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Abstract

We study the limit behaviour of controlled loss networks as capacity and
o�ered tra�c are allowed to increase in proportion� reviewing and extend�
ing recent work based on the functional law of large numbers of Hunt and
Kurtz� We consider in detail single and two�resource networks�

� Introduction

In this paper we study large loss networks in which the o�ered tra�c is subject
to acceptance controls� We review recent work of Hunt and Kurtz ������� who
established rigorous results for the asymptotic dynamics of such networks as
capacity and o�ered tra�c are allowed to increase in proportion� and we relate
these results to asymptotic equilibrium behaviour� We further study the detailed
behaviour of networks with at most two resources� extending results of Bean et

al� �����b� ���	�� and giving some additional results�
The asymptotic results considered here have important applications to the

control of modern communications networks� which are typically large and which
may simultaneously carry tra�c with very di�erent capacity requirements and
holding times� A failure to apply e�ective controls in such networks can lead to
a serious degradation in performance�

The results also remain qualitatively correct for smaller capacity networks�
Bean et al� �����a� ���	� and Moretta ����	� derive re
nements which permit
more accurate modelling of the quantitative behaviour of networks of all capac�
ities�

The mathematical framework is the same as that of Hunt and Kurtz �������
Consider a sequence of loss networks� indexed by a scale parameter N � All
members of the sequence are identical except in respect of capacities and call
arrival rates �which� as de
ned more precisely by eqn ����� below� are essentially
proportional to N�� and are identically controlled� Resources �or links� are in�
dexed in a 
nite set J and call types in a 
nite set R� For the Nth member
of the sequence� each resource j � J has integer capacity Cj�N�� and calls of
each type r � R arrive as a Poisson process of rate �r�N�� Each such call� if
accepted� simultaneously requires an integer Ajr units of the capacity of each
resource j for the duration of its holding time� which is exponentially distributed

���
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with mean ���r� All arrival streams and holding times are independent�
Let nN �t�  �nNr �t�� r � R�� where n

N
r �t� is the number of calls of type r in

progress at time t� and let mN �t�  �mN
j �t�� j � J � where mN

j �t�  Cj�N� �P
r�RAjrn

N
r �t� is the free capacity of resource j at time t� A call of type r

arriving at time t is accepted if and only if mN �t�� belongs to some acceptance
region Ar� which we formally regard as a subset of the space E  �Z�� f�g�

J �
where J  jJ j� �Of course� the process mN ��� only takes values in ZJ��� We
further require that each set Ar is well�behaved in the sense that its indicator
function IAr is continuous� where the topology of E is the product of the topology
of the one�point compacti
cation of Z��

This framework permits the modelling of a wide variety of control mech�
anisms� including most of those� such as 
xed routing� trunk reservation and
alternative routing� employed in practical applications to communications net�
works� For details see Hunt and Kurtz �������

Suppose that� as N ��� for all j � J � r � R�

�

N
Cj�N�� Cj �

�

N
�r�N�� �r� �����

Then� under appropriate initial conditions� the normalized process xN ��� 
nN ����N might reasonably be expected to converge to a ��uid limit� process x���
taking values in the space X  fx � RR� �

P
r Ajrxr � Cj for all j � J g� where

R  jRj� �See� for example� Kelly� ������
To make this idea precise� for each x � X � let mx��� be the Markov process

on E with transition rates given by

m�

�
m�Ar at rate �rIfm�Arg
m�Ar at rate �rxr�

�����

where Ar denotes the vector �Ajr � j � J � and � � a  � for any a � Z��
Note that the process mx��� is reducible� and so does not always have a unique
invariant distribution� Hunt and Kurtz ������ Theorem �� show that� provided
the distribution of xN ��� converges weakly to that of x���� the sequence of pro�
cesses xN ��� is relatively compact in DRR����� and any weakly convergent sub�
sequence has a limit x��� which obeys the relation

xr�t�  xr��� �

Z t

�

��r�u�Ar�� �rxr�u��du� �����

where� for each t� �t is some invariant distribution of the Markov processmx�t����
and additionally satis
es� for all j�

�tfm� mj �g  � if
X
r�R

Ajrxr�t� � Cj � �����

Thus� at each time t� the invariant distribution �t acts as a control for the
asymptotic process x���� corresponding to a limiting acceptance rate for calls of
each type� For a discussion of this result� which involves a separation� in the
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limit� of the time scales of the processes xN ��� and mN ���� see Hunt and Kurtz
������ and Bean et al� ����	��

Of particular interest is the case where there exists a function �� on X �each
value of which is a probability distribution on E� with the property that� for all
convergent subsequences� we may take �t  ��

x�t� in eqn ������ We may then

de
ne a velocity �eld v  �vr� r � R� on X by

vr�x�  �r�
�
x�Ar�� �rxr� ���	�

so that eqn ����� becomes

xr�t�  xr��� �

Z t

�

vr�x�u��du� �����

It will then generally be the case that� for all t� xr�t� is uniquely determined by
xr���� so that the convergence asserted above takes place in the entire sequence
of networks�

Further� when such a velocity 
eld may be de
ned� it is usually possible to
show that� for all t� x�t� is a continuous function of x���� Since X is compact� the
argument of Theorem ��� of Bean et al� ����	� then applies equally to the present�
more general� situation to show that there is at least one �xed point �x � X such
that v��x�  �� that is� satisfying the 
xed point equations

�r�
�
x�Ar�  �rxr� r � R� �����

It is scarcely surprising �but for a formal proof see Bean et al�� ����b� that
when this 
xed point �x is unique� and further is such that all trajectories of
x��� converge to it� then the invariant distribution of the process xN ��� converges
weakly to the distribution concentrated on the single point �x� while the invariant
distribution of the �free capacity� process mN ��� converges weakly to ���x� In
particular� for each r� ���x�Ar� is the limiting equilibrium acceptance probability
for calls of type r�

When the process x��� possesses more than one 
xed point� each may be
associated� for any large N � with some �quasi�equilibrium� regime of the pro�
cess xN ���� maintained over some extended period of time�as in the example
which we discuss in Section ��

Where there does not exist a function �� on X such that �t  ��
x�t�� so that it

is impossible to de
ne a velocity 
eld on X � then behaviour in the associated se�
quence of networks is typically highly pathological� Examples of such behaviour
are given by Hunt ����	��

The remainder of this paper is primarily concerned with the identi
cation of
conditions under which a velocity 
eld may be de
ned� and with the determina�
tion of the resulting dynamics and 
xed points of the process x���� In Section �
we review results for single resource networks �where a velocity 
eld may al�
ways be de
ned�� and in Section � we study two�resource networks� Finally� in
Section � we discuss brie�y the general case�

However� it is convenient to make a number of further de
nitions at this point�
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Partition the set X by de
ning� for each S � J � XS  fx � X �
P

r Ajrxr�t� 
Cj if and only if j � Sg� We shall 
nd it convenient to write Xj for Xfjg� and
shall make similar obvious notational simpli
cations elsewhere�

For each subset S of J � let ES  fm � E� mj � � if and only if j � Sg�
We assume that the matrix of capacity requirements �Ajr� and the acceptance
regions Ar are such that� for each x � X and S � J � there is at most a single
invariant distribution �Sx of the Markov process mx��� on E which assigns prob�
ability one to the set ES � �The distribution �Sx may also be thought of as the
invariant distribution of the obvious projection of the process mx��� onto ZS���
There is no loss of generality in this irreducibility assumption�for a discussion
see again Hunt and Kurtz ������� Note that the distribution ��x exists for all
x � X � assigning probability one to the single point ��� � � � ��� of the set E��

Then� from the above results of Hunt and Kurtz� it follows that there exist
nonnegative functions �S���� S � J � summing to one� such that� for almost all t�

�t 
X
S�J

�S�t��Sx�t� �����

where� from ������

�S�t�  � if
X
r�R

Ajrxr�t� � Cj for any j � S� �����

and where additionally we make the convention that �S�t�  �S�t��S
x�t�  � if

�S
x�t� does not exist� Identi
cation of �t� t 	 �� thus reduces to identi
cation of

the functions �S����
Finally� de
ne also� for each x� each S � J such that �Sx exists� and each

j � J �

�Sj �x� 
X
r�R

Ajrf�r�
S
x �Ar�� �rxrg� ������

The quantity �Sj �x� will play an important role in subsequent analysis� Note in
particular that

�Sj �x�  � if j � S� ������

This follows from the observation that� in equilibrium� the jth component of the
restriction of the process mx��� to ES has zero drift for each j � S� A formal
proof may be given analogously to that of Lemma � of Hunt and Kurtz �������

� Single resource networks

We now consider further the single resource case J  f�g� It is convenient to
write C for C�� Ar for A�r� and �

S�x� for �S� �x��
Here the compacti
ed space E  Z� � f�g and the requirement that� for

each r� the indicator function IAr of the acceptance region Ar be continuous at
� implies that there is some �nite M � E such that� again for each r� either
m � Ar for all m 	 M �including m  �� or m �� Ar for all m 	 M � De
ne
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R�  fr � R� � � Arg� Thus R� is the set of call types which are accepted for
all su�ciently large values of the free capacity in the network�

In most applications we might expect R�  R� However� there are practical
circumstances where this might not be the case�for example� a call type which
was to be allocated less resource when the network was nearly full might be
modelled as two call types with disjoint acceptance regions�

Now note that� for all x�

��x�Ar�  Ifr�R�g �����

�where again I is the indicator function� and so� from eqn ������� ���x� P
r Arf�rIfr�R�g��rxrg� This quantity is also the drift rate towards the origin

of the process mx��� while in the set �M � ���� and so elementary Lyapounov
techniques for such processes �see� for example� Fayolle et al�� ���	� show that the

restriction of this process to Z� is ergodic�and so the distribution ��x � �
f�g
x �

exists�if and only if ���x� 	 ��
Let X�

�  fx � X�� �
��x� 	 �g and let X�

�  X� nX
�
� � It is then straight�

forward to show that a velocity 
eld for the limit process x��� may be de
ned
everywhere on X � the function ��x being given by

��x 

�
��x if x � X� �X

�
� �

��x if x � X�
� �

�����

In the case x � X� this result follows from eqn ����� �or equivalently from
eqn ������� while in the case x � X�

� it is immediate from the above criterion
for the existence of ��x� To prove the remaining case note� from eqns ������ ������
������� and ������� together with the condition ���t� � ���t�  �� we have easily
that X

r�R

Arxr�t� 
X
r�R

Arxr��� �

Z t

�

���u����x�u��du� �����

Since necessarily
P

r Arxr�t� � C for all t� it follows that ���t�  � for �almost�
all t with x�t� � X�

� �
The simple idea underlying this argument�that the process x��� must remain

within X�is due to Hunt ������� Hunt and Kurtz ������ prove the above result
in the case R�  R� A slightly more formal version of the present argument is
given by Bean et al� �����b��

It is now readily veri
ed that� for each r� ��x�Ar� is Lipschitz continuous
on X� � X

�
� �trivially� and also on the set X� �see Bean et al�� ���	�� Hence

trajectories of the process x��� are well�de
ned functions of their positions at
time � and discontinuities in the velocity of any trajectory occur only at times
of passage from X� to X�

� � �Passage from X�
� to X� is impossible by the

continuity of the function �� on X and the relation ������� It follows from
standard arguments for dynamical systems that� for each t� x�t� is a continuous
function of x��� and so� as indicated earlier� the process x��� has at least one

xed point�
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Fig� �� Analytical and simulation results for numerical example

In the case where X
r�R

Ar�rIfr�R�g��r � C� �����

de
ne �x � X by �xr  �rIfr�R�g��r� Then ����x�  � and so �x � X� � X�
� �

It follows from eqns ������ ������ and ����� that �x is the unique 
xed point of
the process x��� in the set X� �X

�
� � If R

�  R then it follows easily from the
eqns ����� that there is no further 
xed point in X��

When the condition ����� holds but R� 
 R� then there may be more than
one 
xed point� Bean et al� �����b� give a numerical example with two call types�
All calls require a single unit of resource and C  ����� ��  	��� ��  ����
��  ���� ��  ���� The acceptance regions are given by A�  fm� m 	 �g
and A�  fm� � � m � 	g �so that here R�  f�g�� They show that the
process x��� possesses three distinct 
xed points x���� x���� x���� Every trajectory
of the process x��� tends to one of these points� although the point x��� is unstable
in the sense of possessing a domain of attraction of Lebesgue measure zero in
X � The limit behaviour of the corresponding sequence of networks is therefore
essentially bistable� The left panel of Fig� � shows sample trajectories of the
process x����the thick line separates the domains of attraction of x��� and x���

and is of course itself a trajectory of the system� tending to x���� The right panel
shows simulated trajectories of the process x���� � n����� in the associated
sequence of networks� Here C is su�ciently large that the process x���� should
be reasonably well�approximated by x��� and indeed the bistable behaviour of
x���� is clearly evident� However� this process is of course ergodic� so that� over
su�ciently long time periods� it alternates between typically lengthy residences
in the neighbourhoods of x��� and x����

In the case where the relation ����� does not hold the 
xed points of the
process x��� necessarily lie in X�

� � Where� additionally� Ar  � for all r� an
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argument of Bean et al� ����	� for the case R�  R extends unchanged to the
present case to show that there is a unique 
xed point �x � X�

� � Provided only
that all trajectories of x��� then converge to �x �this is di�cult to show formally
except in the case R  ��� identi
cation of this point via the equations ����� per�
mits the determination of limiting equilibrium behaviour�in particular limiting
call acceptance probabilities�for the associated sequence of networks�

� Two�resource networks

We now study the two�resource case J  f�� �g� Here some distinctly patho�
logical behaviour is possible� as is shown by the example of Hunt ����	�� which
we discuss brie�y below� We require conditions under which such pathological
behaviour may not occur�

For any x and j� the restriction of the process mx��� to Ej is essentially one�
dimensional and it follows� as in the previous section� that the distribution �jx
exists if and only if ��j �x� 	 �� It again follows as there� and using the condi�
tion ������ that when x�t� �� X�� then �t  ��

x�t� where �
�
x is given by

��x 

�
��x if x � X� �X

�
� �X�

� �
�jx if x � X�

j �
�����

and where� for each j� X�
j  fx � Xj � �

�
j �x� 	 �g� X�

j  Xj nX
�
j � It remains

to consider the identi
cation of �t in the case where x�t� � X��� The key here
is again given by the functions �Sj �

For either j � J � let j� denote its complement in J � For each j� de
ne the
function 
j on X by


j�x� 

�
�j

�

j �x� if ��j��x� 	 ��

��j �x� if ��j��x� � ��
�����

Recall that �j
�

j �x� is de
ned if and only if ��j��x� 	 �� The quantity 
j�x� also
has an informal interpretation in terms of the restriction of the process mx��� to
E��  Z

�
�� In the case �

�
j��x� 	 �� suppose that the component j of this restricted

process is far from � but the component j� is in equilibrium� then 
j�x� is the
averaged �negative� drift rate of the component j� In the case ��j��x� � �� a
similar but simpler interpretation holds� These ideas may be formalized as� for
example� by Fayolle et al� ����	�� but for our purposes a formal de
nition is more
easily made as above in terms of the invariant distributions associated with the
restrictions of the process mx��� to Ej� or E� as appropriate�

De
ne subsets of X�� as follows� Let

U  fx � X��� 
��x� � 
��x� 	 �g�

Vj  fx � X��� 
j�x� 	 �� 
j� �x� � �g� j  �� ��

W  fx � X��� 
��x� � 
��x� � �g�

W�  fx � W � ����x� � �
�
��x� � �g�
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W�  fx �W � ����x� � �
�
��x� 	 �g�

Note that it follows from the de
nition ����� that W  W� �W�� so that the
above sets form a partition of X���

Bean et al� �����b� show that� under the condition

����� � Ar for all r � R� �����

for �almost� all t�

�t 

���
��
���
x�t� if x�t� � U �

�j
x�t� if x�t� � Vj � j  �� ��

��
x�t� if x�t� �W��

�����

We shall discuss below the necessity of the condition ����� for the result ������ and
also the remaining case� x�t� � W�� However� note that when the result �����
holds and W� is empty �as will usually be the case in applications�� it is again
possible to de
ne a velocity 
eld for the process x��� everywhere on X �

The result ����� is proved using essentially the same arguments as those used
to establish the result ����� in the single resource case� We give here an outline�
Note 
rst that� under the condition ������ it follows from the de
nitions ������
and ������ that� for all x�


j�x� � ��j �x�� j  �� �� ���	�

Further� again under this condition ������ standard results for Markov chains on
Z
�
� with partial spatial homogeneity �see Fayolle et al�� ���	� or Zachary� ���	�

show that� for all x�

���x exists if and only if 
��x� � 
��x� 	 �� �����

Note also that� analogously to eqn ������ and by again using in particular the
result ������� we have that for each j�

X
r�R

Ajrxr�t� 
X
r�R

Ajrxr��� �

Z t

�

f���u���j �x�u�� � �j
�

�u��j
�

j �x�u��gdu� �����

From eqn ���	�� for t with x�t� � U and each j� ��j �x�t�� 	 � and �j
�

j �x�t�� 	 ��
It follows from eqn ������ arguing as in the single resource case� that� for �almost�
all t with x�t� � U � ���t�  ���t�  ���t�  � and so �t  ���

x�t� as required�

The remaining cases of the result ����� are proved similarly� on making use
also of the result ������

It seems likely that the result ����� continues to hold in the absence of the
condition ����� �here the only doubt in the existing literature lies with the bound�
ary case 
��x��
��x�  �� in which case a relatively straightforward variation of
the above argument may be used to show that the result ����� also continues to
hold� Thus� under what are at worst mild regularity conditions� and certainly in
the case where the condition ����� does hold� a velocity 
eld for the process x���
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may be de
ned everywhere on the set X nW�� When W� is empty� again only
mild regularity conditions are required to show that the trajectories of the pro�
cess x��� are well�de
ned and that� for each t� x�t� is a continuous function of
x���� It follows that� in this case� there exists at least one 
xed point for the
process x����

Hunt ����	� gives an example in which the set W� is nonempty� Here� and
in general� for t such that x�t� � W��

�t  ���t���x�t� � ���t���x�t�� �����

where as usual ���t� and ���t� are positive and sum to one� However� beyond
this� the behaviour of the process x��� within the setW� is indeterminate� corre�
sponding to the fact that here the sequence of processes xN ��� may have di�erent
limits in di�erent subsequences� Trajectories of two such limits may agree up to
the time of entrance into W�� but behave quite di�erently thereafter�

It is therefore important for the control of networks to have conditions which
ensure that the set W� is empty� For each r � R� let Jr  fj � J � Ajr 	 �g�
Extend the de
nition of R� given in the previous section to two� �and more�
resource networks by letting

R�  fr � R� ES  Ar for all S with S � Jr  �g� �����

Thus� using also the continuity of IAr � calls of type r � R
� are accepted for all

su�ciently large values of the free capacities of those resources in Jr�regardless
of the state of the remaining resources� In a variation of Conjecture 	 of Hunt
and Kurtz ������ we conjecture that a su�cient condition for W� to be empty
is given by R�  R� �This of course implies in particular the condition �������

The following theorem shows this to be the case where A�r  A�r for those
call types r such that A�r � A�r 	 �� It generalizes a result of Moretta ����	��

Theorem ��� Suppose that R�  R and that

A�r  A�r for all r with Jr  J � ������

Then W� is empty�

Proof Suppose there exists x � W�� Then� for each j� ��j �x� 	 � and so the

distribution �jx exists� Thus� again for each j� �
j�

j �x�  
j�x� � �� and since also

�by the result ������� �jj�x�  �� it follows thatX
r�R

Ajr�rf�
j�

x �Ar�� �jx�Ar�g � �� ������

For r such that Ajr 	 �� either Jr  fjg or Jr  J � In the former case the

condition R�  R implies that �j
�

x �Ar�  �� while �jx�Ar� � � �since necessarily
Ej 
� Ar�� Hence X

r� Jr	J

Ajr�rf�
j�

x �Ar�� �jx�Ar�g � � ������
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with strict inequality if Jr  fjg for at least one r�
The irreducibility assumption of Section � implies that there is at least one

call type r such that Jr  f�g or Jr  f�g� It follows� on interchanging j
and j� in eqn ������� and using the condition ������� that the eqn ������ is self�
contradictory� �

As usual the 
xed points of the process x��� are determined by solution of
the equations ������ In the case where� for either j�

P
r Ajr�r��r � Cj � we

may in e�ect replace Cj by � and consider the single resource j�� Otherwise�
and when the set U is nonempty� the analysis may be more complicated� in�
volving in particular the �nontrivial� determination of two�dimensional invariant
distribution ���x for x � U �

We know of no example in which R�  R and there is more than one 
xed
point� Moretta ����	� considers the case whereR�  R and the matrix �Ajr � j �
J � r � R� is given by

Ajr 

�
� � �
� � �

�
�

He uses a coupling argument to show that here� if there is more than one 
xed
point� then all 
xed points necessarily lie in U � If therefore an �essentially
straightforward single resource� analysis identi
es a 
xed point outside this set�
there will be no further 
xed point within it� Moretta also presents compelling
evidence that� for this model� there is only ever one 
xed point�

Moretta also considers the problem of the determination of the invariant
distribution ���x for x � U � and that of determining more re
ned approximations
to call acceptance probabilities in networks whose capacities are insu�ciently
large to justify direct application of the above asymptotic theory�

� General networks

In the previous two sections we have outlined an essentially complete theory for
the identi
cation of the �driving� distribution �t of eqn ����� in the case of single
and two�resource networks� This has used little more than Hunt�s elementary
observation that the process x��� must remain within the set X � �Only for t
such that x�t� belongs to the set W�� de
ned in the previous section� is a more
careful argument required� and this too is due to Hunt ����	���

For networks with more than two resources� the identi
cation of �t is very
much more complex� For x � X � de
ne a set S � J to be blocking with respect to
x if �Sx exists and

P
r Ajrx�t�r  Cj for all j � S� One very reasonable conjecture

is that� for any t� �t  �S
x�t� whenever there exists a �maximal� blocking set S

with respect to x�t� containing every other such blocking set�
Again as remarked earlier� we are particularly interested in the identi
cation

of conditions under which a velocity 
eld may be de
ned for the process x����
We hesitate to make any conjectures here� but merely observe that for none of
the �pathological� examples of Hunt ����	� is the condition R�  R satis
ed�
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