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Abstract

We consider the estimation of the extremes of the metocean climate, in particular those of the univariate and joint distributions of wave
height, wave period and wind speed. This is of importance in the design of oil rigs and other marine structures which must be able to
withstand extreme environmental loadings. Such loadings are often functions of two or more metocean variables and the problem is to
estimate the extremes of their joint distribution, typically beyond the range of the observed data. The statistical methodology involves both
univariate and multivariate extreme value theory. Multivariate theory which avoids (often very inappropriate) prior assumptions about the
nature of the statistical association between the variables is a fairly recent development. We review and adapt this theory, presenting simpler
descriptions and proofs of the key results. We study in detail an application to data collected over a nine-year period at the Alwyn North
platform in the northern North Sea. We consider the many problems arising in the analysis of such data, including those of seasonality and
short-term dependence, and we show that multivariate extreme value theory may indeed be used to estimate probabilities and return periods
associated with extreme events. We consider also the confidence intervals associated with such estimates and the implications for future data
collection and analysis. Finally we review further both the statistical and engineering issues raised by our analysis.q 1998 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

One of the most critical features of the design process for
offshore structures is the estimation of the worst loading
conditions to which a given structure is likely to be exposed
in its lifetime. Typically a structure must be designed to
withstand, with some margin of safety, that loading which
is expected to be exceeded with a frequency of, say, once in
every hundred years [24]. This paper is concerned with the
statistical problems which arise in such estimation, and with
the application of statistical methodology to metocean data.

We distinguish two major statistical issues. The first of
these is that estimation of extreme loadings may well
require to be based on metocean data collected over a rela-
tively short period. Reliable data collected over several hun-
dred years will certainly not be available. Rather we may
have useful data collected over a period of, say, 10 years.
The problem is thus one of extrapolation of the observed
distribution of data into its extreme region, typically lying

well beyond even the most extreme of the available obser-
vations. Statistical methodology for the extrapolation of the
distribution of any single variable is well established, at
least in the case where we have independent observations.
This theory was initiated by Gumbel [13], and was origin-
ally concerned with the distribution of maximum observed
values of the variable (for example, annual maxima).
Asymptotic theory suggests that such maxima are well mod-
elled by a generalised extreme value distribution (Fre´chet,
Gumbel, or Weibull, also known as Fisher–Tippett Types I,
II and III and Gumbel Types I, II and III). Subsequently the
theory has been much refined, and more efficient inference
is now based on consideration of the excesses over a given
threshold of all observations. See, in particular, Ref. [7] and,
for an excellent and comprehensive account of both the
probability and the statistical theory, Ref. [10]. In Section
2 we review briefly this univariate extreme value theory, and
consider how it may be adapted and applied to metocean
data, where we usually do not have independent observa-
tions and where underlying distributions have substantial
seasonal variation. Some other approaches to the univariate
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modelling of metocean data have been presented elsewhere
[16,19,21].

The second issue is that of the extrapolation of multi-
variate distributions. The loading on a structure is estimated
as a function of several variables, for example wave height,
wave period, wind speed, wind direction and current, and
we require to estimate probabilities corresponding to those
combinations of these variables which result in extreme
loadings. There are two reasonable approaches to this
problem. Thestructure variablemethod identifies, prior to
analysis, that function of the observed variables which best
represents the loading on the specific structure of interest.
Multivariate observations are then converted to univariate
loadings, and univariate extreme value theory used to esti-
mate the probabilities, or equivalently the return periods,
associated with extreme events. The alternative approach,
which we pursue in this paper, is to use multivariate extreme
value theory to estimate directly (the extremes of) thejoint
distribution of the variables of interest. Possible extreme
regions in the multidimensional variable space may then
be identified and their associated probabilities estimated.

Multivariate extreme value theory is somewhat more
complex than its univariate counterpart, and appropriate
statistical methodology has only been developed in recent
years. The basic theory is due to de Haan and Resnick [14],
de Haan [15], and is further developed by Resnick [22], Joe
et al. [17] and Coles and Tawn [4,5]. The major problem is
that of correctly capturing the statistical association, or
correlation, between the extremes of the variables con-
cerned, without prior assumptions about the nature of this
association, and in particular without assuming that esti-
mates of association appropriate to the body of the distribu-
tion are also appropriate to its extremes. Earlier (and indeed
some later) approaches to this problem did make such prior
assumptions, which were frequently implicit, often very
strong and often inappropriate to modelling in the extreme
region of the variable space. Perhaps the best exposition of
the modern theory is given by Coles and Tawn [4,5], who
also discuss earlier multivariate approaches, and by Coles
[3].

Coles and Tawn [5] also give detailed consideration of
the relative merits of the univariate structure variable and
the multivariate approaches, including discussion of the
reliability of the statistical procedures associated with
each. In particular, they argue, somewhat informally, that,
for a given volume of data, the asymptotic theory under-
pinning both approaches is likely to be more accurate in the
case of a multivariate analysis of the joint distribution of the
original variables. For our present purposes a major disad-
vantage of the structure variable approach is that the load
function must be fully identified prior to statistical analysis.
Thus a long and complex analysis, which is here a far from
automated procedure, must be performed for every possible
structure under consideration. This creates considerable dif-
ficulties for design and optimisation. The multivariate
approach requires (in principle) a single statistical analysis,

the results of which may be applied to a wide variety of
possible structures. Further, these results clearly provide
considerable insight into the extremes of the metocean
climate itself, in particular the association between the vari-
ables concerned. This is both of considerable scientific
interest and important to good engineering design.

In outline, the multivariate approach is as follows. The
first step is the application ofunivariateextreme value the-
ory to estimate and extrapolate the marginal distribution of
each of the variables under study. The relevant theory is
described in Section 2.1. This step is in itself sufficient to
answer questions about, for example, the 100-year return
levels associated with individual variables—their likely
values and associated confidence intervals.

The second step is the transformation of the multivariate
observations so that the (marginal) distribution of each of
the individual transformed variables has a standard (or unit)
Fréchet distribution. This is followed by afurther transfor-
mation of the data to (pseudo-) radial and angular compo-
nents. Under these two successive transformations, the tail
of the distribution of the radial componentr turns out not to
depend on the statistical association between the individual
variables, and to be of known form (which is given simply,
and unsurprisingly, by a rescaling of the tail of the standard
Fréchet distribution). Further, the conditional distribution of
the angular componentw given rconverges, asr is allowed
to increase, to some limiting distribution. This limiting dis-
tribution therefore entirely captures the statistical associa-
tion in, and beyond, the extremes of the data. It may be
estimated from the the distribution ofw in the set of those
(transformed) observations for whichr exceeds some suita-
bly chosen thresholdr 0. Hence the extremes of the joint
distribution of r and w may be estimated. This theory is
described in detail in Section 2.2.

The third, and final, step is simply the inversion of the
transformations described above so as to recover an estimate
of the extremes of the joint distribution of the original vari-
ables. This will both match the extremes of the observed
data and extrapolate their joint distribution as is necessarily
implied by the above asymptotic theory. The analytical
details of this final step depend on the exact representation
of the angular componentw of the transformed obser-
vations. In the metocean application of Section 3 we show
how this is achieved in practice.

This multivariate approach, as originally developed, was
based on a point process representation of the data, which
involved a not very intuitive renormalisation of obser-
vations by their total number. We take the opportunity in
Section 2.2 to present a mathematically equivalent but con-
siderably simpler description, which is essentially that out-
lined above. Section 2.3 and Section 2.4 consider problems
of seasonality and short-term dependence such as are typical
of metocean data.

In Section 3 we study in detail an application to metocean
data. These consist of hourly observations of significant
wave height, wave period, and wind speed, collected at
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the Alwyn North platform in the northern North Sea over a
nine-year period. We consider the many problems arising in
the analysis of such data, including those of seasonality and
short-term dependence, and we show that multivariate
extreme value theory may indeed be used to estimate prob-
abilities and return periods associated with extreme events.
We consider also the confidence intervals associated with
such estimates and the implications for future data collec-
tion and analysis.

In Section 4 we consider further both the statistical and
engineering issues raised by our analysis.

2. Methodology

As discussed in Section 1, methodology for the analysis
of multivariate extremes must address two problems. The
first is the estimation and extrapolation of the (marginal)
distributions of individual variables and the determination
of the probabilities of extreme events associated with them.
In Section 2.1 we review the relevant univariate extreme
value theory and discuss its application.

The second problem is that of correctly modelling the
statistical association between the variables involved, in
particular the association in theextreme region, orextremes,
of the (multidimensional) variable space. We define this to
be that region in whichany of the variables under study is
extreme. This is the region which corresponds to extreme
loads on, for example, offshore structures. In Section 2.2 we
describe and discuss the necessary multivariate extreme
value theory. This theory allows an arbitrary association
structure in the extreme region to be estimated directly
from the data. We also give a more accessible description
of the relevant mathematics.

Throughout Section 2.1 and Section 2.2 we assume that
the data for analysis may reasonably be modelled as inde-
pendent and identically distributed multivariate obser-
vations X 1,…,X n of a random vectorX ¼ (X1,…,Xd).
Thus, for eachi ¼ 1,…,n, X i ¼ (Xi1,…,Xid) is the corre-
sponding vector of observations of thed variables under
study. Of course, in applications such as that to metocean
data considered here, it will frequently be the case that this
assumption does not hold: there will be considerable seaso-
nal variation in the distribution of the data, and additionally
the data will naturally exhibit short-term dependence over
sufficiently short periods of time. We consider these pro-
blems in Section 2.3 and Section 2.4.

2.1. Estimation of marginal distributions

2.1.1. Probability theory
For eachj (1 # j # d), let Fj be the distribution function

of the variableXj. In the estimation of this distribution, the
main concern is to model its tail as accurately as possible.
This is essential in order to permit reliable extrapolation to
values more extreme than those actually observed. We use

well-established univariate extreme value theory. We
review this briefly here, but much more detail is given else-
where [10].

The current, much refined, approach to this theory associ-
ates a suitably chosenthreshold uj (see below) with each
variableXj and considers the annual rateg(x) at which obser-
vations ofXj exceed any given levelx $ uj. We assume that
the number of observations per year is reasonably large, and
that the thresholduj is such that the probability of an indi-
vidual observation exceeding it—and so also the probability
of the observation exceeding anyx $ uj—is reasonably
small. (Both of these conditions will be comfortably satis-
fied in the application considered in Section 3 of this paper.)
It then follows from the assumed independence of the obser-
vations ofXj that exceedancesof any x $ uj occur as an
(approximate) Poisson process and that the maximum
observed value ofXj in any interval of time of lengtht
years has a distribution functionG given, forx $ uj, by

G(x) ¼ exp{ ¹ tg(x)} (1)

Again provided that the thresholduj is chosen sufficiently
large, asymptotic theory [10] now implies thatG(x) should
correspond to ageneralised extreme valuedistribution for
all x $ uj. This distribution is described by three para-
meters—its shapey, location m, andscalej . 0—and is
a Fréchet, Gumbel, or Weibull distribution according as the
shape parametery . 0, y ¼ 0, or y , 0. In order thatG
should be a generalised extreme value distribution, we
require that the (annual)exceedance rate function g¼
gy,m,j be given by

for y . 0

gy,m,j(x) ¼ 1þ
y(x¹ m)

j

� �¹ 1=y

providedx . m ¹ j/y (since we certainly requireuj . m

¹ j/y this condition causes no problems);
for y ¼ 0

gy,m,j(x) ¼ exp ¹
x¹ m

j

� �
;

for y , 0

gy,m,j(x) ¼
1þ

y(x¹ m)
j

� �¹ 1=y

if x , m¹ j=y

0 if x $ m¹ j=y:

8><>:
Here the appropriate values of the parameters (y,m,j) will of
course depend on the variableXj under consideration, and
are to be estimated from the corresponding observations of
that variable.

Observe that, despite its apparent complexity, the above
definition of the exceedance rate functiongy,m,j has a natural
mathematical coherence. In particular, for allx, g0,m,j(x) ¼

lim y → 0gy,m,j(x), whether the limit is taken from below or
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above. Observe also that (for all values of the parameters
(y,m,j)) gy,m,j(x) is decreasing inx and tends to zero asx
tends to infinity.

Let ny be the number of observations per year. It follows
from Eq. (1), withg(x) ¼ gy,m,j(x), that the probability of an
individual observation exceeding anyx $ uj is given by
exp {¹(1/ny)gy,m,j(x)}. Since under the above assumptions
this probability is small, it further follows that, to a very
good approximation, the distribution functionFj of Xj

satisfies

Fj(x) ¼ 1¹
1
ny

gy,m,j(x), for all x $ uj (2)

(Indeed, under the above model, this result is asymptotically
exact as eitherny or uj increases.) We now treat Eq. (2) as
exact, as is the usual practice, and base our inference
directly on it. In the context of the above model, and for
sufficiently largeny or uj, there is negligible loss in doing so,
and there are considerable analytical advantages. Further
discussion on the choice of thresholduj is given in Section
2.1.2. However, it must be such that there lie aboveuj a
sufficient number of observations to permit the inference
described below, and of course the extreme and generally
unobserved values ofXj in which we are primarily interested
will also lie above it.

Note that the alternative, and earlier, approach of
consideration of only the maxima of sequences of obser-
vations sufficiently long as to require the use of the
generalised extreme value distribution itself (for example,
yearly maxima) involves a loss of information which is
perhaps considerable, and so is an inefficient basis for
inference [10]. For some further discussion here see also
Section 2.4.

Note also that, in the above model, the parameters (y,m,j)
have an interpretation in terms of yearly exceedance rates.
Thus, in principle, estimates of these parameters should be
reasonably stable under variation ofny, provided that the
total number of observed exceedances per year of eachx $
uj remains at least approximately constant—again see
Section 2.4.

2.1.2. Estimation
We now consider the estimation of a suitable thresholduj

and of the parameters (y,m,j) of the model defined in the
previous section. We do this by deriving, in terms of this
model, the probability of threshold exceedance by any indi-
vidual observation and the distribution of the associated
thresholdexcess. We show below that comparison with
the observed distribution of threshold excesses, for a
varying threshold, enablesuj to be estimated. Then, for
the estimateduj, the available data may be used to further
estimate both the above exceedance probability and the
parameters of the excess distribution. From these it is
straightforward to recover estimates of the original para-
meters (y,m,j).

Eq. (2) is further equivalent to the requirement that, for
any x $ uj andz $ 0

Pr{Xj . xþ zlXj . x} ¼
1¹ Fj(xþ z)

1¹ Fj(x)
¼

gy,m,j(xþ z)
gy,m,j(x)

¼ gy,0,j(x)(z) ð3Þ

Here the last equality follows, after some straightforward
manipulation, from the definition of the functiongy,m,j

(whatever the sign ofy) and

j(x) ¼ j þ y(x¹m) (4)

Hence, the distribution of the excesses ofx is ageneralised
Pareto distribution (GPD) with distribution function
1 ¹ gy,0,j(x). This distribution is described by its shape para-
metery, which is independent ofx and unchanged from that
in Eq. (2), and by its scale parameterj(x) which is given by
Eq. (4). Its mean is given by

j(x)
1¹ y

¼
j ¹ ym

1¹ y
þ

y

1¹ y
x (5)

(See, for example, Ref. [10] for the relevant background on
the GPD.) Additionally, again from Eq. (2), the probability
of an exceedance ofx occurring is

1¹ Fj(x) ¼
1
ny

gy,m,j(x) (6)

We may therefore take the thresholduj to be any value
whose excesses (in the observations (X1j,…,Xnj) of Xj) are
well modelled by a GPD, provided only that there are suffi-
cient exceedances ofuj to permit the inference we now
describe. (This of course requires that we have available a
sufficiently large data set.) We may estimate the corre-
sponding parametersy andj(uj) of this GPD by maximum
likelihood estimation, and may similarly estimate the
threshold exceedance probability 1¹ Fj(uj) by the propor-
tion of observed exceedances ofuj (this is again the max-
imum likelihood estimate of this probability). Once these
estimates are available, the parametersj andm of the under-
lying model may be recovered by using Eqs. (4) and (6), in
each case withx ¼ uj, and by recalling the definition of the
function gy,m,j. Maximum likelihood estimation has good
statistical properties and additionally permits assessments
of uncertainty, for example confidence intervals, for the
parameters (y,m,j), and also for those quantities, such as
return levels, which are functions of them. For a further
discussion see Refs. [7,12,19].

The distribution ofXj below the thresholduj may be
estimated by smoothing the empirical distribution of the
corresponding observations (X1j,…,Xnj) in this region. In
practice the thresholduj is such that this is not a problem
(see Section 2.1.1). In the metocean application of Section 3
we use kernel density estimation [23], but the estimate of the
distribution in this region will be relatively insensitive to the
choice of (sensible) smoothing procedure. Further, our
primary interest is in the estimate of extremal behaviour
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which is unaffected by the exact choice of smoothing pro-
cedure below the threshold.

One commonly used aid to the identification of a suitable
thresholduj is themean excess plot, in which the mean of
the excesses of eachx is plotted againstx. Since, for the
given model (with fixed (y,m,j)), the excesses ofuj, and so
also of eachx $ uj, follow a GPD, Eq. (5) suggests that this
plot should be approximately linear beyond any suitable
thresholduj. In reality considerable experience is required
in the interpretation of such plots, for the typically long tail
of the GPD ensures that they are visually dominated by a
large range of values ofx to which there correspond only a
small, or very small, number of exceedances. Because these
observations represent only a small sample from the under-
lying distribution, they considerably distort the plot over
much of its range. For further discussion, and for some
very instructive simulations, see Ref. [10].

In the application of Section 3 we supplement mean
excess plots by more direct checks on the suitability of the
chosen thresholds, notably comparison of observed and
fitted distributions above the thresholds, and by appropriate
sensitivity analysis.

2.1.3. Calculation of return levels
We may use the above theory to calculate the return

levels of the variableXj to be associated with specified
return periods. Under the model of Section 2.1.1, the return
level xp associated with a return period of 1/p years is given
by the solution of

gy,m,j(xp) ¼ p (7)

that is, by

xp ¼
mþ

j

y
(p¹ y ¹ 1) if y Þ 0

m ¹ j log p if y¼ 0

8<: (8)

provided only that, as will be the case in applications,xp lies
above the thresholduj.

Confidence intervals associated with a given estimate of
the return levelxp are best obtained by determining the
associated profile likelihood function [10]: for each possible
value of xp, we calculate the maximum valuel(xp) of the
log-likelihood of the observed data over the set of those
parameters (y,m,j) such that Eq. (7) holds. (In practice this
involves reparametrisation of the log-likelihood in terms of
xp and two remaining parameters.) The valuex̂p of xp which
maximisesl(xp) is of course the maximum likelihood esti-
mate of the return level and, based on the maximum like-
lihood ratio test, a confidence region forxp of sizea is given
by

xp : l(x̂p) ¹ l(xp) #
1
2
ca

� �
whereca is the uppera point of the chi-squared distribution
with one degree of freedom [6]. For a 95% confidence inter-
val we takec0.95 ¼ 1.92. The typically non-normal shape of

the profile likelihood functionl confirms the necessity of an
approach such as this—in contrast to basing the interval on
the assumption of a normal distribution for the maximum
likelihood estimate.

2.2. Multivariate extreme value theory

In estimating the joint distribution of the variables
X1,…,Xd, it is of crucial importance to capture correctly
the dependence structure in its extremes. We again appeal
to asymptotic theory and seek a representation of the data in
which the measure of dependence in the extreme region is
necessarily stable (in a sense to be made clear below), and
may be estimated from the data without prior modelling
assumptions. The relevant theory is based on the properties
of the Fréchet distribution with shape parameter 1 (to which
the marginal distributions of the data may be transformed)
and is described by Coles and Tawn [4,5], who also consider
estimation issues. We give a somewhat different presen-
tation of this theory. We then consider how it may be
applied to the analysis of data.

2.2.1. Asymptotic theory
Suppose that the random vectorX̃ ¼ (X̃1, …, X̃d) is such

that the (marginal) distribution of each of its componentsX̃j

has a standard Fre´chet distribution, i.e. a distribution func-
tion F onRþ ¼ [0,`) given by

F(x) ¼ exp( ¹ 1=x) (9)

Define radial and angular components of the vectorX̃ by

r ¼ X̃1 þ … þ X̃d (10)

wj ¼ X̃j =r , j ¼ 1, …,d (11)

Note that the random vectorw ¼ (w1,…,wd) takes values in
the spaceSd ¼ w [ Rd

þ :
∑

d
j ¼ 1wj ¼ 1

n o
. In particular it

can be specified by giving anyd ¹ 1 of its components.
We now have the following results (for the derivation of

which see below). The density functionf̂ of the radial com-
ponentr satisfies

f̂ (r) ¼
d

r2 þ o
1
r2

� �
as r → ` (12)

(whereo(1/r 2) denotes further terms of a higher order which
become negligible in relation to 1/r 2 asr increases). Further,
the conditional distribution of the angular componentw
given r converges, asr → `, to a probability measurem
onSd—so that in particular it is asymptotically independent
of r. This probability measure satisfies∫
Sd

wjdm(w) ¼
1
d
, j ¼ 1, …,d (13)

that is, the expected value of each of thed margins of the
measurem is 1/d. (Wherem has a density, as is the generally
the case in applications, the left-hand side of Eq. (13) is
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simply the integral ofwj with respect to this density.) In
other respects the value ofm is arbitrary.

Now define anextremeof the random vector̃X to be any
value for which the radial componentr is sufficiently large.
The significance of the above results is that (from Eq. (12))
the distribution ofr is asymptotically independent of the
dependence structure in the joint distribution ofX̃. Further,
the dependence structure in the extremes of this joint dis-
tribution (the area of interest here) is captured entirely by
the limit measurem. Hence, estimation of this extreme
dependence structure reduces to estimation ofm. Finally,
from Eq. (12) again, knowledge ofm implies knowledge
of the entire joint distribution of the extremes ofX̃.

Note that the measurem need not have a density onSd. For
example, if X̃1, …, X̃d are independent, thenm assigns
weight 1/d to each of thed extreme points of the spaceSd

(each of which has one component which takes the value 1
and the remaining components equal to 0).

These results are usually presented in terms of point pro-
cess convergence. LetX̃1, …, X̃n ben independent observa-
tions of the random vector̃X. Then, asn → `, the point
process onRd

þ defined byX̃1=n, …, X̃n=n converges in dis-
tribution onRd

þ w {0} (i.e. away from the origin) to a hetero-
geneous Poisson process. The radial and angular
components of the limit distribution are independent and
that of the angular component is arbitrary, except for a
normalisation condition which corresponds to Eq. (13)
above. For a description of this theory, which is due to de
Haan [15], see Refs. [3–5]. (Note that the intensity measure
H onSd used by Coles and Tawn differs by a factor ofd from
the measurem given here. The reason for this is that the
independence in the above point process limit distribution
corresponds to a factorising of its intensity into radial and
angular components, and an arbitrary multiplicative con-
stant may be transferred from one component to the other.
Here, we have chosen to state the key results in terms of the
probability distribution of the random vector̃X, so that the
factor d naturally belongs to the density function̂f of r,
rather than to the probability measurem.)

The results as stated here (Eq. (12) describing the asymp-
totic distribution of r, the convergence tom of the condi-
tional distribution of w given r, and thenormalisation
condition, Eq. (13)) may be regarded as a simple restate-
ment of the more usual point process description of the
theory: they are implied easily and directly by the point
process convergence referred to above, together with the
limiting form of the intensity measure. However, a direct
proof of these results, as presented here, is straightforward.
For a simple, and slightly informal proof, see Appendix A.

2.2.2. Application
To apply the theory of Section 2.2.1, we first determine a

transformationw : Rd → Rd
þ such that the transformed

vector observations X̃ i ¼ w(X i), i ¼ 1, …n, have unit
Fréchet marginal distributions. The appropriate transforma-
tion here is given bỹXij ¼ wj(Xij ) where, for eachj ¼ 1,…d,

the functionw j is given byw j(x) ¼ ¹ {log Fj(x)} ¹1 and
whereFj is the marginal distribution function of the obser-
vationsXij estimated as described in Section 2.1.2.

The transformed vectors̃X1, …, X̃n are now regarded as
independent observations of a random vectorX̃ as described
in Section 2.2.1. The problem is to estimate the limit
measurem defined there, and so the joint distribution of
the extremes of̃X. Inversion of the transformationw then
gives the corresponding estimate of the joint distribution of
the extremes of the original vector observationsX 1,…,X n.
(Details of how this is achieved in practice are given in
Section 3.2.4.)

Thus, for each observationi, we further transform the
vectorX̃ i to (r i,w i) where

ri ¼ X̃i1 þ … þ X̃id

wij ¼ X̃ij =ri , j ¼ 1, …,d

and w i ¼ (wi1,…,wid). That is, for eachi, (ri ,wi) is the
corresponding observation of the random pair (r,w) defined
by Eqs. (10) and (11). For eachr 0 $ 0, letNr0

denote the set
of those observationsi such thatr i . r 0. It now follows from
the convergence tom of the conditional distribution ofw given
r (see Section 2.2.1) that, for some sufficiently large threshold
r 0, the limit measurem may reasonably be estimated from the
observed distribution of thosew i with i [ Nr0

.
The problem of choosing this threshold is analogous to

that of choosing the thresholdsuj in the estimation of
marginal distributions as described in Section 2.1. That is,
r 0 must be sufficiently high for the limit distributionm to be
well approximated by the conditional distribution ofw,
given r . r 0; however, it must also be low enough for
there to be sufficient observations in the setNr0

to permit
reliable estimation. Some further discussion is given else-
where [5]: essentially, for varyingr, we examine the dis-
tribution of w i for i [ Nr and then taker 0 to be the lowest
value of r above which this distribution is stable. We
observe in Section 3.2.4 that in practice our results appear
to be less sensitive to the exact choice ofr 0 than is the case
with the choice of the marginal thresholdsuj.

Oncer 0 is determined the limit measurem is estimated, as
indicated above, using those observations in the setNr0

.
Coles and Tawn [5] take a parametric approach to this esti-
mation: from within a large parametrised family of possible
distributions they use maximum likelihood estimation to
determine that which best fits the data. In the application
of Section 3 we have preferred to use instead non-
parametric estimation, as the applicability of any known
parametric family to the current metocean data is unclear.
(The parametric approach does, however, have the advan-
tage of making more straightforward the determination of
assessments of uncertainty aboutm.) In the present paper we
have used kernel density estimation [23], with a variable
kernel width, to estimate the distribution ofw in Nr0

and
hence the measurem. The details are described in Section
3.2.4.
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2.3. Seasonality

The distribution of metocean data does of course exhibit
very substantial seasonal variation. In general this is not too
serious a problem. In the consideration of extreme events—
those with a return period measured in years—it is the dis-
tribution of the data over each year which is important. This
is simply the mixture of the seasonal distributions and
should itself be well modelled in the tail by a GPD. The
alternative procedure is to explicitly model seasonal depen-
dence by allowing parameters, and perhaps thresholds, to
vary appropriately. The simplest possibility here is to parti-
tion the data according to season, analyse separately the data
for each such season, and appropriately combine the results.
However, this approach is messy, the partitioning involved
is somewhat arbitrary, and more data are probably required
in order to obtain reliable results [1].

However, in the application to metocean data considered
in Section 3, we do partially take the latter approach in order
to cope with problems of missing data. There are substantial
numbers of missing observations for the summer months of
May to August, when the extreme events of interest have an
exceedingly small probability of ever occurring (see Section
3.1 and Appendix C for further details). We treat the prob-
ability of such occurrences during this period as being zero.
Thus we analyse only those data corresponding to the
remaining eight months of the year, and, in the calculation
of return levels and other time-dependent quantities, adjust
the numberny of observations periods per year to corre-
spond to this eight-month period. (There are also some
further missing observationswithin this eight-month period.
Because they are distributed approximately uniformly
throughout this period, they do not cause a problem beyond
the loss of data. Nor, of course, doesny require any further
adjustment on account of them. Again see Appendix C for
further details.)

2.4. Dependence

The theory described in Section 2.1 and Section 2.2
assumes the independence of successive observations. In
practice, however, there is considerable short-term depen-
dence in such metocean data. In the application of Section 3
observations are available at hourly intervals, while extreme
events are typically to be found in storms, which may last
for many hours or even several days. It is therefore very
important to consider the effect of such short-term depen-
dence in the data.

To the extent that the tail of the distribution of the data is
still well modelled by a GPD, the above, independence-
based, methodology should still correctly estimate the fre-
quencies of extreme events, provided that events which
would occur in disjoint observation periods are to be
regarded as distinct. (The reason for this is that these fre-
quencies are essentially an extrapolation of the frequencies
of the extreme events observed in the data.) However the

tendency of extreme events to cluster affects our conclu-
sions in two further ways:

1. For any given extreme event, the average time between
successive clusters of this event is greater than the aver-
age time between individual events. In applications, the
former is the most relevant definition of a return period,
whereas the latter is the return period estimated on the
assumption of independent observations. Therefore the
use of this assumption tends to result in underestimation
of return periods, as relevant for applications.

2. Assessments of uncertainty (standard errors and confi-
dence intervals for parameters) are again based on the
assumption of independent observations. However, if
there is dependence in the data, then there is less infor-
mation available for these assessments than is being
assumed, so that they are unduly optimistic.

Various approaches to this problem have been discussed
in the literature. Those which address both the above diffi-
culties typically either (a) ‘de-cluster’ the data, by explicitly
identifying clusters of observations, which may reasonably
be regarded as independent of each other, and then choosing
the most extreme observation from within each such cluster,
or (b) attempt to estimate the degree of clustering in the
data—by, for example, estimation of theextremal index
[10,18]—and to adjust for it, or (c) attempt to explicitly
model the dependence structure in the data. There are
some problems with the last two approaches. Estimation
of the extremal index is difficult and it is not even clear
that it is consistently defined throughout the range of
extreme values of the variables. Hence its application to
the adjustment of return periods, or return levels, appears
hazardous. Similarly, explicit modelling of the dependence
structure is still very much a topic of current theoretical
research and further inevitably involves greatly increased
computational complexity.

In the analysis of Section 3, we therefore take an
approach which is essentially equivalent to (a) above. We
divide the interval over which the data were collected into
blocksor periods i¼ 1,…,n of equal length (say 24, 48 or
72 h). With each such periodi we associate a multivariate
observationX i, which is defined to be the most extreme (in
an appropriate sense—see below) of the hourly multivariate
observations made during that period. The periods are cho-
sen to be of sufficient length that it is reasonable to treat the
observationsX 1,…,X n as independent, and to analyse them
as described in the preceding sections. There is of course a
slight problem where the extremes of the original hourly
observations cluster at the boundaries between successive
periods, but the effect of this is relatively minor, and, as
described above, to the extent that there is any further failure
of independence its effect with respect to return periods and
return levels is conservative.

Note that even if a period length longer than necessary is
chosen, it is relatively rare that an extreme observation is
lost because it is masked by another from which it might
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have been considered genuinely independent. Hence the
results of our analysis—the univariate parameters which
describe exceedance rates as defined in Section 2.1, their
associated confidence intervals, and the multivariate analy-
sis of Section 2.2—should not be too sensitive to the choice
of period length. (See also Section 3.2.6 for some direct
experimentation here.) This increases our confidence that
there is little loss of reliably useful information in the
above approach.

We study the choice of an appropriate period length
below. However, it is sensible to consider first the appro-
priate determination of the multivariate observationX i to be
associated with each periodi. As remarked above, this is in
some sense the most extreme observation associated with
that period.

The simplest approach is to define each component
observationXij to be the most extreme of the corresponding
individual observations of variableXj made during the
period i. However, in the multivariate context this may
well be unduly conservative as different variables may
attain their most extreme values at different times within
this period.

We allow the above (conservative) approach as one
possibility. However, we also consider the approach
whereby one particular variableXj is considered to be of
primary importance for the application concerned. For each
period i we then defineXij to be the maximum observed
value ofXj within this period. For each remaining variable
Xk (k Þ j) we defineXik to be theconcomitantobservation of
this variable, i.e. the observation ofXk which is made at the
same time as the observationXij. (In the application consid-
ered in Section 3 this is the observation ofXk made in the
same hour as the observationXij.) This is a slight departure
from a truly multivariate approach to the problem, and the
results of the analysis will vary slightly according to which
variable is in fact considered to be of primary importance.

There is also a further possibility, which is, however,
structure specific. Each of the observations within each per-
iod i is converted to an overallloading for the structure of
interest, and the multivariate observationX i is then defined
to be the most extreme of the original observations as
defined by this loading. This has similarities with the uni-
variate structure variable approach discussed in Section 1,
but it has the advantage of allowing information regarding
the constituent elements of the total loading to be retained.
For aknownstructure, this would be perhaps the most satis-
factory solution to this particular problem.

We now consider the problem of choosing an appropriate
period length. There is considerable discussion in the litera-
ture about this problem in the context of metocean data
[11,20,26]. The simplest way to examine the suitability of
any given choice is to look at the residual dependence struc-
ture of the corresponding associated observationsX 1,…,X n.
These should ideally be independent. It seems sufficient to
do this separately for each of the component variables, since
any serial dependence in the sequence of multivariate

observations will almost certainly show in the correspond-
ing sequence for at least one of the component variables. In
the analysis of Section 3 we use two techniques: (a) exam-
ination, for eachj, of the serial autocorrelation structure of
X1j,…,Xnj; and (b) examination, for eachj, of the serial
dependence of the occurrence of threshold exceedances by
the observationsX1j,…,Xnj. For the latter we simply note
whether or not eachXij exceeds some suitable threshold
(in practice it seems sensible to use that threshold above
which the observations appear reasonably modelled by a
GPD) and look at the first-order dependence of these events.
This is very simple, but focuses attention on the dependence
structure in the extremes of the data, and this is what is
required.

It is important to note that both of the above techniques
require that the data be separated more carefully—for this
purpose—according to season. Otherwise the inevitable
seasonal dependence introduces an essentially spurious
appearance of short-term dependence in the data.

3. Application to metocean data

In this section we consider an application to data consist-
ing of observations of three metocean variables collected in
the northern North Sea. We restrict attention to univariate
and bivariate analyses. This is sufficient both to illustrate the
above theory and, as we shall show, to obtain practically
useful results.

3.1. The data

The data analysed here consist of observations of the
following three metocean variables measured from the
Alwyn North platform, which is situated in the northern
North Sea (60848.59N and 1844.179E, water depth approxi-
mately 130 m):

Hs: Significant wave height (m) derived as 43
(variance of sea surface)

Tz: Zero up-crossing wave period (s)
Ws: Mean wind speed (m s¹1) measured at 103 m

above MWL

Although wind direction data were also collected they were
not incorporated into the present analysis.

The data were collected between September 1987 and
April 1996 and consist of hourly observations over this
period made by Paras Ltd and by Heriot-Watt University.
The details of the data collection are described in Appendix
B. For the reasons described in Appendix C, we have
omitted from the analysis data collected during the months
of May to August each year. However, the extreme events in
which we are interested have negligible probability of
occurring during these months. (See Section 2.3 for a
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discussion of the methodological issues here.) We have also
omitted data collected during the interval September 1991
to April 1992, owing to the poor quality of the record for this
period. Finally, there are occasional other smaller gaps in
the observation record for one or more of the variables,
because of individual sporadic sensor problems or other
difficulties (not associated with the severity of the metocean
conditions). Thus we have chosen for analysis a fairly com-
plete record corresponding to eight ‘winter’ periods of eight
months each.

Fig. 1 shows a plot of the daily maxima of the correspond-
ing observations of wave heightHs. The observations of the
remaining variablesTz and Ws exhibit similar patterns of
variability, in particular seasonal dependence within each of
the eight-month periods, and have similar patterns of missing
observations. These occasional missing observations are suf-
ficiently uniformly distributed over the seasons under study
so as not to introduce any bias into the present analysis.

The two variablesHs andWsare those of most interest
and significance for structural loading and we concentrate
on a analysis of their joint distribution, following the meth-
odology of Section 2. We subsequently consider the vari-
ableTzand its relation to each of the former variables.

3.2. Bivariate analysis of wave height and wind speed

3.2.1. Choice of period length and associated observations
The methodology presented in this paper assumes that the

data for analysis consist of at least approximately indepen-
dent observations. We have already argued in Section 2.3
that such seasonality as is present in the data does not pre-
sent a serious problem. However, there is also very consid-
erable short-term dependence in the hourly observations
which constitute our primary data record. In particular
extreme events tend to cluster in storms. We therefore
seek to follow the approach of Section 2.4 and choose a
length of period such that, ifn is the number of such periods
andX i ¼ (Hsi,Wsi) is the bivariate observation associated
with each periodi as described there, thenX 1,…,X n can
reasonably be treated as independent.

Previous studies of offshore data [11,20,26] have used
period lengths varying from 24 to 60 h, and we investigate
the suitability of period lengths of this order. The details of
our analysis are given in Appendix D, and we suggest that,

for the present data, a suitable length of period is given by
48 h. We use this period length in the analysis below of both
the marginal and joint distributions ofHsandWs. However,
the criticality of this choice is further investigated in the
sensitivity analysis of Section 3.2.6.

For the present we takeHsi andWsi to be the maximum
observed values ofHs and Ws, respectively, during each
period i. We discuss subsequently possible variations of
these definitions.

3.2.2. Fitting marginal distributions
The most difficult statistical issue in fitting the marginal

distribution of each variableXj is the estimation of the
thresholduj above which the data are assumed to be well
modelled by a GPD. Fig. 2 shows the mean excess plots
described in Section 2.1 for each of the variablesHsandWs.
These are based on the observationsX i ¼ (Hsi,Wsi), i ¼

1,…,n, associated with a 48-hour period length as described
above. Fig. 3 shows the corresponding histograms of the
distributions of the two variables.

We have already remarked that mean excess plots are
quite difficult to interpret, as they are visually dominated
by the few most extreme observations. However, both they
and, more so, the histograms in Fig. 3 (see below) suggest
that reasonable choices of threshold are 6.5 m forHs and
16.5 m s¹1 for Ws. We use these thresholds below, but in
Section 3.2.6 we further investigate the criticality of these
choices.

For each of the variablesHs andWs the (marginal) dis-
tribution of the observationsHsi or Wsi is now estimated by
using kernel density estimation for those observations below
the threshold and maximum likelihood fitting of a GPD for
those observations above it (see Section 2.1). The para-
meters (y,m,j) (as defined in Section 2.1.1 and representing
shape, location and scale, respectively) associated with each
of these fitted distributions are shown in Table 1. The
threshold associated with each variable and the density of
the associated fitted distribution are also shown in Fig. 3, the
close fit to the observed data confirming the reasonableness
of the choice of threshold. Note that, as is typical, there is a
slight discontinuity at the threshold in the smoothed density.
This is at a level which is well below the area of interest and
does not present any difficulties for the extrapolation
process.

Fig. 2. Mean excess plots forHs andWs(48-hour period length).

282 S. Zachary et al. / Applied Ocean Research 20 (1998) 273–295



3.2.3. Calculation of return levels
For each of the variablesHs and Ws, the return levels

associated with given return periods are determined as
described in Section 2.1.3. Fig. 4 shows, for each of these
variables, a plot of return level against return period. Each
plot gives point estimates of the return level as the return
period is increased, along with 95% confidence intervals
calculated using profile likelihoods.

The confidence intervals indicate a sometimes consider-
able degree of uncertainty in these return levels. This is
scarcely surprising since the quantity of data available as
the basis for extrapolation corresponds to an interval of time
whose length is less than one-tenth of that of the longest
return periods considered. However, these confidence inter-
vals are wider than those sometimes reported in other
studies using comparable quantities of data [2,8,21]. There
are two reasons for this: (a) no prior assumptions are made
here regarding the tail shapes of the distributions of the
variables beyond those which are implied by the asymptotic
theory used (however, further assumptions which are com-
patible with this approach, if warranted, could be incorpo-
rated into the present methodology); and (b) some other
studies apply results which are essentially asymptotic
while using thresholds which are considerably below
those used here, thereby increasing the quantity of data
apparently available for assessments of uncertainty; this
decreases the variance of parameter estimates at the expense
of increasing their (unknown) bias. (Note, however, that
consideration of water depth places a natural upper bound
on Hs return levels. If this were to be incorporated into the
current methodology the effect would be to truncate the set
of attainableHs values, rather than to alter the shape of the
return level curve at lower return periods.)

3.2.4. Estimation of the joint distribution
We now consider estimation of the joint distribution of

Hs andWs. We use the methodology described in Section
2.2 and based on (a) transformation of the individual vari-
ables so that each has a standard Fre´chet distribution
(Eq. (9)), followed by further transformation to pseudo-
polar coordinates (r,w) as defined by Eqs. (10) and (11),
and (b) estimation of the asymptotic distributionm of w.
The transformations described in (a) are straightforward
(given the estimated marginal distributions of the variables),
while the estimation in (b) is based on the observed distri-
bution ofw for those observations in the setNr0

(see Section
2.2.2) for a suitably chosen thresholdr 0.

Note that, since herew ¼ (w1,w2) and, as already
observed,w1 þ w2 ¼ 1 always, we may replace the vector
w by the scalar quantityw ¼ w1. We take this to be the
component ofw associated with the variableHs.

The thresholdr 0 is the value ofr above which the condi-
tional distribution ofw, given r, is reasonably stable. The
choice of this threshold is perhaps best made [5] by the
consideration of a range of possible values ofr 0 and
the construction, for each such value, of a histogram of
the distribution ofw for those observations in the setNr0

.
Fig. 5 shows these histograms for a range of increasing
values ofr 0. (As is customary, we consider values ofr 0 of
the form expk for simple values ofk.)

Here, for values ofr 0 greater than or equal to exp (1.5),
the distribution ofw in the setNr0

seems to be fairly stable
until, for very high values ofr 0, the number of observations
in the setNr0

is too small to be able to represent the under-
lying distribution at all reliably. We therefore taker 0 ¼

exp (1.5). However, the sensitivity of the results to this
choice is further investigated in Section 3.2.6.

The asymptotic distribution ofw on the interval [0,1] is
now estimated from those observations in the setNr0

. For
the reasons explained in Section 2.2.2, we here take a non-
parametric approach and use kernel density estimation [23].
As might be expected for a distribution with a finite range, it

Fig. 3. Observed and fitted distributions ofHs andWs(48-hour period length).

Table 1
Bivariate analysis ofHs andWs: summary of marginal analyses withX i ¼ (Hsi ,Wsi)

Variable No. of observations Threshold No. of observations
above threshold

Distribution parameters

y m j

Hs 762 6.5 m 119 ¹0.01 11.2 1.58
Ws 762 16.5 m s¹1 256 ¹0.15 26.6 2.03
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seems desirable to use a variable window width which
becomes narrower close to the boundaries of the interval
[0,1]. In particular this may be used to prevent the kernel
density estimate from spilling beyond this interval. We
achieve this by a logistic transformationz ¼ log w ¹

log (1 ¹ w) of w to the entire real line, followed by (fixed
width) kernel density estimation of the distribution ofz and
then the inverse transformation back to the interval [0,1]. Of
course the choice of kernel width is still necessarily some-
what subjective.

Fig. 6 shows a histogram of the distribution ofw for those
observations in the setNr0

(r 0 ¼ exp (1.5)) together with its
probability density estimated as above. Note the general
shape of this density, which is very different from the U-
shaped densities of Coles and Tawn [5] and corresponds to a
very strong association between the extremes of the two
variables. This is typical of wind and wave data.

Finally, we consider the estimation of the joint density
function of the (untransformed) variablesHs andWs. This
may now be determined from the theory of Section 2.2.
Consideration of the transformations (a) and (b) above
shows that the joint density functionfX of X ¼ (Hs,Ws) is

given by

fX(x1,x2) ¼
2h(w)

r3 w19(x1)w29(x2) (14)

whereh is the density function ofw as estimated above,w19
and w29 are the derivatives of the functionsw1 and w2

defined in Section 2.2.2 (and implementing the transforma-
tion (a) above), and the pair (r,w) is obtained from (x1,x2)
via the transformations (a) and (b), i.e.

r ¼ w1(x1) þ w2(x2) andw¼ w1(x1)=r

A proof of this result is given in Appendix A. Note that the
above representation of the joint density function depends
both on the fact that hereX is bivariate (d ¼ 2) and on the
chosen parametrisation of the spaceSd (by w ¼ w1 ¼

1 ¹ w2).
Fig. 7(a) shows geometrically spaced contours of the joint

density superimposed on a plot of the observations
(Hsi,Wsi). The horizontal and vertical lines correspond to
the thresholds used in fitting the marginal distributions of
the variables. The remaining, curved, line corresponds to the
threshold r 0 used in the bivariate analysis. The area of

Fig. 4. Return level plots forHs andWswith 95% confidence intervals.

Fig. 5. Bivariate analysis ofHs andWs: histograms ofw for increasingr 0.
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interest, corresponding to the regionr . r 0 in (r,w) space,
lies to the right of and above this curve and contours of the
density are shown only in this region. (Recall that it is in this
region that the association between the two variables, as
measured byw, is assumed to have stabilised, and that it
is the observations in this region which are used to estimate
this association.) Observe that the estimated density func-
tion is compatible with the observed data in the region
where the latter exists, as would be expected, and provides
a realistic extrapolation of the density into the region where
observations do not exist.

3.2.5. Alternative observation definitions
A traditional analysis of the most extreme wave height

and wind speed combination likely to occur with, for exam-
ple, a 100-year return period would simply combine the
individual 100-year return levels for these two variables.
In general this is excessively conservative as it is most
unlikely that these two return levels will be achieved at
precisely the same time. By focusing on the joint distribu-
tion of the two variables, the present bivariate analysis
attempts to address this problem. However, our current defi-
nition of the bivariate observationX i to be associated with

each 48-hour periodi still couples the maximum wave
height and maximum wind speed within this period and
thus retains some of the conservatism inherent in the more
traditional approach.

We now consider two other possible definitions ofX i, as
discussed in Section 2.4:

X i ¼ (Hsi ,Wsi9) where, as previously,Hsi is the max-
imum observation of the variableHswithin the periodi
and whereWsi9 is the concomitantobservation of the
variableWs;
X i ¼ (Hsi9, Wsi) whereWsi is the maximum observation
of the variableWswithin the periodi and whereHsi9 is
the concomitantobservation of the variableHs.

These two definitions are appropriate for applications to
structures for which the loadings are wave- and wind-
dominated, respectively. (The remaining possibility
discussed in Section 2.4 is structure-specific and therefore
not pursued here.) Tables 2 and 3 summarise the marginal
analyses corresponding to these two further definitions, and
are analogous to Table 1 for our earlier definition. Note that,
for each of the three definitions of the bivariate observa-
tions X i, there is a slightly different number of these
observations available for analysis. This is accounted
for by the locations of the occasional gaps in the original
series of hourly observations. Note also that the observa-
tions Hsi9 exceeds their threshold of 6.5 m on many fewer
occasions than do the observationsHsi; this is as would be
expected from their concomitant definition. A similar
remark applies to the threshold exceedances ofWsi9 in rela-
tion to those ofWsi.

Fig. 7(b) and (c) show the corresponding joint density
functions of the variablesHs and Ws. These figures are
based on similar bivariate analyses to that leading to
Fig. 7(a), again withr 0 ¼ exp (1.5) in each case, and are
interpreted similarly. We discuss the significance of these
alternative analyses in Section 3.4.

Fig. 6. Bivariate analysis ofHsandWs: distribution ofw in the setNr0
and

estimated probability density.

Table 2
Bivariate analysis ofHs andWs: summary of marginal analyses withX i ¼ (Hsi ,Wsi 9)

Variable No. of observations Threshold No. of observations
above threshold

Distribution parameters

y m j

Hs 792 6.5 m 121 0.00 11.2 1.59
Ws 792 16.5 m s¹1 155 ¹0.15 24.3 1.92

Table 3
Bivariate analysis ofHs andWs: summary of marginal analyses withX i ¼ (Hsi 9,Wsi )

Variable No. of observations Threshold No. of observations
above threshold

Distribution parameters

y m j

Hs 777 6.5 m 63 0.01 10.0 1.55
Ws 777 16.5 m s¹1 257 ¹0.16 26.6 1.99
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3.2.6. Sensitivity analysis
We examine further the sensitivity of the preceding

analysis to the choice of period length (Section 3.2.1),
marginal thresholds (Section 3.2.2), and bivariate threshold
r 0 (Section 3.2.4). Rather than attempt a general description
of the sensitivity to these quantities of the entire joint dis-
tribution of HsandWs(through, for example, the estimated

parameters of the marginal distributions and estimated dis-
tribution of w—all of which are difficult to interpret), we
focus instead on 100-year return levels as described
below.

Table 4 shows estimates of the 100-year return level for
wave heightHs together with, for each such estimate, the
value of the wind speedWsmost likely to be associated with
it (see Section 3.4.2). This latter quantity is determined from
the estimated joint distribution of the two variables. For this
analysis we again consider the caseX i ¼ (Hsi,Wsi), so that
the observation of each variable associated with the periodi
is its maximum during that period. The estimates are based
on three choices of period length combined with each of
three choices of marginal threshold pair. Recall that our
main analysis corresponds to the use of a 48 h period length
and marginal thresholds of 6.5 m and 16.5 m s¹1 for Hsand
Ws, respectively. Similarly, Table 5 shows analogous esti-
mates of the 100-year return level for wind speedWs
together with the most likely associated values of the

Fig. 7. Joint density of wave height and wind speed based on (a)X i ¼ (Hsi,Wsi), (b) X i ¼ (Hsi ,Wsi 9), (c) Xi ¼ (Hsi 9,Wsi ).

Table 4
Sensitivity analysis: 100-year return levels forHs(m) and associated values
of Ws(m s¹1)

Thresholds Period length

36 h 48 h 60 h

Hs Ws Hs Ws Hs Ws

6 m, 15 m s¹1 18.17 31.40 18.28 31.77 17.71 31.06
6.5 m, 16.5 m s¹1 17.78 32.59 18.36 32.98 17.85 31.86
7 m, 18 m s¹1 19.70 32.81 17.69 32.56 19.01 33.34
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wave heightHs. The bivariate analysis is again based on
definingX i ¼ (Hsi,Wsi).

The results in Tables 4 and 5 show that these estimates are
not especially sensitive to modest variations in either the
choice of period length or that of marginal threshold. In
particular the variation in the 100-year return levels of the
two variables is substantially less than the width of the
confidence intervals for our main estimates of these quan-
tities (see Section 3.2.3).

Note also from Tables 4 and 5 that the value ofWsmost
likely to be associated with the 100-year return level ofHs
is, for these analyses, quite close to the 100-year return level
of Ws itself. A similar remark holds when the roles of the
two variables are interchanged. (See Section 3.2.5 for some
discussion of this.) This is relevant when we consider the
effect of varying the thresholdr 0 associated with the bivari-
ate analysis. Clearly this does not affect the estimated 100-
year return level associated with either variable, which is
based only on the marginal analysis of that variable, but in
each case it may affect the most likely associated value of
the other variable. In Section 3.2.4 we taker 0 ¼ exp (1.5).
With the period length and marginal thresholds used in that
section, variation ofr 0 to exp (1.25) and to exp (1.75) has no
effect on these associated values. Given the preceding
remarks, this is perhaps not surprising for the present data.

Finally we remark briefly on the sensitivity of standard

errors to variation in any of the quantities considered here.
This is as might be expected: to a very good approximation
standard errors are inversely proportional to the square root
of the number of observations available for their estimation.
In particular, for a return level, this is the number of obser-
vations—ofHs or Ws—above the marginal threshold for
the variable concerned.

3.3. Incorporation of wave period

In this section we consider, rather more briefly, the incor-
poration of the wave periodTz into the preceding analysis.
In many applications one or other of the variables wave
heightHs and wind speedWswill be the main determinant
of structural loading, and may be thought of as the primary
variable of interest. We will then be further interested in
values of the remaining two variables likely to be associated
with, for example, given return levels of the primary
variable. For this reason we consider here bivariate analyses
of (a) wave height and wave period, (b) wind speed and
wave period. This is in preference to a full trivariate analysis
of the three variables which would seem unlikely to produce
significant additional insight. We continue to use a 48-hour
period length and consider the bivariate observations asso-
ciated with the individual periods as independent. For each
such periodi, and for the analysis (a) above, we define the
associated bivariate observation (Hsi,Tzi) of (Hs,Tz) by
again takingHsi to be the maximum value ofHs observed
during the period, and by takingTzi to be the concomitant
value ofTz. Similarly, for each periodi, and for the analysis
(b), we define the bivariate observation (Wsi ,Tzi9) of
(Ws,Tz) by taking Wsi to be the maximum value ofWs
observed during the period andTzi9 to be the value ofTz
observed concomitantly withWsi. These definitions are
those appropriate when wave height and wind speed are
the respective primary variables.

The fitted marginal distribution of each of the
primary variablesHs and Ws remains that obtained in

Table 5
Sensitivity analysis: 100-year return levels forWs (m s¹1) and associated
values ofHs (m)

Thresholds Period length

36 h 48 h 60 h

Ws Hs Ws Hs Ws Hs

6 m, 15 m s¹1 31.56 18.20 32.04 18.20 31.10 17.40
6.5 m, 16.5 m s¹1 32.88 17.60 33.32 18.80 32.11 17.60
7 m, 18 m s¹1 32.86 19.60 32.77 18.00 33.48 18.80

Table 6
Bivariate analysis ofHs andTz: summary of marginal analyses

Variable No. of observations Threshold No. of observations
above threshold

Distribution parameters

y m j

Hs 762 6.5 m 119 ¹0.01 11.2 1.58
Tz 762 7.5 s 173 ¹0.13 10.1 0.63

Table 7
Bivariate analysis ofWsandTz: summary of marginal analyses

Variable No. of observations Threshold No. of observations
above threshold

Distribution parameters

y m j

Ws 777 16.5 m s¹1 257 ¹0.16 26.6 1.99
Tz 777 7.5 s 82 ¹0.07 9.7 0.80
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Section 3.2.2. For each of the analyses (a) and (b) the
marginal distribution ofTz is fitted as usual. The main
issue here is again the choice of threshold above which its
distribution is modelled by a GPD. Examination of mean
excess plots and histograms suggested that in both cases a
reasonable choice of threshold appears to be 7.5 s and we
use this threshold here.

Tables 6 and 7 give summary information and parameters
for the fitted marginal distributions associated with these
two bivariate analyses. Note that in the analysis (b) of
wind speed and wave period there are relatively few thresh-
old exceedances by the observations of the latter variable.
The reason is thatTzi9 is the observation ofTzconcomitant
with the maximum observation ofWsduring each periodi,
and is likely to be far from the maximum periodi observa-
tion of the variableTz itself.

For each of the two analyses, the joint distribution of the
bivariate pair is estimated analogously to that of the vari-
ablesHs and Ws in Section 3.2.4. In each case a suitable
value of the thresholdr 0 is again given byr 0 ¼ exp (1.5).
Figs 8 and 9 show the resulting estimated joint density func-
tions. These are interpreted similarly to those in Fig. 7.

3.4. Interpretation and application of results

The preceding analyses have many applications, ranging

from the calculation of return levels for individual variables
to the determination of likely combinations of extreme
events and the estimation of their probabilities. These latter
determinations depend on the joint distributions which are
illustrated in Figs 7–9. They are useful for design engineers
and offshore operators who require answers to specific
questions about loadings on structures. They are also of
considerable interest for oceanographers and others who
require a greater understanding of the metocean climate at
any particular site. We give below some qualitative and
quantitative conclusions.

3.4.1. Associations between variables
The joint density function plots in Fig. 7 show the esti-

mated joint distribution of wave height and wind speed. This
distribution shows very considerable association between
the two variables. In particular, this association continues
to be present in the region where either of these variables is
extreme and appears to extend well beyond the range of the
observed data.

Note that, while the overall form of the joint distribution
does not depend greatly on the precise definition of the
bivariate observationsX i (X i ¼ (Hsi,Wsi), X i ¼ (Hsi ,Wsi9)
or X i ¼ (Hsi9,Wsi) as defined earlier), the association
between the two variables is nevertheless greatest in the
caseX i ¼ (Hsi,Wsi), where the periodi observation of
each variable is its maximum during that period. This is
illustrated in Fig. 7(a) and is in contrast to the lower
associations in the cases of the alternative ‘concomitant’
definitions leading to Fig. 7(b) and (c). The likely reason
for this is that the wave height at any given time is a function
not just of the current wind speed, but of the past history of
this process over a variable time period (depending on such
factors as wind direction and rate of increase and decrease
of wind speed). The statistical association between the
observed values of the two variables is thus greatest when
the definition of these observations allows for a (generally
variable) time lag between wind speed and resulting wave
height.

Similarly, the joint distribution of wave height and wave
period illustrated in Fig. 8 again shows considerable asso-
ciation between these two variables, and in particular
between their extremes. Very similar remarks again apply
to the joint distribution of wind speed and wave period
illustrated in Fig. 9.

3.4.2. Return levels and their concomitants
An analysis of the return levels for each of the primary

variablesHs and Ws is given in Section 3.2.3. As further
comment, note that the data provide no indication of an
upper bound on the wave height. The best estimate of the
shape parameteryHs is close to zero (corresponding to an
exponential distribution of wave height) but its standard
error is such thatHs might either have an upper bound
(yHs , 0) or be unbounded (yHs $ 0). Of course physical
considerations imply that there does in reality exist some

Fig. 8. Joint density of wave heightHs and wave periodTz.

Fig. 9. Joint density of wind speedWsand wave periodTz.
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such upper bound, but this lies beyond the point to which the
distribution of the variable may reliably be extrapolated.
The data do provide a fairly clear indication of an upper
bound on the wind speed—here the standard error of the
shape parameteryWs is such that its 95% confidence interval
lies entirely within the region for whichyWs , 0.

For any given return period, it is of practical importance
to be able to determine the corresponding return level of
either of these two variables, together with likely associated
values of the other variable and of the wave periodTz. For
example, the most recent design code requirements for cal-
culating loads on offshore structures in the North Sea [24]
give a choice of three possible design conditions which the
structure must be able to withstand:

1. a 100-year return period wave height with ‘associated’
wave period, wind and current;

2. any ‘reasonable’ combination of wind speed, wave
height, and current speed that results in the 100-year
platform load;

3. the 100-year wave height combined with the 100-year
wind speed and the 100-year current speed.

We have already observed in Section 1 that the second of
these possibilities has the drawbacks associated with the
structure variable approach, while the third is unduly con-
servative. The present methodology can readily be applied
to analyses such as that required by the first of these options.
Here, for any given value of the wave heightHs, for
example its 100-year return level, we may easily calculate
the correspondingconditionaldistribution of the wind speed

Wsby using the joint distribution of these two variables. The
mode, or other suitable location measure, of this conditional
distribution then defines a most likely value ofWs asso-
ciated with the given value ofHs. Similarly, we may deter-
mine the corresponding associated value of the wave period
Tzby consideration of its joint distribution withHs.

Fig. 10(a) shows, as a density, the conditional distribution
of wind speed associated with the estimated 100-year wave
height of 18.4 m. This is determined from the estimated
joint distribution of the two variables. As usual, for the
calculation of the return level for wave height, we take the
observationsHsi of this variable to be the maximum
observed values ofHs during successive 48-hour periods.
The two curves shown in Fig. 10(a) derive from the two
possible definitionsWsi and Wsi9 of the observations of
Ws to be associated with each periodi. For the former
definition (in which Wsi is the maximum wind speed in
each periodi) the most likely wind speed associated with
the 100-year wave height is 33.0 m s¹1. For the latter defini-
tion (in which Wsi9 is the observation of wind speed
observed concomitantly withHsi in each periodi) the
wind speed associated with the 100-year wave height is
30.5 m s¹1. It is clear that the latter definition seems more
appropriate for applications (see the discussion of Section
3.2.5). Note also, from Section 3.2.3, that the independently
determined 100-year wind speed is 33.3 m s¹1. These
results are very compatible with the general understanding
that the 100-year wave height and 100-year wind speed may
well occur within the same storm, but would not be expected
to occur at the same time.

Fig. 10. Conditional densities of (a) wind speed; (b) wave period, for 100-year wave height.

Fig. 11. Conditional densities of (a) wave height; (b) wave period, for 100-year wind speed.
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Similarly, Fig. 10(b) shows, again as a density, the con-
ditional distribution of the wave periodTz associated with
the estimated 100-year wave height. Here, for each periodi,
the associated observationTzi is is taken to be that observed
concomitantly withHsi. The most likely value of the wave
period associated with the 100-year wave height is 12.1 s,
resulting in an estimated significant steepness of the sea
state of 2pHs/gTz2 ¼ 1/12.5. This is marginally more severe
than the steepest sea states of about 1/13 usually observed in
the North Sea [25].

For applications to structures for which the loading is
wind dominated, a similar analysis may be performed to
determine the distributions of wave height and wave period
conditional on the estimated 100-year wind speed of
33.3 m s¹1, as noted above. Fig. 11(a) shows the resulting
probability density of the wave heightHs, the two curves
here corresponding to the two possible definitions,Hsi and
Hsi9 of the observation ofHs to be associated with each
periodi. The most likely value of the wave height associated
with the 100-year wind speed is 18.8 m for the analysis
based on the use ofHsi (the maximum observed value of
Hsduring periodi) and 17.0 m for the analysis based on the
use ofHsi9 (the observation ofHsmade concomitantly with
Wsi in each periodi). Again, the latter analysis seems the
more appropriate.

Fig. 11(b) shows the corresponding conditional
probability density for the wave periodTz—here based
on the use of the associated observationsTzi9. The most
likely value of the wave period associated with the 100-
year wind speed is 12.4 s. This figure is very similar
to the wave period associated with the 100-year wave
height.

4. Conclusions

4.1. General conclusions

The methodology considered here for the analysis of
multivariate extremes has two objectives: (a) the general
estimation of the joint distribution of the extremes of the
variables concerned; and (b) the estimation of the
probabilities of particular extreme events, notably those cor-
responding to extreme loadings on given structures.

The first of these objectives is here successfully
achieved. Indeed the methodology used makes no prior
assumptions about the joint distribution of the variables
and only requires that there is sufficient data for the
applicability of asymptotic results. In particular, no mod-
elling assumptions are made about the statistical associa-
tion between the extremes of the variables. Rather this is
estimated and extrapolated directly from the association
observed in the extremes of the data. For the bivariate
analyses of the metocean data considered in Section 3, the
estimated joint distributions are shown in the density plots
of Figs 7–9.

The second of the above objectives is usually achieved
in applications through the determination of events cor-
responding to a given return period—for example 100
years. For multivariate data, there will be a wide choice
of such events. Thus, for a given structure, one possibi-
lity will be to choose that event which is most extreme
in terms of a suitable measure of the structural loading.
In the application of Section 3, which is not structure-
specific, we determine instead the corresponding return
level for a specified variable (wave heightHs or wind
speedWs) together with the most likely associated values
of the remaining variables. This procedure is in accordance
with the most recent design code requirements, and is dis-
tinctly less conservative than the remaining possibility of
simply combining the individually determined return levels
of each of the variables. We return to this point in Section
4.3 below.

4.2. Methodological issues

4.2.1. Seasonality
The metocean data studied in this paper are of course

highly seasonal, with extreme observations occurring
almost entirely during winter months. However, this does
not appear to result in serious problems for their analysis.
Rather, what is modelled here is the distribution of the data
averaged over the year, and this is entirely appropriate for
the determination of, for example, 100-year return periods.
While in principle there might be some small efficiency gain
to be had by splitting the data according to, for example,
month, this approach would suffer from the disadvantages
discussed in Section 2.3.

Note that in the application of Section 3, we omit entirely
data collected during the months of May to August (see
Section 3.1). As indicated in Appendix C, the occurrence
of extreme events in this period is quite negligible, and
analysis may safely be based on the data collected in the
remaining months, with the effective assumption of an
eight-month year for the calculation of return levels.

4.2.2. Short-term dependence
The existence of short-term dependence in time-series

data such as that considered here is a matter which requires
very considerable care. As discussed in Section 2.4, the
present methodology is based on the assumption that the
data to be analysed consist of independent observations of
the given variables. The analysis of dependent observations
as if they were independent leads to (a) over-optimistic
assessments of uncertainty for estimated quantities and (b)
generally conservative estimates of return levels. We
describe in Section 2.4, and further in Appendix D, how
to identify blocks or periods of time such that the (multi-
variate) observations associated with successive periods
may reasonably be regarded as independent. An alternative
for univariate data is the explicit time-series modelling of
the short-term dependence structure in the original data. It is
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not clear how this might extend to the present multivariate
methodology, but in any case the investigations referred to
above suggest that the current approach is probably close to
optimal for the data considered here.

4.2.3. Choice of marginal thresholds
The choice, for each variable, of a threshold above which

its marginal distribution is well modelled by a GPD again
requires care, and there is necessarily some subjectivity in
the final determination of these thresholds. This reflects the
general difficulty inherent in extrapolation. The issue is
examined in detail in Section 2.1.2 and, for the metocean
data of this paper, in Section 3.2.2. The further sensitivity
analysis of Section 3.2.6 suggests that the marginal thresh-
olds we use for these data are reasonable.

4.2.4. Estimation of joint distributions
The two issues involved in the estimation of joint

distributions are (a) the choice of thresholdr 0 such that
the limiting distribution of the transformed variablew
may reasonably be estimated from its distribution over
those observations in the setNr0

, and (b) the details of this
estimation procedure. These issues are discussed in Section
2.2.2. For the present metocean data, they are further con-
sidered in Section 3.2.4 and Section 3.2.6.

Here the results appear relatively insensitive to the choice
of r 0, except only of course that, as this threshold is
increased, the quantity of data available for reliable estima-
tion decreases.

For our metocean data and for the reasons explained in
Section 2.2.2, we take a non-parametric approach to the
estimation of the (limiting) distribution ofw. Hence, it is
difficult to make aformal assessment of the uncertainty
involved in this estimation. However, for such a non-
parametric approach, one issue which again requires care
is that of the estimation ofw at its boundaries. This is
discussed in Section 3.2.4. Beyond this, there do not appear
to be any major difficulties or uncertainties in the estimation
of the distribution ofw. See, for example, Fig. 6, which
shows its observed and fitted distributions (for the chosen
setNr0

).

4.3. Implications for metocean design parameters

Estimation of extreme loadings on the basis of extra-
polation from observed data requires (a) reliable extra-
polation of the estimated distributions of the individual
variables into their extreme regions, and (b) reliable esti-
mation of the statistical association between these variables,
again in their extreme regions.

The present paper addresses both these issues, but its
more novel aspects are concerned with the second of
them, where we develop and apply the methodology of
Coles and Tawn [4,5]. This is the only approach to the
estimation of association between the extremes of variables

which does not make prior assumptions about the nature of
such association, but simply requires that there is available
sufficient data for the reasonable applicability of asymptotic
results (as described in Section 2.2.1).

More traditional methods of calculating extreme load-
ing—for example, the third of the possibilities discussed
in Section 3.4.2—typically do not attempt to estimate the
association between the variables concerned. Rather they
assume a worst-case scenario, for example by assuming
that the 100-year wave height will always occur at just the
same time as the 100-year wind speed. The greater precision
of the present approach to the description of the metocean
climate therefore makes it possible to remove some of the
conservatism inherent in the design process and operating
criteria for offshore structures. This has considerable poten-
tial economic benefits.

As we remark above, we also consider estimation and
extrapolation of the marginal distributions of the individual
variables. This is a necessary first step to the determination
of the association between their extremes, but it is also the
source of much of the inevitable uncertainty in the calcula-
tion of extreme loadings. We have again avoided making
prior assumptions about these distributions and appealed
only to asymptotic extreme value theory, leading to the
use of a GPD for fitting their tails. At least for the data
considered here, this approach reveals the large degree of
uncertainty inherent in the estimation of 100-year return
levels (and associated values of other variables) on the
basis of extrapolation from less than 10 years of data.
Where there is no sound theoretical argument to indicate
that some prior and more specific tail shape is likely, this
uncertainty should be properly reflected in the design
process itself.

Appendix A. Proofs of results

We here give proofs of various results in the present
paper. These are (a) the asymptotic results concerning the
joint distribution of (r,w) which are stated in Section 2.2.1,
and (b) the determination, in Section 3.2.4 andfor a
bivariate analysis, of the joint density (Eq. (14)) of
the extremes of the original variablesX ¼ (X1,X2), follow-
ing the estimation of the limiting density functionh of w ¼

w1.
The distribution functionF of the standard Fre´chet dis-

tribution (given by Eq. (9)) satisfies

F(x) ¼ 1¹
1
x
þ o

1
x

� �
asx → ` (15)

In order that this result should hold the conditional distri-
butionF̂w of r givenw must similarly converge to 1 at a rate
which is comparable to 1/r as r → ` (of course the exact
conditional distribution will depend onw). That is, under
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very mild regularity conditions, we may write

F̂w(r) ¼ 1¹ a(w)
1
r
þ o

1
r

� �
as r → ` (16)

for some non-negative functiona on Sd. Now let the prob-
ability measurel denote the marginal distribution ofw on
Sd (so thatl and F̂w, w [ Sd, together determine the joint
distribution of (r,w)). Then, for eachj ¼ 1,…,d, the
marginal distributionF of each of the random variables̃Xj

is given by

F(x) ¼

∫
Sd

F̂w
x
wj

� �
dl(w) ¼ 1¹

1
x

∫
Sd

wja(w)dl(w)

þ o
1
x

� �
asx → ` ð17Þ

where the second equality in the above expression follows
from Eq. (16) and on recalling thatl is a probability
measure. By comparing Eqs. (15) and (17) it then follows
that∫
Sd

wja(w)dl(w) ¼ 1, j ¼ 1, …,d (18)

By summing Eq. (18) overj ¼ 1,…,d and recalling that∑
d
j ¼ 1wj ¼ 1 for all w [ Sd, we also obtain∫

Sd

a(w)dl(w) ¼ d (19)

It further follows from Eq. (16) that, for larger, the condi-
tional density ofr givenw is a(w)/r 2 (plus a term which is
negligible in comparison to 1/r 2 as r → `). Since also the
probability measurel gives the marginal distribution ofw,
the conditional distribution ofw given r is defined by a
probability measurem, where

dm(w) ¼ ka(w)dl(w) (20)

Here k is defined by the requirement thatm should be a
probability measureð

�
Sd

dm(w) ¼ 1Þ and so is independent
of r; indeed consideration of Eq. (19) shows thatk ¼ 1/d. As
r → ` the conditional distribution ofw givenr converges to
exactly the probability measurem as required.

Similarly, from Eqs. (16) and (19) (withk ¼ 1/d), the
marginal distribution function̂F of r satisfies

F̂(r) ¼ 1¹
1
r

∫
Sd

a(w)dl(w) þ o
1
r

� �
¼ 1¹

d
r
þ o

1
r

� �
asr → `, so that the result of Eq. (12) follows. Finally the
result of Eq. (13) follows immediately from Eqs. (18) and
(20).

We now consider the derivation of the joint density, Eq.
(14), in Section 3.2.4. It follows from Eq. (12) that, in the
bivariate cased ¼ 2 and withw ¼ w1, the estimated joint
density of the extremes of (r,w) (corresponding to larger) is

given by 2h(w)/r 2. The Jacobian appropriate to the transfor-
mation of joint density of (r,w) to that of the (vector) vari-
able X̃ (i.e. to the inversion of the transformation (b) of
Section 3.2.4) is given by

]r

]X̃1

]r

]X̃2

]w

]X̃1

]w

]X̃2

��������
��������¼

1
r

The Jacobian appropriate to the transformation of joint den-
sity of X̃ to that of the original variableX is simply the
product w19(X1)w29(X2)—where w19 and w29 are as in
Section 3.2.4—since, in the inversion of the transformation
(a) of that section, each margin transforms separately. The
result of Eq. (14) is now immediate.

Appendix B. The Alwyn North data

The metocean data analysed in the present paper are
based on observations made at Alwyn North during the
period August 1987 to September 1996. They consist
largely of measurements made by Paras Ltd (at a sampling
rate of 2 Hz) and supplemented by data recorded by Heriot-
Watt University (the HW data—recorded at 5 Hz). The
Paras data consist of series of hourly observations from
August 1987 to December 1994 inclusive, while the HW
data are based on hourly observations from August 1994 to
April 1996 inclusive. (For the HW data, observations are
available for every 20-minute interval during the period
concerned, but for consistency we only consider those
from every third interval.) While both data sets come
from essentially the same instrumentation, there were
some differences in the sampling regime and statistical
handling of the raw data. The overlap period of August to
December 1994 permitted a direct comparison between the
two sets and enabled an assessment of the validity of com-
bining them.

For the Paras data the observations of mean wind speed
Ws are calculated as 10 min averages every hour, while
averages of 20 min are used for the HW data. A comparison
of data from the two sources during the overlap period
shows that no correction is necessary in order to combine
the two sets of observations of this variable. However,all
wind speed observations have been multiplied by 0.774 so
that they correspond to the internationally accepted refer-
ence height for wind speed of 10 m above mean water level.
The formula used here isWs10 ¼ Wsh(10/h)e whereh is the
height of the anemometer ande the empirically determined
exponent of 0.11 [9]. (Of course, for the analysis of this
paper, this adjustment is merely a scale change forWs.)

Observations of the significant wave heightHs and the
mean wave periodTzare calculated over a 20-minute period
in every hour, for both the Paras and the HW data. Both
statistics are calculated from their time domain definitions.
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The observations ofHs from the two data series are consis-
tent in the overlap period. However, the original hourly
observations of the wave periodTz obtained from the
Paras data are consistently higher than those obtained
from the HW data. The reason for this is the higher HW
sampling rate (5 as opposed to 2 Hz), which results in a
greater resolution of the smallest waves. In order to give a
consistent series of observations of the wave periodTz,
those obtained from the Paras data are multiplied by an
empirically-derived constant of 0.86. Thus all the obser-
vations of this variable may be regarded as corresponding
to a 5 Hz sampling frequency.

Appendix C. Comparison of winter and summer months

Throughout the collection period for the data studied
here, there were various gaps in the recording process.
These were caused by the need for periodic maintenance
and calibration of the instrumentation. Most of these gaps
occurred during the ‘summer months’ of May to August. To
remove the bias caused by the uneven distribution of the
data throughout the year, such data as do exist for the
months of May to August are omitted entirely from
the main study, and the resulting analysis—in particular
the calculation of return levels and associated values of
other variables—based on the assumption of an eight-
month year. This corresponds to the assumption that we
may neglect any probability that the extreme events of inter-
est in the present study, which are typically associated with
winter storms, can occur during the four months omitted
from the analysis. Table 8 is a frequency table showing,
for each of our primary variablesHsandWs, the distribution
of those hourly observations whichwere collected during
the above summer period of May to August, together with
the distribution of those observations collected during the

remaining ‘winter period’ of September to April. The table
clearly shows the difference between the summer and winter
distributions—in particular the very much shorter tail of the
summer distribution—of each of the two variables. These
differences thus confirm the reasonableness of treating as
negligible any probability that the extreme events of
interest can occur during the summer period, and of basing
our analysis as described above on the September to April
data.

Appendix D. Choice of period length for independent
observations

We consider the problem, discussed in Section 3.2.1, of
choosing a length of period such that, in the analysis of the
joint distribution of wave height and wind speed, the bivari-
ate observations associated with the successive periods can
reasonably be treated as independent. As suggested in that
section, we investigate the suitability of period lengths vary-
ing from 24 to 60 h.

As discussed in Section 2.4, it should be sufficient to
consider separately each of the two variables. For each
possible choice of period length, we takeHsi and Wsi to
be the maximum observed values ofHs and Ws, respec-
tively, during each periodi, i ¼ 1,…,n. We consider two
approaches: (a) examination of the serial autocorrelation
structure of the associated observationsHsi and Wsi; and
(b) examination of the serial dependence of the occurrence
of threshold exceedances by these observations. Recall that
both of these techniques require the data to be fairly care-
fully separated according to season.

To examine the serial autocorrelation structure of each of
the above variables, the data were split into series corre-
sponding to each of the 64 months during which they
were collected, so that each of these series might reasonably

Table 8
Distributions ofHs andWsduring ‘summer’ and ‘winter’ periods

Hs (m) Summer Winter Ws(m s¹1) Summer Winter

0–1 5162 1186 0–2 1724 1482
1–2 11 576 10 029 2–4 3575 4193
2–3 3710 12 746 4–6 4602 5846
3–4 634 9386 6–8 4508 6239
4–5 158 5103 8–10 3685 6633
5–6 21 2360 10–12 2189 6139
6–7 7 1142 12–14 728 4886
7–8 7 417 14–16 198 3508
8–9 3 180 16–18 69 1987
9–10 0 66 18–20 17 1004
10–11 0 44 20–22 27 388
11–12 0 22 22–24 5 123
12–13 0 9 24–26 0 72
13–14 0 8 26–28 0 28
14–15 0 0 28–30 0 6
15–16 0 0 30–32 0 1
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be considered stationary. A similar approach was used by
Walshaw [26] and gives a reasonable compromise between
allowing for gradual seasonal change and obtaining suffi-
ciently long series to allow useful statistical analysis. For
each of the two variables and for period lengths of 48 and
60 h there is very little evidence of significant autocorrela-
tion in the 64 monthly series, so that, on the basis of this
analysis, it seems reasonable to take a period length of 48 h
as sufficient to enable the associated observations to be
treated as independent.

As a second method of identifying a suitable period
length, we consider the serial dependence of threshold
exceedances by the associated observations. As before, to
minimise problems of seasonality we perform a separate
analysis for each month. However, by restricting attention
to first-order dependence (in which any short-term depen-
dence will certainly show) we may effectively combine
each month’s data across the eight years for which it is
available. This permits a more powerful analysis than that
considered above.

Consider a fixed (trial) period length and variableXj,
where hereXj ¼ Hs or Ws. Let uj be the threshold defined
in Section 2.1, above which the distribution of the observa-
tionsXij to be associated with this period length is modelled
by a GPD. For each periodi define

yi ¼
0 if Xij # uj

1 if Xij . uj

(

Further, forr ¼ 0,1, definepr to be the (underlying) prob-
ability that yiþ1 ¼ 1, conditional on the event thatyi ¼ r.
Now, for each month, consider all pairs of successive per-
iods within that month (over all years), and construct the
two-by-two contingency table (nrs, r,s ¼ 0,1) wherenrs is
the number of such pairs (i,i þ 1) with yi ¼ r andyiþ1 ¼ s.
Each of these monthly contingency tables may now be
analysed for evidence of association in the countsnrs. Any
such association corresponds top0 Þ p1, i.e. to first-order
dependence in the process of threshold exceedances by the
variable Xj, and so also to first-order dependence in the
observationsXij.

Table 9 shows the results for the period length of 48 h

identified earlier. We have here used the thresholds identi-
fied in Section 3.2.2 of 6.5 m forHs and 16.5 m s¹1 for Ws,
but the results of this analysis are not particularly sensitive
to the exact choice of threshold. For each variable and
month, the table records the countsnrs and thep-value
(significance level) associated with the test of the null
hypothesis that the underlying probabilitiesp0 and p1 are
equal against theone-sided alternative thatp0 , p1.
Thesep-values are those which result from the standard
test for the difference of two binomial proportions (with
continuity corrections where appropriate). Some care
must be taken in their interpretation, because of the
sometimes small counts involved. However, it is clear
that there is evidence of first-order dependence in the
processes of threshold exceedances only for relatively
few combinations of variable and month. The results
therefore provide some very modest evidence of slight
further serial dependence in these threshold exceedance
processes, but this seems very unlikely to be so great as
to seriously affect our subsequent analysis. No further
improvement is obtained by the use of a period length
of 72 h.
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