Coinductive First-order Horn Clauses

Yue Li

PhD candidate supervised by Dr. Ekaterina Komendantskaya
School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

April 2018
A bit history of Yue: from amazing China to bonnie Dundee

- Bachelor in Hunan University, China.
- Master in University of Dundee, United Kingdom.
1 Introduction: What is coinduction, in logic programming?

2 Our Key Observation: Inadequacy of Horn clause logic to prove coinductive invariants of first-order Horn clause logic programs
The concept of “coinduction”

Coinduction refers to non-terminating computation. It is common in logic programming and type inference (e.g., Haskell type class resolution) due to recursive definitions.
The concept of “coinduction”

- Coinduction refers to non-terminating computation.
The concept of “coinduction”

- Coinduction refers to non-terminating computation.
- It is common in logic programming and type inference (e.g., Haskell type class resolution) due to recursive definitions.
An example of coinduction in logic programming

Consider a program P_1:

Clause (1) $\forall X (r(X) \implies r(X))$

In Prolog, $r(X) :\leftarrow r(X)$

We use \implies for implication, read as "implies".

clause (1) $:- r(X)$

The goal $?\ :- r(a)$ gives rise to an infinite SLD-derivation

$r(a) \rightarrow r(a) \rightarrow r(a) \rightarrow \cdots$

where we look for sufficient conditions for $r(a)$ to hold using clause (1).

http://www.macs.hw.ac.uk/~yl55/
Consider a program P_1:

Clause (1) \(\forall X \ (r(X) \supset r(X)) \)

In Prolog, \(r(X) :{-} r(X) \)

We use \(\supset \) for implication, read as “implies”. \(:{-} \) is read as “be implied by”.

Consider a program P_1:

Clause (1) $\forall X (r(X) \supset r(X))$ In Prolog, $r(X) :- r(X)$

We use \supset for implication, read as “implies”. :- is read as “be implied by”. The goal $?- r(a)$ gives rise to an infinite SLD-derivation

$r(a) \xrightarrow{\text{apply clause (1)}} r(a) \xrightarrow{\text{apply clause (1)}} r(a) \xrightarrow{\text{apply clause (1)}} \ldots$

where we look for sufficient conditions for $r(a)$ to hold using clause (1).
1. Introduction: What is coinduction, in logic programming?

2. Our Key Observation: Inadequacy of Horn clause logic to prove coinductive invariants of first-order Horn clause logic programs
A glimpse of research topics on coinductive logic programming

We try to:

- Identify phenomena of coinduction,
- Find coinductive invariants for logic programs, so that we can have a finite coinductive proof instead of an equivalent, infinite SLD-derivation. (Details explained later)

http://www.macs.hw.ac.uk/~yl55/
A glimpse of research topics on coinductive logic programming

We try to:

- Identify phenomena of coinduction,
A glimpse of research topics on coinductive logic programming

We try to:

- Identify phenomena of coinduction,
- Find coinductive invariants for logic programs,
A glimpse of research topics on coinductive logic programming

We try to:

- Identify phenomena of coinduction,
- Find coinductive invariants for logic programs, so that we can have a finite *coinductive proof* instead of an equivalent, infinite SLD-derivation. (Details explained later)
Example of a “coinductive invariant”

For program P_1: Clause (1)

$$\forall X (r(X) \supset r(X))$$

$r(a)$ is a coinductive invariant, in the sense that if we assume $r(a)$ is true, we can then prove $r(a)$ using the extended program $P_1' = P_1 \cup \{r(a)\}$ given as follows.

Clause (1) $$\forall X (r(X) \supset r(X))$$

Clause (2) $r(a)$

The finite coinductive proof is:

1. $r(a)$ (apply clause (1))
2. $r(a)$ (apply clause (2))
3. Success

The coinductive proof above, as well as the corresponding infinite derivation, are both sound, with respect to the greatest fixed point model of P_1.
Our Key Observation

Example of a “coinductive invariant”

For program P_1:

Clause (1) $\forall X \ (r(X) \supset r(X))$

$r(a)$ is a coinductive invariant,
Example of a “coinductive invariant”

For program P_1: Clause (1) $\forall X \ (r(X) \supset r(X))$, $r(a)$ is a coinductive invariant, in the sense that if we assume $r(a)$ is true, we can then prove $r(a)$ using the extended program $P'_1 = P_1 \cup \{r(a)\}$ given as follows.

Clause (1) $\forall X \ (r(X) \supset r(X))$
Clause (2) $r(a)$
Our Key Observation

Example of a “coinductive invariant”

For program $P_1: \begin{align*}
\text{Clause (1) } & \forall X \ (r(X) \supset r(X)), \\
\text{Clause (2) } & r(a)
\end{align*}$

$r(a)$ is a coinductive invariant, in the sense that if we assume $r(a)$ is true, we can then prove $r(a)$ using the extended program $P'_1 = P_1 \cup \{r(a)\}$ given as follows.

\begin{align*}
\text{Clause (1) } & \forall X \ (r(X) \supset r(X)) \\
\text{Clause (2) } & r(a)
\end{align*}

The finite coinductive proof is:

$$
\begin{array}{c}
\text{r(a)} \xrightarrow{\text{apply clause (1)}} \text{r(a)} \xrightarrow{\text{apply clause (2)}} \text{Success}
\end{array}
$$
For program P_1 : Clause (1) $\forall X (r(X) \supset r(X))$, $r(a)$ is a coinductive invariant, in the sense that if we assume $r(a)$ is true, we can then prove $r(a)$ using the extended program $P'_1 = P_1 \cup \{r(a)\}$ given as follows.

Clause (1) $\forall X (r(X) \supset r(X))$
Clause (2) $r(a)$

The finite coinductive proof is:

$$
r(a) \xrightarrow{\text{apply clause (1)}} r(a) \xrightarrow{\text{apply clause (2)}} \text{Success}
$$

The coinductive proof above, as well as the corresponding infinite derivation, are both sound, with respect to the greatest fixed point model of P_1.
A glimpse of research topics on coinductive logic programming

We try to:

- Identify phenomena of coinduction,
- Find coinductive invariants for logic programs, so that we can have a finite coinductive proof instead of an equivalent, infinite SLD-derivation.
We try to:

- Identify phenomena of coinduction,
- Find coinductive invariants for logic programs, so that we can have a finite *coinductive proof* instead of an equivalent, infinite SLD-derivation.
- Deal with “unusual” coinductive invariants.
Example of an “unusual” coinductive invariant

Consider program P:

Clause (3) $\forall X (p(s(X)) \supset p(X))$

In Prolog, $p(X) :- p(s(X))$

The goal $?-p(a)$ gives rise to an infinite SLD-derivation

$p(a)$ apply clause (3) $\rightarrow p(s(a))$

apply clause (3) $\rightarrow p(s(s(a)))$

apply clause (3) $\rightarrow \cdots$

http://www.macs.hw.ac.uk/~yl55/
Example of an “unusual” coinductive invariant

Consider program P_2:

Clause (3) $\forall X \ (p(s(X)) \supset p(X))$ In Prolog, $p(X) :- p(s(X))$
Example of an "unusual" coinductive invariant

Consider program P_2:

\[\forall X \ (p(s(X)) \supset p(X)) \]

In Prolog, \(p(X) :- p(s(X)) \)

The goal \(\neg p(a) \) gives rise to an infinite SLD-derivation

\[p(a) \xrightarrow{\text{apply clause (3)}} p(s(a)) \xrightarrow{\text{apply clause (3)}} p(s(s(a))) \xrightarrow{\text{apply clause (3)}} \ldots \]
For $P_2 : \text{Clause (3)} \quad \forall X (p(s(X)) \supset p(X))$, the coinductive invariant is $\forall X \ p(X)$, the finite coinductive proof is:

$\forall X \ p(X)$

eigenvariable c \rightarrow $p(c)$

apply clause (3)\rightarrow $p(s(c))$

apply clause (4)\rightarrow \text{Success}$

which is sound w.r.t. the greatest fixed point model of P_2.

We can then derive $p(a)$ as a corollary (recall that $p(a)$ has an infinite SLD-derivation w.r.t. P_2).

The catch: $\forall X \ p(X)$ is not a goal formula allowable by the syntax of Horn clause logic.
Our Key Observation

Example of “unusual” coinductive invariant (continued)

For P_2: Clause (3) $\forall X (p(s(X)) \supset p(X))$, the coinductive invariant is $\forall X p(X)$, in the sense that if we assume $\forall X p(X)$ is true, then we can prove $\forall X p(X)$ from the extended program $P_2' = P_2 \cup \{\forall X p(X)\}$:

Clause (3) $\forall X (p(s(X)) \supset p(X))$
Clause (4) $\forall X p(X)$
Example of “unusual” coinductive invariant (continued)

For \(P_2 \) : Clause (3) \(\forall X \ (p(s(X)) \supset p(X)) \), the coinductive invariant is \(\forall X \ p(X) \), in the sense that if we assume \(\forall X \ p(X) \) is true, then we can prove \(\forall X \ p(X) \) from the extended program \(P'_2 = P_2 \cup \{ \forall X \ p(X) \} \):

\[
\text{Clause (3) } \quad \forall X \ (p(s(X)) \supset p(X)) \\
\text{Clause (4) } \quad \forall X \ p(X)
\]

The finite coinductive proof is:

\[
\forall X \ p(X) \xrightarrow{\text{eigenvariable } c} p(c) \xrightarrow{\text{apply clause (3)}} p(s(c)) \xrightarrow{\text{apply clause (4)}} \text{Success}
\]

which is sound wrt. the greatest fixed point model of \(P_2 \).
For P_2 : Clause (3) $\forall X \ (p(s(X)) \supset p(X))$, the coinductive invariant is $\forall X \ p(X)$, in the sense that if we assume $\forall X \ p(X)$ is true, then we can prove $\forall X \ p(X)$ from the extended program $P'_2 = P_2 \cup \{\forall X \ p(X)\}$:

Clause (3) $\forall X \ (p(s(X)) \supset p(X))$
Clause (4) $\forall X \ p(X)$

The finite coinductive proof is:

$$\forall X \ p(X) \xrightarrow{\text{eigenvariable } c} p(c) \xrightarrow{\text{apply clause (3)}} p(s(c)) \xrightarrow{\text{apply clause (4)}} \text{Success}$$

which is sound wrt. the greatest fixed point model of P_2. We can then derive $p(a)$ as a corollary (recall that $p(a)$ has an infinite SLD-derivation wrt. P_2).
For P_2 : Clause (3) $\forall X \ (p(s(X)) \supset p(X))$, the coinductive invariant is $\forall X p(X)$, in the sense that if we assume $\forall X p(X)$ is true, then we can prove $\forall X p(X)$ from the extended program $P'_2 = P_2 \cup \{\forall X p(X)\}$:

Clause (3) $\forall X \ (p(s(X)) \supset p(X))$
Clause (4) $\forall X p(X)$

The finite coinductive proof is:

$\forall X p(X) \xrightarrow{\text{eigenvariable } c} p(c) \xrightarrow{\text{apply clause } (3)} p(s(c)) \xrightarrow{\text{apply clause } (4)} \text{Success}$

which is sound wrt. the greatest fixed point model of P_2. We can then derive $p(a)$ as a corollary (recall that $p(a)$ has an infinite SLD-derivation wrt. P_2).

The catch:

$\forall X p(X)$ is not a goal formula allowable by the syntax of Horn clause logic.
A glimpse of research topics on coinductive logic programming

We try to:

- Identify phenomena of coinduction,
- Find coinductive invariants for logic programs, so that we can have a finite *coinductive proof* instead of an equivalent, infinite SLD-derivation.
- Deal with “unusual” coinductive invariants
A glimpse of research topics on coinductive logic programming

We try to:

- Identify phenomena of coinduction,
- Find coinductive invariants for logic programs, so that we can have a finite coinductive proof instead of an equivalent, infinite SLD-derivation.
- Deal with “unusual” coinductive invariants which are not provable within Horn clause logic.

http://www.macs.hw.ac.uk/~yl55/
We try to:

- Identify phenomena of coinduction,
- Find coinductive invariants for logic programs, so that we can have a finite coinductive proof instead of an equivalent, infinite SLD-derivation.
- Deal with “unusual” coinductive invariants which are not provable within Horn clause logic.
- Search for a logic (which must be richer than Horn clause logic) capable to prove both “usual” and “unusual” coinductive invariants involved in first-order Horn clause logic programming.
We try to:

- Identify phenomena of coinduction,
- Find coinductive invariants for logic programs, so that we can have a finite coinductive proof instead of an equivalent, infinite SLD-derivation.
- Deal with “unusual” coinductive invariants which are not provable within Horn clause logic.
- Search for a logic (which must be richer than Horn clause logic) capable to prove both “usual” and “unusual” coinductive invariants involved in first-order Horn clause logic programming.

Thanks!