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Abstract

We consider the estimation of the extremes of the metocean climate, in particular those of the univariate and joint distributions of wave
height, wave period and wind speed. This is of importance in the design of oil rigs and other marine structures which must be able to
withstand extreme environmental loadings. Such loadings are often functions of two or more metocean variables and the problem is to
estimate the extremes of their joint distribution, typically beyond the range of the observed data. The statistical methodology involves both
univariate and multivariate extreme value theory. Multivariate theory which avoids (often very inappropriate) prior assumptions about the
nature of the statistical association between the variables is a fairly recent development. We review and adapt this theory, presenting simpler
descriptions and proofs of the key results. We study in detail an application to data collected over a nine-year period at the Alwyn North
platform in the northern North Sea. We consider the many problems arising in the analysis of such data, including those of seasonality and
short-term dependence, and we show that multivariate extreme value theory may indeed be used to estimate probabilities and return periods
associated with extreme events. We consider also the confidence intervals associated with such estimates and the implications for future data
collection and analysis. Finally we review further both the statistical and engineering issues raised by our @na988sEIsevier Science
Ltd. All rights reserved.
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1. Introduction well beyond even the most extreme of the available obser-
vations. Statistical methodology for the extrapolation of the
One of the most critical features of the design process for distribution of any single variable is well established, at
offshore structures is the estimation of the worst loading least in the case where we have independent observations.
conditions to which a given structure is likely to be exposed This theory was initiated by Gumbel [13], and was origin-
in its lifetime. Typically a structure must be designed to ally concerned with the distribution of maximum observed
withstand, with some margin of safety, that loading which values of the variable (for example, annual maxima).
is expected to be exceeded with a frequency of, say, once inAsymptotic theory suggests that such maxima are well mod-
every hundred years [24]. This paper is concerned with the elled by a generalised extreme value distribution ¢Re,
statistical problems which arise in such estimation, and with Gumbel, or Weibull, also known as Fisher—Tippett Types |,
the application of statistical methodology to metocean data. Il and Ill and Gumbel Types |, Il and Ill). Subsequently the
We distinguish two major statistical issues. The first of theory has been much refined, and more efficient inference
these is that estimation of extreme loadings may well is now based on consideration of the excesses over a given
require to be based on metocean data collected over a relathreshold of all observations. See, in particular, Ref. [7] and,
tively short period. Reliable data collected over several hun- for an excellent and comprehensive account of both the
dred years will certainly not be available. Rather we may probability and the statistical theory, Ref. [10]. In Section
have useful data collected over a period of, say, 10 years.2 we review briefly this univariate extreme value theory, and
The problem is thus one of extrapolation of the observed consider how it may be adapted and applied to metocean
distribution of data into its extreme region, typically lying data, where we usually do not have independent observa-
tions and where underlying distributions have substantial
* Corresponding author seasonal variation. Some other approaches to the univariate
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modelling of metocean data have been presented elsewher¢he results of which may be applied to a wide variety of
[16,19,21]. possible structures. Further, these results clearly provide
The second issue is that of the extrapolation of multi- considerable insight into the extremes of the metocean
variate distributions. The loading on a structure is estimated climate itself, in particular the association between the vari-
as a function of several variables, for example wave height, ables concerned. This is both of considerable scientific
wave period, wind speed, wind direction and current, and interest and important to good engineering design.
we require to estimate probabilities corresponding to those In outline, the multivariate approach is as follows. The
combinations of these variables which result in extreme first step is the application afnivariate extreme value the-
loadings. There are two reasonable approaches to thisory to estimate and extrapolate the marginal distribution of
problem. Thestructure variablemethod identifies, prior to  each of the variables under study. The relevant theory is
analysis, that function of the observed variables which best described in Section 2.1. This step is in itself sufficient to
represents the loading on the specific structure of interest.answer questions about, for example, the 100-year return
Multivariate observations are then converted to univariate levels associated with individual variables—their likely
loadings, and univariate extreme value theory used to esti-values and associated confidence intervals.
mate the probabilities, or equivalently the return periods, The second step is the transformation of the multivariate
associated with extreme events. The alternative approachpbservations so that the (marginal) distribution of each of
which we pursue in this paper, is to use multivariate extreme the individual transformed variables has a standard (or unit)
value theory to estimate directly (the extremes of)jtiet Frechet distribution. This is followed by further transfor-
distribution of the variables of interest. Possible extreme mation of the data to (pseudo-) radial and angular compo-
regions in the multidimensional variable space may then nents. Under these two successive transformations, the tail
be identified and their associated probabilities estimated. of the distribution of the radial componenturns out not to
Multivariate extreme value theory is somewhat more depend on the statistical association between the individual
complex than its univariate counterpart, and appropriate variables, and to be of known form (which is given simply,
statistical methodology has only been developed in recentand unsurprisingly, by a rescaling of the tail of the standard
years. The basic theory is due to de Haan and Resnick [14],Frechet distribution). Further, the conditional distribution of
de Haan [15], and is further developed by Resnick [22], Joe the angular componemt given rconverges, asis allowed
et al. [17] and Coles and Tawn [4,5]. The major problem is to increase, to some limiting distribution. This limiting dis-
that of correctly capturing the statistical association, or tribution therefore entirely captures the statistical associa-
correlation, between the extremes of the variables con-tion in, and beyond, the extremes of the data. It may be
cerned, without prior assumptions about the nature of this estimated from the the distribution @f in the set of those
association, and in particular without assuming that esti- (transformed) observations for whiclexceeds some suita-
mates of association appropriate to the body of the distribu- bly chosen threshold,. Hence the extremes of the joint
tion are also appropriate to its extremes. Earlier (and indeeddistribution ofr andw may be estimated. This theory is
some later) approaches to this problem did make such priordescribed in detail in Section 2.2.
assumptions, which were frequently implicit, often very  The third, and final, step is simply the inversion of the
strong and often inappropriate to modelling in the extreme transformations described above so as to recover an estimate
region of the variable space. Perhaps the best exposition ofof the extremes of the joint distribution of the original vari-
the modern theory is given by Coles and Tawn [4,5], who ables. This will both match the extremes of the observed
also discuss earlier multivariate approaches, and by Colesdata and extrapolate their joint distribution as is necessarily
[3]. implied by the above asymptotic theory. The analytical
Coles and Tawn [5] also give detailed consideration of details of this final step depend on the exact representation
the relative merits of the univariate structure variable and of the angular componenwv of the transformed obser-
the multivariate approaches, including discussion of the vations. In the metocean application of Section 3 we show
reliability of the statistical procedures associated with how this is achieved in practice.
each. In particular, they argue, somewhat informally, that, = This multivariate approach, as originally developed, was
for a given volume of data, the asymptotic theory under- based on a point process representation of the data, which
pinning both approaches is likely to be more accurate in the involved a not very intuitive renormalisation of obser-
case of a multivariate analysis of the joint distribution of the vations by their total number. We take the opportunity in
original variables. For our present purposes a major disad-Section 2.2 to present a mathematically equivalent but con-
vantage of the structure variable approach is that the loadsiderably simpler description, which is essentially that out-
function must be fully identified prior to statistical analysis. lined above. Section 2.3 and Section 2.4 consider problems
Thus a long and complex analysis, which is here a far from of seasonality and short-term dependence such as are typical
automated procedure, must be performed for every possibleof metocean data.
structure under consideration. This creates considerable dif- In Section 3 we study in detail an application to metocean
ficulties for design and optimisation. The multivariate data. These consist of hourly observations of significant
approach requires (in principle) a single statistical analysis, wave height, wave period, and wind speed, collected at
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the Alwyn North platform in the northern North Sea over a well-established univariate extreme value theory. We
nine-year period. We consider the many problems arising in review this briefly here, but much more detail is given else-
the analysis of such data, including those of seasonality andwhere [10].

short-term dependence, and we show that multivariate The current, much refined, approach to this theory associ-
extreme value theory may indeed be used to estimate prob-ates a suitably chosethreshold y (see below) with each
abilities and return periods associated with extreme events.variableX; and considers the annual rai&) at which obser-

We consider also the confidence intervals associated withvations ofX; exceed any given leval= u;. We assume that
such estimates and the implications for future data collec- the number of observations per year is reasonably large, and

tion and analysis. that the threshold; is such that the probability of an indi-
In Section 4 we consider further both the statistical and vidual observation exceeding it—and so also the probability
engineering issues raised by our analysis. of the observation exceeding amy= u;—is reasonably

small. (Both of these conditions will be comfortably satis-
fied in the application considered in Section 3 of this paper.)
2. Methodology It then follows from the assumed independence of the obser-
vations of X; that exceedancesf any x = u; occur as an
As discussed in Section 1, methodology for the analysis (approximate) Poisson process and that the maximum
of multivariate extremes must address two problems. The observed value oK; in any interval of time of lengttt
first is the estimation and extrapolation of the (marginal) years has a distribution functida given, forx = u;, by
distributions qf llnd|V|duaI variables and thel determlnatlon G(X) = exp{ — tg(x)} @
of the probabilities of extreme events associated with them.
In Section 2.1 we review the relevant univariate extreme Again provided that the thresholg is chosen sufficiently
value theory and discuss its application. large, asymptotic theory [10] now implies th@(x) should
The second problem is that of correctly modelling the correspond to @eneralised extreme valuéstribution for
statistical association between the variables involved, in @ll X = u;. This distribution is described by three para-
particular the association in tlextreme regionorextremes ~ Mmeters—its shape, location u, andscalesc > 0—and is
of the (multidimensional) variable space. We define this to @ Freehet, Gumbel, or Weibull distribution according as the
be that region in whickany of the variables under study is shape parametér > 0, £ = 0, or £ < 0. In order thatG
extreme. This is the region which corresponds to extreme should be a generalised extreme value distribution, we
loads on, for example, offshore structures. In Section 2.2 we require that the (annualgxceedance rate function g
describe and discuss the necessary multivariate extremeJ:.. D€ given by
value theory. This theory allows an arbitrary association for £ > 0
structure in the extreme region to be estimated directly
from the data. We also give a more accessible description _ [ S(X—#)] —u
. O po(¥)= |1+ ——
of the relevant mathematics. o
Throughout Section 2.1 and Section 2.2 we assume that
the data for analysis may reasonably be modelled as inde-
pendent and identically distributed multivariate obser-
vations X4,...,.X, of a random vectorX = (Xi,...,Xy).
Thus, for each = 1,...,n, X; = (Xis...,Xig) IS the corre-
sponding vector of observations of tldevariables under gg,u,g(x)zexlo<— )(__");
study. Of course, in applications such as that to metocean g
data considered here, it will frequently be the case that this
assumption does not hold: there will be considerable seaso- for £ <0
nal variation in the distribution of the data, and additionally

providedx > u — o/¢ (Since we certainly requing > p
— o/£ this condition causes no problems);
for§ =0

— )] e
the data will naturally exhibit short-term dependence over {1+ M} if Xx<p-—olf
sufficiently short periods of time. We consider these pro- e, o (¥) = g
blems in Section 2.3 and Section 2.4. 0 if Xx=p—o/t.

Here the appropriate values of the parametgis €) will of
course depend on the variabig under consideration, and
are to be estimated from the corresponding observations of
that variable.

2.1. Estimation of marginal distributions

2.1.1. Probability theory

For each (1 =j = d), letF; be the distribution function
of the variableX;. In the estimation of this distribution, the Observe that, despite its apparent complexity, the above
main concern is to model its tail as accurately as possible. definition of the exceedance rate functgy), , has a natural
This is essential in order to permit reliable extrapolation to mathematical coherence. In particular, forxalige,,,(X) =
values more extreme than those actually observed. We usdim; _, ¢g;,,(X), whether the limit is taken from below or
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above. Observe also that (for all values of the parameters Eq. (2) is further equivalent to the requirement that, for
(&,1,0)) 9:,4(X) is decreasing ix and tends to zero as anyx=ujandz=0
tends to infinity. =

Let n, be the number of observations per year. It follows Pr{X; > x+2X >x} = ! I F'I(:X+ 3 _ Yoot
from Eq. (1), withg(x) = g;,..,(X), that the probability of an —Fik 9, .0 (%)
individual observation exceeding any= u; is given by =0.0,000(2 3)
exp {—(1/n,)g;,.(X)}. Since under the above assumptions
this probability is small, it further follows that, to a very
good approximation, the distribution functiof; of X;
satisfies

Here the last equality follows, after some straightforward
manipulation, from the definition of the functiog,,
(whatever the sign of) and

o(X) =0+ &(X—p) 4)

Hence, the distribution of the excessesci$ ageneralised
Pareto distribution (GPD) with distribution function
(Indeed, under the above model, this result is asymptotically 1 — 0:.0000- This distribution is described by its shape para-
exact as eitheny or u; increases.) We now treat Eq. (2) as meter¢, which is independent ofand unchanged from that
exact, as is the usual practice, and base our inferencein Eq. (2), and by its scale paramet€k) which is given by
directly on it. In the context of the above model, and for Eq. (4). Its mean is given by

sufficiently largen, or uj, there is negligible loss in doing so,

and there are considerable analytical advantages. Furthera(x) - 0_5“4_ £ X (5)
discussion on the choice of threshaigis given in Section ~ 1—¢ 1-& 1-£

2.1.2. However, it must be such that there lie abaya (See, for example, Ref. [10] for the relevant background on

sufficient number of observations to permit the inference {0 GPD.) Additionally, again from Eg. (2), the probability
described below, and of course the extreme and generallyy¢ a1y exceedance (xfoécurring is ’

unobserved values of; in which we are primarily interested 1
will also lie above it.

Note that the alternative, and earlier, approach of 1=-RK= nygg”‘ o ©
consideration of only the maxima of sequences of obser-
vations sufficiently long as to require the use of the
generalised extreme value distribution itself (for example,
yearly maxima) involves a loss of information which is

perhaps considerable, and so is an inefficient basis for CIENt exceedances afj to permit the inference we now
inference [10]. For some further discussion here see alsodescrlbe. (This of course requires that we have available a
Section 2.4. sufficiently large data set.)) We may estimate the corre-

Note also that, in the above model, the parametepsd) sponding parametesand o(u;) of this GPD by maximum
likelihood estimation, and may similarly estimate the

have an interpretation in terms of yearly exceedance rates. I
Thus, in principle, estimates of these parameters should bellféshold exceedance probability-1F;(u;) by the propor-

reasonably stable under variation m, provided that the 1O Of observed exceedancesf(this is again the max-
total number of observed exceedances per year of each imum likelihood e_stlmate of this probability). Once these
u; remains at least approximately constant—again Seee;tlmates are available, the paramebgmsdu of the under- .
Section 2.4. lying model may be recovered by using Egs. (4) and (6), in
each case with = u;, and by recalling the definition of the
function g; ,,. Maximum likelihood estimation has good
2.1.2. Estimation statistical properties and additionally permits assessments
We now consider the estimation of a suitable threshpld  of uncertainty, for example confidence intervals, for the
and of the parameterg,f,0) of the model defined in the  parameters{u,0), and also for those quantities, such as
previous section. We do this by deriving, in terms of this return levels, which are functions of them. For a further
model, the probability of threshold exceedance by any indi- discussion see Refs. [7,12,19].
vidual observation and the distribution of the associated The distribution ofX; below the threshold; may be
thresholdexcess We show below that comparison with estimated by smoothing the empirical distribution of the
the observed distribution of threshold excesses, for acorresponding observationX,...,Xy) in this region. In
varying threshold, enables; to be estimated. Then, for practice the threshold; is such that this is not a problem
the estimatedy;, the available data may be used to further (see Section 2.1.1). In the metocean application of Section 3
estimate both the above exceedance probability and thewe use kernel density estimation [23], but the estimate of the
parameters of the excess distribution. From these it is distribution in this region will be relatively insensitive to the
straightforward to recover estimates of the original para- choice of (sensible) smoothing procedure. Further, our
meters £,u,0). primary interest is in the estimate of extremal behaviour

FX)=1- nigw,‘,(x), for all x=y; 2
y

We may therefore take the threshaldto be any value
whose excesses (in the observatioNg,(..,Xy) of X;) are
well modelled by a GPD, provided only that there are suffi-
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which is unaffected by the exact choice of smoothing pro- the profile likelihood function confirms the necessity of an
cedure below the threshold. approach such as this—in contrast to basing the interval on

One commonly used aid to the identification of a suitable the assumption of a normal distribution for the maximum
thresholduy; is themean excess ploin which the mean of likelihood estimate.
the excesses of eachis plotted againsk. Since, for the
given model (with fixed §,1,0)), the excesses af;, and so 2.2. Multivariate extreme value theory
also of eachx = u;, follow a GPD, Eqg. (5) suggests that this
plot should be approximately linear beyond any suitable In estimating the joint distribution of the variables
thresholdu;. In reality considerable experience is required Xj,..., X, it is of crucial importance to capture correctly
in the interpretation of such plots, for the typically long tail the dependence structure in its extremes. We again appeal
of the GPD ensures that they are visually dominated by a to asymptotic theory and seek a representation of the data in
large range of values ofto which there correspond only a  which the measure of dependence in the extreme region is
small, or very small, number of exceedances. Because thes@ecessarily stable (in a sense to be made clear below), and
observations represent only a small sample from the under-may be estimated from the data without prior modelling
lying distribution, they considerably distort the plot over assumptions. The relevant theory is based on the properties
much of its range. For further discussion, and for some of the Frehet distribution with shape parameter 1 (to which
very instructive simulations, see Ref. [10]. the marginal distributions of the data may be transformed)

In the application of Section 3 we supplement mean and is described by Coles and Tawn [4,5], who also consider
excess plots by more direct checks on the suitability of the estimation issues. We give a somewhat different presen-
chosen thresholds, notably comparison of observed andtation of this theory. We then consider how it may be
fitted distributions above the thresholds, and by appropriate applied to the analysis of data.
sensitivity analysis.

2.2.1. Asymptotic theory .

2.1.3. Calculation of return levels Suppose that the random vecte= (X4, ..., Xy) is such

We may use the above theory to calculate the return that the (marginal) distribution of each of its compon@i]ts
levels of the variableX; to be associated with specified has a standard Febet distribution, i.e. a distribution func-
return periods. Under the model of Section 2.1.1, the return tion F on R, = [0,%) given by

levelx, asso_ciated with a return period oplyears is given F(X) = exp( — UX) (9)
by the solution of .
Define radial and angular components of the vegt
Qe 1o 0p) =P ™ o redelendane P d"lyo
r=
that is, by 1t e+ (10)
= ) (8) Note that the random vecter = (wy,...,Wy) takes values in
p—ologp if £=0 the spaceSy={we RS : D _,w =1} In particular it
provided only that, as will be the case in applicatiogdies can be specified by giving any— 1 of its components.
above the threshold,. We now have the following results (for the derivation of

Confidence intervals associated with a given estimate of Which see below). The density functiérof the radial com-
the return levelx, are best obtained by determining the Ponentr satisfies
associated profile likelihood function [10]: for each possible 1
value ofx,, we calculate the maximum valuéx,) of the f(r)= r2+o<r2) asr—x (12)
log-likelihood of the observed data over the set of those
parametersg(u,o) such that Eq. (7) holds. (In practice this (whereo(1/r?) denotes further terms of a higher order which
involves reparametrisation of the log-likelihood in terms of become negligible in relation torf/asr increases). Further,
Xp and two remaining parameters.) The vaky®f x, which the conditional distribution of the angular componemnt
maximisesl(x,) is of course the maximum likelihood esti- given r converges, as — =, to a probability measurg
mate of the return level and, based on the maximum like- on Sy—so that in particular it is asymptotically independent
lihood ratio test, a confidence region fgyof sizew is given of r. This probability measure satisfies

by

{xp ) = 1(xp) = %ca}

wherec, is the uppek point of the chi-squared distribution  that is, the expected value of each of thenargins of the
with one degree of freedom [6]. For a 95% confidence inter- measures is 1/d. (Whereu has a density, as is the generally
val we takec, g5 = 1.92. The typically non-normal shape of the case in applications, the left-hand side of Eq. (13) is

vajdu(w)zé, ji=1,...d (13)
S
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simply the integral ofw; with respect to this density.) In  the functiony; is given byy;(xX) = — {log F;(X)} ~1and

other respects the value pfis arbitrary. whereF; is the marginal distribution function of the obser-
Now define arextremeof the random vectoX to be any vationsX; estimated as described in Section 2.1.2.

value for which the radial components sufficiently large. The transformed vector¥,, ..., X, are now regarded as

The significance of the above results is that (from Eq. (12)) independent observations of a random veltais described
the distribution ofr is asymptotically independent of the in Section 2.2.1. The problem is to estimate the limit
dependence structure in the joint distributionXofFurther, measureu defined there, and so the joint distribution of
the dependence structure in the extremes of this joint dis-the extremes oK. Inversion of the transformatio then
tribution (the area of interest here) is captured entirely by gives the corresponding estimate of the joint distribution of
the limit measureu. Hence, estimation of this extreme the extremes of the original vector observatiofs...,X,,.

dependence structure reduces to estimation.dfinally, (Details of how this is achieved in practice are given in
from Eqg. (12) again, knowledge qf implies knowledge Section 3.2.4.)
of the entire joint distribution of the extremes Xf Thus, for each observation we further transform the

Note that the measugeneed not have a density &. For vectorX; to (r,w;) where
example, if X;,...,Xy are independent, thep assigns
weight 14 to each of thed extreme points of the spa&
(each of which has one component which takes the value 1
and the remaining components equal to 0).

These results are usually presented in terms of point pro-and w; = (wjy,...,Wjq). That is, for eachi, (r;,w;) is the
cess convergence. L&, ..., X, ben independent observa-  corresponding observation of the random pajwj defined
tions of the random vectgf(. Then, asn — o, the point by Egs. (10) and (11). For each= 0, letN, denote the set
process orRi defined byX,/n, ...,X,/n converges in dis-  of those observatiorisuch that; > r. It now follows from
tribution onR‘i \{0} (i.e. away from the origin) to a hetero-  the convergence t@of the conditional distribution off given
geneous Poisson process. The radial and angularr (see Section 2.2.1) that, for some sufficiently large threshold
components of the limit distribution are independent and r, the limit measur@ may reasonably be estimated from the
that of the angular component is arbitrary, except for a observed distribution of those; with i € N, .
normalisation condition which corresponds to Eq. (13) The problem of choosing this threshold is analogous to
above. For a description of this theory, which is due to de that of choosing the thresholds in the estimation of
Haan [15], see Refs. [3-5]. (Note that the intensity measure marginal distributions as described in Section 2.1. That is,
H on Sy used by Coles and Tawn differs by a factoddfom ro must be sufficiently high for the limit distributiomto be
the measure. given here. The reason for this is that the well approximated by the conditional distribution wof,
independence in the above point process limit distribution given r > rq; however, it must also be low enough for
corresponds to a factorising of its intensity into radial and there to be sufficient observations in the Bef to permit
angular components, and an arbitrary multiplicative con- reliable estimation. Some further discussion is given else-
stant may be transferred from one component to the other.where [5]: essentially, for varying, we examine the dis-
Here, we have chosen to state the key results in terms of thetribution of w; for i € N, and then take, to be the lowest
probability distribution of the random vectd, so that the value of r above which this distribution is stable. We

I =)~<i1+ +>~(id

Wij ZXij/ri, ]:1, ,d

factor d naturally belongs to the density functidnof r, observe in Section 3.2.4 that in practice our results appear

rather than to the probability measyrg to be less sensitive to the exact choice ofhan is the case
The results as stated here (Eq. (12) describing the asymp-with the choice of the marginal thresholds

totic distribution ofr, the convergence ta of the condi- Onceris determined the limit measuges estimated, as

tional distribution ofw given r, and the normalisation indicated above, using those observations in theNset

condition, Eq. (13)) may be regarded as a simple restate-Coles and Tawn [5] take a parametric approach to this esti-
ment of the more usual point process description of the mation: from within a large parametrised family of possible
theory: they are implied easily and directly by the point distributions they use maximum likelihood estimation to
process convergence referred to above, together with thedetermine that which best fits the data. In the application
limiting form of the intensity measure. However, a direct of Section 3 we have preferred to use instead non-
proof of these results, as presented here, is straightforward parametric estimation, as the applicability of any known
For a simple, and slightly informal proof, see Appendix A. parametric family to the current metocean data is unclear.
(The parametric approach does, however, have the advan-

2.2.2. Application tage of making more straightforward the determination of

To apply the theory of Section 2.2.1, we first determine a assessments of uncertainty abpytin the present paper we
transformation y : RY — [RR‘ﬂr such that the transformed have used kernel density estimation [23], with a variable
vector observations X; =y(X;),i=1,...n, have unit kernel width, to estimate the distribution of in N, and
Frechet marginal distributions. The appropriate transforma- hence the measune The details are described in Section
tion here is given by?i,- =;(X;) where, for each = 1,...d, 3.2.4.
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2.3. Seasonality tendency of extreme events to cluster affects our conclu-
sions in two further ways:

The distribution of metocean data does of course exhibit
very substantial seasonal variation. In general this is not too
serious a problem. In the consideration of extreme events—
those with a return period measured in years—it is the dis-
tribution of the data over each year which is important. This
is simply the mixture of the seasonal distributions and
should itself be well modelled in the tail by a GPD. The . : . L

. . - use of this assumption tends to result in underestimation
alternative procedure is to explicitly model seasonal depen- . o
. of return periods, as relevant for applications.
dence by allowing parameters, and perhaps thresholds, to, . i
) . - . . 2. Assessments of uncertainty (standard errors and confi-
vary appropriately. The simplest possibility here is to parti- . .
. . dence intervals for parameters) are again based on the
tion the data according to season, analyse separately the data . . . .
: : assumption of independent observations. However, if
for each such season, and appropriately combine the results. . ) . i
. . e there is dependence in the data, then there is less infor-
However, this approach is messy, the partitioning involved . . ; )
. . . mation available for these assessments than is being
is somewhat arbitrary, and more data are probably required S
. ) ’ assumed, so that they are unduly optimistic.
in order to obtain reliable results [1].

However, in the application to metocean data considered Various approaches to this problem have been discussed
in Section 3, we do partially take the latter approach in order in the literature. Those which address both the above diffi-
to cope with problems of missing data. There are substantialculties typically either (a) ‘de-cluster’ the data, by explicitly
numbers of missing observations for the summer months of identifying clusters of observations, which may reasonably
May to August, when the extreme events of interest have anbe regarded as independent of each other, and then choosing
exceedingly small probability of ever occurring (see Section the most extreme observation from within each such cluster,
3.1 and Appendix C for further details). We treat the prob- or (b) attempt to estimate the degree of clustering in the
ability of such occurrences during this period as being zero. data—by, for example, estimation of tlextremal index
Thus we analyse only those data corresponding to the[10,18]—and to adjust for it, or (c) attempt to explicitly
remaining eight months of the year, and, in the calculation model the dependence structure in the data. There are
of return levels and other time-dependent quantities, adjustsome problems with the last two approaches. Estimation
the numbem, of observations periods per year to corre- of the extremal index is difficult and it is not even clear
spond to this eight-month period. (There are also somethat it is consistently defined throughout the range of
further missing observatiomngithin this eight-month period.  extreme values of the variables. Hence its application to
Because they are distributed approximately uniformly the adjustment of return periods, or return levels, appears
throughout this period, they do not cause a problem beyondhazardous. Similarly, explicit modelling of the dependence
the loss of data. Nor, of course, dagsrequire any further structure is still very much a topic of current theoretical
adjustment on account of them. Again see Appendix C for research and further inevitably involves greatly increased

1. For any given extreme event, the average time between
successive clusters of this event is greater than the aver-
age time between individual events. In applications, the
former is the most relevant definition of a return period,
whereas the latter is the return period estimated on the
assumption of independent observations. Therefore the

further details.) computational complexity.
In the analysis of Section 3, we therefore take an
2.4. Dependence approach which is essentially equivalent to (a) above. We

divide the interval over which the data were collected into

The theory described in Section 2.1 and Section 2.2 blocksor periods i= 1,...,n of equal length (say 24, 48 or
assumes the independence of successive observations. 12 h). With each such periodwe associate a multivariate
practice, however, there is considerable short-term depen-observationX;, which is defined to be the most extreme (in
dence in such metocean data. In the application of Section 3an appropriate sense—see below) of the hourly multivariate
observations are available at hourly intervals, while extreme observations made during that period. The periods are cho-
events are typically to be found in storms, which may last sen to be of sufficient length that it is reasonable to treat the
for many hours or even several days. It is therefore very observations,...,X, as independent, and to analyse them
important to consider the effect of such short-term depen- as described in the preceding sections. There is of course a
dence in the data. slight problem where the extremes of the original hourly

To the extent that the tail of the distribution of the data is observations cluster at the boundaries between successive
still well modelled by a GPD, the above, independence- periods, but the effect of this is relatively minor, and, as
based, methodology should still correctly estimate the fre- described above, to the extent that there is any further failure
quencies of extreme events, provided that events which of independence its effect with respect to return periods and
would occur in disjoint observation periods are to be return levels is conservative.
regarded as distinct. (The reason for this is that these fre- Note that even if a period length longer than necessary is
guencies are essentially an extrapolation of the frequencieschosen, it is relatively rare that an extreme observation is
of the extreme events observed in the data.) However thelost because it is masked by another from which it might
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have been considered genuinely independent. Hence theobservations will almost certainly show in the correspond-
results of our analysis—the univariate parameters which ing sequence for at least one of the component variables. In
describe exceedance rates as defined in Section 2.1, theithe analysis of Section 3 we use two techniques: (a) exam-
associated confidence intervals, and the multivariate analy-ination, for eaclj, of the serial autocorrelation structure of
sis of Section 2.2—should not be too sensitive to the choice Xy,...,Xy; and (b) examination, for each of the serial
of period length. (See also Section 3.2.6 for some direct dependence of the occurrence of threshold exceedances by
experimentation here.) This increases our confidence thatthe observationxy;,...,X,. For the latter we simply note
there is little loss of reliably useful information in the whether or not eaclX; exceeds some suitable threshold
above approach. (in practice it seems sensible to use that threshold above
We study the choice of an appropriate period length which the observations appear reasonably modelled by a
below. However, it is sensible to consider first the appro- GPD) and look at the first-order dependence of these events.
priate determination of the multivariate observatitrto be This is very simple, but focuses attention on the dependence
associated with each periogdAs remarked above, thisisin  structure in the extremes of the data, and this is what is
some sense the most extreme observation associated withequired.
that period. It is important to note that both of the above techniques
The simplest approach is to define each componentrequire that the data be separated more carefully—for this
observatiorX; to be the most extreme of the corresponding purpose—according to season. Otherwise the inevitable
individual observations of variabl; made during the  seasonal dependence introduces an essentially spurious
period i. However, in the multivariate context this may appearance of short-term dependence in the data.
well be unduly conservative as different variables may
attain their most extreme values at different times within
this period.
We allow the above (conservative) approach as one

possibility. However, we also consider the approach |, this section we consider an application to data consist-
Whereby one particular Va”abDféi IS considered to be of ing of observations of three metocean variables collected in
primary importance for the application concerned. For ach e northern North Sea. We restrict attention to univariate
periodi we then defineX; to be the maximum observed  onq pivariate analyses. This is sufficient both to illustrate the

value ofX; within this period. For each remaining variable  5pqve theory and, as we shall show, to obtain practically
Xy (k # J) we defineXj to be theconcomitanbbservation of useful results.

this variable, i.e. the observation ¥f which is made at the
same time as the observati¥g. (In the application consid- 3 1 The data
ered in Section 3 this is the observationXqf made in the

same hour as the observati¥p.) This is a slight departure

3. Application to metocean data

- The data analysed here consist of observations of the
from a truly multivariate approach to the problem, and the ¢5|15ing three metocean variables measured from the

results of the analysis will vary slightly according to which Alwyn North platform, which is situated in the northern

variable is in fact considered to be of primary importance. North Sea (6048.5N and F44.17E, water depth approxi-
There is also a further possibility, which is, however, mately 130 m): '

structure specific. Each of the observations within each per-
iod i is converted to an overalbading for the structure of

interest, and the multivariate observatnis then defined Hs: Significant wave height (m) derived asx

to be the most extreme of the original observations as (variance of sea surface)

defined by this loading. This has similarities with the uni- Tz Zero up-crossing wave period (S)

variate structure variable approach discussed in Section 1 Ws Mean wind speed (ms) measured at 103 m
but it has the advantage of allowing information regarding above MWL

the constituent elements of the total loading to be retained.
For aknownstructure, this would be perhaps the most satis- Although wind direction data were also collected they were
factory solution to this particular problem. not incorporated into the present analysis.

We now consider the problem of choosing an appropriate  The data were collected between September 1987 and
period length. There is considerable discussion in the litera- April 1996 and consist of hourly observations over this
ture about this problem in the context of metocean data period made by Paras Ltd and by Heriot-Watt University.
[11,20,26]. The simplest way to examine the suitability of The details of the data collection are described in Appendix
any given choice is to look at the residual dependence struc-B. For the reasons described in Appendix C, we have
ture of the corresponding associated observations. X . omitted from the analysis data collected during the months
These should ideally be independent. It seems sufficient toof May to August each year. However, the extreme events in
do this separately for each of the component variables, sincewhich we are interested have negligible probability of
any serial dependence in the sequence of multivariateoccurring during these months. (See Section 2.3 for a
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discussion of the methodological issues here.) We have alsdfor the present data, a suitable length of period is given by
omitted data collected during the interval September 1991 48 h. We use this period length in the analysis below of both
to April 1992, owing to the poor quality of the record for this  the marginal and joint distributions éfsandWs However,
period. Finally, there are occasional other smaller gaps inthe criticality of this choice is further investigated in the
the observation record for one or more of the variables, sensitivity analysis of Section 3.2.6.
because of individual sporadic sensor problems or other For the present we talkds; andWSs to be the maximum
difficulties (not associated with the severity of the metocean observed values ofls and Ws respectively, during each
conditions). Thus we have chosen for analysis a fairly com- period i. We discuss subsequently possible variations of
plete record corresponding to eight ‘winter’ periods of eight these definitions.
months each.

Fig. 1 shows a plot of the daily maxima of the correspond- 3.2.2. Fitting marginal distributions
ing observations of wave heigHis. The observations of the The most difficult statistical issue in fitting the marginal
remaining variable§'z and Ws exhibit similar patterns of  distribution of each variable; is the estimation of the
variability, in particular seasonal dependence within each of thresholdu; above which the data are assumed to be well
the eight-month periods, and have similar patterns of missing modelled by a GPD. Fig. 2 shows the mean excess plots
observations. These occasional missing observations are sufdescribed in Section 2.1 for each of the varialtks®ndWs
ficiently uniformly distributed over the seasons under study These are based on the observatiohis= (Hs;,Ws), i =
S0 as not to introduce any bias into the present analysis.  1,...,n, associated with a 48-hour period length as described

The two variabledHs and Ws are those of most interest above. Fig. 3 shows the corresponding histograms of the
and significance for structural loading and we concentrate distributions of the two variables.

on a analysis of their joint distribution, following the meth- We have already remarked that mean excess plots are
odology of Section 2. We subsequently consider the vari- quite difficult to interpret, as they are visually dominated
ableTzand its relation to each of the former variables. by the few most extreme observations. However, both they

and, more so, the histograms in Fig. 3 (see below) suggest
3.2. Bivariate analysis of wave height and wind speed that reasonable choices of threshold are 6.5 mHsiand

16.5m s’ for Ws We use these thresholds below, but in

3.2.1. Choice of period length and associated observations Section 3.2.6 we further investigate the criticality of these

The methodology presented in this paper assumes that thechoices.
data for analysis consist of at least approximately indepen- For each of the variableds and Wsthe (marginal) dis-
dent observations. We have already argued in Section 2.3tribution of the observationds; or Ws is now estimated by
that such seasonality as is present in the data does not preusing kernel density estimation for those observations below
sent a serious problem. However, there is also very consid-the threshold and maximum likelihood fitting of a GPD for
erable short-term dependence in the hourly observationsthose observations above it (see Section 2.1). The para-
which constitute our primary data record. In particular meters £,u,0) (as defined in Section 2.1.1 and representing
extreme events tend to cluster in storms. We therefore shape, location and scale, respectively) associated with each
seek to follow the approach of Section 2.4 and choose aof these fitted distributions are shown in Table 1. The
length of period such that, if is the number of such periods threshold associated with each variable and the density of
and X; = (Hs;,Ws) is the bivariate observation associated the associated fitted distribution are also shown in Fig. 3, the
with each period as described there, thef,,..., X, can close fit to the observed data confirming the reasonableness
reasonably be treated as independent. of the choice of threshold. Note that, as is typical, there is a

Previous studies of offshore data [11,20,26] have used slight discontinuity at the threshold in the smoothed density.
period lengths varying from 24 to 60 h, and we investigate This is at a level which is well below the area of interest and
the suitability of period lengths of this order. The details of does not present any difficulties for the extrapolation
our analysis are given in Appendix D, and we suggest that, process.

(a) Hs (b) Ws
g o F 8
% N \’\_A..N/Mﬂ R § [t}
Q [}
8 ?_ V\\\ﬂ S o .
4 AV
3 ° A\ g - N
= © =
4 6 8 10 12 14 10 15 20 25 30
Threshold (m) Threshold ( m/s)

Fig. 2. Mean excess plots féts andWs(48-hour period length).
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Fig. 3. Observed and fitted distributionsteé andWs(48-hour period length).
3.2.3. Calculation of return levels Hs andWs We use the methodology described in Section

For each of the variablesls and Ws the return levels 2.2 and based on (a) transformation of the individual vari-
associated with given return periods are determined asables so that each has a standardcke¢ distribution
described in Section 2.1.3. Fig. 4 shows, for each of these(Eq. (9)), followed by further transformation to pseudo-
variables, a plot of return level against return period. Each polar coordinatesr(w) as defined by Egs. (10) and (11),
plot gives point estimates of the return level as the return and (b) estimation of the asymptotic distributipnof w.
period is increased, along with 95% confidence intervals The transformations described in (a) are straightforward
calculated using profile likelihoods. (given the estimated marginal distributions of the variables),

The confidence intervals indicate a sometimes consider-while the estimation in (b) is based on the observed distri-
able degree of uncertainty in these return levels. This is bution ofw for those observations in the $¢{ (see Section
scarcely surprising since the quantity of data available as2.2.2) for a suitably chosen threshalg
the basis for extrapolation corresponds to an interval of time  Note that, since herev = (w;w;) and, as already
whose length is less than one-tenth of that of the longestobservedw; + w, = 1 always, we may replace the vector
return periods considered. However, these confidence inter-w by the scalar quantityy = w;. We take this to be the
vals are wider than those sometimes reported in othercomponent ofv associated with the variablgs.
studies using comparable quantities of data [2,8,21]. There The threshold is the value of above which the condi-
are two reasons for this: (a) no prior assumptions are madetional distribution ofw, givenr, is reasonably stable. The
here regarding the tail shapes of the distributions of the choice of this threshold is perhaps best made [5] by the
variables beyond those which are implied by the asymptotic consideration of a range of possible values rgf and
theory used (however, further assumptions which are com-the construction, for each such value, of a histogram of
patible with this approach, if warranted, could be incorpo- the distribution ofw for those observations in the sk, .
rated into the present methodology); and (b) some otherFig. 5 shows these histograms for a range of increasing
studies apply results which are essentially asymptotic values ofr,. (As is customary, we consider valuesrgfof
while using thresholds which are considerably below the form expk for simple values ok.)
those used here, thereby increasing the quantity of data Here, for values of, greater than or equal to exp (1.5),
apparently available for assessments of uncertainty; thisthe distribution ofw in the setN,  seems to be fairly stable
decreases the variance of parameter estimates at the expensaatil, for very high values of ;, the number of observations
of increasing their (unknown) bias. (Note, however, that in the setN, is too small to be able to represent the under-
consideration of water depth places a natural upper boundlying distribution at all reliably. We therefore takg =
on Hsreturn levels. If this were to be incorporated into the exp (1.5). However, the sensitivity of the results to this
current methodology the effect would be to truncate the set choice is further investigated in Section 3.2.6.
of attainableHs values, rather than to alter the shape of the  The asymptotic distribution ofv on the interval [0,1] is

return level curve at lower return periods.) now estimated from those observations in thelget For
the reasons explained in Section 2.2.2, we here take a non-
3.2.4. Estimation of the joint distribution parametric approach and use kernel density estimation [23].

We now consider estimation of the joint distribution of As might be expected for a distribution with a finite range, it

Table 1
Bivariate analysis oHs andWs summary of marginal analyses wi¥) = (Hs,Ws)
Variable No. of observations Threshold No. of observatiolsstribution parameters
above threshold
¢ 3 4
Hs 762 6.5m 119 -0.01 11.2 1.58

Ws 762 16.5ms* 256 —0.15 26.6 2.03
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Fig. 4. Return level plots foHs andWswith 95% confidence intervals.

seems desirable to use a variable window width which given by

becomes narrower close to the boundaries of the interval
: ; 2h(w) ., '
[0,1]. In particular this may be used to prevent the kernel fx(X1,%) = 3 Y1 (X)¥2' (%) (14)
density estimate from spilling beyond this interval. We . ) ) )
achieve this by a logistic transformatian = logw — whereh is the density function ofv as estimated aboveé;’

log (1 — w) of w to the entire real line, followed by (fixed ~@nd ¥ are the derivatives of the functiong, and y,
width) kernel density estimation of the distributionzéind ~ defined in Section 2.2.2 (and implementing the transforma-
then the inverse transformation back to the interval [0,1]. Of tion (a) above), and the pair,@) is obtained from Xy,x2)
course the choice of kernel width is still necessarily some- Via the transformations (a) and (b), i.e.

what subjective. — _

Fig. 6 shows a histogram of the distributionvefor those "= ¥100) +dze) andw=ya ()i
observations in the sé,  (ro = exp (1.5)) together with its A proof of this result is given in Appendix A. Note that the
probability density estimated as above. Note the generalabove representation of the joint density function depends
shape of this density, which is very different from the U- both on the fact that her¥ is bivariate § = 2) and on the
shaped densities of Coles and Tawn [5] and corresponds to a&hosen parametrisation of the spaBg (by w = w; =
very strong association between the extremes of the twol — wy).

variables. This is typical of wind and wave data. Fig. 7(a) shows geometrically spaced contours of the joint
Finally, we consider the estimation of the joint density density superimposed on a plot of the observations
function of the (untransformed) variabléts andWs This (Hs;,Ws). The horizontal and vertical lines correspond to

may now be determined from the theory of Section 2.2. the thresholds used in fitting the marginal distributions of
Consideration of the transformations (a) and (b) above the variables. The remaining, curved, line corresponds to the

shows that the joint density functidiy of X = (Hs W9 is thresholdry used in the bivariate analysis. The area of
r>0 r>exp(1/2) r>exp(1) r>exp(3/2)
. 8 . 8 . 8 . 2
s 7 $ g $
HE i L : ?
o o o 3 8
s s g s < 3 e
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Fig. 5. Bivariate analysis dfls andWs histograms ofw for increasing .
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= each 48-hour period still couples the maximum wave

o height and maximum wind speed within this period and
o thus retains some of the conservatism inherent in the more
9 traditional approach.

We now consider two other possible definitionsXof as
discussed in Section 2.4:

No. of Observations
10

X; = (Hs,Ws’) where, as previoushHls; is the max-
imum observation of the variablds within the period
and whereWs' is the concomitantobservation of the
variableWs

Xi=(Hs', Ws) whereWs is the maximum observation
of the variableNswithin the period and whereHs' is
the concomitantbservation of the variablés.

T

00 02 04 06 08

1.0

w

Fig. 6. Bivariate analysis dfisandWs distribution ofw in the setN, and
estimated probability density.

interest, corresponding to the regior> rq in (r,w) space, These two definitions are appropriate for applications to
lies to the right of and above this curve and contours of the structures for which the loadings are wave- and wind-
density are shown only in this region. (Recall that it is in this dominated, respectively. (The remaining possibility
region that the association between the two variables, asdiscussed in Section 2.4 is structure-specific and therefore
measured by, is assumed to have stabilised, and that it not pursued here.) Tables 2 and 3 summarise the marginal
is the observations in this region which are used to estimateanalyses corresponding to these two further definitions, and
this association.) Observe that the estimated density func-are analogous to Table 1 for our earlier definition. Note that,
tion is compatible with the observed data in the region for each of the three definitions of the bivariate observa-
where the latter exists, as would be expected, and providestions X;, there is a slightly different number of these
a realistic extrapolation of the density into the region where observations available for analysis. This is accounted
observations do not exist. for by the locations of the occasional gaps in the original
series of hourly observations. Note also that the observa-

3.2.5. Alternative observation definitions tionsHs' exceeds their threshold of 6.5 m on many fewer

A traditional analysis of the most extreme wave height
and wind speed combination likely to occur with, for exam-
ple, a 100-year return period would simply combine the
individual 100-year return levels for these two variables.

occasions than do the observatidths; this is as would be
expected from their concomitant definition. A similar
remark applies to the threshold exceedanced/'fin rela-
tion to those ofWs.

In general this is excessively conservative as it is most Fig. 7(b) and (c) show the corresponding joint density
unlikely that these two return levels will be achieved at functions of the variablesis and Ws These figures are
precisely the same time. By focusing on the joint distribu- based on similar bivariate analyses to that leading to
tion of the two variables, the present bivariate analysis Fig. 7(a), again wittro = exp (1.5) in each case, and are
attempts to address this problem. However, our current defi-interpreted similarly. We discuss the significance of these
nition of the bivariate observatioX; to be associated with ~ alternative analyses in Section 3.4.

Table 2
Bivariate analysis oHs andWs summary of marginal analyses wi¥) = (Hs, Ws’)

Variable No. of observations Threshold No. of observatiolsstribution parameters
above threshold
¢ ® 4
Hs 792 6.5m 121 0.00 11.2 1.59
Ws 792 16.5ms* 155 —-0.15 24.3 1.92
Table 3

Bivariate analysis oHs andWs summary of marginal analyses wi¥) = (Hs', Ws)

Variable No. of observations Threshold No. of observatiomsstribution parameters
above threshold
3 p o
Hs 777 6.5m 63 0.01 10.0 1.55
Ws 777 16.5ms? 257 —0.16 26.6 1.99
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Fig. 7. Joint density of wave height and wind speed based oX (&) (Hs;,Ws), (b) X; = (Hs,Ws'), (c) X; = (Hs', Ws).

3.2.6. Sensitivity analysis

parameters of the marginal distributions and estimated dis-

We examine further the sensitivity of the preceding tribution of w—all of which are difficult to interpret), we
analysis to the choice of period length (Section 3.2.1), focus instead on 100-year return levels as described
marginal thresholds (Section 3.2.2), and bivariate threshold below.
ro (Section 3.2.4). Rather than attempt a general description Table 4 shows estimates of the 100-year return level for
of the sensitivity to these quantities of the entire joint dis- wave heightHs together with, for each such estimate, the

tribution of Hs andWs(through, for example, the estimated

Table 4

Sensitivity analysis: 100-year return levels Fég(m) and associated values
of Ws(ms™)

Thresholds Period length

36h 48 h 60 h

Hs Ws Hs Ws Hs Ws
6m, 15ms? 18.17 3140 18.28 31.77 17.71 31.06
6.5m,16.5ms' 17.78 3259 1836 3298 17.85 31.86
7m, 18 ms? 19.70 3281 17.69 3256 19.01 33.34

value of the wind speed/smost likely to be associated with

it (see Section 3.4.2). This latter quantity is determined from
the estimated joint distribution of the two variables. For this
analysis we again consider the case= (Hs;,Ws), so that

the observation of each variable associated with the périod
is its maximum during that period. The estimates are based
on three choices of period length combined with each of
three choices of marginal threshold pair. Recall that our
main analysis corresponds to the use of a 48 h period length
and marginal thresholds of 6.5 m and 16.5 ffer Hsand

WS respectively. Similarly, Table 5 shows analogous esti-
mates of the 100-year return level for wind spedts
together with the most likely associated values of the
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Table 5
Sensitivity analysis: 100-year return levels is (m s™%) and associated
values ofHs (m)

errors to variation in any of the quantities considered here.
This is as might be expected: to a very good approximation
standard errors are inversely proportional to the square root

Thresholds Period length of the number of observations available for their estimation.
In particular, for a return level, this is the number of obser-
36h 48 h 60 h : .
vations—ofHs or Ws—above the marginal threshold for
Ws Hs Ws Hs Ws Hs the variable concerned.
6m,15ms* 3156 1820 32.04 1820 31.10 17.40 ) .
6.5m,165ms* 32.88 17.60 3332 1880 3211 17.60  3.3. Incorporation of wave period
7m,18ms? 32.86 1960 3277 18.00 33.48 18.80

In this section we consider, rather more briefly, the incor-
poration of the wave periodizinto the preceding analysis.
wave heightHs. The bivariate analysis is again based on In many applications one or other of the variables wave
definingX; = (Hs;,Ws). heightHs and wind speedVswill be the main determinant
The results in Tables 4 and 5 show that these estimates aref structural loading, and may be thought of as the primary
not especially sensitive to modest variations in either the variable of interest. We will then be further interested in
choice of period length or that of marginal threshold. In values of the remaining two variables likely to be associated
particular the variation in the 100-year return levels of the with, for example, given return levels of the primary
two variables is substantially less than the width of the variable. For this reason we consider here bivariate analyses
confidence intervals for our main estimates of these quan-of (a) wave height and wave period, (b) wind speed and

tities (see Section 3.2.3).
Note also from Tables 4 and 5 that the valud\d most
likely to be associated with the 100-year return leveHsf

wave period. This is in preference to a full trivariate analysis
of the three variables which would seem unlikely to produce
significant additional insight. We continue to use a 48-hour

is, for these analyses, quite close to the 100-year return levelperiod length and consider the bivariate observations asso-
of Wsitself. A similar remark holds when the roles of the ciated with the individual periods as independent. For each
two variables are interchanged. (See Section 3.2.5 for somesuch period, and for the analysis (a) above, we define the
discussion of this.) This is relevant when we consider the associated bivariate observatiorls(,Tz) of (HsT2 by
effect of varying the threshold, associated with the bivari-  again takingHs; to be the maximum value dfis observed
ate analysis. Clearly this does not affect the estimated 100-during the period, and by takingz to be the concomitant
year return level associated with either variable, which is value of Tz Similarly, for each period, and for the analysis
based only on the marginal analysis of that variable, but in (b), we define the bivariate observationWg,Tz’) of
each case it may affect the most likely associated value of (WsT2) by taking Ws to be the maximum value o#Vs
the other variable. In Section 3.2.4 we take= exp (1.5). observed during the period aft’ to be the value offz
With the period length and marginal thresholds used in that observed concomitantly witWs. These definitions are
section, variation of , to exp (1.25) and to exp (1.75) hasno those appropriate when wave height and wind speed are
effect on these associated values. Given the precedingthe respective primary variables.
remarks, this is perhaps not surprising for the present data. The fitted marginal distribution of each of the
Finally we remark briefly on the sensitivity of standard primary variablesHs and Ws remains that obtained in

Table 6
Bivariate analysis oHs and Tz summary of marginal analyses

Variable No. of observations Threshold No. of observatiolsstribution parameters
above threshold
3 " o
Hs 762 6.5m 119 —-0.01 11.2 1.58
Tz 762 75s 173 -0.13 10.1 0.63
Table 7

Bivariate analysis o¥?Wsand Tz summary of marginal analyses

Variable No. of observations Threshold No. of observatiolsstribution parameters
above threshold
¢ © Yy
Ws 777 16.5ms! 257 —0.16 26.6 1.99
Tz 777 75s 82 —0.07 9.7 0.80
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from the calculation of return levels for individual variables
to the determination of likely combinations of extreme
events and the estimation of their probabilities. These latter
determinations depend on the joint distributions which are
illustrated in Figs 7—9. They are useful for design engineers
and offshore operators who require answers to specific
guestions about loadings on structures. They are also of
considerable interest for oceanographers and others who
require a greater understanding of the metocean climate at
. . . . . any particular site. We give below some qualitative and
0 5 10 15 20 guantitative conclusions.

10 12 14

8

Tz (secs)
6

Hs (m) 3.4.1. Associations between variables

Fig. 8. Joint density of wave heights and wave periodz The joint density function plots in Fig. 7 show the esti-

i mated joint distribution of wave height and wind speed. This
Sectlpn 3'2_'2'_ qu each O_f th_e analyses (a) and (b)_ thedistribution shows very considerable association between
marginal distribution ofTz is fitted as usual. The main o 4o variables. In particular, this association continues
issue here is again the choice of threshold above which its, 1o hresent in the region where either of these variables is

distribution is modelled by a GPD. Examination of mean gieme and appears to extend well beyond the range of the
excess plots and histograms suggested that in both cases 8bserved data.

reasonable choice of threshold appears to be 7.5 s and we Note that, while the overall form of the joint distribution

use this threshold here. _ _ does not depend greatly on the precise definition of the
Tables 6 and 7 give summary information and parameters bivariate observation¥; (X; = (Hs,Ws), X; = (Hs, Ws')
| [ (Rl ’ | — ]

for the fitted marginal distributions associated with these or X;=(Hs',Ws) as defined earlier), the association

tvx_/odbivarigte znalyses. Nc()jtehthat in thle _an?I%Sis (hb) 0; between the two variables is nevertheless greatest in the
wlm speed an waverﬁ)eno t ere are ri art1|veiy ewt resl “caseX; = (Hs;,Ws), where the period observation of
old exceedances by the observations of the latter variable.q o yariable is its maximum during that period. This is

Thﬁ rﬁason is thalz t;S the o.bse(;;//a'gon. oTzcor;]com!tqnt illustrated in Fig. 7(a) and is in contrast to the lower
with the maximum observation ai/sduring each period, associations in the cases of the alternative ‘concomitant’

e}nd is likely tq be far.from the maximum periodbserva- definitions leading to Fig. 7(b) and (c). The likely reason
tion of the variablerzitself. o for this is that the wave height at any given time is a function

. Fo_r each 9f _the t"_VO analyses, the joint distribution of th_e not just of the current wind speed, but of the past history of
bivariate pair is estimated analogously to that of the vari- <" rocess over a variable time period (depending on such
ablesHs andWsin Section 3.2.4. In each case a suitable ;o5 a5 wind direction and rate of increase and decrease
value of the threshold, is again given byo = exp (1.5). ¢ \ind speed). The statistical association between the
E|gs 8and9 shovy the res“'“”g e'stlmated joint Qe”,s'ty func- observed values of the two variables is thus greatest when
tions. These are interpreted similarly to those in Fig. 7. the definition of these observations allows for a (generally
variable) time lag between wind speed and resulting wave
height.
i o ) Similarly, the joint distribution of wave height and wave
The preceding analyses have many applications, rangingyejoq jliustrated in Fig. 8 again shows considerable asso-
ciation between these two variables, and in particular
between their extremes. Very similar remarks again apply
to the joint distribution of wind speed and wave period
illustrated in Fig. 9.

3.4. Interpretation and application of results

15

3.4.2. Return levels and their concomitants

An analysis of the return levels for each of the primary
variablesHs and Wsis given in Section 3.2.3. As further
comment, note that the data provide no indication of an
upper bound on the wave height. The best estimate of the
- - T T shape parametdys is close to zero (corresponding to an
0 10 20 30 exponential distribution of wave height) but its standard
error is such thaHs might either have an upper bound
(¢4s < 0) or be unboundedt(;s = 0). Of course physical
Fig. 9. Joint density of wind speé¥sand wave periodz considerations imply that there does in reality exist some

TZ' (secs)

Ws (m/s)
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Fig. 10. Conditional densities of (a) wind speed; (b) wave period, for 100-year wave height.

such upper bound, but this lies beyond the point to which the Wsby using the joint distribution of these two variables. The
distribution of the variable may reliably be extrapolated. mode, or other suitable location measure, of this conditional
The data do provide a fairly clear indication of an upper distribution then defines a most likely value fs asso-
bound on the wind speed—here the standard error of theciated with the given value dfis. Similarly, we may deter-
shape parametékysis such that its 95% confidence interval mine the corresponding associated value of the wave period
lies entirely within the region for whicljs < 0. Tz by consideration of its joint distribution witHs.

For any given return period, it is of practical importance  Fig. 10(a) shows, as a density, the conditional distribution
to be able to determine the corresponding return level of of wind speed associated with the estimated 100-year wave
either of these two variables, together with likely associated height of 18.4 m. This is determined from the estimated
values of the other variable and of the wave pefladFor joint distribution of the two variables. As usual, for the
example, the most recent design code requirements for cal-calculation of the return level for wave height, we take the
culating loads on offshore structures in the North Sea [24] observationsHs; of this variable to be the maximum
give a choice of three possible design conditions which the observed values dfis during successive 48-hour periods.
structure must be able to withstand: The two curves shown in Fig. 10(a) derive from the two
possible definitiondVs and Wg' of the observations of
Ws to be associated with each periodFor the former
definition (in whichWs is the maximum wind speed in
each period) the most likely wind speed associated with
the 100-year wave height is 33.0 m'sFor the latter defini-
tion (in which Wg' is the observation of wind speed
observed concomitantly witlHs; in each periodi) the
wind speed associated with the 100-year wave height is

We have already observed in Section 1 that the second 0f30.5 m s™. It is clear that the latter definition seems more
these possibilities has the drawbacks associated with theappropriate for applications (see the discussion of Section
structure variable approach, while the third is unduly con- 3.2.5). Note also, from Section 3.2.3, that the independently
servative. The present methodology can readily be applieddetermined 100-year wind speed is 33.3ThsThese
to analyses such as that required by the first of these optionsresults are very compatible with the general understanding
Here, for any given value of the wave heigHis, for that the 100-year wave height and 100-year wind speed may
example its 100-year return level, we may easily calculate well occur within the same storm, but would not be expected
the correspondingonditionaldistribution of the wind speed  to occur at the same time.

1. a 100-year return period wave height with ‘associated’
wave period, wind and current;

2. any ‘reasonable’ combination of wind speed, wave
height, and current speed that results in the 100-year
platform load;

3. the 100-year wave height combined with the 100-year
wind speed and the 100-year current speed.

(a) (b)
[(s]
pid S
—— BasedonHs
ao —— Based on Hs’ als
2o [SR]
o o
- o
=] (=]
o o
o 1 [=}
5 10 20 6 10 14
Hs (m) Tz' (secs)

Fig. 11. Conditional densities of (a) wave height; (b) wave period, for 100-year wind speed.
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Similarly, Fig. 10(b) shows, again as a density, the con-
ditional distribution of the wave perio@iz associated with
the estimated 100-year wave height. Here, for each périod
the associated observatidg, is is taken to be that observed
concomitantly withHs;. The most likely value of the wave

S. Zachary et al./ Applied Ocean Research 20 (1998) 273—-295

The second of the above objectives is usually achieved
in applications through the determination of events cor-
responding to a given return period—for example 100
years. For multivariate data, there will be a wide choice
of such events. Thus, for a given structure, one possibi-

period associated with the 100-year wave height is 12.1 s, lity will be to choose that event which is most extreme
resulting in an estimated significant steepness of the seain terms of a suitable measure of the structural loading.
state of ZHs/gTZ = 1/12.5. This is marginally more severe In the application of Section 3, which is not structure-
than the steepest sea states of about 1/13 usually observed igpecific, we determine instead the corresponding return
the North Sea [25]. level for a specified variable (wave heights or wind

For applications to structures for which the loading is speedWsg together with the most likely associated values
wind dominated, a similar analysis may be performed to of the remaining variables. This procedure is in accordance
determine the distributions of wave height and wave period with the most recent design code requirements, and is dis-
conditional on the estimated 100-year wind speed of tinctly less conservative than the remaining possibility of
33.3ms?, as noted above. Fig. 11(a) shows the resulting simply combining the individually determined return levels
probability density of the wave heightis, the two curves  of each of the variables. We return to this point in Section
here corresponding to the two possible definitidds, and 4.3 below.
Hs' of the observation oHs to be associated with each
periodi. The most likely value of the wave height associated
with the 100-year wind speed is 18.8 m for the analysis
based on the use ¢is; (the maximum observed value of
Hsduring period) and 17.0 m for the analysis based on the
use ofHs' (the observation ofls made concomitantly with
Ws in each period). Again, the latter analysis seems the
more appropriate.

Fig. 11(b) shows the corresponding conditional
probability density for the wave periotiz—here based

4.2. Methodological issues

4.2.1. Seasonality

The metocean data studied in this paper are of course
highly seasonal, with extreme observations occurring
almost entirely during winter months. However, this does
not appear to result in serious problems for their analysis.
Rather, what is modelled here is the distribution of the data
averaged over the year, and this is entirely appropriate for
on the use of the associated observati®dgs. The most the determination of, for example, 100-year return periods.
likely value of the wave period associated with the 100- While in principle there might be some small efficiency gain
year wind speed is 12.4s. This figure is very similar to be had by splitting the data according to, for example,
to the wave period associated with the 100-year wave month, this approach would suffer from the disadvantages
height. discussed in Section 2.3.

Note that in the application of Section 3, we omit entirely
data collected during the months of May to August (see
Section 3.1). As indicated in Appendix C, the occurrence
of extreme events in this period is quite negligible, and
analysis may safely be based on the data collected in the
remaining months, with the effective assumption of an

The methodology considered here for the analysis of eight-month year for the calculation of return levels.
multivariate extremes has two objectives: (a) the general
estimation of the joint distribution of the extremes of the 4.2.2. Short-term dependence
variables concerned; and (b) the estimation of the The existence of short-term dependence in time-series
probabilities of particular extreme events, notably those cor- data such as that considered here is a matter which requires
responding to extreme loadings on given structures. very considerable care. As discussed in Section 2.4, the

The first of these objectives is here successfully present methodology is based on the assumption that the
achieved. Indeed the methodology used makes no priordata to be analysed consist of independent observations of
assumptions about the joint distribution of the variables the given variables. The analysis of dependent observations
and only requires that there is sufficient data for the as if they were independent leads to (a) over-optimistic
applicability of asymptotic results. In particular, no mod- assessments of uncertainty for estimated quantities and (b)
elling assumptions are made about the statistical associa-generally conservative estimates of return levels. We
tion between the extremes of the variables. Rather this isdescribe in Section 2.4, and further in Appendix D, how
estimated and extrapolated directly from the association to identify blocks or periods of time such that the (multi-
observed in the extremes of the data. For the bivariate variate) observations associated with successive periods
analyses of the metocean data considered in Section 3, thanay reasonably be regarded as independent. An alternative
estimated joint distributions are shown in the density plots for univariate data is the explicit time-series modelling of
of Figs 7-9. the short-term dependence structure in the original data. It is

4. Conclusions

4.1. General conclusions
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not clear how this might extend to the present multivariate which does not make prior assumptions about the nature of
methodology, but in any case the investigations referred to such association, but simply requires that there is available
above suggest that the current approach is probably close tasufficient data for the reasonable applicability of asymptotic
optimal for the data considered here. results (as described in Section 2.2.1).
More traditional methods of calculating extreme load-
ing—for example, the third of the possibilities discussed
h in Section 3.4.2—typically do not attempt to estimate the
association between the variables concerned. Rather they
assume a worst-case scenario, for example by assuming
that the 100-year wave height will always occur at just the
same time as the 100-year wind speed. The greater precision

examined in detail in Section 2.1.2 and, for the metocean ©f the present approach to the description of the metocean
data of this paper, in Section 3.2.2. The further sensitivity ¢limate therefore makes it possible to remove some of the

analysis of Section 3.2.6 suggests that the marginal thresh-cOnservatism inherent in the design process and operating
olds we use for these data are reasonable. criteria for offshore structures. This has considerable poten-

tial economic benefits.
L o As we remark above, we also consider estimation and
4.2.4. Estimation of joint distributions __ extrapolation of the marginal distributions of the individual
_The two issues involved in the estimation of joint \arahles. This is a necessary first step to the determination
distributions are (a) the choice of threshaigsuch that ¢ the association between their extremes, but it is also the
the limiting distribution _Of the transf_orme_d ,Va”f"‘bw source of much of the inevitable uncertainty in the calcula-
may reasonably be estimated from its distribution over i, of extreme loadings. We have again avoided making

those observations in the s, and (b) the details of this  hiqr assumptions about these distributions and appealed
estimation procedure. These issues are discussed in SecuoBmy to asymptotic extreme value theory, leading to the

2.2.2. For the present metocean data, they are further conyse of 4 GPD for fitting their tails. At least for the data

sidered in Section 3.2.4 and Section 3.2.6. _ considered here, this approach reveals the large degree of
Here the results appear relatively insensitive to the choice uncertainty inherent in the estimation of 100-year return

of ro, except only of course that, as this threshold is |g\eis (and associated values of other variables) on the
increased, the quantity of data available for reliable estima- paqis of extrapolation from less than 10 years of data.

tion decreases. __ Where there is no sound theoretical argument to indicate
For our metocean data and for the reasons explained iny,a¢ some prior and more specific tail shape is likely, this

Section 2.2.2, we take a non-parametric approach t0 the ncertainty should be properly reflected in the design
estimation of the (limiting) distribution ofv. Hence, it is ;
- ; process itself.
difficult to make aformal assessment of the uncertainty
involved in this estimation. However, for such a non-
parametric approach, one issue which again requires care _
is that of the estimation ofv at its boundaries. This is Appendix A. Proofs of results
discussed in Section 3.2.4. Beyond this, there do not appear _ . _
to be any major difficulties or uncertainties in the estimation ~ We here give proofs of various results in the prgsent
of the distribution ofw. See, for example, Fig. 6, which paper. These are (a) the asymptotic results concerning the

shows its observed and fitted distributions (for the chosen joint distribution of ¢,w) which are stated in Section 2.2.1,
setN;). and (b) the determination, in Section 3.2.4 afmt a

bivariate analysis of the joint density (Eg. (14)) of
the extremes of the original variabl&s= (Xy,X,), follow-
ing the estimation of the limiting density functidnof w =

4.2.3. Choice of marginal thresholds

The choice, for each variable, of a threshold above whic
its marginal distribution is well modelled by a GPD again
requires care, and there is necessarily some subjectivity in
the final determination of these thresholds. This reflects the
general difficulty inherent in extrapolation. The issue is

4.3. Implications for metocean design parameters

Estimation of extreme loadings on the basis of extra- W
polation from observed data requires (a) reliable extra-
polation of the estimated distributions of the individual
variables into their extreme regions, and (b) reliable esti-
mation of the statistical association between these variablesF(x) =1 — }Jr o<}> as X — o0 (15)
again in their extreme regions. X X

The present paper addresses both these issues, but its
more novel aspects are concerned with the second ofln order that this result should hold the conditional distri-
them, where we develop and apply the methodology of butionF,, of r givenw must similarly converge to 1 at a rate
Coles and Tawn [4,5]. This is the only approach to the which is comparable to f/asr — « (of course the exact
estimation of association between the extremes of variablesconditional distribution will depend ow). That is, under

1.
The distribution functiorF of the standard Frhet dis-
tribution (given by Eg. (9)) satisfies
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very mild regularity conditions, we may write

Ifw(r)=1—a(w)%+o<%> asr — o (16)
for some non-negative functicmon Sy. Now let the prob-
ability measurex denote the marginal distribution @f on
Sy (so thath andF,,, w € S, together determine the joint
distribution of ¢,w)). Then, for eachj = 1,...,d, the
marginal distributiorF of each of the random variabléﬁ
is given by

F(x) = J £, (Wi> W) =1— )—1(J'vvja(w)d)\(w)
S ) S

+0( -] asXx— >
X

an

where the second equality in the above expression follows

from Eq. (16) and on recalling that is a probability

measure. By comparing Egs. (15) and (17) it then follows

that

vaja(w)d)\(w) =1 j=1,..,d (18)
S

By summing Eq. (18) ovej = 1,...,d and recalling that
ijd: W =1 forallw € Sy, we also obtain
J a(w)d\(w)=d (19)
S

It further follows from Eq. (16) that, for large the condi-
tional density ofr givenw is a(w)/r? (plus a term which is
negligible in comparison to 87 asr — «). Since also the
probability measuré gives the marginal distribution af,
the conditional distribution ofv givenr is defined by a
probability measure, where

du(w) = ka(w)dn(w) (20)

Here k is defined by the requirement thatshould be a
probability measureﬁ]"gu du(w)=1) and so is independent
of r; indeed consideration of Eq. (19) shows that 1/d. As
r — oo the conditional distribution ofv givenr converges to
exactly the probability measugeas required.

Similarly, from Egs. (16) and (19) (witk = 1/d), the
marginal distribution functiorr of r satisfies

FNn=1- %Ja(w)dk(w)+o<%> =1- g+o<%>
S

asr — o, so that the result of Eq. (12) follows. Finally the

result of Eqg. (13) follows immediately from Egs. (18) and

(20).

We now consider the derivation of the joint density, Eq.

(14), in Section 3.2.4. It follows from Eq. (12) that, in the
bivariate casal = 2 and withw = wy, the estimated joint
density of the extremes of,(v) (corresponding to large is
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given by (w)/r2. The Jacobian appropriate to the transfor-
mation of joint density of ,w) to that of the (vector) vari-
able X (i.e. to the inversion of the transformation (b) of
Section 3.2.4) is given by

ar  ar
Xy aXp| 1
ow  ow| T
Xy Xy

The Jacobian appropriate to the transformation of joint den-
sity of X to that of the original variableX is simply the
product ¥’ (X{)¢,' (X;)—where ;" and ¢,’ are as in
Section 3.2.4—since, in the inversion of the transformation
(a) of that section, each margin transforms separately. The
result of Eq. (14) is now immediate.

Appendix B. The Alwyn North data

The metocean data analysed in the present paper are
based on observations made at Alwyn North during the
period August 1987 to September 1996. They consist
largely of measurements made by Paras Ltd (at a sampling
rate of 2 Hz) and supplemented by data recorded by Heriot-
Watt University (the HW data—recorded at 5 Hz). The
Paras data consist of series of hourly observations from
August 1987 to December 1994 inclusive, while the HW
data are based on hourly observations from August 1994 to
April 1996 inclusive. (For the HW data, observations are
available for every 20-minute interval during the period
concerned, but for consistency we only consider those
from every third interval.) While both data sets come
from essentially the same instrumentation, there were
some differences in the sampling regime and statistical
handling of the raw data. The overlap period of August to
December 1994 permitted a direct comparison between the
two sets and enabled an assessment of the validity of com-
bining them.

For the Paras data the observations of mean wind speed
Ws are calculated as 10 min averages every hour, while
averages of 20 min are used for the HW data. A comparison
of data from the two sources during the overlap period
shows that no correction is necessary in order to combine
the two sets of observations of this variable. Howewdlr,
wind speed observations have been multiplied by 0.774 so
that they correspond to the internationally accepted refer-
ence height for wind speed of 10 m above mean water level.
The formula used here W&s,, = Ws,(10h)€ whereh is the
height of the anemometer aredhe empirically determined
exponent of 0.11 [9]. (Of course, for the analysis of this
paper, this adjustment is merely a scale changé&\fey

Observations of the significant wave heidté and the
mean wave periodizare calculated over a 20-minute period
in every hour, for both the Paras and the HW data. Both
statistics are calculated from their time domain definitions.
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Table 8

Distributions ofHs andWsduring ‘summer’ and ‘winter’ periods

Hs (m) Summer Winter Ws(ms™) Summer Winter
0-1 5162 1186 0-2 1724 1482
1-2 11576 10029 2-4 3575 4193
2-3 3710 12746 4-6 4602 5846
3-4 634 9386 6-8 4508 6239
4-5 158 5103 8-10 3685 6633
5-6 21 2360 10-12 2189 6139
6-7 7 1142 12-14 728 4886
7-8 7 417 14-16 198 3508
8-9 3 180 16-18 69 1987
9-10 0 66 18-20 17 1004
10-11 0 44 20-22 27 388
11-12 0 22 22-24 5 123
12-13 0 9 24-26 0 72
13-14 0 8 26-28 0 28
14-15 0 0 28-30 0 6
15-16 0 0 30-32 0 1

The observations dfis from the two data series are consis- remaining ‘winter period’ of September to April. The table

tent in the overlap period. However, the original hourly clearly shows the difference between the summer and winter

observations of the wave perio@iz obtained from the distributions—in particular the very much shorter tail of the

Paras data are consistently higher than those obtainedsummer distribution—of each of the two variables. These

from the HW data. The reason for this is the higher HW differences thus confirm the reasonableness of treating as

sampling rate (5 as opposed to 2 Hz), which results in a negligible any probability that the extreme events of

greater resolution of the smallest waves. In order to give a interest can occur during the summer period, and of basing

consistent series of observations of the wave pefiad our analysis as described above on the September to April

those obtained from the Paras data are multiplied by andata.

empirically-derived constant of 0.86. Thus all the obser-

vations of this variable may be regarded as corresponding

to a 5 Hz sampling frequency. Appendix D. Choice of period length for independent
observations

Appendix C. Comparison of winter and summer months We consider the problem, discussed in Section 3.2.1, of
choosing a length of period such that, in the analysis of the
Throughout the collection period for the data studied joint distribution of wave height and wind speed, the bivari-
here, there were various gaps in the recording process.ate observations associated with the successive periods can
These were caused by the need for periodic maintenancereasonably be treated as independent. As suggested in that
and calibration of the instrumentation. Most of these gaps section, we investigate the suitability of period lengths vary-
occurred during the ‘summer months’ of May to August. To ing from 24 to 60 h.
remove the bias caused by the uneven distribution of the As discussed in Section 2.4, it should be sufficient to
data throughout the year, such data as do exist for theconsider separately each of the two variables. For each
months of May to August are omitted entirely from possible choice of period length, we takks; and W5 to
the main study, and the resulting analysis—in particular be the maximum observed values 8§ and Ws respec-
the calculation of return levels and associated values of tively, during each period, i = 1,...,n. We consider two
other variables—based on the assumption of an eight-approaches: (a) examination of the serial autocorrelation
month year. This corresponds to the assumption that westructure of the associated observatitts and Ws; and
may neglect any probability that the extreme events of inter- (b) examination of the serial dependence of the occurrence
est in the present study, which are typically associated with of threshold exceedances by these observations. Recall that
winter storms, can occur during the four months omitted both of these techniques require the data to be fairly care-
from the analysis. Table 8 is a frequency table showing, fully separated according to season.
for each of our primary variablddsandWs the distribution To examine the serial autocorrelation structure of each of
of those hourly observations whickere collected during the above variables, the data were split into series corre-
the above summer period of May to August, together with sponding to each of the 64 months during which they
the distribution of those observations collected during the were collected, so that each of these series might reasonably
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Table 9
Threshold exceedances: analysis of first-order dependence
Month Hs Ws

Noo Noy Nio Ny p-value Noo No1 Nio Ny p-value
Sep. 84 4 5 0 0.69 61 7 8 8 < 0.01
Oct. 87 6 7 1 0.26 51 19 19 10 0.32
Nov. 71 7 6 2 0.21 42 18 16 11 0.23
Dec. 48 12 13 5 0.35 21 22 20 18 0.55
Jan. 46 16 17 23 < 0.01 29 14 15 46 < 0.01
Feb. 47 19 15 7 0.39 27 20 21 19 0.40
Mar. 60 10 9 3 0.30 40 12 12 14 < 0.01
Apr. 76 2 3 3 < 0.01 62 10 10 5 0.08

be considered stationary. A similar approach was used byidentified earlier. We have here used the thresholds identi-
Walshaw [26] and gives a reasonable compromise betweenfied in Section 3.2.2 of 6.5 m fdds and 16.5 m s’ for Ws
allowing for gradual seasonal change and obtaining suffi- but the results of this analysis are not particularly sensitive
ciently long series to allow useful statistical analysis. For to the exact choice of threshold. For each variable and
each of the two variables and for period lengths of 48 and month, the table records the coumig and thep-value
60 h there is very little evidence of significant autocorrela- (significance level) associated with the test of the null
tion in the 64 monthly series, so that, on the basis of this hypothesis that the underlying probabilitipgs and p; are
analysis, it seems reasonable to take a period length of 48 hequal against theone-sided alternative thatp, < p;.
as sufficient to enable the associated observations to beThesep-values are those which result from the standard
treated as independent. test for the difference of two binomial proportions (with
As a second method of identifying a suitable period continuity corrections where appropriate). Some care
length, we consider the serial dependence of thresholdmust be taken in their interpretation, because of the
exceedances by the associated observations. As before, tgometimes small counts involved. However, it is clear
minimise problems of seasonality we perform a separatethat there is evidence of first-order dependence in the
analysis for each month. However, by restricting attention processes of threshold exceedances only for relatively
to first-order dependence (in which any short-term depen- few combinations of variable and month. The results
dence will certainly show) we may effectively combine therefore provide some very modest evidence of slight
each month’s data across the eight years for which it is further serial dependence in these threshold exceedance
available. This permits a more powerful analysis than that processes, but this seems very unlikely to be so great as
considered above. to seriously affect our subsequent analysis. No further
Consider a fixed (trial) period length and variabg improvement is obtained by the use of a period length
where hereX; = Hs or Ws Let u; be the threshold defined of 72 h.
in Section 2.1, above which the distribution of the observa-
tions X to be associated with this period length is modelled
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