrictive conditions� or lack complete

proofs� We take a new approach to the construction of Lyapounov functions

for such chains to give proofs which require weaker conditions� are complete

in all cases and additionally are considerably simpler�

We also describe the application of these results to the study of the dy�

namic and equilibrium behaviour of large loss networks�

Keywords� Markov chains� random walks� ergodicity� transience� Lyapounov

functions� loss networks� queueing networks�

� Introduction

In this paper we study discrete time irreducible Markov chains on the quarter

plane Z�
� �where Z� is the set of nonnegative integers� whose transition structures

possess a property of partial spatial homogeneity� This property� made precise be�

low� may be described informally as requiring that such a chain feels the in�uence of

either of the two plane �boundaries� only when su�ciently close to it� Our interest

is in describing further the behaviour of such chains and in particular in classifying

them as positive recurrent� null recurrent or transient�

Markov chains such as these have been much studied� both in two and higher

dimensions	see in particular Malyshev 
��� ��� Malyshev and Menshikov 
����

Borovkov 
��� Fayolle 
��� Rosenkrantz 
��� and also the recent book by Fayolle�

�
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Malyshev and Menshikov 
��� However� even in two dimensions� there appears to

be no complete treatment in the published literature of the partially homogeneous

case� where the constants K�� K� de�ned below may be non�zero� It is this case

which is important for many applications� in particular those described below for

loss networks� The partially homogeneous case is considered by Malyshev and Men�

shikov 
��� under the restriction that the jumps of the chains be bounded	which

is too restrictive for some applications� It is further considered by Fayolle 
�� under

the weaker assumption that the jumps of the chains have bounded second moments�

However� for partial homogeneity� Fayolle only gives a proof in the positive recur�

rent case� and then only when the drifts ��� �� de�ned below are both negative�

Further� this proof involves the construction of a Lyapounov function for a Markov

chain embedded in the original chain� This is in order to deal with the anomalous

behaviour of the original process close to the boundaries of the plane�

In the present work we take a di�erent approach to the partially homogeneous

case by constructing functions which are Lyapounov directly with respect to the

original chain� This new approach� which is the major feature of the paper� both

permits a substantially simpler derivation of existing results and makes it possible to

give a complete and comprehensive treatment of the problem under weaker moment

conditions than those for which proofs have previously been published� �In the

case of bounded jumps� Lemma � below is well known	see Fayolle� Malyshev and

Menshikov 
��� while� under the weaker assumption that jumps have bounded second

moments� Lemma  below is trivial� In either of these cases� our proofs become

particularly simple�� We also suspect that the present approach extends to provide

corresponding simpli�cation and generalisation in higher dimensions� and for the

case of asymptotic partial homogeneity�

Our results are presented in Section � below� In Section  we describe the

importance of these results	and their potential generalizations	for the theory of

large loss networks� as developed by Kelly 
��� and Hunt and Kurtz 
���� It is

these applications in particular which motivate the present work� However� Markov

chains with partial spatial homogeneity also arise naturally elsewhere in the study

of queueing and loss networks	see� for example� Malyshev 
��� Fayolle� Malyshev

and Menshikov 
�� and the references therein�

Let P � fp�x� y�� x� y � Z
�
�g be the transition matrix of a discrete time Markov

chain fXn� n � �g on Z�
� � We suppose that the chain is irreducible and that P

has the following property of �partial� spatial homogeneity� for each j � �� �� there

exists Kj � � such that� for each z � Z
� and for each � � Z�� p�x� x� z� is constant

on the set fx� xj � Kj� xj� � �g� where� here and elsewhere� x � �x�� x�� and j �

denotes the complementary element of j in the set f�� �g�

�



Note that in particular this implies that there exists a function p� on Z� such that

p�x� x�z� � p��z� for all x in the set X��X�� where� for j � �� �� Xj � fx� xj � Kjg

�though the above spatial homogeneity property is of course considerably stronger

than this��

We further assume that� for some d � �� the jumps of the chain are bounded

�and hence by the above homogeneity property uniformly bounded� in Ld� that is�

that there exists M � � such that

X
y�Z�

�

p�x� y�jyj � xjj
d � M for all x � Z

�
�� j � �� �� ���

For each j � �� � and each x � Z
�
�� de�ne the drift �j�x� �

P
y p�x� y��yj � xj��

It then follows from the homogeneity property that� for each i � �� �� there exists a

function ��i�
j on Z� such that

�j�x� � �
�i�
j �xi� for all x � Xi� �

De�ne also �j to be the common value of �j�x� on the set X� � X�� so that �j �P
z�Z� p

��z�zj �

It also follows from the spatial homogeneity property that we may de�ne a one�

dimensional Markov chain fX�j�
n g on Z� with transition matrix fp

�j���� ��� �� � �

Z�g which is also that of the jth coordinate process of the chain fXng while it

remains within the set Xj�� that is�

p�j���� �� �
X

y�yj��

p�x� y�

for any x � Xj� such that xj � �� We assume that this chain is also irreducible�

Note that �
�j�
j ��� �

P
��� p

�j���� ���� � �� and so in particular the chain fX�j�
n g

has drift �j on the set f�� � � Kjg� Hence� from well�known standard results on

random walks �see� for example� Durrett 
��� or by elementary Lyapounov function

techniques �see Fayolle 
�� or Asmussen 
���� the chain fX�j�
n g is positive recurrent�

null recurrent or transient according as �j � �� �j � � or �j � � respectively� In the

case �j � � let �
�j� denote the stationary distribution on Z� of this chain� Finally�

for each j� de�ne

�j �

�P
��� �

�j������
�j��
j ���� if �j� � �

�j � if �j� � ��
���

Our main result� Theorem � below �which is well�known under other conditions��

is that the two�dimensional chain �Xn� n � �� is positive recurrent if ����� � � and

transient if ����� � �� we also say something about the case ����� � �	though it





is known that in this case the summary statistics �j and �j� j � �� �� are not always

su�cient to classify the chain�

For details on how to determine the one�dimensional equilibrium distributions ��j�

and hence the parameters �j� in the case where the corresponding chains have

bounded jumps� see Bean et al 
���

� Classi�cation of the Markov chain fXng

Most of the work required for the proof of Theorem � is done by the following lemma�

which relates to a one�dimensionalMarkov chain on Z�� and enables the construction

of the appropriate Lyapounov functions for our two�dimensional chain fXng�

Lemma � Let �P � f�p��� ��� �� � � Z�g be the transition matrix of an irreducible

Markov chain f �Xng on Z� and suppose that� for some K � � and some function �p

on Z� �p��� �� �� � �p��� for all � � K� Suppose further that
P

��Z �p��� �� ��j�j ��

for all � � Z�� De�ne � �
P

��Z �p����� Then the chain is positive recurrent� null

recurrent or transient according as � � �� � � �� or � � �� In the case � � � let �

denote its stationary distribution�

Let the function 	 on Z� be such that� for some constant �	� 	��� � �	 for all

� � K� De�ne

� �

�P
��� ����	���� if � � �

�	� if � � ��

�a� Suppose that �	 � �� Then� for any 
 � � � �	� there exists a bounded negative

function g on Z� such that

X
���

�p��� ���g���� g���� � 	��� � 
 for all �� ��

�b� Suppose that �	 � �� that � � � and that � � �� Then� for any 
 such that

� � 
 � �� there exists a negative function g on Z� such that

g��� � �� �O��� as � ��� for some � � � ���

and g again satis�es the condition ����

Proof� As previously remarked� the asserted classi�cation of the chain according

to the value of � is well�known�

It is convenient to consider the cases �a� and �b� together� Since the properties ��

and ��� are invariant under adjustment of the function g by an additive constant�

�



it will be su�cient to construct a function g which is bounded above rather than

negative�

For � � �� let �� denote the stationary measure associated with the chain	

unique up to a multiplicative constant� so that in particular we may take �� � � for

� � �� In the case �a� de�ne a function h on Z� by

h��� �

�
	���� 
� if � � k

�� if � � k
���

where k � K and� in the case � � �� is additionally such that

X
��Z�

�����h��� � � ���

�note that this is possible since 
 � � if � � � and 
 � �	 if � � ��� Note also that�

for all ��

h��� � 	���� 
� ���

since 
 � �	� In the case �b� de�ne the function h by

h��� � 	���� 
� ���

Note that in this case the condition ��� is again satis�ed� since 
 � ��

Associate with the chain f �Xng a �reward� process fRn� n � �g such that R� �

h� �X��� and� for n � �� Rn � Rn�� � h� �Xn��

In the case �a� where also � � � de�ne� for all �� g��� � E�limn��Rnj �X� � ���

where� here and elsewhere� E denotes expectation� note that it follows easily� from

the transience of the chain in this case and the de�nition ��� of h here� that the

function g is well�de�ned and bounded� Furthermore

X
���

�p��� ���g���� g���� � h��� � �

for all �� Thus� using ���� it follows that the function g satis�es the condition ���

In the case �a� where � � � the chain f �Xng is recurrent and in the case �b�

it is positive recurrent� let T � inffn � �� �Xn � �g and� for all �� de�ne g��� �

E�RT j �X� � ��� It again follows easily� from the de�nition ��� or ��� of h� that in the

case �a� the function g is bounded �since here a non�zero �reward� is only earned in

states � � k� and that in the case �b� the function g satis�es the condition ���	with

� � ������	 � 
�� �This latter result follows by Wald�s equation for random walks�

together with the �niteness of the �rst moments of the jumps of the chain�� De�ne

now �in either case�

a��� �
X
���

�p��� ���g���� g���� � h����

�



Then� from the de�nition of g� a��� � � for all � � �� De�ne also T � � inffn �

�� �Xn � �g and� for each �� de�ne N��� to be the number of hits of the chain on the

state � in the interval 
�� T ��� Then� since g��� � h����

a��� �
X
���

�p��� ��g���

� E�RT � �R�j �X� � ��

�
X
���

E�N���j �X� � ��h���

� �������
X
���

�����h���

� ��

where the third equality above is justi�ed from the de�nition ��� or ��� of h� and�

in the case �b�� by the �niteness of E�T �j �X� � �� and the dominated convergence

theorem� and where the �nal inequality follows using the condition ���� We thus have

that a��� � � for all � and so� again using the condition ��� or ��� as appropriate� it

follows that the function g satis�es the condition ���

Lemma � below is well�known in the case of Markov chains with bounded jumps	see

Theorem ����� of Fayolle� Malyshev and Menshikov 
���

Lemma � Let �P � f�p�x� y�� x� y � Sg be the transition matrix of a Markov chain

on some countable state space S� Suppose that there exists a function f on S and

constants K� M � �� 
 � �� d � � such that if E � fx� f�x� � Kg then

E 	� 
� ���

X
y�S

�p�x� y��f�y�� f�x�� � 
� x � E� ����

X
y�S

�p�x� y�jf�y�� f�x�jd �M� x � E� ����

Then the chain is transient�

Proof� Observe that� from ��� and �����

sup
x�S

f�x� ��� ����

Choose k� a such that � � k � d�� and �k���d � a � �� and de�ne the function �

on R �the real numbers� by

��z� �

�
�� if z � �

z�k� if z � ��

�



Now suppose x � S is such that f�x� � max�K� � � f�x�a�� For each y � S de�ne

��x� y� � f�x�k��
��f�y��� ��f�x��� � k�f�y�� f�x���

De�ne also Sx � fy � S� jf�y��f�x�j � f�x�ag� For z such that jz�f�x�j � f�x�a�

we have that ��z� � z�k� ���z� � �kz��k��� and that ����z� is positive� decreasing

and O�z��k���� as z ��� Hence� by the mean value theorem� for y � Sx�

j��x� y�j �
�

�
f�x�k������f�x�� f�x�a��f�y�� f�x���

�
�

�
f�x�k�a������f�x�� f�x�a�jf�y�� f�x�j�

and hence� since a � ��

j
X
y�Sx

�p�x� y���x� y�j �
�

�
f�x�k�a������f�x�� f�x�a�M��d

� � ���

as f�x����

Further� since � � ��z� � � for all z� it follows from the de�nition of Sx and the

condition ���� that

j
X

y�SnSx

�p�x� y���x� y�j � f�x�k��
X

y�SnSx

�p�x� y� � k
X

y�SnSx

�p�x� y�jf�y�� f�x�j

� f�x�k���adM � kf�x��a�d���M

� � ����

as f�x���� by the conditions on a and d�

It thus follows from ����� ����� ��� and ���� that there exists K � such that if

E � � fx� f�x� � K �g then both E � and S nE � are nonempty and� for x � E ��

X
y�S

�p�x� y�
��f�y��� ��f�x��� � ��

The required result now follows from� for example� Theorem �� of Fayolle 
��� or

Proposition ��� of Chapter � of Asmussen 
�� �there being no necessity for the re�

quirement that the set E� of that proposition be �nite��

We now return to consideration of our original Markov chain fXng� De�ne� for any

function h on Z�
�� the function �h on Z

�
� by

�h�x� �
X
y�Z�

�

p�x� y��h�y�� h�x���

�



We also write �ha for �f where f � ha� Similarly� for j � �� � and any function g

on Z�� we de�ne the function �
�j�g on Z� by

��j�g��� �
X
���

p�j���� ���g���� g�����

Lemma  below is necessary to enable us to prove Theorem �� �b�� in the case

where the condition ��� is only satis�ed for some d such that � � d � ��

Lemma � Suppose that the positive function h on Z�
� is such that

h�x� � ��x� � ��x� �O��� as x� � x� ���

where �� � �� �� � �� and let a be such that � � a � d 	or in the case d � � we

may take a � �� De�ne

��x� � h�x���a�����ha��x�� a�h�x��

Then

sup
x���

j��x�j � � as x� ��

�where� for any function � on Z
�
�� supx��� ��x� � supx��� ��x�� x����

Proof� The result is trivially veri�ed in the case d � �� a � �� using the

condition ���� In the case of general d � � and � � a � d� we have ��x� �P
z�Z� p�x� x� z���x� z� where

��x� z� � h�x�

��
� �

h�x� z�� h�x�

h�x�

�a
� �

�
� a�h�x � z�� h�x���

Hence� by the spatial homogeneity property� for x� � K��

sup
x��K�

j��x�j �
X
z

p��z� sup
x��K�

j��x� z�j� ����

�where the function p� is as de�ned in the Introduction�� Now infx��K�
h�x��� as

x� �� and� for �xed z� h�x� z�� h�x� is bounded in x� Thus from� for example�

the elementary result that limu��
uf��� u���a� �g� a� � �� it follows easily that�

for �xed z� supx��K�
j��x� z�j � � as x� � �� It now follows from ���� and the

dominated convergence theorem that

sup
x��K�

j��x�j � � as x� ���

on using the elementary inequality

juf�� � u��t�a � �gj � td��� jtj� jtjd for u � �� t � �u�

�



where t� is the strictly positive solution of �� � t�a � � � td� together with the

boundedness condition ����

Similarly by the spatial homogeneity property� we have that� for x such that x�

is �xed �in particular x� � K��� ��x� � � as x� � �� and so the required result

follows�

We are now in a position to prove Theorem �� which classi�es the chain fXng�

Theorem �

�a� If �� � �� � �� then the Markov chain fXng is transient�

�b� If �� � �� � �� then the chain fXng is positive recurrent�

�c� In the case �� � �� � �� suppose� without loss of generality� that �� � �� Then

necessarily �� � �� If �� � � and �� � �� then the chain fXng is not positive

recurrent�

Remark
 In the remaining cases of �c� �with �� � ��� that is� �i� �� � � and �� � �

and �ii� �� � � �in which case� by ���� �� � �� � � and so also� again by ���� �� � ���

we make no deduction� Indeed in the case �i� it is possible to construct �somewhat

pathological� examples of both recurrent and transient chains� Case �ii� is the �zero

drift� case studied by� for example� Fayolle et al 
���

Proof of Theorem �� To prove �a� �transience� suppose� without loss of generality�

that �� � �� Note that if �� � � then necessarily �� � �� for otherwise we would

have� from ���� the contradiction that �� � ��� Hence� for all ��� we may apply

Lemma �� with �P � P ���� 	 � �
���
� � and K � K� �so that the constants �� �	 and �

of that lemma are given by ��� �� and �� respectively�� to deduce that there exists


 � � and a negative function g on Z� such that

g��� � �� � O��� as � ��� for some � � �� ����

�where we may take � � � in the case �� � �� and

����g��� � ����
� ��� � 
 for all � � �� ����

Now de�ne the function f on Z�
� by f�x� � x� � g�x��� Then� from ����� for all

x � X��

�f�x� � ����g�x�� � �
���
� �x�� � 
�

Further� from ���� and the condition ����
P

y p�x� y�jf�y�� f�x�jd is bounded above

in x� Since also g is negative� we may apply Lemma �� with the parameter K of

that lemma equal to K�� to deduce that the chain is transient�

�



It is now convenient to deal with the case �c�� Suppose that �� � �� �� � ��

That �� � � follows since otherwise we would have� by ���� that �� � �� � � and so�

again by ���� �� � �� � �� which would again be a contradiction� Suppose now that�

additionally� �� � �� �� � �� Then by Lemma �� case �b�� we may choose as above a

negative function g on Z� which again satis�es the condition ���� and is such that�

if the function f is also de�ned as above� then �f�x� � � for all x � X�� �Indeed

an examination of the proof of Lemma � shows that necessarily �f�x� � � for all

x � X�� though we do not require this more careful conclusion here�� Since also

fx� f�x� � K�g � X�� the required non�positivity now follows by Theorem ������ of

Meyn and Tweedie 
��� �on taking the function V of that theorem to be given by

V �x� � � � f�x���

We now suppose that �� � �� � � and prove the case �b� �positive recurrence��

Note �rst that this implies that

�� � �� � � ����

�for otherwise the de�nition ��� would imply that �j � �j for j � �� �� which is

once more a contradiction�� It follows that� for each j� either �j � � or �j � ��

�j� � �� In either case� since also �j � �� we may apply Lemma �� with �P � P �j���

	 � ��
�j��
j � and K � Kj� �so that the constants �� �	 and � of that lemma are given

by �j�� ��j and ��j respectively�� to deduce that there exists 
j � � and a positive

function gj �the negative of the function g of Lemma �� on Z� such that

gj��� � �� �O��� as � ��� for some � � �� ����

with � � � �that is� gj bounded� in the case �j � �� and

��j��gj��� � �
�j��
j ��� � �
j for all � � �� ����

Now de�ne the function fj on Z
�
� by fj�x� � xj � gj�xj��� and let 
 � 
� � 
�� Then�

from ����� for all x � Xj�

�fj�x� � �
�j��gj�xj�� � �

�j��
j �xj�� � �
� ����

Choose a such that � � a � d �or in the case d � � we may take a � ��� It follows

from Lemma  and the result ���� that� for each j� there exists K�
j � Kj � � such

that� for all x in the set X �
j � fx � Z

�
�� xj � K�

j g�

��faj ��x� � �fj�x�
a��


� �xa��j 
� ����

��



Now� from ����� we may suppose without loss of generality that �� � �� De�ne

the function f on Z�
� by

f�x� � f��x�
a � bf��x�

a� where b � ��

It follows from ���� that

�f�x� � �
 for all x � X �
� � X

�
� � ���

Further� if �� � � then the function f� is bounded on the set Z
�
� n X

�
� � whereas if

�� � � it follows from the condition ���� and Lemma  that there exists M� such

that j��fa� ��x�j �M�xa��� for all x � Z
�
� n X

�
� � Thus� in either case and using �����

we may choose b su�ciently small so that

�f�x� � �
 for all x � Z
�
� n X

�
� with x� su�ciently large� ����

Finally the function f� is bounded on the set Z
�
� n X

�
� � and so

�f�x� � �
 for all x � Z
�
� n X

�
� with x� su�ciently large� ����

It follows from the results ���� ���� and ���� that we may choose f� su�ciently

large so that �f�x� � �
 for all x with f�x� � f�� Since fx� f�x� � f�g is �nite

the required positive recurrence now follows by� for example� Proposition �� of

Chapter � of Asmussen 
�� or Theorem ��� of Fayolle 
���

� Application to large loss networks

Consider a loss network� as de�ned� for example� by Kelly 
���� with a �nite set J of

resources �or links�� each member j of which has integer capacity NCj for some large

scale parameter N � Calls are indexed in a �nite set R and calls of each type r � R

arrive as a Poisson process of rate N�r� Each such call� if accepted� simultaneously

requires an integer Ajr units of the capacity of each resource j for the duration of its

holding time� which is exponentially distributed with mean ��r� All arrival streams

and holding times are independent� We also assume the irreducibility of the Markov

process ��nr���� r � R�� where �nr�t� is the number of calls of type r in progress at

time t�

Let �m�t� � � �mj�t�� j � J� where �mj�t� � NCj �
P

r�RAjr�nr�t� is the free

capacity of resource j at time t� A call of type r arriving at time t is accepted if and

only if �m�t� �the vector of free capacities immediately prior to its arrival� belongs to

some acceptance region Ar� which we formally regard as a subset of the compacti�ed

��



space E � �Z�  f�g�J � �Of course� the process �m��� only takes values in ZJ
��� We

further require that each set Ar is �nice� in the sense that its indicator function IAr
is

continuous with respect to the topology on E which is the product of the one�point

compacti�cation of Z��

For future use� for each x � R
R
�� de�ne a Markov processmx��� with state space E

and transitions corresponding to each r � R given by

mx �

�
mx � Ar at rate �rIAr

�mx�

mx � Ar at rate �rxr�

where Ar denotes the vector �Ajr� j � J� and � � a � � for any a � Z�� The

process mx��� is reducible and so may possess multiple stationary distributions on

E� For each subset S � J � let �Sx be the stationary distribution� where it exists�

which assigns probability one to the set fm � E�mj � � if and only if j � Sg�

In particular �Jx may be regarded as the stationary distribution� if it exists� of the

restriction of the process mx��� to ZJ
�� It is not di�cult to show that the condition

on the sets Ar is equivalent to the requirement that this restricted process possess

the property of partial spatial homogeneity which we have considered in detail in

this paper for the case jJ j � �� Similarly� for each S � J � �Sx may be regarded as

the stationary distribution of the obvious �projected� process on ZS
�� This process

again possesses partial spatial homogeneity�

Now let �x�t� � ��xr�t�� r � R� where �xr�t� � �nr�t�N � The process �m��� is a

function of the process �x��� with transitions corresponding to each r � R given by

�m�

�
�m� Ar at rate N�rIAr

� �m�

�m� Ar at rate N�r�xr�

Since the scale parameter N is large� the dynamics of the process �x��� might rea�

sonably be expected to be close to that of a deterministic ��uid� limit� For example�

suppose that� at some time t� �x�t� � x where
P

r�RAjrxr � Cj for all j �so that

all resources are being fully utilized� and that the restriction to ZJ
� of the Markov

process mx��� de�ned above is positive recurrent� Then over any very short time

period 
t� t�� the process �x��� will remain close to x and the process �m��� will behave

approximately as a fast version of the process mx��� restricted to Z
J
�as above� Thus�

for su�ciently large N � the proportion of calls of each type r accepted over this

time period should be close to �Jx �Ar� and the process �xr��� should increase at an

approximate rate �r�
J
x �Ar�� �rxr�

This idea is generalized and made rigorous by Hunt and Kurtz 
���� who show

that in the limit� as N �� with all else �xed� the dynamics of the process �x��� are

given by

�xr�t� � �xr��� �
Z t

�
��r�u�Ar�� �r�xr�u��du

��



where� for each t� �t is some stationary distribution on E of the process m�x�t���� and

further is such that� for all j�

�tfm�mj ��g � � if
X
r�R

Ajr�xr�t� � Cj�

Thus the probability measure �t is some convex combination of those extreme sta�

tionary measures �S�x�t� which exist and are associated with subsets S of J such thatP
r�RAjr�xr�t� � Cj for all j � S�

However� the theory of Hunt and Kurtz does not go very much further in identify�

ing the appropriate convex combination� Yet this is necessary in order to determine

the limiting dynamics of the process �x���� In particular suppose that� under appro�

priate conditions� �t can be shown to depend on t only through �x�t�� Then� for

each x� there exists a stationary distribution ��x of the process mx��� such that� for

all t� �t � ���x�t�� Suppose further that the �xed point equations

�r�
�
x�Ar� � �rxr� r � R�

have a unique solution �x to which all trajectories of the limiting process �x��� converge�

Then� for each r� ��	x�Ar� can be shown to be the limit� as N ��� of the equilibrium

acceptance probability for calls of type r �see Bean et all 
���

Various� rather ad�hoc� techniques exist for identifying �t in particular networks�

Sometimes the theory of Hunt and Kurt may be re�ned to exclude further subsets S

of J from contributing to the above convex combination� and the simple observation

that the process �x��� must remain positive is often su�cient to exclude yet further

subsets� However� it is in general important to know whether� for any given S

and x� the stationary distribution �Sx exists� As explained above� this involves

the determination of whether an associated �and partially spatially homogeneous�

Markov process on ZS
� is positive recurrent�

Using the results contained in Section � of this paper� Bean et all 
� show how

to identify �t completely for two�resource networks� However� work remains to be

done on identifying �t in the more general case� Higher�dimensional generalizations

of the techniques of this paper may be expected to play a part here�
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