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Abstract

We use a case study of a pension plan wishing to hedge the longevity risk in its pen-
sion liabilities at a future date. The plan has the choice of using either a customised
hedge or an index hedge, with the degree of hedge effectiveness being closely related
to the correlation between the value of the hedge and the value of the pension lia-
bility. The key contribution of this paper is to show how correlation and, therefore,
hedge effectiveness can be broken down into contributions from a number of distinct
types of risk factor. Our decomposition of the correlation indicates that population
basis risk has a significant influence on the correlation. But recalibration risk as well
as the length of the recalibration window are also important, as is cohort effect un-
certainty. Having accounted for recalibration risk, additional parameter uncertainty
has only a marginal impact on hedge effectiveness. Finally, the inclusion of Poisson
risk only starts to become significant when the smaller population falls below about
10,000 members over age 50.

Our case study shows that, at least for medium and large pension plans, longevity
risk can be substantially hedged using index hedges as an alternative to customised
longevity hedges. As a consequence, when the hedger’s population involves more
than about 10,000 members over age 50, index longevity hedges (in conjunction with
the other components of an ALM strategy) can provide an effective and lower cost
alternative to both a full buy-out of pension liabilities or even to a strategy using
customised longevity hedges.
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recalibration risk.
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1 Introduction

Hedging the longevity risk in pension plans – the risk that, in aggregate, plan mem-
bers live longer than anticipated – is becoming increasingly important. As more
defined benefit pension plans close to future accrual and pension liabilities accord-
ingly become crystallised, plan sponsors face the choice of selling their legacy pension
liabilities or retaining them on their books and managing them.

The UK was the first country in the world to witness the development of both a
buy-out market for pension liabilities and a longevity swap market to help sponsors
hedge longevity risk as part of an asset-liability management (ALM) strategy.

With a buy-out, an insurance company, in exchange for a buy-out fee, takes over
the plan liabilities and assets and takes on the responsibility for making the pension
payments until the last plan member dies. A buy-out is known as an insurance
indemnification solution, since all risks in the pension plan – the key ones being
interest-rate, inflation-rate and longevity risk – are fully transferred from the sponsor
to the insurer. The cost of a buy-out is high since the insurer has to post substantial
regulatory capital to ensure that the pension payments will be made with a high
degree of probability, as well as to ensure, ex ante, that the purchase price offers
an adequate expected return relative to the risks being transferred. In addition
to transferring all the pension assets, the sponsor might also need to make a cash
payment to the insurer if the plan is in deficit, in order to fund the buy-out. Further,
the sponsor foregoes the opportunity to manage the pension assets efficiently itself
and so reduce the ultimate cost of the liability.

In contrast, a sponsor might decide to retain the pension plan and implement an
ALM strategy, which broadly replicates the same economic effect as a buyout. This
brings certain cost advantages. First, the sponsor saves making the buyout risk
premium which would otherwise be paid to the insurer as compensation for taking
on the risks associated with the pension plan. Second, the cost of each compo-
nent of the ALM strategy can be separately negotiated and implemented, providing
greater transparency, minimal upfront hedging costs (since the principal hedging
instruments, interest-rate, inflation-rate and longevity swaps, have a zero value at
execution) and flexibility in the timing and structure of implementation. However,
the key disadvantage of such an ALM strategy – which has been dubbed a ”do-
it-yourself” (DIY) buy-out – is that the risks are not perfectly hedged. This is
due to the idiosyncracies of each pension plan’s membership and benefit structure.
Swaps can hedge a significant proportion of the relevant risks in a given pension
plan, but inevitably there will be some residual basis risk which cannot be hedged
cost-effectively using capital market instruments.

This paper deals with the hedging of longevity risk, and so we will focus our remarks
on this issue specifically. An ALM strategy might include the use of longevity swaps.
However, there are different types of longevity swap and, accordingly, different levels
of basis risk. A customised longevity swap takes into account the particular charac-
teristics of each pension plan’s demographics and benefit structure and is designed
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to maximise hedge effectiveness. An important alternative to this is an index swap
that is linked to a relevant longevity index, rather than to the longevity experience
of the pension plan members. As an example, the index might be related to the
national population of the country in which the pension plan is domiciled (which
we denote population 1 below). Since the composition of a pension plan’s member-
ship (which we denote population 2 below) will differ from that of the index, the
hedge will inevitably involve greater basis risk (and hence lower effectiveness) than
a customised swap. As a standardised product, an index swap has the advantage of
being cheaper, less complex, and much easier to unwind. However, it only attempts
to reduce longevity risk, rather than eliminate it completely.

Plan sponsors therefore face two key trade-offs. One is between the high costs
and complete indemnification of a buy-out versus the lower costs and basis risk
associated with a DIY-buyout/ALM strategy. The other, within the context of
ALM, is between the higher costs and minimal basis risk of a customised longevity
swap versus the lower costs and greater liquidity but higher basis risk associated
with an index swap.

1.1 Analysis and evaluation of longevity hedges

In this paper, we examine the trade-off between customised and index longevity
hedges. Coughlan et al. (2011) proposed a clear framework for ”(i) developing an
informed understanding of the basis risk, (ii) appropriately calibrating the hedging
instrument and (iii) evaluating hedge effectiveness”. In this paper, we follow closely
Coughlan et al. (2011) both in terms of the framework and their main case study.
However, the key difference, and the main contribution, in the present work is that
whereas Coughlan et al. used a largely model-free bootstrapping approach to the
evaluation of hedge effectiveness in their case study, we use a model-based simulation
approach. As will be demonstrated later, this allows us to break down basis risk
and the evaluation of hedge effectiveness into a number of components by switching
on and off a number of key risk factors.

Our case study involves the use of England & Wales male mortality (the LifeMetrics
index) to hedge liabilities linked to Continuous Mortality Investigation (CMI) male
assured lives mortality. 2 The case study considers a value hedge (as opposed
to a cashflow hedge) set up at time 0 of a pension plan liability’s exposure to
longevity risk at a single future valuation date, T .3 The hedging instrument that we

2http://www.actuaries.org.uk/research-and-resources/pages/continuous-mortality-
investigation/

3A value hedge seeks to hedge the present value of a sequence of future pension cash flows at a
single future date, T . This contrasts with a cashflow hedge which consists of an asset strategy which
delivers a sequence of cashflows that is as close as possible to the sequence of pension plan liability
cashflows. Value hedging is fundamentally different from cashflow hedging. An effective value
hedge can be achieved using a variety of hedging instruments, each of which can be quite different
in style from the liability value being hedged. In contrast, a cashflow hedge generally requires a
hedging instrument that is very similar in structure to the liability cashflows. Nevertheless, the
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use will be a ”cash-settled” deferred longevity swap (defined later). Decomposing
the correlation between the hedging instrument and the liability values is broadly
equivalent to decomposing the effectiveness of the hedge.

There are three key categories of factor that contribute to an assessment of hedge
effectiveness or the correlation between a hedging instrument and the liability being
hedged:

1. Factors related to population differences, including:

• Population basis risk: this arises as a result of using a hedging instru-
ment linked to a different reference population from that of the hedging
population.

• Mismatched cohorts especially at younger ages: typically, the hedger of
population 2 will wish to hedge the longevity risk for an existing group
of plan members with accrued pension rights: that is, there will be some
historical data for that cohort. However, the hedger might choose to link
the hedging instrument to a cohort born in a different year (resulting in
an age mismatch). In theory, this reference cohort might be one for which
there will be no data available until after time 0. In this case, the value of
the hedging instrument at T has the cohort effect as an additional source
of uncertainty that will have a detrimental impact on hedge effectiveness.4

2. Factors related to the model used for simulation, including:

• The choice of model to be fitted to historical mortality data and how the
parameters and latent state variables of this model will be calibrated.5

This model will be used to simulate future mortality scenarios which will
then, one by one, be fed into the valuation model discussed below.6

• Parameter uncertainty: arises because the true values of the parame-
ters of the simulation model used to generate future mortality scenarios

ideas that we present here can be easily adapted for other choices of hedging instrument. Value
hedging is important in a number of circumstances, including: situations where meeting shorter-
term solvency requirements is more onerous than meeting cashflows in the long term (e.g., Nielsen,
2010); mergers and acquisitions where pension plan value is significant relative to the operating
business; hedging longevity risk associated with deferred pensions and annuities.

4This means that, in practice, linkage to a future cohort would be suboptimal and hence not to
be recommended.

5 In line with other authors in the longevity risk management space we use the term calibration
rather than estimation. Krugman (2011) defines calibration as ”tweaking the parameters of your
model until it fits some aspects of the data, rather than flat-out estimating the model”. Thus,
calibration includes ‘flat-out’ estimation (which might be the case in our present context), but
equally it includes cases where expert judgement in some form is employed, and this is often the
case in practice: for example, in the setting of mortality improvement rates. We note that one
study in a different field has coined the term estibration to describe this procedure (Balistreri and
Hillberry (2005)).

6There is model risk associated with the simulation model, since we do not know the true model
generating future mortality rates: we disregard this risk in this study.
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and quantify longevity risk are unknown – this covers both the process
parameters (i.e., parameters governing the dynamics of the underlying
stochastic processes) and the latent state variables of the model (i.e., the
underlying age, period and cohort effects).

• Poisson risk:7 otherwise known as small-population risk or sampling vari-
ation; the risk that the mortality experience of a small group of people will
differ from the underlying true mortality rate; the financial consequences
can be magnified if there is significant variation between individuals in
pension entitlements.8

3. Factors related to the model used for valuation at the future valuation date,
T :

• The choice of model to be used to value liabilities at time T . This model
is likely to be different from the simulation model.9

• Recalibration risk: the uncertainty in both future liability values and
hedging-instrument values associated with the calibration and recalibra-
tion of the parameters of the valuation model used to project mortality
beyond the valuation date, T . The valuation model contains a number
of process parameters that are assumed to be remain constant over time.
However, the model will normally be calibrated using the latest available
data. Thus, the calibration will be dependent on the specific scenario
under consideration, and will be based solely on observed deaths and ex-
posures rather than assuming knowledge of the underlying latent state
variables. The extent to which valuation model parameters vary from one
simulation scenario to the next results in additional randomness in liabil-
ity and hedging-instrument values at T . Recalibration risk is, therefore,
heavily dependent on the scenarios generated by the simulation model
and includes the influence of both parameter uncertainty and Poisson
risk.

• Recalibration window: the length of the lookback window over which the
valuation model is estimated and subsequently recalibrated; this reflects
a tradeoff between using more years of data to get a better estimate of
the volatility in the data and using fewer years of data to get a better
estimate of the current trend in mortality improvements; it has a direct
influence on recalibration risk.

4. Factors related to the structure of the hedge, such as:

7So-called because deaths in the pension plan are generally assumed to follow a (conditional)
Poisson distribution; see, e.g., Dahl et al. (2008), Li and Hardy (2011) and Biffis et al. (2010).
See, however, Li et al. (2009) for alternative assumptions.

8We do not consider this so-called concentration risk explicitly in the present paper. However,
we can note that this type of concentration of risk is more important in cashflow hedging problems.

9There is also model risk in respect of the valuation model; again we disregard this risk in this
study.
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• Choice of hedging instrument.

• Choice of maturity date, reference population and reference age(s).

• Sub-optimal or inaccurate hedge ratio.

• Robustness of the hedge ratio: the challenge is to devise strategies that
can maximise hedge effectiveness and to find solutions that are robust
relative to, for example, errors in the specification of the model and pa-
rameters, etc.

• Index versus customised hedges.

• Static versus dynamic hedges.10

• Multi-instrument11 versus single-instrument hedges.

The above list is quite extensive and it would not be feasible to examine all pos-
sible factors in a single study. Nevertheless, ours is the first study to carry out a
forensic analysis of what we anticipate being the most important risk factors in a
longevity hedging context, namely population basis risk, cohort effect uncertainty,
recalibration risk, the impact of the length of the recalibration window, parameter
uncertainty, and Poisson risk.

Previous studies which have examined a smaller subset of risk factors include: Dahl
et al. (2008, 2009), Plat (2009), and Coughlan et al. (2011). Earlier studies
which have examined different hedging instruments, such as longevity swaps, de-
ferred longevity swaps and other longevity-linked bond and derivative structures,
include Blake and Burrows (2001), Blake et al. (2006), Coughlan et al. (2007),
Loeys et al. (2007), Cairns et al. (2008), Coughlan (2009), Wills and Sherris (2010),
and Blake et al. (2010). Previous studies which have looked at the value-hedging
paradigm include Coughlan et al. (2011) – in terms of effective risk reduction when
future cashflows are highly unpredictable – and Nielsen (2010) and Olivieri and
Pitacco (2009) in the context of Solvency II. Price sensitivty and cashflow hedging
is considered by Li and Luo (2012).

We find in this paper that recalibration risk has an important role to play in the
assessment of hedge effectiveness. This is because we have a limited amount of
historical data, leading to parameter uncertainty in both process parameters and
the underlying state variables. This paper is the first to consider recalibration risk
in the longevity literature. However, the concept is familiar elsewhere in the finance
literature. The key issue is that model parameters that are assumed to remain
constant are, in fact, recalibrated on a regular basis: partly because of parameter
uncertainty and partly because the ”true” model generating prices is different from
the model being calibrated against these prices (e.g., the Black-Scholes model). The
result is a sequence of calibrations that is inconsistent with the constant-parameter

10In this paper, we only consider static hedges. However, especially if there were a liquid market
in appropriate hedging instruments, the hedge ratios could be modified from time to time between
commencement of the hedge (time 0) and the target valuation date (time T ).

11For example, the use of two or more deferred longevity swaps with different reference ages.
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assumption. The fact that, for example, equity volatility is known to vary over time
(as well as over strike prices and maturity dates) rather than remain constant, results
in derivatives desks having to hedge against changes in volatility (vega hedging).

A related, but different, form of calibration risk concerns the method use to calibrate
a complex model to a given set of market data (see, for example, Detlefsen and
Härdle, 2007). The nearest equivalent in the mortality modelling context would,
perhaps, be the choice between the conditional Poisson model for death counts and
some other distribution (e.g., the normal distribution assumed by Lee and Carter,
1992).

We also find that the major determinants of correlation, and therefore hedge ef-
fectiveness, are population basis risk and the length of the recalibration window.
Lesser, but still important factors are: parameter uncertainty (other than recalibra-
tion risk) and the reference age for the hedging instrument (especially if the reference
age is at the lower end of the age range analysed).

1.2 Structure of the paper

The remainder of the paper is organised as follows. Section 2 sets out a case study
of a pension plan that is considering hedging the longevity risk it faces using either
a customised or an index longevity hedge. Section 3 outlines the five steps in con-
structing and evaluating the hedge using the very general framework of Coughlan
et al. (2011) and discusses the role of correlation (between the values of the hedging
instrument and the liability) in determining the level of hedge effectiveness. Section
4 describes the data and stochastic mortality model that we will use. Section 5 dis-
cusses how the model is used for both (i) simulating future mortality rates and (ii)
valuing both the liability (a type of deferred annuity) and the hedging instrument.
Although the choice of simulation model is independent of the choice of valuation
model, we use the same model for convenience. Section 6 is the key numerical sec-
tion that focuses on the correlation between the value of the pension liability in our
case study and the values of both customised and index-based hedging instruments
and quantifies how the different risk factors influence these correlations. Finally,
Section 7 concludes.

2 A case study: A customised versus index hedge

Our discussion is centred on a stylised case study involving a UK pension plan con-
sisting of male members only, which pays no spouses’ or dependants’ benefits. We
evaluate hedging instruments that hedge the longevity risk associated with the value
of the pension liability. The pension plan members will be assumed to have under-
lying mortality rates that are the same as the CMI male assured lives dataset and
the pension liability will be calculated with reference to current and projected CMI
mortality. This choice is because the CMI population has a very different mortality
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profile from the national population (see for example, Coughlan et al., 2011), thereby
allowing us to easily incorporate population basis risk into the discussion. In order
to hedge the longevity risk in the pension plan, we will consider both a hedging
instrument linked to CMI male mortality (in the case of a customised hedge) and
one linked to England & Wales (EW) male mortality (in the case of an index hedge).
At the time we conducted this study, data were available for both populations up
to the end of 2005 (time t = 0).12

Now define ak(T, x) as the value at T of a pension (or, equivalently, a life annuity)
of £1 per annum payable annually in arrears from time T until death to a male aged
x at time T in population k:

k = 1 England & Wales, males
k = 2 CMI assured lives, males.

Interest rates will be assumed to be constant and equal to r per annum in order
that we can focus attention on longevity risk. With this in mind we can represent
the value of the pension as

ak(T, x) =
∞∑
s=1

(1 + r)−spfwd
k (T, s, x) (1)

where the forward (prospective) survival probability, pfwd
k (T, s, x), represents the

best estimate at T , that an individual aged x at time T in population k will survive
for a further s years. The forward survival probabilities will be evaluated using a
specified valuation model that will be discussed in detail in Section 5.

Our objective is to hedge the longevity risk in the value of a pension liability L(T ) =
a2(T, x), where T = 10 years (i.e., the end of 2015) and x = 65.13 In our case study,
the chosen hedging instrument will be a ”cash-settled” deferred longevity swap that
exchanges, at time T , the present value of a series of fixed cashflows for the present
value of a set of floating cashflows occurring after time T . The floating cashflows will
be equal to the proportions of a cohort aged y in population k at time T that are still
alive at times T +1, T +2, . . ., while the fixed cashflows of K(T + s) for s = 1, 2, . . .
are fixed at time 0. Thus, the value at time T of the floating leg of the swap will be
ak(T, y) (i.e., the same as the value of an annuity) and we will denote the value at
T of the fixed leg by âfxdk (0, T, y), where the additional argument of 0 refers to the
date on which the fixed leg was contracted (in other words, this denotes a deferred
annuity agreed at time 0 with the first payment at time T ). We will use H(T ) to
denote the cash-settled value at T of the deferred longevity swap. In summary, we,

12In fact, EW data were available up to 2009. This potential mismatch is discussed in further
detail in Cairns (2011b).

13 Here L(T ) represents the discounted value at T of the future unknown liability cashflows at
T + 1, T + 2, . . ., and takes account of the information that is known at time T but not after time
T .
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therefore, have the following values at T based on information available at time T :

L(T ) = a2(T, 65) where T = 10 (2)

and H(T ) = ak(T, y)− afxdk (0, T, y). (3)

3 Constructing and evaluating a hedge

3.1 The hedge effectiveness framework

Following the framework of Coughlan et al. (2004, 2011), there are five steps in
constructing and evaluating a hedge – whether customised or index. These steps
have been slightly modified to suit our case study and are outlined in Tables 1 to 3.

Step Case study details

Step 1: Objectives
Risk to be hedged Liability value, L(T ) = a2(T, x)
Horizon T = 10
Full or partial risk mitigation? Partial risk reduction

Step 2: Hedging instrument
Choice of instrument Deferred longevity swap, value at T :

H(T ) = ak(T, x)− âfxdk (0, T, x)
(no collateral or margin calls)

Hedged position: static or dynamic? Static: P (h) = L(T ) + h×H(T )

Step 3: Method for assessment of hedge effectiveness
Risk metric V ar (P (h))
Basis for hedge effectiveness 1− V ar (P (h)) /V ar (L(T ))
Scenario generator Two-population Age-Period-Cohort

stochastic simulation model
Valuation model 2× One-population APC models

with consistent projections

Step 4: Hedge effectiveness calculation
Simulate future mortality rates up to T See Table 2
Evaluate position at T See Table 3
Calibrate hedge ratio h∗ = −ρLH × SD(L(T ))/SD(H(T ))
Evaluate hedge effectiveness (h∗ minimises V ar(P (h)))

Step 5: Detailed analysis and interpretation of results

Table 1: Five steps in constructing and evaluating a hedge (adapted from Coughlan
et al., 2011).

Step 1 in Table 1 requires a clear definition of the hedging objectives. This includes
defining the position to be hedged and the hedge horizon, T . In our case study, the
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Population k = 1 Population k = 2

1 Past mortality rates Past mortality rates
for index population for pension plan
(up to time ”t = 0”) (up to time ”t = 0”)

2 Fit two-population model

3 Simulation of two-population
underlying mortality rates for t = 1, . . . , T

4 Index population: Add Pension plan: Add
Poisson risk to death counts Poisson risk to death counts

5 Future scenarios for index Future scenarios for pension plan
mortality experience, t = 1, . . . , T mortality experience, t = 1, . . . , T

Table 2: Five stages of simulation

Population k = 1 Population k = 2

Historical data + simulation results

1A Past mortality rates Past mortality rates
for index for pension plan

1B + Future mortality scenarios + Future mortality scenarios
for index for pension plan

Valuation model

2 Scenario + Model ⇒ calibration for Scenario + Model ⇒ calibration for
hedging instrument valuation pension plan liability valuation

3 Consistent valuation model mortality projections

4 For each scenario: For each scenario:
Index hedging instrument valuation Pension plan liability valuation

5 Calculate hedge effectiveness

Table 3: Five stages of evaluation
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metric, or quantity at risk, to be hedged is the value of the liability, a2(10, 65), over
a horizon of 10 years. This step also involves a clear definition of the risk to be
hedged and whether to mitigate it entirely (indemnification) or whether to mitigate
it partially (leaving some degree or other of residual basis risk).

In step 2, we choose the hedging instrument, or instruments, that we will use to
reduce the liability risk. In the present case, it will be a deferred longevity swap,
with a choice of reference population, k,14 maturity dates, T , and reference starting
ages, y. The hedge will be a static value hedge.15

Step 3 is the crucial step of defining the method for hedge effectiveness assessment.
This is important because an inappropriate choice can easily lead to misleading
hedge effectiveness results. This step involves not only the risk metric used to assess
hedge effectiveness but also the method in which it is applied. For our case study,
we choose the variance in the value of the pension liability as the risk measure (the
same as, for example, Li and Hardy, 2011). Hedge effectiveness then provides us
with a proportionate assessment of how much the variance of the liabilty will fall as
a result of hedging.

We take a prospective approach to hedge effectiveness assessment using forward
looking simulation of future mortality rates (see Coughlan et al., 2004, for a discus-
sion of this and other choices). The risk measure is derived from a large number of
independent scenarios for mortality rates between time t = 0 and time T that are
generated using a stochastic simulation model.16

There are two key stages in Step 4: simulation and valuation. First, there is a
simulation stage that takes us from the present time t = 0 to time T (see Table
2). This requires a two-population stochastic mortality model17 to be calibrated to
historical data up to time t = 0 that can then be used to simulate future mortality
rates for both populations to time T . Second, for each stochastic scenario up to
time T , we need to be able to value the liability and hedging instrument at time T .
Valuation of these requires us to project, at T , the future liability cash flows beyond
time T (see Table 3). We, therefore, extend each sample path of mortality rates up
to time T into a two-dimensional mortality table that projects beyond time T . The
final year of the simulated scenario at time T gives us the base, one-dimensional
mortality table, and the pattern of mortality improvements up to time T are used
to turn this base mortality table into a two-dimensional set of projected mortality
and survival rates that can be used to calculate annuity values at T . We are then
in a position to evaluate hedge effectiveness.

In other words, the outcome from the simulation and valuation procedures is a

14k = 1 for an index swap and k = 2 for a customised swap.
15Dynamic hedging is not feasible except at potentially significant cost. Additionally, with our

particular choice of liability and hedging instrument, dynamic hedging does not, in fact, result in
a significantly better hedge.

16There are other methods of generating these scenarios, for example, Coughlan et al. (2011)
used bootstrapping of historical data.

17This jointly models two related populations by recognising the interdependence between them.
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bivariate distribution for the liability and hedging instrument values at T . This, in
combination with our chosen measure of hedge effectiveness, allows us to calculate
the optimal hedge ratio, h∗.

Step 5 analyses the results of steps 1 to 4. This includes testing the robustness of our
solutions to the assumptions used in the calculations, as well as assessing whether
the results make intuitive sense.

3.2 Correlation and hedge effectiveness

Ultimately, our aim is to measure the effectiveness of any hedging strategy that we
might choose to adopt. Here we focus on a simple value-hedging setting where we
consider a static hedge using a single hedging instrument.

Suppose that we have a future random liability with value L = L(T ) at time T .
Alongside this, we have a hedging instrument that has value H = H(T ) at time T .
Our hedged portfolio consists of the liability plus h units (the hedge ratio) of H and
its value at T is P (h) = L+ h.H.

If we use variance as our measure of risk,18 hedge effectiveness is defined as R2(h) =
1− V ar[P (h)]/V ar[L]: that is, it measures the proportionate reduction in risk due
to the hedge. The optimal hedge ratio per unit of liability, L, then becomes

h∗ = −ρ SD(L)

SD(H)
= −Cov(L,H)

V ar(H)
, (4)

where ρ = Cor(L,H) (see, for example, Coughlan et al., 2004, for a general discus-
sion of the optimal hedge ratio in a hedge effectiveness context). We then have

R2(h∗) = ρ2 and R2(h) = ρ2
(
1− (h− h∗)2

h∗2

)
. (5)

We can conclude from (5) that, in this simple situation with a static hedge and a
single hedging instrument, it is sufficient for us to analyse the correlation between
L and H. When comparing hedging instruments, the one that has the highest
(absolute) correlation will deliver the highest optimal hedge effectiveness, provided
the optimal hedge ratio is employed.

The use of variance (or standard deviation) as the risk measure is consistent with
the objective of UK pension plans to eliminate as much risk as possible over a period
of years.

4 Data and model

We will use EW and CMI data covering ages 50 to 89 and calendar years 1961 to
2005 (with 2005 treated as t = 0). The full range of these data is used to fit the two-

18For a short discussion of variance as our risk metric and some alternatives, see Appendix A.
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population stochastic mortality model specified below. This model plus parameter
estimates – with some, but not all, experiments incorporating parameter uncertainty
– is then used to simulate mortality rates at ages 50 to 89 for the years 2006 to 2015.
The choice of age range means that the CMI cohort aged 65 in 2015 – the cohort
that we refer to in our liability L(T ) = a2(T, 65) – was aged 55 in 2005. Thus, our
initial dataset up to 2005 already provides us with an estimate of the cohort effect
that will be used in the evaluation of a2(T, 65).

For valuation purposes, actuaries will be assumed to have data available from 1961
up to the end of 2015. However, a projection model intended to project beyond
time T will only be calibrated using data from the most recent 20 years (1995 to
2015) in order to capture the most recent trend in mortality rates. The assumption
of a 20-year lookback window is consistent with market practice, although not all
practitioners, of course, will use exactly 20 years (see the discussion in Dowd et al.,
2010b).19

We will use the two-population Age-Period-Cohort (APC) model for mk(t, x), the
population-k death rate, discussed in Cairns et al. (2011b).20 Specifically, we assume
that

logmk(t, x) = β(k)(x) +
1

na

κ(k)(t) +
1

na

γ(k)(t− x) (6)

where: t is the calendar year; x is the age last birthday; na is the number of individual
ages covered by the dataset;21 β(1)(x) and β(2)(x) are the population 1 and 2 age
effects, respectively; κ(1)(t) and κ(2)(t) are the corresponding period effects; γ(1)(c)
and γ(2)(c) are the corresponding cohort effects; and c = t−x = cohort year of birth.
Given mk(t, x), actual death counts, Dk(t, x), for population k and age x in year t
are assumed to have a conditional Poisson distribution with mean mk(t, x)Ek(t, x),
where Ek(t, x) is the central exposed to risk, both in historical model fitting and in
the forecasts. See Section 5.1 for further details.

This model is one of the simplest that incorporates both random period and cohort
effects. Our reasons for including a cohort effect are twofold. First, cohort effects
have been found to be significant in a number of countries (e.g., England & Wales,
France, Germany, Japan and Italy; see Cairns et al., 2011a). Second, when we
consider possible hedges of longevity risk, we build on the observations of Cairns et
al. (2011b) to demonstrate that the presence of a significant cohort effect can have
a material impact on correlation and, implicitly, hedge effectiveness in a way that
would not be evident if a model with no stochastic cohort effect were used.

The stochastic elements in our model (i.e., the period and cohort effects) are struc-
tured in a way that assumes that one population is large and the other population

19However, even if our use of the Age-Period-Cohort model for valuation is correct, we cannot
be sure what length of lookback window, W , valuers will use. Indeed, W , might be considered to
be a source of Knightian uncertainty: W is not just uncertain, but the degree of uncertainty is not
quantifiable. Dealing with W as a source of uncertainty is discussed further by Cairns (2011b).

20Alternative multi-population models have been proposed by Li and Lee (2005), Dahl et al.
(2008, 2009), Jarner and Kryger (2011), Plat (2009) and Dowd et al. (2011a).

21For example, our dataset covers ages 50 to 89, so na = 40.
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is a small (sub-)population. Thus (see Cairns et al., 2011b, for further discussion),

• Large population 1

– κ(1)(t) is modelled as a random walk with drift ν1.

– γ(1)(c) is modelled as an AR(2) process mean-reverting to a linear trend.
(This has the ARIMA(1,1,0) model as a special limiting case.)

• The smaller population 2 is modelled indirectly using the spreads in the period
and cohort effects:

– The spread between period effects, S2(t) = κ(1)(t) − κ(2)(t), is modelled
as an AR(1) process with, potentially, a non-zero mean-reversion level.
Random innovations in the AR(1) process are correlated with the κ(1)(t)
innovations.

– The spread between cohort effects, S3(c) = γ(1)(c) − γ(2)(c), is modelled
as an AR(2) process with, potentially, a non-zero mean-reversion level.
Random innovations in the AR(2) process are correlated with the γ(1)(c)
innovations.

• Random innovations in the bivariate period-effect processes are assumed to be
independent of random innovations in the bivariate cohort-effect processes.

The equations for this model are presented in Appendix B, and for a fuller discussion
of the model, see Cairns et al. (2011b). A key element of the model fitting process
in Cairns et al. (2011b) is the use of Bayesian methods.22 The approach starts by
combining the statistical likelihood functions for the death counts and the time series
of underlying period and cohort effects: especially important where one or both of
the populations are relatively small. Additionally, Bayesian methods produce a full
posterior distribution both for process parameters (ν1, ν2, ψ, C

(2), ζ1, δ1, ζ2, ϕ11,
ϕ12, ϕ21, ϕ22, C

(3)) and for historical values of the age, period and cohort effects.23

The posterior distribution can then be used in a natural way to analyse the impact
of parameter uncertainty on the results of our present analysis.

5 Simulation and valuation

5.1 Simulation

Simulation involves the following stages:

22For further discussion of mortality model fitting using Bayesian methods, see Czado et al.
(2005), Pedroza (2006), Kogure et al. (2009), Reichmuth and Sarferaz (2008), and Kogure and
Kurachi (2010).

23It has been demonstrated elsewhere (Cairns et al., 2006) that the inclusion of parameter
uncertainty in process parameters can have a significant impact on forecast levels of uncertainty
in future mortality rates.
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• First, in the case where we assume the parameters are unknown, we draw at
random from the posterior distribution for the process parameters and for the
historical age, period and cohort effects.

• Next, we use simulation to extend the historical sequences of period and cohort
effects by T years using the time series model discussed in Section 4. This
then allows us to calculate the underlying death rates, mk(t, x), for years t =
1, . . . , T using equation (6).

• Finally, in experiments where we wish to take individual Poisson risk into
account, we need to specify exposures and simulate death counts . Thus, we
need to define what the exposures, Ek(t, x), are for t = 1, . . . , T , and then to
simulate numbers of deaths using the conditional Poisson assumption:24 that
is,

Dk(t, x)|mk(t, x) ∼ Poisson (Ek(t, x).mk(t, x)) .

The output from the simulation step is, therefore, a set of deaths and exposures,
rather than direct observation of the underlying death rates.

In the analysis that follows, we consider three cases that concern the specification
of the exposures for the years 2006 to 2015:

• Case 1 (the large population or ”no Poisson Risk” case). We set Ek(t, x) =
100× Ek(0, x) for k = 1, 2, t = 1, . . . , 10 and for all x.25

• Case 2 (”standard Poisson risk” case). We set the exposures for 2006 to 2015
to be equal to their 2005 levels: that is, Ek(t, x) = Ek(0, x) for k = 1, 2,
t = 1, . . . , 10 and for all x.

• Case 3 (”small population Poisson risk” case). As case 2, but we set the
exposures for population 2 for 2006 to 2015 to be equal to 0.001 times their
2005 levels: that is, E2(t, x) = 0.001×E2(0, x), t = 1, . . . , 10 and for all x. This
results in total exposures in each future year of just under 600, which might
be considered typical for a medium sized pension plan considering hedging its
longevity risk.

In all cases, exposures mostly decline with age from their 2005 values. However, we
have not adjusted values to reflect cohorts of differing sizes, nor have we attempted

24For a discussion of the conditional Poisson assumption in a stochastic mortality context, see
Brouhns et al. (2002) and Biffis et al. (2010). Li et al. (2009) put the case for a more-widely
dispersed distribution than the Poisson. In a dynamic hedging context, the impact of Poisson risk
has been considered previously by Dahl et al. (2008).

25The use of 100× is somewhat arbitrary, but is intended to be large enough that Poisson risk
is very much less significant in the measurement of crude death rates. This makes the future CMI
population much larger than the EW population, but even the latter has a small degree of Poisson
risk. An alternative to the present version of case 1, that we have not tried, would be to set the
observed number of deaths to be equal to its expected number, while leaving the exposures equal
to those in case 2.
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to model reductions in the CMI exposures for reasons other than death, such as,
policy maturities.

In case 1, the large population size should ensure that the observed death rates,
Dk(t, x)/Ek(t, x), are very close to the underlying death rates, mk(t, x), for t =
1, . . . , 10, and this should allow us to identify with precision the values of the under-
lying period and cohort effects in both a full or partial recalibration of the model.
Case 2, in contrast, introduces greater noise in the death counts, resulting in less
precision in those period and cohort effects that are estimated in 2015.

On average, the CMI male population has exposures that are about 10% of the size
of the EW exposures. It follows that, at least under case 2, the Poisson risk will
have a more noticeable impact on the CMI results.

5.2 Valuation

A theoretical value for ak(T, x) (compare with equation (1)) might be

ak(T, x) =
∞∑
s=1

P (T, T + s)pfwd
k (T, s, x)

where

pfwd
k (T, s, x) = EQ

[
Sk(T + s, x− T )

Sk(T, x− T )

∣∣∣∣MT

]
,

P (T, T +s) is the price at time T of the zero-coupon bond that pays 1 at time T +s
(which, here, we assume to be equal to (1+r)−s) andMt is the information provided
about the development of mortality rates up to the end of year t. Expectations
are taken with respect to a pricing measure Q. In a theoretical setting where the
true model for mortality is known, when underlying death rates are observeable
continuously, when there is a deep and liquid market, and where hedgers aim to
minimise risk, Biffis et al. (2011) demonstrate how to identify Q uniquely from the
wide range of possible choices. Here, we have chosen to equate Q to the real-world
(or physical) probability measure, P . There are two reasons for this. First, our focus
in this paper is on hedge effectiveness rather than on prices: prices are, of course,
important, but they impact on different problems from the ones being considered
here. Second, we believe that the shift from P to Q would not significantly change
the correlation between the hedging instrument and the liability values.

For computational reasons, we will assume that the survival probabilities (now un-
der measure P ), pfwd

k (T, s, x) = EP [Sk(T + s, x− T )/Sk(T, x− T )|MT ] , can be
approximated using a deterministic projection of mortality rates beyond time T
rather than by taking the mean over the distribution of Sk(T + s, x − T ). The
approximation used here is similar in spirit to those of Nielsen (2010), who exam-
ines Solvency II mortality stress tests, and Coughlan et al. (2011), who examine
longevity hedging.26 Note that the stochastic term Sk(T + s, x − T )/Sk(T, x − T )

26Alternative methods for approximating the expected survival probabilities have been proposed
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equals exp [−
∑s

u=1mk(T + u, x+ u− 1)]. We use, as a deterministic approximation
to mk(T + s, x),

m̂k(T + s, x) = exp
[
β(k)(x) + n−1

a

(
κ(k)(T ) + νks

)
+ n−1

a γ(k)(T + s− x)
]

(7)

where β(k)(x), κ(k)(T ) and γ(k)(T + s − x) are estimates of age, period and cohort
effects that can be made using data up to time T , and νk is a population-k-specific
drift in the period effect. In more general terms, valuation using deterministic
projections is standard practice in the pensions industry, and it is this practice that
we seek to emulate.

Assigning appropriate values to ν1 and ν2 in equation (7) is central to our analysis.
We choose to equate ν1 to the estimated drift in the random walk, κ(1)(t), made at
time T , implying that m̂1(T +s, x) is the median of the distribution of m1(T +s, x).
The AR(1) model for the spread between κ(1)(t) and κ(2)(t) means that the median
trajectory for κ(2)(t) is, in contrast, non-linear. However, in the long run, under the
stochastic two-population model, the median trajectory of κ(2)(t) is asymptotically
linear with gradient ν1. Thus, with the linear approximation used in equation (7),
an appropriate value to attach to ν2 is also the drift of the random walk, κ(1)(t), to
ensure consistency between forecasts of the two populations’ mortality rates: that
is, ν1 = ν2.

27

Using equation (7) as an approximation, along with ν1 = ν2 as discussed above, we
can approximate pfwd

k (T, s, x) by

p̂fwd
k (T, s, x) = exp

[
−

s∑
u=1

m̂k(T + s, x+ s− 1)

]
.

Finally, with a constant interest assumption, we have

ak(T, x) ≈ âk(T, x) =
∞∑
s=1

(1 + r)−sp̂fwd
k (T, s, x). (8)

5.3 Calibration of the valuation model

Evaluation of equation (8) requires knowledge of: β(k)(x), β(k)(x + 1), . . .; κ(k)(T );
ν1; and the single cohort effect, γ(k)(T − x + 1). The questions, therefore, arise as
to how and when we estimate these various inputs. We consider three cases: full
parameter certainty; partial parameter certainty; full parameter uncertainty.

by Denuit et al. (2010), Cairns (2011a) and Dowd et al. (2010a, 2011b). Additionally, under
certain conditions, one can explicitly model the two-dimensional forward survival probabilities to
avoid the need for approximations (Bauer et al., 2010). The method used here delivers accurate
results using a simpler-to-implement algorithm.

27A more sophisticated approach would allow for the initial drift of κ(2)(t) to differ from ν1, but
then revert to ν1 in the long run. Thus, in the expression for m̂k(T +s, x), we might replace ν2s by
ν1s+ (ν2 − ν1)(1− ϕs)/(1− ϕ) where ϕ > 0 is the AR(1) parameter in the spread between κ(1)(t)
and κ(2)(t).
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In all three cases, we will calibrate the valuation model using the single-population
version of the APC model given in equation (6) above. This model is fitted
separately to each of the EW and CMI datasets, and includes simple time series as-
sumptions about the time series properties of the period and cohort effects. Further
details on this are given in Appendix G.

In the full parameters-certain (PC) case, we proceed in the following steps:

• PC1: Fit the one-population model to each of the EW and CMI datasets
running from 1981 to 2005: this is referred to as the initial calibration and is
required for PC4.

• PC2: Fit a random walk model to the fitted period effect (EW) for 1981 to
2005. This gives us the estimated random-walk drift, νI1 .

• PC3: Simulations from 2005 to 2015 are carried out using the PC version of
the two-population model (see Cairns et al., 2011b, for details).

• PC4: For each stochastic scenario taking us from 2005 to 2015: refit the
one-population model to each population, subject to the constraint that age,
period and cohort effects already estimated in the initial calibration remain
unchanged. This means that we estimate only the 10 most recent period and
cohort effects.

• PC5: For each scenario, annuity valuation at T = 10 requires projection of the
period effects only, and so we use κ(k)(T ) resulting from the time-T calibration,
and the random-walk drift, νI1 , that was already estimated at time 0.

In the partial-parameters-certain (PPC) case, we proceed as follows:

• PPC1 to PPC4: Same as PC1 to PC4.

• PPC4A: Recalibrate the random-walk parameter values for the single-population
period effect, κ(k)(t), using the W most recent values: in particular, we re-
calibrate the drift parameter,

ν1 =
(
κ(1)(T )− κ(1)(T −W )

)
/W.

This is in contrast with the PC case, where ν1 is left equal to its initial cali-
bration, νI1 .

• PPC5: For each scenario, annuity valuation at T = 10 requires projection
of the period effects only, and so we use κ(k)(T ) resulting from the time-T
calibration, and the recalibrated random-walk drift, ν1.

In the full parameters-uncertain (PU) case, we proceed as follows:

• PU1/2: Not required.

18



Annuity price input variable Case
PC PPC PU

κ(k)(T ) Y Y Y
ν1 N Y Y
γ(k)(T − x+ 1) higher ages, x N N y
γ(k)(T − x+ 1) lower ages, x Y Y Y
β(k)(y), y = x, x+ 1, . . . N N y

Table 4: Input factors as a source of risk in the calculation of the annuity price,
ak(T, x). N: no, the variable is fixed at time t = 0 (end 2005). Y: yes, variable is
not known until time T , and is a significant source of risk. y: the variable can be
estimated at t = 0, but is also subject to estimation uncertainty, and is subject to
modest amounts of re-calibration risk at T .

• PU3: Simulations from 2005 to 2015 are carried out using the the PU version
of the two-population model (see Cairns et al., 2011b, for details).

• PU4: For each stochastic scenario taking us from 2005 to 2015, use the
historical-plus-simulated deaths and exposures to carry out a full recalibra-
tion (in contrast with partial recalibration in PC4 and PPC4) of the single-
population APC models to the EW and CMI populations using actual deaths
and exposures over a window of W + 1 years (i.e., calendar years T −W to
T ).

• PU4A: Recalibrate the random-walk parameter values for the single-population
period effect, κ(k)(t), using the W most recent values: in particular, we re-
calibrate the drift parameter,

ν1 =
(
κ(1)(T )− κ(1)(T −W )

)
/W.

• PU5: For each scenario, annuity valuation at T = 10 requires projection of the
period effects only, and so we use κ(k)(T ) resulting from the time-T calibration,
and the recalibrated random-walk drift, ν1.

5.4 The recalibration window, W + 1

In the PPC and PU cases, ν1 uses a recalibration window of W years up to time T
to estimate ν1. In this paper, we will assume in most of our numerical experiments
that W + 1 = 20 years. However, we will later discuss the sensitivity of the results
to the choice of W .

5.5 Sources of uncertainty in ak(T, x)

At the beginning of this section, we identified the various inputs required for the
calculation of ak(T, x). We now consider which of these inputs causes uncertainty
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in ak(T, x) (see, also, Table 4):

• κ(k)(T ) constitutes the principal source of randomness in ak(T, x). It is the
only source of uncertainty in the full PC case for all but the lowest ages at
time T (i.e., ages at time T with cohort effects that had not been estimated
at time 0).

• In some cases, the value of γ(k)(T +1−x) used in the calculation of ak(T, x) is
uncertain. Specifically, this is the case for younger ages, x, starting with the
cohort aged x0 + T at the end of year T (where x0 = 50 is the youngest age
in our data) down to the cohort aged x0 at the end of year T . None of these
cohorts was included in the dataset available at time 0 (i.e., 2005), and so the
relevant value of γ(k)(T + 1 − x) is uncertain and not measurable until some
years later. See Appendix D, for further discussion.

• In the full PC case, there are no further sources of uncertainty. At time T ,
only the T most recent period and cohort effects are estimated; parameters
already estimated at time 0 are left as they are; and the value of ν1 is left
unchanged from its initial calibration at time 0.

• In the PPC case, the estimated age, period and cohort effects are treated as
known and not subject to parameter estimation uncertainty. In contrast with
the full PC case, however, the random walk drift, ν1, is recalibrated at time
T , based on estimates of the period effect κ(1)(t) up to time T , and this means
that ν1 in the calculation of the ak(T, x) is uncertain.

• In the PU case, individual sample paths take account of parameter uncertainty
in the 2005 calibration and the model is fully recalibrated at time T . Thus,
besides the process risk inherent in the period up to time T and cohort effects
for younger ages, full recalibration at T plus PU at t = 0 means that the
β(k)(x) and γ(k)(c) inputs to ak(T, x) are also uncertain.

6 Decomposing hedge effectiveness in customised

and index longevity hedges

Basis risk and, therefore, hedge effectiveness are influenced by the risk factors out-
lined in section 1.1 above. We will now examine what we believe to be the most
important risk factors that impact on the hedge effectiveness of longevity hedges,
namely population basis risk, cohort effect uncertainty, recalibration risk, recalibra-
tion window, parameter uncertainty, and Poisson risk. We do this using the example
of a pension plan that is considering employing either a customised or index value
hedge as part of an asset-liability management exercise.
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6.1 Correlation results for individual risk factors

We now take a detailed look at how the correlation between the liability and the
hedging instrument values changes in response to the inclusion or exclusion of the
various factors listed in the previous section. To recap: our liability value is L(T ) =
a2(T, x), where T = 10 (2015) and x = 65, and our hedging instrument value is
H(T ) = ak(T, y)− âfxdk (0, T, y) where, again, T = 10, but y can range from 50 to 89,
and the reference population might be either k = 1 (index-based hedge) or k = 2
(customised hedge).

In Figures 1 to 7, we investigate the impact on the correlation between liability
and hedge values of: population basis risk (i.e., using an index hedge rather than
a customised hedge); the inclusion of cohort effect uncertainty; the inclusion of
recalibration risk in 2015; the length of the calibration window; the inclusion of
parameter uncertainty in the 2005 calibration; and the inclusion of Poisson risk. In
all of the figures, we plot Cor(L(T ), H(T )) as a function of the hedging instrument
reference age, y. In total, Figures 1 to 7 cover 14 experiments (A to N) that are
outlined in Table 5.28 29 We are primarily interested in the effectiveness of index
hedges, although, in most cases, we also plot the equivalent correlation curve for a
customised hedge allowing us to compare the impact of the various risk factors on
each type of hedge.

To help with the interpretation of the results, it is useful to consider a linear approx-
imation of the annuity price. First, note that ak(T, x) = f(β(k)[x], κ(k)(T ), γ(k)(T −
x + 1), ν1), where β

(k)[x] is the column vector of age effects from age x upwards,
(β(k)(x), . . . , β(k)(ω))′, ω is the maximum age, and f(·) is the annuity function gov-
erned by the deterministic projection of the period effects. The linearisation is then
simply:

ak(T, y) ≈ f(β̂(k)[x], κ̂(k)(T ), γ̂(k)(T − x+ 1), ν̂1)

+b′1(y)
(
β(k)[x]− β̂(k)[x]

)
+ b2(y)

(
κ(k)(T )− κ̂(k)(T )

)
+b3(y)

(
γ(k)(T − x+ 1)− γ̂(k)(T − x+ 1)

)
+ b4(y)

(
ν1 − ν̂1

)
. (9)

This linearisation turns out to be a very accurate approximation to f(·), even with
full PU and uncertainty in all of the β(k)[x], κ(k)(T ), γ(k)(T − x+ 1), and ν1.

Turning now to the experiments listed in Table 5:

28Experiments F and H are listed here for completeness, but are not discussed below as they do
not reveal anything in addition to the points already being made.

29The correlations plotted in these Figures are all estimates based on 1000 independent sim-
ulations of L(T ) and H(T ). As discussed in Appendix F, the correlations that are plotted have
sufficiently small standard errors that none of the conclusions that we draw in the following sections
are likely to be influenced by simulation errors. Wherever possible, we use coupled simulations: for
example, all PC experiments will use the same 1000 sample paths for the underlying mortality rates
up to time T . This means, for example, that the 1000 simulated values of L(T ) in one experiment
are highly correlated with the 1000 simulated values of L(T ) in another experiment. This ensures
greater robustness when we compare the results of different experiments.
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H(T ) Population
Reference Basis Parameter Recalibration Recalibration Poisson

Experiment Population Risk Estimation Risk Window Risk
A CMI N PC N 20 N
B CMI N PPC Y 20 N
C CMI N PU Y 20 N
D CMI N PU Y 20 Y
E EW Y PC N 20 N
F EW Y PC N 20 Y
G EW Y PPC Y 20 N
H EW Y PPC Y 20 Y
I EW Y PU Y 20 N
J EW Y PU Y 20 Y
K EW Y PU Y 20 Y
L EW Y PU Y 35 Y
M EW Y PPC Y 35 N
N EW Y PU Y 20 Y*

Table 5: Key risk factors influencing the correlation between liability and hedge
values for experiments A to N. The cohort effect, as a source of risk at younger
ages, is present in all experiments. All experiments involve life annuities apart from
experiment K which uses a temporary annuity that ceases at age 90. Experiments
D, F, H, J, K and L involving Poisson risk relate to case 2 (Setion 5.1). (Y*) In
Experiment N involving Poisson risk, the population 2 exposures (case 3) are 0.1%
of the 2005 CMI exposures.

• Benchmark customised hedge: To provide a reference point, we start with
a benchmark customised hedge (Figure 1). We take the simplest case, namely
full parameter certainty (PC) without Poisson risk. The correlation curve (A)
has two distinct parts to it. At ages 61 and above, the correlation is both
very flat and very close to 1. In the PC case, L(T ) and H(T ) have κ(2)(T ) as
their single source of randomness, so the correlations are almost 1 (”almost”
because there are still some slight non-linearities).30

• Cohort effect uncertainty:31 Also in Figure 1, we note that the correla-
tions drop away below age 61. This is because a2(T, y) also depends on the
cohort effect γ(2)(c) for year of birth, c = T − y+1. If the hedging instrument
reference age, y, is less than 61, then the relevant value of γ(2)(c) is not known
until after 2005 and therefore provides an additional source of randomness in
H(T ). As we move from age 61 to younger ages (i.e., later years of birth),
uncertainty in γ(2)(c) grows and, therefore, makes an increasing contribution
to the overall risk in H(T ). Since this additional risk is not correlated with

30In this experiment, only κ(2)(T ) is uncertain in the linearised equation (9), so the correlations
between a2(T, x) and a2(T, y) in the linearised version for x ̸= y must be exactly equal to 1.

31Note that the caption to Figure 1 refers to knowable cohort effects. These refer to cohorts for
which we do have data, but we choose to ignore these data because we have too few observations
to be able to make reliable estimates of the cohort effect. See Appendix E and Cairns et al. (2009)
for further discussion.
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κ(2)(T ), the correlation between H(T ) and L(T ) falls in line with the propor-
tional contribution of γ(2)(c) to the uncertainty in H(T ).

• Population basis risk: In Figure 2, we introduce population basis risk by
switching to the use of hedging instruments linked to the EWmales population.
We see that the broad impact of this switch is to pull down the correlation
curve at all ages. Experiment E (dot-dashed line) gives correlations in the
full PC case. As with curve A, curve E is fairly flat above age 61, reflecting
the near-linear dependence of L(T ) and H(T ) on their single sources of risk,
κ(2)(T ) and κ(1)(T ), respectively. This dependence is confirmed by the fact
that Cor(L(T ), H(T )) ≈ Cor(κ(1)(T ), κ(2)(T )) above age 61.

• Recalibration risk: Figure 3 shows the impact of model recalibration risk
in the PPC case for both the customised (A to B) and index (E to G) hedges.
First, consider customised hedges. This introduces a fresh source of risk, ν1,
into the calculation of annuity values. In experiment B (solid curve), above age
61, there are two distinct sources of risk (κ(2)(T ) and ν1, which, as previously
discussed, is a linear function of κ(1)(T )). Over the 61+ age range, correlations
are still high, but, as y increases above age 65, correlations drift down gradually
(curve B). For y close to age 65, L(T ) and H(T ) are exposed to the κ(2)(T )
and ν1 risks in approximately the same proportions (i.e., the ratio of b2(y) to
b4(y) in equation (9)). However, as the reference age, y, increases, the relative
impact of κ(2)(T ) and ν1 on a2(T, y) changes (i.e., b2(y) to b4(y)), causing
correlations to drop a little (solid line (B), right-hand end).

Below age 61, in experiment B, there are three sources of risk: κ(2)(T ), ν1 and
γ(2)(T − y + 1). The curve drops away as we reduce y for similar reasons as
in experiment A. However, it is obvious that correlations for these lower ages
are much higher in experiment B compared with A. In experiment B, L(T )
and H(T ) have, in absolute terms, significantly more risk than A, through
additional uncertainty in ν1. However, in relative terms, L(T ) and H(T )
have a much stronger dependence on common sources of risk (κ(2)(T ) and
ν1) in experiment B than in experiment A and this results in a much higher
correlation.

Now consider the impact of recalibration risk on an index hedge. As a source
of risk, ν1 is common to both L(T ) and H(T ) over all reference ages. The
inclusion of recalibration risk significantly increases the uncertainty in L(T )
and H(T ), but this is a perfectly correlated additional risk.32 Thus, the impact
of including PPC model recalibration risk is to increase the correlations and
so raise curve E (dot-dashed line) significantly to curve G (solid line).

Finally, in Figure 3, we compare experiments E (PC) and G (PPC) below
age 61. In the PPC case (G), at lower ages, the additional risk in the cohort

32Referring to equation (9), L(T ) is approximately a linear combination of κ(2)(T ) and ν1, while
H(T ) is a linear combination of κ(1)(T ) and ν1. In the PPC case, ν1 is a risk that is common to
both L(T ) and H(T ) and so raises the correlation between the two relative to the PC case, where
ν1 is fixed.
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effect (Figure 8) is just as large in absolute terms as the full PC case (E),
but, in relative terms, it contributes much less, because of the inclusion of the
additional risk linked to ν1 that is common to both L(T ) and H(T ). As a
result, the decline in correlations below age 61 is less in the PPC case (G).

• Recalibration window: In Figure 4, we focus on the sensitivity of results
to the choice of recalibration window. In experiment G, we use a 20-year
window and, in experiment M, we use a 35-year window. Recall that ν1 =
(κ(1)(T ) − κ(1)(T −W ))/W , so W + 1 = 35 rather than W + 1 = 20 reduces
uncertainty in ν1. Comparing experiments G and M, both L(T ) and H(T ) are
less risky under M, because ν1 is less risky. However, the correlation between
L(T ) and H(T ) is also now lower because of their greater dependence, in
relative terms, on the imperfectly correlated κ(2)(T ) and κ(1)(T ).

• Parameter uncertainty: Figure 5 adds in the impact of parameter uncer-
tainty (PU) (experiments C and I, dashed lines). Introducing PU creates
additional uncertainty in the process parameters (e.g., ν1) and also in the
latent state variables (the age, period and cohort effects). This additional un-
certainty can be thought of as noise on top of the main signal and the noise
added to the different components of L(T ) and H(T ) will be largely uncorre-
lated.33 This creates additional risk that is mostly non-hedgeable (with the
exception of age 65, where L(T ) and H(T ) refer to the same cohort) and so
leads to lower correlations and lower hedge effectiveness.

Figure 5 also shows the impact of moving from the PPC (curve G) to the
PU case (curve I, dashed line) on the effectiveness of an index hedge. The
impact is relatively small, with a magnitude that is similar at most ages to
the customised hedge (experiments B and C). However, in contrast with the
shift from B to C, we find here that there is no advantage to using a hedging
instrument that is linked to exactly the same birth cohort as the liability
being hedged: this reflects a lack of correlation in the PU setting between our
estimates of the cohort effects in the two populations, γ(2)(T − x + 1) and
γ(1)(T − x+ 1) for x = 65.

• Poisson risk: In Figure 6, we look at the impact of adding in Poisson risk
(experiments D and J, dotted lines, and N, dot-dashed line). In general, this
should add to the uncertainty in both L(T ) and H(T ).34 The impact on
correlation of Poisson risk (C to D) is broadly similar in magnitude to the
impact of PU (B to C). However, the impact does seem to vary with age. The
reasons for these variations are not clear, suggesting that the impact of Poisson
risk on the various inputs to a2(T, y) is complex. In contrast (experiments I

33For example, the noise added to κ(1)(T ) and κ(2)(T ) will have a low correlation, and, for
c0 ̸= c1, the noise added to γ(2)(c0) and γ(2)(c1) will also have a low correlation.

34Specifically, Poisson risk will perturb the input values in f(β(k)[x], κ(k)(T ), γ(k)(T −x+1), ν1)
in equation (9), and the fact that the noise is conditionally independent from (t, x) cell to cell
means that these perturbations are likely to increase total risk.
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and J), if we use an index-based hedge, then the gap between the Poisson and
no-Poisson correlation plots seems to be reasonably uniform across all ages.

As might be expected, the impact on correlations for index hedges when we
introduce Poisson risk depends significantly on the size of the underlying pop-
ulation. This is illustrated in Figure 6 as we move from experiment I (large
population) through J (CMI-sized) to N (0.1% of CMI). The difference be-
tween I and J is modest. The additional Poisson risk in N significantly in-
creases uncertainty in our estimate of the 2015 base table35 that we calibrate
for population 2 and this lowers the correlation between L(T ) and H(T ). But
L(T ) and H(T ) are still just as reliant on the the common drift parameter ν1
and so the impact of the additional Poisson risk is much less than it would be
if the two populations were totally independent.

We considered four variants on the size population 2 to assess at what level
Poisson risk starts to have a significant impact: 100% of the CMI (experiment
J), 10%, 1% and 0.1% (experiment J). With a hedge instrument linked to age
65 in popluation 1, these resulted in correlations of 0.937, 0.923, 0.865 and
0.665 respectively. So we can see that there is a gradual shift in correlation as
the population size falls. However, these figures suggest that it is only when
the population size falls below, say, 10,000 members above age 50 that the
measure of correlation begins to fall more rapidly: that is, between 1% and
2% of the CMI.

• Term of the annuity: In Figure 7, we make two further comparisons. As
our baseline, we conduct experiment J which includes all risk factors. We
investigate how sensitive the correlations are to the term of the annuity that
underpins our calculations. Experiment J involves the use of a life annuity. In
contrast, in experiment K, both L(T ) and H(T ) involve temporary annuities
that cease at age 90. We can see that this lowers the correlations relative to
curve I. This is explained by the fact that the recalibrated ν1 has relatively
little influence over short-dated cashflows and much greater influence over
long-dated cashflows. By shifting to temporary annuities, we have therefore
reduced the influence of ν1 on L(T ) and H(T ), with a resulting lowering in
the correlations.

A similar shift would occur if we switched from a life annuity starting at age
65 to, say, a life annuity starting at age 75, since, on average, the annuity will
be payable for less time.

35In each of the 1000 simulations, the true base table for population 2 in Experiment N in 2015 is,
in reality, just the same as the true base table in Experiment I with no Poisson risk. However, the
significant Poisson risk in N means that there is significantly more uncertainty in our estimate of
the base table. So the observed decrease in the correlation is actually due to increasing estimation
error in 2015 rather than any other source of risk. Furthermore, the additional estimation error due
to the inclusion of Poisson risk will be independent of the population 1 valuation model calibrations.
As outlined in Appendix G, the base table for 2015 for population 2 is calibrated using pop-

ulation 2 data only. When the population is relatively small it might, however, be advisable to
fit population 2 jointly with population 1 using data up to 2015 (for example, as in Cairns et
al.,2011a). This might reduce the estimation error in the 2015 base table reported above.
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• Recalibration window revisited: In Figure 7, which shows the results of
experiment L, we repeat the shift from a recalibration window of 20 to one
of 35 years, this time in a full PU setting with Poisson risk (compare with
Figure 4.) The difference between J and L can be seen to be similar to (but
slightly larger than) the shift from G to M. Thus, the impact of a change in the
recalibration window can be seen to be not especially sensitive to the inclusion
or otherwise of the less important risk factors (full PU and Poisson risk).

6.2 Analysis

Our discussion above of the individual plots focused on the incremental impact of
the different risk factors. Here we look at the bigger picture and assess the overall
impact and significance of each, beginning with the most important.

• Population basis risk is clearly a very significant factor. However, its negative
impact on correlation and hedge effectiveness is not, perhaps, as large as might
seem at first glance.

• Recalibration risk is also a factor of potential significance, although its precise
impact depends on the type of hedge. For index hedges, it results in substan-
tially increased correlations and hence hedge effectiveness;36 for customised
hedges, it has a very modest, negative impact.

Further, as demonstrated in Figure 7, the impact of recalibration risk will be
greater37 if both the liability and hedging instrument values (in an index hedge)
depend more heavily on more distant longevity-linked cashflows. In relative
terms, these cashflows are much more sensitive to changes in the random-walk
drift ν1.

• The impact of recalibration risk on correlations was found to be quite sensitive
to the length of the calibration window (e.g., 20 years or 35 years): a longer
calibration window lowers both correlation and hedge effectiveness.

• Cohort effect uncertainty can cause correlations to be pulled down if the liabil-
ity and hedging instrument refer to different cohorts either by year of birth or
by reference population. The impact is modest if both of the relevant cohort
effects had been estimated at time 0 (2005), and is a result of uncertainty in
the estimates of those state variables. The impact is much more significant
if one or other of the relevant cohort effects could not be estimated in 2005,
thereby introducing additional uncertainty in the calculation of the annuity
price at T .

36Where allowance for recalibration risk does increase correlations and hedge effectiveness, this
helps to explain why the negative impact of population basis risk is smaller than anticipated.

37That is, the increase in correlation when moving from ignoring recalibration risk to including
recalibration risk (as in the change from curve E to curve G in Figure 3) will be bigger.
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Figure 1: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiment A (Table
5) assumes a customised hedge (CMI reference population), full parameter certainty
(PC) and no Poisson risk. Knowable cohort effects are discussed in Appendix D.
The black dot identifies the liability reference age of 65.
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Figure 2: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiments A, E
(Table 5). A, E: full PC without Poisson risk. A: customised hedge. E: index
hedge.
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Figure 3: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiments A, B,
E, G (Table 5). A, B: customised hedges. E, G: index hedges. A, E: full PC. B,
G: PPC with recalibration risk, 20-year recalibration window. All: without Poisson
risk.
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Figure 4: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiments G, M
(Table 5). G, M: index hedges, PPC. G: 20-year recalibration window. M: 35-year
recalibration window.
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Figure 5: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiments B, C,
G, I (Table 5). All: without Poisson risk; 20-year recalibration window. B, C:
customised hedges. G, I: index hedges. B, G: PPC. C, I: full PU.
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Figure 6: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiments C, D,
I, J, N (Table 5). All: full PU; 20-year recalibration window. C, D: customised
hedges. I, J, N: index hedges. C, I: no Poisson risk. D, J: with Poisson risk (case
2). N with Poisson risk (case 3).
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Figure 7: Correlation between the liability, L(T ), and hedging instrument, H(T ),
values as a function of the hedging instrument reference age. Experiments J, K, L
(Table 5). All: full PU with Poisson risk. J, K: 20-year recalibration window. L:
35-year recalibration window. J, L: life annuity. K: temporary annuity ceasing at
age 90.
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• Where we have already taken account of recalibration risk, the inclusion of
other forms of parameter uncertainty (PU) and Poisson risk only have a modest
impact on correlation and hedge effectiveness. However, where the hedger’s
own population is much smaller than the CMI population considered here (e.g.,
Experiment N), Poisson risk has a bigger impact.

7 Conclusions

This paper builds on the framework proposed by Coughlan et al. (2011) by analysing
hedge effectiveness (with correlation as a proxy) using stochastic simulation (instead
of historical bootstrapping). It is the first study to bring together, in a single stochas-
tic modelling framework, the key risk factors influencing the effectiveness of longevity
hedges, namely population basis risk, cohort effect uncertainty, recalibration risk,
recalibration window, parameter uncertainty and Poisson risk.

To investigate longevity hedge effectiveness, we used a case study of a pension plan
that wishes to hedge the value of its liability in 10 years’ time to a male member
who is currently aged 55. The liability is therefore equivalent to a deferred annuity.
The plan had the choice of using either a customised hedge or an index hedge. We
assumed, for the sake of illustration, that the mortality experience of the pension
plan and the customised hedge was the same as the Continuous Mortality Investi-
gation’s male assured lives, while the mortality experience of the index hedge was
the same as that for the England & Wales male population. For plans that aim to
derisk, we argued that correlation between the value of plan liabilities and the value
of a hedging instrument makes a good proxy as a measure of hedge effectiveness.

We found that population basis risk and uncertain future cohort effects are signif-
icant determinants of hedge effectiveness. However, we also showed that this was
just the starting point. We discovered that correlation and hedge effectiveness are
also affected to a significant extent by the inclusion of recalibration risk and the
assumed length of the recalibration window. Beyond that, further sources of pa-
rameter uncertainty and Poisson risk (especially small populations) have a more
modest, although still noticeable, impact. However, our analysis of the impact of
Poisson risk suggest that we need to search for further ways to reduce estimation
error in the calibration of small-population base tables, perhaps via joint modelling
with much larger (e.g., national) populations.

The strong conclusion is that an analysis that ignores parameter uncertainty (includ-
ing recalibration risk) might significantly underestimate the level of longevity risk,
but, more importantly, might also underestimate the degree of hedge effectiveness
of an index-based longevity hedge. So an unsophisticated and incomplete analysis
of the problem might either lead to a decision not to hedge (because the level of risk
is deemed not to be sufficiently high) or lead to a customised hedge being chosen
in place of a cheaper index hedge (because the effectiveness of the latter has been
underestimated). It is our belief that this specific conclusion would apply to a
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wider range of risk metrics than the simple use of variance (for example, expected
shortfall or expected utility).

Our case study shows that longevity basis risk can be substantially hedged using
index hedges as an alternative to customised longevity hedges. As a consequence,
therefore, index longevity hedges – in conjunction with the other components of an
ALM strategy – can provide an effective as well as a low cost alternative to a full
buy-out of pension liabilities or even a strategy that involves the use of customised
longevity hedges unless the population being hedged has fewer than around 10,000
members.

Apart from the hedging instrument reference population and reference age and the
distinction between index and customised hedges, we have not investigated the im-
pact on hedge effectiveness of the structure of the hedge. To do this, we would need
to investigate such factors as the type of hedging instrument (namely, alternatives to
a deferred longevity swap), the optimality and robustness of the hedge ratio (Cairns,
2011b), value versus cashflow hedges, static versus dynamic hedges, and the use of
multiple hedging instruments, etc. Also omitted is an analysis of the impact of
model risk: a substantial topic in its own right. Finally, we have not analysed the
sensitivity of longevity hedge ratios to changes in the underlying assumptions. We
leave these issues for future work.
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A Risk metric for hedge effectiveness

In Section 3.2, we introduce variance as our risk metric. This choice is consistent
with the use of the term hedge effectiveness in international accounting standards
(IAS39: see Coughlan et al., 2004). Although a metric is not actually specified in
IAS39, two points that we might infer are as follows:

• We are concerned with unanticipated changes in the assets and liabilities and
not the cost of setting up a hedge. This is consistent with the use of variance or
standard deviation as risk metrics as obvious choices. It is also consistent with
the use of value-at-risk or expected shortfall where these are defined relative
to the median for the chosen hedging strategy (i.e., this ignores the cost of the
strategy but is consistent with international accounting standards).

• With a value hedge (IAS 39 allows a focus on either value hedges or cashflow
hedges) we are concerned with how much of a reduction is there in the volatility
of the net financial position. This points to the use of a symmetrical risk metric
such as variance.

Putting accounting standards to one side, there are other possibilities for assessing
the effectiveness of a hedge including value-at-risk relative to the unhedged median,
expected shortfall (see Wylie et al., 2010) and expected utility (see, for example,
Appendix A of Cairns, 2011b, in a longevity risk setting). In these settings, the price
of the hedge comes into play and so we are interested in value for money as well as
risk reduction. We have chosen not to consider these possibilities here in order that
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we can focus attention on issues other than pricing, including the requirements of
international accounting standards.

B Two-population mortality model: Stochastic

model details

Define

R2(t) = κ(1)(t), S2(t) = κ(1)(t)−κ(2)(t), R3(c) = γ(1)(c), and S3(c) = γ(1)(c)−γ(2)(c).

Then

R2(t+ 1) = R2(t) + ν1 + C211Z21(t+ 1)

S2(t+ 1) = ν2 + ψ(S2(t)− ν2) + C221Z21(t+ 1) + C222Z22(t+ 1)

R̃3(c) = R3(c)− ζ1 − δ1(c− c̄)

S̃3(c) = S3(c)− ζ2

R̃3(c+ 1) = (ϕ11 + ϕ12)R̃3(c)− ϕ11ϕ12R̃3(c− 1) + C311Z31(c+ 1) (10)

S̃3(c+ 1) = (ϕ21 + ϕ22)S̃3(c)− ϕ21ϕ22S̃3(c− 1) + C321Z31(c+ 1)

+C322Z32(c+ 1). (11)

The details of these equations are as follows:

• Z21(t+1), Z22(t+1), Z31(c+1), Z32(c+1) are i.i.d. standard normal random
variables.

• ν1 is the drift in the random walk R2(t).

• ν2 and ψ are the mean-reversion level and the AR(1) parameter respectively
of the period-effect spread, S2(t). For the process to be stationary (mean
reverting), we require −1 < ψ < 1.

• Define C(2) =

(
C211 0
C221 C222

)
, and V (2) = C(2)C(2)′. V (2) is the 1-year-ahead

conditional covariance matrix of (R2(t), S2(t))
′.

• c̄ is defined as (c0 + c1 + 2)/2, where (c0, c1) is the complete range of years of
birth cohorts covered in the dataset.

• ζ1 + δ1(c− c̄) is the linear trend, to which R3(c) is reverting.

• ζ2 is the mean-reversion level of the cohort-effect spread, S3(c).

• R̃3(c) and S̃3(c) are AR(2) processes that are mean reverting to 0.
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• Define C(3) =

(
C311 0
C321 C322

)
and V (3) = C(3)C(3)′. V (3) is the 1-year-ahead

conditional covariance matrix of (R3(t), S3(t))
′ (and of (R̃3(t), S̃3(t))

′).

• ϕ11, ϕ12, ϕ21 and ϕ22 are the AR(2) parameters for the processes R̃3(c) and
S̃3(c). For the processes to be stationary, we require each of ϕ11, ϕ12, ϕ21 and
ϕ22 to lie between −1 and +1.

C Why might the inclusion of parameter uncer-

tainty strengthen correlations?

We present here a simple example. Suppose that L is our risky liability and H is
the payoff on a hedging instrument.

• L = ν + ϵL, where the error ϵL has zero mean, and variance σ2
L, and ν is the

mean of L.

• H = ν + ϵH , where the error ϵH has zero mean, and variance σ2
H , and ν is the

mean of H.

• ϵL and ϵH are known to be independent.

• In the parameters-certain case, the correlation between L and H is zero.

• Now suppose that ν is subject to some estimation error, and that ν has mean
ν̂ and variance σ2

ν .

• When we include parameter uncertainty in our forecasts, we see that the cor-
relation between L and H is now positive.

D Uncertainty in cohort effects

As remarked in the main text, for older cohorts, the value of the cohort effect,
γ(k)(T − x − 1), to be used in the calculation of the annuity price ak(T, x), can
already be estimated in 2005. This is illustrated in Figure 8.

The black dots and circles represent the data available in 2005. Individual cohorts
follow diagonals moving in a north-easterly direction. This plot shows data for ages
50 to 89 from 1981 to 2005 and covers cohorts born in 1892 to 1955. In Figure 8,
these are labelled on the right hand side as having a known or knowable cohort effect
in 2005.

At the end of 2015, we seek to calculate annuity values for various cohorts. Cohorts
born after 1955 fall in the lower right corner of Figure 8, and are characterised by
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Figure 8: Timing of the estimation of the period and cohort effects in the parameters
certain (PC) case. Black dots and circles: period effect estimated in 2005. Diagonal
black and green dots: cohort effect estimated in 2005. Diagonal orange and red
dots: cohort effect estimated only in 2015. Diagonal red circles: cohort effect not
estimated even in 2015. Vertical green, orange and red dots and circles: period
effect estimated in 2015. Black and red circles (lower right): cohort effects that
are knowable in 2005 and 2015 respectively, but are not estimated due to limited
quantity of data.
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the fact that the annuity value in 2015 will include a simulated value for the cohort
effect, since this was not known in 2005.

In the software developed for a previous study (Cairns et al., 2009), we chose to
exclude cohorts with four or fewer observations (or cells) to avoid overfitting. The
four most recent cohorts (1952 to 1955), therefore, have knowable cohort effects
in 2005, but we choose to ignore the very limited data that we have available in
2005 and leave estimation of their values until 2015. As a consequence, in the
full parameters certain (PC) and partial parameters certain (PPC) cases, the cohort
effects for the 1952 to 1955 cohorts (identified by the ”knowABLE” diagonal band of
dots in Figure 8) are also not known until 2015 and therefore add to the uncertainty
in the calculation of the annuity price. However, this uncertainty turns out to be
negligible in the large-population version of the model.
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E Different measures of correlation

Consider the following simple example of a two-period, two-factor model:

X1 = Z1(1) + Z1(2)

X2 = ρZ1(1) +
√
1− ρ2Z2(1) + Z2(2)

where the Zk(t) are independent and identically distributed standard normal random
variables. Z1(1) and Z2(1) are known at time 1; Z1(2) and Z2(2) are known at time
2; and F1 represents the sigma-algebra generated by (Z1(1), Z2(1)), that is, the
information available at time 1.

Let

L(1) = E[X2|F1] = Z1(1)

H(1) = E[X1|F1] = ρZ1(1) +
√

1− ρ2Z2(1).

The three measures of correlation that we might be interested in are

cor(X1, X2) =
Cov(X1, X2)√
Var(X1)Var(X2)

=
1

2
ρ (12)

cor(X1, X2|F∞) = cor(Z1(2), Z2(2)) = 0 (13)

cor(L(1), H(1)) = cor
(
Z1(1), ρZ1(1) +

√
1− ρ2Z2(1)

)
= ρ. (14)

The correlation defined in Equation (14) is what we are mainly concerned with in
this paper for value hedging with a time horizon of 1 time unit.38

Equation (12) is relevant for cashflow hedging where we use X1 as a hedging instru-
ment to hedge the liability of X2, with both payable at time 2.

F Estimates of the hedge effectiveness

Recall from equation (5) that the hedge effectiveness is given by

R2(h) = ρ2
(
1− (h− h∗)2

h∗2

)
= ρ2

(
1− α2

)
where h∗ is the theoretically optimal hedge ratio and α = (1 − h/h∗) provides a
measure of the relative deviation between the actual hedge ratio and the optimum.
Ideally, h = h∗, but the two might differ because of estimation error. Thus, suppose
that α ∼ N(να, σ

2
α), so that α2 has a non-central chi-squared distribution with

38Additionally, the emphasis in the main paper over the choice of valuation model relates, here,
to the choice of measure underpinning the conditional distribution at time 1 of (Z1(2), Z2(2)).
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1 degree of freedom and non-centrality parameter ν2α. Standard properties of the
non-central chi-squared distribution lead to the following results:

E[R2(h)] = ρ2
(
1− σ2

α(1 + ν2α)
)

and V ar[R2(h)] = 2ρ4σ4
α(1 + 2ν2α).

Provided |να| << 1, it follows that (i) the difference between ρ2 and E[R2(h)] is
primarily determined by σ2

α (i.e., the additional impact of να is negligible) and (ii)
V ar[R2(h)] is primarily determined by σ4

α.

For example, for experiment I, the distribution of α was determined as follows in
the case where we use the EW population with a reference age of 65 to hedge the
age 65 CMI liability.

• Let h∗ = −Cov(H,L)/Var(H), where Cov(H,L) and Var(H) are the empirical
covariance and variance based on the original sample of 1000 pairs of (H,L).

• Assume that this sample of 1000 pairs of (H,L) has been drawn from a bi-
variate normal distribution with mean vector, ν, and covariance matrix, V ,
determined by the simulated values of H and L: i.e., BVN(ν, V ). The assump-
tion of bivariate normality is consistent with the simulated data.

• Now carry out a parametric bootstrap as follows.

For i = 1, . . . , 100000:

– Simulate 1000 pairs of (H,L) from the BVN(ν, V ) and calculate hi =
−ci/vi where ci is the empirical covariance between the simulated vectors
H and L in this repetition, and vi is the empirical variance of H.

– Let αi = 1− hi/h
∗.

• Analyse the empirical distribution of the αi.

We found that:

• να was indistinguishable from 0 with a standard error of 0.000036.

• σ2
α = 0.0001264 with a standard error of 0.0000006.

From this experiment, we conclude that, since να is very close to zero, and σ2
α is much

smaller than ρ2, the use of R2(h∗) = ρ2, where h∗ is estimated from the simulated
data provides an accurate approximation.

F.1 Standard error of the correlation estimate

From the same bootstrapping experiment, we can also calculate a standard error for
the correlation ρ. Thus, the estimated value of ρ in experiment I at 0.942 is found
to have a standard error of about 0.004.
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G Single population APC model fitting

In our numerical experiments, our starting point was to use the APC model fit-
ting procedure outlined in Cairns et al. (2009) with R code available online at
www.LifeMetrics.com. This code maximises the Poisson log-likelihood function

l1(β, κ, γ|D) =
∑
t,x

D(t, x) logm(t, x)−m(t, x)E(t, x) + constant

where m(t, x) = exp[β(x) + n−1
a κ(t) + n−1

a γ(t− x)] over the β(x), κ(t) and γ(t− x).

However, we found that, for small populations, the possibility might arise that there
are zero deaths in one or more calendar years across all ages or zero deaths amongst
one or more cohorts during the periods of observation of these cohorts. In the former
case, the log-likelihood is maximised by setting κ(t) = −∞ for the relevant year,
which is not realistic from a perspective of biological reasonableness.

It was seen as desirable that the fitted κ(t) and γ(t− x) for a small sub-population
should exhibit similar time series characteristics (in particular, their levels of volatil-
ity from one year to the next) to the much larger EW population. Thus we chose
to maximise the following Bayesian posterior distribution:

l(β, κ, γ, θ|D) = l1(β, κ, γ|D) + l2(κ, θ) + l3(γ, θ) + l4(θ),

where l2(κ, θ) is the log-likelihood for the κ(t) time series (assumed to be a random
walk), l3(γ, θ) is the log-likelihood for the γ(t − x) time series (also, for simplicity,
assumed to be a random walk), θ is the vector of parameters of the time series
processes (i.e., the drifts and volatilities: (µκ, σκ, µγ, σγ)), and l4(θ) is the Bayesian
prior distribution for θ (a Normal-Inverse Gamma distribution for each pair of pa-
rameters).

In this extended model, the problem associated with zero deaths is now counter-
balanced by the requirements in l2, l3 and l4 for the κ(t) and γ(t− x) estimates to
behave like random walks with the given parameters. Values of −∞ would cause l2
or l3 to equal −∞.

In our experiments, for CMI-sized and larger populations, there was no noticeable
difference between the old fitting programme (i.e., maximising l1 only) and the new
(i.e., maximising the Bayesian posterior, l). Differences start to emerge when our
population is about 10% or less of the CMI, and, in these circumstances, we find that
estimates of κ(t) and γ(t− x) tend to be less volatile under the extended Bayesian
paradigm.

As a word of caution, results reported for Experiment N in Figure 6 were found to
be moderately sensitive to the median of the prior distribution for σκ (i.e., different
medians that were considered to be realistic in the context of historical data up to
2005 would give correlations in a range of ±0.04 around the value of 0.66 that we
observe in Figure 6).
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