1. Give Haskell expressions, with associated types to

(a) multiply two Double precision numbers, 3.1416 and 4.7
3.1416 * 4.7

(b) concatenate “Hello” and “World”
"Hello" ++ "World"

(c) list the integers from -1000 to 24000
[-1000 .. 24000]

2. (a) Write a Haskell function \texttt{sumTill :: Int -> Int}, so that \texttt{sumTill n} calculates the sum of the numbers between 1 and (positive) \texttt{n},

\begin{verbatim}
sumTill :: Int -> Int
sumTill 0 = 0 -- Works for n > 0
sumTill n = n + sumTill (n-1)
\end{verbatim}

(b) Show how \texttt{sumTill 3} reduces to 6

\begin{verbatim}
sumTill 3
=> 3 + sumTill 2
=> 3 + 2 + sumTill 1
=> 3 + 2 + 1 + sumTill 0
=> 3 + 2 + 1 + 0
=> 6
\end{verbatim}

3. Write a Haskell function \texttt{fib :: Int -> Int}, so that \texttt{fib n} calculates the fibonacci number for \texttt{n}.

\begin{verbatim}
fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
\end{verbatim}

4. (a) Write a Haskell function \texttt{prod :: [Int] -> Int}, that returns the product of the elements of the list argument.

\begin{verbatim}
prod :: [Int] -> Int
prod [] = 1
prod (x:xs) = x * prod xs
\end{verbatim}

(b) Show how \texttt{prod [3 .. 5]} reduces to 60.

\begin{verbatim}
prod [3 .. 5]
=> prod [3,4,5]
=> 3 * prod [4,5]
=> 3 * 4 * prod [5]
=> 3 * 4 * 5 * prod []
=> 3 * 4 * 5 * 1
=> 60
\end{verbatim}
(c) Use a higher order function to write \texttt{prodH}, with the same semantics as \texttt{prod}.
\[
\texttt{prodH} :: \texttt{[Int]} \rightarrow \texttt{Int}
\texttt{prodH} \texttt{xs} = \texttt{foldr} (\times) 1 \texttt{xs}
\]

(d) Write a function \texttt{prodG} (for Generic) to calculate products of lists of any numeric type.
\[
\texttt{prodG} :: \texttt{Num a} \Rightarrow \texttt{[a]} \rightarrow \texttt{a}
\texttt{prodG} \texttt{xs} = \texttt{foldr} (\times) 1 \texttt{xs}
\]

5. Write a Haskell function \texttt{positive} :: \texttt{Int} \rightarrow \texttt{Bool}, so that \texttt{positive \ n} is true if \(n\) is greater than 0, and false otherwise.
\[
\texttt{positive} :: \texttt{Int} \rightarrow \texttt{Bool}
\texttt{positive \ n}
\mid \texttt{n > 0} \quad = \texttt{True}
\mid \texttt{otherwise} \quad = \texttt{False}
\]

6. Write a Haskell function \texttt{intersect} :: \texttt{Eq a} \Rightarrow \texttt{[a]} \rightarrow \texttt{[a]} \rightarrow \texttt{[a]}, so that \texttt{intersect \ xs \ ys} returns a list containing only those elements of \texttt{xs} that also appear in \texttt{ys}.
\[
\texttt{intersect} :: \texttt{Eq a} \Rightarrow \texttt{[a]} \rightarrow \texttt{[a]} \rightarrow \texttt{[a]}
\texttt{intersect \ xs \ ys} = [x \mid x \leftarrow \texttt{xs}, x \ 'elem' \ \texttt{ys}]
\]

7. (a) Write a Haskell function \texttt{powers} :: \texttt{Int} \rightarrow \texttt{[Int]}, so that \texttt{powers \ n} returns an infinite list \([n^1, n^2, n^3, ...]\)
\[
\texttt{powers} :: \texttt{Int} \rightarrow \texttt{[Int]}
\texttt{powers \ n} = [n^x \mid x \leftarrow [0..]]
\]
(b) Write a Haskell expression to return the first 5 powers of 3
\[
\texttt{take 5 (powers 3)}
\]

8. Write a Haskell highest common factor function: \texttt{hcf} :: \texttt{Integer} \rightarrow \texttt{Integer} \rightarrow \texttt{Integer}.
\[
\texttt{hcf} :: \texttt{Integer} \rightarrow \texttt{Integer} \rightarrow \texttt{Integer}
\texttt{hcf \ x \ 0} = \texttt{x}
\texttt{hcf \ x \ y} = \texttt{hcf \ y \ (rem \ x \ y)}
\]

9. Write a Haskell function \texttt{relprime} :: \texttt{Integer} \rightarrow \texttt{Integer} \rightarrow \texttt{Bool}, that is true if it’s arguments are relatively prime, but false otherwise.
\[
\texttt{relprime} :: \texttt{Integer} \rightarrow \texttt{Integer} \rightarrow \texttt{Bool}
\texttt{relprime \ x \ y} = \texttt{hcf \ x \ y == 1}
\]

10. The Euler totient (or phi) function \texttt{euler \ n} is a count of how many numbers less than \(n\) are relatively prime to \(n\), e.g. \texttt{euler 6} is 2 because 1 and 5 are relatively prime to 6. Write a Haskell function \texttt{euler} :: \texttt{Integer} \rightarrow \texttt{Int} that calculates the totient of it’s argument.
euler :: Integer -> Int
euler n = length (filter (relprime n) [1 .. n-1])

11. Write a Haskell function `sumTotient :: Integer -> Integer -> Int`, so that `sumTotient lower upper` calculates the sum of the totients between lower and upper.

\[
\text{sumTotient :: Integer -> Integer -> Int}
\]
\[
\text{sumTotient lower upper = sum (map euler [lower, lower+1 .. upper])}
\]

12. (a) Show that Java is a referentially opaque notation.

Java has an assignment statement, e.g. \(x = x + 1 \), and hence the value of the expression \(x \) is not “the same wherever it occurs.”

(b) Is the French language referentially transparent or opaque? Justify your answer.

It is opaque because it is possible for a sentence to refer to itself.

(c) It is relatively easy to reason about referentially transparent notations like Haskell. Prove that in Haskell, if \(f \ x = x + 1 \), then \(2 * (f \ x) = (f \ x) + (f \ x) \)

\[
\begin{array}{ll}
\text{L.H.S} & \text{R.H.S.} \\
2 * (f \ x) & (f \ x) + (f \ x) \\
=> 2 * (x + 1) & => (x + 1) + (x + 1) \\
=> 2x + 2 & => 2x + 2 \\
=> \text{R.H.S.} &
\end{array}
\]