
Diploma/MSc in Actuarial Mathematics and MSc in Financial Mathematics
Statistical Modelling
Tutorial 2 - solutions

1. (a) xT y =
∑n

k=1 xkyk and xyT is the n × n matrix whose (i, j) entry is xiyj.

(b) Without loss of generality, we can assume E(Xi) = 0 for all i, otherwise simply
replace Xi by Xi −E(Xi). In this case Cov(Xi, Xj) = E(XiXj) and from (a), we
can write Σ = E(XXT ), where XT = (X1, X2, . . . , Xn). But the matrix E(XXT )

is positive definite because yT XXT y = (yT X)2 =
( ∑

k ykXk

)2

> 0 with positive

probability, so its expected value is positive. (Since the Xi are not constants
with probability 1, it is not possible to find a y 6= 0 so that

∑
k ykXk = 0 with

probability 1.)

(c) Suppose Σ is not invertible. Then there is a solution y 6= 0 to the equation Σy = 0,
so yT Σy = 0 which contradicts the positive definiteness of Σ.

2. (a) Using Var(
∑

i Xi) = Cov(
∑

i Xi,
∑

i Xi) and Cov(Xi, Xj) = ρσ2, we have

Var(
∑

i

Xi) = Cov(
∑

i

Xi,
∑

i

Xi) =
n∑

i=1

Cov(Xi, Xi) +
n∑

i=1

∑
j 6=i

Cov(Xi, Xj)

= nσ2 + 2(n − 1)ρσ2.

The desired result follows from Var(X̄) = n−2Var(
∑

i Xi).

(b) In the iid case, Var(X̄) = σ2/n. In the situation of (a), if ρ > 0, Var(X̄) > σ2/n
while if ρ < 0 Var(X̄) < σ2/n.

3. (a) Note that Sn is the number of Xi which take value 1, hence Sn has bin(n, p)
distribution.

(b) Since E(Sn) = np and Var(Sn) = np(1−p), the Central Limit Theorem says that

Sn − np√
np(1 − p)

∼ N(0, 1) approx. for large n.

Hence

P (Sn ≤ k) = P (Sn < k + 1/2) = P
( Sn − np√

np(1 − p)
≤ k + 1/2 − np√

np(1 − p)

)

≈ Φ
(k + 1/2 − np√

np(1 − p)

)
.

The “continuity correction” of 1/2 could be omitted, in which case, the approxi-
mation which CLT gives would be

P (Sn ≤ k) = P
( Sn − np√

np(1 − p)
≤ k − np√

np(1 − p)

)
≈ Φ

( k − np√
np(1 − p)

)
.

We see that the difference between the 2 approximations is an extra term (4np(1−
p))−1/2 added to the argument of Φ. For large n, this difference is small, but
the value of p is also significant in determining the relative accuracy of the 2
approximations.
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4. Let X denote the number who do not turn up. Then X ∼ bin(310, 0.04) which is
approx. N(12.4, 11.904). Using the normal approximation gives

P (X ≥ 10) = P (X > 9.5) ≈ 1 − Φ((9.5 − 12.4)/
√

11.904) = 1 − Φ(−0.84) ≈ 0.80.

If the continuity correction was omitted, the same calculation would give

P (X ≥ 10) ≈ 1 − Φ((10 − 12.4)/
√

11.904) = 1 − Φ(−0.70) ≈ 0.76.

Even with a value of n as large as 310, the answers still differ by quite a lot. (This is
because the value of p is quite small, so (4np(1 − p))−1/2 is still quite big.)

Alternatively, one could argue that p = 0.04 is sufficiently close to 0 to use the Poisson
approximation, with mean 12.4 Therefore P (X ≥ 10) = 1−P (X ≤ 9) = 1− 0.2092 ≈
0.79, very similar to the answer obtained using the normal approximation with conti-
nuity correction. This example illustrates that there are some situations where both
the Poisson and normal approximations are equally acceptable.

5. (a) Note that Sn has Poisson distribution with mean λn. Since E(Xi) = Var(Xi) = λ,
the Central Limit Theorem says that

Sn − nλ√
nλ

∼ N(0, 1) approx.

Hence (using the “continuity correction” as in Questions 2 and 3),

P (Sn ≤ k) = P (Sn < k + 1/2) = P
(Sn − nλ√

nλ
≤ k + 1/2 − nλ√

nλ

)

≈ Φ
(k + 1/2 − nλ√

nλ

)
.

(b)

P (Sn = n) = P (n − 1/2 < Sn < n + 1/2)

= P
(n − 1/2 − nλ√

nλ
<

Sn − nλ√
nλ

<
n + 1/2 − nλ√

nλ

)

≈ Φ
(n + 1/2 − nλ√

nλ

)
− Φ

(n − 1/2 − nλ√
nλ

)
.

(c) Setting λ = 1 in (b) gives

P (Sn = n) =
nne−n

n!
≈ Φ

( 1

2
√

n

)
− Φ

(
− 1

2
√

n

)
.

But this last expression is the integral of the density of N(0, 1) over the interval
(−(2

√
n)−1, (2

√
n)−1), which is approximately the area of a rectangular strip

with width (
√

n)−1 and height (2π)−1/2. Hence

nne−n

n!
≈ (2πn)−1/2.

The desired approximation follows by making n! the subject of the above approx-
imate identity.
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