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Abstract. The probabilistic bisimilarity distance of Deng et al. has been proposed as
a robust quantitative generalization of Segala and Lynch’s probabilistic bisimilarity for
probabilistic automata. In this paper, we present a characterization of the bisimilarity
distance as the solution of a simple stochastic game. The characterization gives us an
algorithm to compute the distances by applying Condon’s simple policy iteration on these
games. The correctness of Condon’s approach, however, relies on the assumption that the
games are stopping. Our games may be non-stopping in general, yet we are able to prove
termination for this extended class of games. Already other algorithms have been proposed
in the literature to compute these distances, with complexity in UP ∩ coUP and PPAD.
Despite the theoretical relevance, these algorithms are inefficient in practice. To the best
of our knowledge, our algorithm is the first practical solution.

The characterization of the probabilistic bisimilarity distance mentioned above crucially
uses a dual presentation of the Hausdorff distance due to Mémoli. As an additional
contribution, in this paper we show that Mémoli’s result can be used also to prove that the
bisimilarity distance bounds the difference in the maximal (or minimal) probability of two
states to satisfying arbitrary ω-regular properties, expressed, eg., as LTL formulas.
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1. Introduction

In [GJS90], Giacalone et al. observed that for reasoning about the behaviour of probabilistic
systems, rather than equivalences, a notion of distance is more reasonable in practice since it
permits to capture the degree of difference between two states. This observation motivated
the study of behavioural pseudometrics, that generalize behavioural equivalences in the
sense that, when the distance is zero then the two states are behaviourally equivalent.

The systems we consider in this paper are labelled probabilistic automata. This model
was introduced by Segala [Seg95] to capture both nondeterminism (hence, concurrency) and
probabilistic behaviours. The labels on states are used to express that certain properties of
interest hold in particular states.

In Figure 1 we consider an example of a probabilistic automaton describing two gamblers,
f and b, deciding on which team to bet in a football match. Typically the two gamblers
know on which team to bet, but occasionally they prefer to toss a coin to make a decision.
This is represented by the three probabilistic transitions in the state f . The first two take
f to state h (head) or t (tail) with probability one, the last takes f to states h and t with
probability 1

2 each. The difference between f and b is that the former uses a fair coin while
the latter uses a biased coin landing on heads with slightly higher probability. Once the
decision is taken, it is not changed anymore. This is seen on states h and t which have a
single probabilistic transition taking the state to itself with probability one. The states h
and t have distinct labels, here represented by colours.

A behavioural pseudometric for probabilistic automata capturing this difference is
the probabilistic bisimilarity distance by Deng et al. [DCPP06], introduced as a robust
generalization of Segala and Lynch’s probabilistic bisimilarity [SL94]. The key ingredients
of this pseudometric are the Hausdorff metric [Hau14] and the Kantorovich metric [Kan42],
respectively used to capture nondeterministic and probabilistic behaviour. In the example
above, the behaviours of the states h and t are very different since their labels are different.
As a result, their probabilistic bisimilarity distance is one. On the other hand, the behaviours
of the states f and b are very similar, which is reflected by the fact that their probabilistic
bisimilarity distance is 1

100 .
The first attempt to compute the above distance is due to Chen et al. [CHL07], who

proposed a doubly exponential-time procedure to approximate the distances up to any
degree of accuracy. The complexity was later improved to PSPACE by Chattarjee et
al. [CdAMR08, CdAMR10]. Their solutions exploit the decision procedure for the existential
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Figure 1: A probabilistic automaton describing two gablers.



COMPUTING PROBABILISTIC BISIMILARITY DISTANCES FOR PROBABILISTIC AUTOMATA 3

fragment of the first-order theory of the reals. It is worth noting that [CHL07, CdAMR08]
consider the pseudometric that does not discount the future (a.k.a. undiscounted distance)
which entails additional algorithmic challenges. Later, Fu [Fu12] showed that the distances
have rational values and that computing the discounted distance can be done in polynomial
time by using a value-iteration procedure in combination with the continued fraction
algorithm [Sch99, Section 6]. As for the undiscounted distance, he showed that the threshold
problem, i.e., deciding whether the distance is smaller than a given rational, is in NP∩coNP.
The same proof can be adapted to show that the decision problem is in UP ∩ coUP [Fu14],
where UP is the subclass of NP-problems with a unique accepting computation. Van
Breugel and Worrell [vBW14] have later shown that the problem is in PPAD, which is
short for polynomial parity argument on directed graphs. Notably, their proof exploits a
characterization of the distance as a simple stochastic game. The above algorithms were
presented with the purpose of understanding the complexity of computing bisimilarity
distances and, to the best of our knowledge, they have never been implemented. Their
implementation would involve either an enumeration of possibly exponentially many fixed-
points [Fu14], or the use of SMT solvers over the existential fragment of the first order theory
of the reals [CdAMR08, CdAMR10]. An earlier attempt of approximating the bisimilarity
distance for the more specific case of labelled Markov chains by expressing the problem in
the existential fragment of the first order theory of the reals was proposed in [vBSW08].
Its latest implementation using CVC4 [BCD+11] is able to handle chains with 82 states
in approximately 66 hours1. In this paper, we propose an alternative approach that is
inspired by the successful implementations of similar pseudometrics on labelled Markov
chains [BBLM13, TvB16, TvB18a].

Our solution is based on a novel characterization of the probabilistic bisimilarity dis-
tance as the solution of a simple stochastic game. Stochastic games were introduced by
Shapley [Sha53]. A simplified version of these games, called simple stochastic games, were
studied by Condon [Con92]. Several algorithms have been proposed to compute the value
function of a simple stochastic game, many using policy iteration. Condon [Con90] proposed
an algorithm, known as simple policy iteration, that switches only one non-optimal choice
per iteration. The correctness of Condon’s algorithm, however, relies on the assumption
that the game is stopping.

It turns out that the simple stochastic games characterizing the probabilistic bisimilarity
distances are stopping only when the distances discount the future. In the case the distance
is non-discounting, the corresponding games may not be stopping. To recover correctness of
the policy iteration procedure we adapt Condon’s simple policy iteration algorithm by adding
a non-local update of the strategy of the min player and an extra termination condition based
on a notion of “self-closed” relation due to Fu [Fu12]. The practical efficiency of our algorithm
has been evaluated on a significant set of randomly generated probabilistic automata. The
results show that our algorithm performs better than the corresponding iterative algorithms
proposed for the discounted distances in [Fu12], even though the theoretical complexity
of our proposal is exponential in the worst case (cf. [TvB16]) whereas Fu’s is polynomial.
The implementation of the algorithms exploits a coupling structure characterization of the
distance that allows us to skip the construction of the simple stochastic game which may
result in an exponential blow up of the memory required for storing the game.

1The code is available at bitbucket.org/discoveri/first-order.

bitbucket.org/discoveri/first-order
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The two characterizations of probabilistic bisimilarity distances proposed in this paper
(either via simple stochastic games or coupling structures) crucially use a dual presentation of
the Hausdorff distance due to Mémoli [Mém11]. Still using Mémoli’s result, as an additional
contribution to this paper we show that the (undiscounted) bisimilarity distance can be used
to bound the difference of the maximal (or minimal) probability of two states satisfying
arbitrary ω-regular specifications, expressed, e.g., as LTL formulas. Notably, this result
allows us to relate the probabilistic bisimilarity pseudometric of Deng et al. to probabilistic
model checking of probabilistic automata against linear-time specifications.

Synopsis. Section 2 introduces the notation and some preliminary results used in the
paper. In Section 3 we recall the definition of probabilistic bisimilarity distances of Deng
et al. for probabilistic automata; then, in Section 4 we propose a characterisation of the
probabilistic bisimilarity distances as the values of a simple stochastic game constructed from
the automaton, here called probabilistic bisimilarity game. Towards an algorithmic solution
for computing bisimilarity distances, in Section 5 we provide an alternative characterisation
of the distances in terms of coupling structures. Section 6 describes a procedure for computing
the bisimilarity distances based on Condon’s simple policy iteration algorithm. In Section 7
we discuss the relation between the notion of bisimilarity distance and probabilistic model
checking of ω-regular linear-time specifications against probabilistic automata. Finally,
Section 8 concludes with some remarks and future work directions.

2. Preliminaries and Notation

The set of functions f from X to Y is denoted by Y X . We denote by f [x/y] ∈ Y X the update
of f at x ∈ X with y ∈ Y , defined by f [x/y](x′) = y if x′ = x, otherwise f [x/y](x′) = f(x′).

A (1-bounded) pseudometric on a set X is a function d : X × X → [0, 1] such that,
d(x, x) = 0, d(x, y) = d(y, x), and d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Kantorovich lifting. A (discrete) probability distribution on X is a function µ : X → [0, 1]
such that

∑
x∈X µ(x) = 1, and its support is supp(µ) = {x ∈ X | µ(x) > 0}. We denote

by D(X) the set of probability distributions on X. A pseudometric d on X can be lifted
to a pseudometric on probability distributions in D(X) by means of the Kantorovich
lifting [Vil08].

The Kantorovich lifting of d ∈ [0, 1]X×X on distributions µ, ν ∈ D(X) is defined by

K(d)(µ, ν) = sup

{∑
x∈X

f(x) · (µ(x)− ν(x)) | f ∈ Ld

}
, (Kantorovich lifting)

where Ld denotes the set of non-expansive [0, 1]-valued functions over X, i.e., functions
f : X → [0, 1] such that, for all x, y ∈ X, |f(x)− f(y)| ≤ d(x, y).

The Kantorovich distance has the following well know dual formulation

K(d)(µ, ν) = min

 ∑
x,y∈X

d(x, y) · ω(x, y) | ω ∈ Ω(µ, ν)

 ,

where Ω(µ, ν) denotes the set of measure-couplings for the pair (µ, ν), i.e., distributions
ω ∈ D(X ×X) such that, for all x ∈ X,

∑
y∈X ω(x, y) = µ(x) and

∑
y∈X ω(y, x) = ν(x). It

is a well known fact that this dual characterisation can be equivalently stated by ranging
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ω over the set of vertices V (Ω(µ, ν)) of the polytope Ω(µ, ν), as a concave function on a
convex polytope attains its minimum at a vertex of the polytope (see [KW67, page 260]).
Furthermore, if the set X is finite, the set V (Ω(µ, ν)) is finite too [KW67, page 259].

Hausdorff lifting. A pseudometric d on X can be lifted to nonempty subsets of X by means of
the Hausdorff lifting. The Hausdorff lifting of d ∈ [0, 1]X×X on nonempty subsets A,B ⊆ X
is defined by

H(d)(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
. (Hausdorff lifting)

Following Mémoli [Mém11, Lemma 3.1], the Hausdorff lifting has a dual characterization
in terms of set-couplings2. Given A,B ⊆ X, a set-coupling for (A,B) is a relation R ⊆ X×X
with left and right projections respectively equal to A and B, i.e., {a | ∃b ∈ X. a R b} = A
and {b | ∃a ∈ X. a R b} = B. We write R(A,B) for the set of the set-couplings for (A,B).

Theorem 2.1 ([Mém11]). H(d)(A,B) = inf{sup(a,b)∈R d(a, b) | R ∈ R(A,B)}.

Clearly, for finite A,B, inf and sup in Theorem 2.1 can be replaced by min and max,
respectively.

3. Probabilistic Automata and Probabilistic Bisimilarity Distance

In this section we recall some definitions and results from the literature. In particular, we
introduce the models of interest, probabilistic automata, its best known behavioural equiva-
lence, Segala and Lynch’s probabilistic bisimilarity [SL94], and its quantitative generalization
due to Deng et al. [DCPP06].

A probabilistic automaton is a model of computation that combines nondeterministic
and probabilistic behaviours. Similarly to a standard nondeterministic automaton, states
are labelled to express that certain properties of interest hold in that state. A probabilistic
automaton in a current state s ∈ S can nondeterministically proceed to a next probabilistic
state µ ∈ D(S), representing the probability distribution with which the automaton will
move to the next state. This can be formalised as follows:

Definition 3.1. A probabilistic automaton (PA) is a tuple A = (S,L,→, `) consisting of
a nonempty finite set S of states, a finite set of labels L, a finite total transition relation
→ ⊆ S ×D(S), and a labelling function ` : S → L.

For simplicity we assume the transition relation → to be total, that is, for all s ∈ S,
there exists a µ ∈ D(S) such that (s, µ) ∈ →. For the remainder of this paper we fix a
probabilistic automaton A = (S,L,→, `). We write s→ µ to denote (s, µ) ∈ → and use δ(s)
to denote the set {µ | s→ µ} of successor distributions of s.

Next we recall the notion of probabilistic bisimilarity due to Segala and Lynch [SL94]
for probabilistic automata. Their definition exploits the notion of lifting of a relation
R ⊆ S × S on states to a relation R̃ ⊆ D(S)×D(S) on probability distributions on states,

originally introduced by Jonsson and Larsen [JL91], and defined by µ R̃ ν if there exists a
measure-coupling ω ∈ Ω(µ, ν) such that supp(ω) ⊆ R.

Definition 3.2. A relation R ⊆ S × S is a probabilistic bisimulation if whenever s R t,

2Mémoli uses the terminology “correspondence.” To avoid confusion, we adopted the same terminology
used in [PC19, Section 10.6].
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• `(s) = `(t),

• if s→ µ then there exists t→ ν such that µ R̃ ν, and
• if t→ ν then there exists s→ µ such that µ R̃ ν.

Two states s, t ∈ S are probabilistic bisimilar, written s ∼ t, if they are related by some
probabilistic bisimulation.

Intuitively, two states are probabilistic bisimilar if they have the same label and each
transition of the one state to a distribution µ can be matched by a transition of the other
state to a distribution ν assigning the same probability to states that behave the same, and
vice versa. Probabilistic bisimilarity is an equivalence relation and the largest probabilistic
bisimulation.

Deng et al. [DCPP06] proposed a family of 1-bounded pseudometrics dλ, parametric on a
discount factor λ ∈ (0, 1], called probabilistic bisimilarity pseudometrics. The pseudometrics
dλ are defined as the least fixed-point of the functions ∆λ : [0, 1]S×S → [0, 1]S×S

∆λ(d)(s, t) =

{
1 if `(s) 6= `(t)

λ · H(K(d))(δ(s), δ(t)) otherwise .

The well-definition of dλ follows by Knaster-Tarski’s fixed point theorem, given the fact that
∆λ is a monotone function on the complete partial order of [0, 1]-valued functions on S × S
ordered point-wise by d v d′ iff for all s, t ∈ S, d(s, t) ≤ d′(s, t).

The fact that probabilistic bisimilarity distances provide a quantitative generalization of
bisimilarity is captured by the following theorem due to Deng et al. [DCPP06, Corollary 2.14].

Theorem 3.3. For all λ ∈ (0, 1], dλ(s, t) = 0 if and only if s ∼ t.

4. Probabilistic Bisimilarity Distance as a Simple Stochastic Game

A simple stochastic game (SSG) consists of a finite directed graph whose vertices are
partitioned into sets of 0-sinks, 1-sinks, max vertices, min vertices, and random vertices.
The game is played by two players, the max player and the min player, with a single token.
At each step of the game, the token is moved from a vertex to one of its successors. At a
min vertex the min player chooses the successor, at a max vertex the max player chooses
the successor, and at a random vertex the successor is chosen randomly according to a
prescribed probability distribution. The max player wins a play of the game if the token
reaches a 1-sink and the min player wins if the play reaches a 0-sink or continues forever
without reaching a sink. Since the game is stochastic, the max player tries to maximize the
probability of reaching a 1-sink whereas the min player tries to minimize that probability.

Definition 4.1. A simple stochastic game is a tuple (V,E, P ) consisting of

• a finite directed graph (V,E) such that
– V is partitioned into the sets: V0 of 0-sinks, V1 of 1-sinks, Vmax of max vertices, Vmin of

min vertices, and Vrnd of random vertices;
– the vertices in V0 and V1 have outdegree zero and all other vertices have outdegree at

least one, and
• a function P : Vrnd → D(V ) such that for all v ∈ Vrnd and w ∈ V , P (v)(w) > 0 iff

(v, w) ∈ E.
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The above definition is slightly more general than the one given by Condon in [Con92,
Section 2]. Note that the outdegree of min, max and random vertices is at least one (instead
of exactly two), there may be multiple 0-sinks and 1-sinks (rather than exactly one). However,
a simple stochastic game as defined above can be transformed in polynomial-time into a
simple stochastic game as defined in [Con92], as shown by Zwick and Paterson [ZP96].

A strategy, also known as policy, for the min player is a function σmin : Vmin → V
that assigns the target of an outgoing edge to each min vertex, that is, for all v ∈ Vmin,
(v, σmin(v)) ∈ E. Likewise, a strategy for the max player is a function σmax : Vmax → V that
assigns the target of an outgoing edge to each max vertex. These strategies are known as
pure stationary strategies. We can restrict ourselves to these strategies since the optimal
among all strategies for both players are of this type (see, for example, [LL69]).

Such strategies determine a sub-game in which each max vertex and each min vertex has
outdegree one (see [Con92, Section 2] for details). Such a game can naturally be viewed as a
Markov chain. We write φσmin,σmax : V → [0, 1] for the function that gives the probability of
a vertex in this Markov chain to reach a 1-sink.

The value function φ : V → [0, 1] of a SSG is defined as minσmin maxσmax φσmin,σmax . It
is folklore that the value function of a simple stochastic game can be characterised as the
least fixed point of the following function (see, for example, [Jub05, Section 2.2 and 2.3]).

Definition 4.2. The function Φ: [0, 1]V → [0, 1]V is defined by

Φ(f)(v) =



0 if v ∈ V0

1 if v ∈ V1

max(v,w)∈E f(w) if v ∈ Vmax

min(v,w)∈E f(w) if v ∈ Vmin∑
(v,w)∈E P (v)(w) f(w) if v ∈ Vrnd

The [0, 1]-valued functions on V can be ordered point-wise by f v g iff for all v ∈ V ,
f(v) ≤ g(v). This partial order is complete in [0, 1]V , with meet and join respectively given
by the point-wise infimum and supremum.

Then, the existence the least fixed point of Φ is ensured by Knaster-Tarski’s fixed point
theorem and the following result.

Proposition 4.3. The function Φ is monotone.

Proof. Let f, g ∈ [0, 1]V and f v g. Let v ∈ V . It suffices to show that Φ(f)(v) ≤ Φ(g)(v).
We distinguish the following cases.

• If v ∈ V0 then Φ(f)(v) = 0 = Φ(g)(v).
• If v ∈ V1 then Φ(f)(v) = 1 = Φ(g)(v).
• If v ∈ Vmax then Φ(f)(v) = max(v,w)∈E f(w) ≤ max(v,w)∈E g(w) = Φ(g)(v).
• If v ∈ Vmin then Φ(f)(v) = min(v,w)∈E f(w) ≤ min(v,w)∈E g(w) = Φ(g)(v).
• If v ∈ Vrnd then Φ(f)(v) =

∑
(v,w)∈E P (v)(w) f(w) ≤

∑
(v,w)∈E P (v)(w) g(w) = Φ(g)(v).

The set [0, 1]V can be turned into a Banach space by means of the supremum norm
‖f‖ = maxv∈V f(v). Recall that a function F : [0, 1]V → [0, 1]V is non-expansive if for all
f, g ∈ [0, 1]V , ‖f − g‖ ≥ ‖F (f)− F (g)‖.

Proposition 4.4. The function Φ is nonexpansive.
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Proof. Let f, g ∈ [0, 1]V . Let v ∈ V . It suffices to show that |Φ(f)(v)− Φ(g)(v)| ≤ ‖f − g‖.
We distinguish the following cases.

• If v ∈ V0 then |Φ(f)(v)− Φ(g)(v)| = |0− 0| = 0 ≤ ‖f − g‖.
• If v ∈ V1 then |Φ(f)(v)− Φ(g)(v)| = |1− 1| = 0 ≤ ‖f − g‖.
• Let v ∈ Vmax. Without loss of generality, assume that max(v,w)∈E f(w) ≥ max(v,w)∈E g(w).

Then

|Φ(f)(v)− Φ(g)(v)| =
∣∣∣∣ max
(v,w)∈E

f(w)− max
(v,w)∈E

g(w)

∣∣∣∣
= max

(v,w)∈E
f(w)− max

(v,w)∈E
g(w)

= f(x)− max
(v,w)∈E

g(w)

≤ f(x)− g(x)

≤ ‖f − g‖ ,
where x ∈ V realises the maximum of {f(w) | (v, w) ∈ E}.
• Let v ∈ Vmin. Without loss of generality, assume that min(v,w)∈E f(w) ≥ min(v,w)∈E g(w).

Then

|Φ(f)(v)− Φ(g)(v)| =
∣∣∣∣ min
(v,w)∈E

f(w)− min
(v,w)∈E

g(w)

∣∣∣∣
= min

(v,w)∈E
f(w)− min

(v,w)∈E
g(w)

= min
(v,w)∈E

f(w)− g(x)

≤ f(x)− g(x)

≤ ‖f − g‖ ,
where x ∈ V realises the minimum of {g(w) | (v, w) ∈ E}.
• If v ∈ Vrnd then

|Φ(f)(v)− Φ(g)(v)| =

∣∣∣∣∣∣
∑

(v,w)∈E

P (v)(w) f(w)−
∑

(v,w)∈E

P (v)(w) g(w)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(v,w)∈E

P (v)(w) (f(w)− g(w))

∣∣∣∣∣∣
≤

∑
(v,w)∈E

P (v)(w) ‖f − g‖

≤ ‖f − g‖ .

4.1. A Probabilistic Bisimilarity Game. Fix a probabilistic automaton A and λ ∈ (0, 1].
We will characterise the probabilistic bisimilarity distances as values of a simple stochastic
game, which we call the probabilistic bisimilarity game, where the min player tries to show
that two states are probabilistic bisimilar, while the max player tries to prove the opposite.

In our probabilistic bisimilarity game, there is a vertex (s, t) for each pair states s and t
in A. If `(s) 6= `(t) then the vertex (s, t) is a 1-sink. Otherwise, (s, t) is a min vertex. In
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this vertex, the min player selects a set R ∈ R(δ(s), δ(t)) of pairs of transitions. This set R
captures potential matchings of transitions from state s and state t. Subsequently, the max
player chooses a pair of transitions from the set R. Once the max player has chosen a pair
(µ, ν) from the set R corresponding to the transitions s→ µ and t→ ν, the min player can
choose a measure-coupling ω ∈ Ω(µ, ν). To ensure that the game graph is finite, we restrict
our attention to the vertices V (Ω(µ, ν)) of the polytope Ω(µ, ν). Such a measure-coupling ω
captures a matching of the probability distributions µ and ν. Recall that a measure-coupling
is a probability distribution on S × S. From a random vertex ω, the game proceeds to
vertex (u, v) with probability λ · ω(u, v) and to the 0-sink vertex ⊥ with probability 1− λ.
Intuitively, the choices of R ∈ R(δ(s), δ(t)) and then (µ, ν) ∈ R, performed respectively by
the min and the max player, correspond to the min and max of Theorem 2.1; analogously,
the selection of ω ∈ V (Ω(µ, ν)) by the min player models the min in the definition of the
Kantorovich lifting.

Formally, our probabilistic bisimilarity game for the automaton A is defined as follows.

Definition 4.5. Let λ ∈ (0, 1]. The probabilistic bisimilarity game (V,E, P ) is defined by

• V0 = {⊥},
• V1 =

{
(s, t) ∈ S × S | `(s) 6= `(t)

}
,

• Vmax =
⋃{
R(δ(s), δ(t)) | (s, t) ∈ Vmin

}
,

• Vmin =
{

(s, t) ∈ S × S | `(s) = `(t)
}
∪
⋃{

R | R ∈ Vmax

}
,

• Vrnd =
⋃{

V (Ω(µ, ν)) | (µ, ν) ∈ Vmin

}
,

E =
{

((s, t), R) | (s, t) ∈ Vmin ∧R ∈ R(δ(s), δ(t))
}
∪{

(R, (µ, ν)) | R ∈ Vmax ∧ (µ, ν) ∈ R
}
∪{

((µ, ν), ω) | (µ, ν) ∈ Vmin ∧ ω ∈ V (Ω(µ, ν))
}
∪{

(ω, (u, v)) | ω ∈ Vrnd ∧ (u, v) ∈ supp(ω)
}
∪
{

(ω,⊥) | ω ∈ Vrnd

}
,

and, for all ω ∈ Vrnd and (s, t) ∈ supp(ω), P (ω)((s, t)) = λ · ω(s, t) and P (ω)(⊥) = 1− λ.

By construction of the probabilistic bisimilarity game, there is a direct correspondence
between the function Φ from Definition 4.2 associated to the probabilistic bisimilarity game
and the function ∆λ from Section 3 associated to the probabilistic automaton. From this
correspondence it is straightforward that the respective least fixed points of Φ and ∆λ agree,
that is, the probabilistic bisimilarity distances of a probabilistic automaton are the values of
the corresponding vertices of the probabilistic bisimilarity game.

Theorem 4.6. For all λ ∈ (0, 1] and s, t ∈ S, dλ(s, t) = φ(s, t).

Proof. The proof is similar to that of [vBW14, Theorem 14].
Let φ be the value function of the probabilistic bisimilarity game. Since Φ is monotone

and non-expansive (Propositions 4.3 and 4.4), we conclude from [vB12, Corollary 1] that
the closure ordinal of Φ is ω, that is, φ is the least upper bound of {Φn(0) | n ∈ N },
where the function 0 maps every vertex to zero. Similarly, dλ is the least upper bound of
{∆n

λ(0) | n ∈ N }, where the function 0 maps every state pair to zero. Therefore, it suffices
to show that for all s, t ∈ S and n ∈ N,

Φ4n(0)(s, t) = ∆n
λ(0)(s, t)

by induction on n. Obviously, the above holds if n = 0. Let n > 0. We distinguish the
following cases.
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t

u v

1
2

1
2

1

1 1

R = {(1t,1u), (1
21u + 1

21v,1u)},
R′ = {(1u,1u)}.

(t, u)

R(
1t,1u

) (
1
21u + 1

21v,1u
)

1(t,u)
1
21(u,u) + 1

21(v,u)

(u, u) (v, u)R′(1u,1u)

1(u,u)

1

1

1
2

1
2

Figure 2: (Top left:) A probabilistic automaton and (Right:) the associated simple stochastic
game constructed as in Definition 4.5 for λ = 1 (only the portion reachable from
(t, u) is shown), where 1x denotes the Dirac distribution concentrated at x.

• If `(s) 6= `(t) then the vertex (s, t) is a 1-sink and, hence, Φ4n(0)(s, t) = 1 = ∆n
λ(0)(s, t).

• If `(s) = `(t) then

Φ4n(0)(s, t) =

= min
R∈R(δ(s),δ(t))

Φ4n−1(0)(R)

= min
R∈R(δ(s),δ(t))

max
(µ,ν)∈R

Φ4n−2(0)(µ, ν)

= min
R∈R(δ(s),δ(t))

max
(µ,ν)∈R

min
ω∈V (Ω(µ,ν))

Φ4n−3(0)(ω)

= min
R∈R(δ(s),δ(t))

max
(µ,ν)∈R

min
ω∈V (Ω(µ,ν))

∑
(u,v)∈supp(ω)

λω(u, v) Φ4n−4(0)(u, v) + (1− λ)Φ4n−4(0)(⊥)

= min
R∈R(δ(s),δ(t))

max
(µ,ν)∈R

min
ω∈V (Ω(µ,ν))

λ
∑
u,v∈S

ω(u, v) Φ4n−4(0)(u, v) (⊥ is a 0-sink)

= min
R∈R(δ(s),δ(t))

max
(µ,ν)∈R

min
ω∈V (Ω(µ,ν))

λ
∑
u,v∈S

ω(u, v) ∆n−1
λ (0)(u, v) (by induction)

= λ · min
R∈R(δ(s),δ(t))

max
(µ,ν)∈R

K(∆n−1
λ (0))(µ, ν)

= λ · H(K(∆n−1
λ (0)))(δ(s), δ(t)) (Theorem 2.1)

= ∆n
λ(0)(s, t) .

Consider a state pair (s, t) with s ∼ t. By Theorem 3.3, dλ(s, t) = 0. Hence, from
Theorem 4.6 we can conclude that φ(s, t) = 0. Therefore, by pre-computing probabilistic
bisimilarity, (s, t) can be represented as a 0-sink, rather than a min vertex. For example, in
Figure 2 this amounts to turning (u, u) into a 0-sink and disconnecting it from its successors.

Games similar to the above introduced probabilistic bisimilarity game have been pre-
sented in [DLT08, vBW14, FKP17, KM18]. The game presented by van Breugel and Worrell
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in [vBW14] is most closely related to our game. They also consider probabilistic automata
and map a probabilistic automaton to a simple stochastic game. The only difference is that
they use the original definition of the Hausdorff distance, whereas we use Mémoli’s alterna-
tive characterization. The games described in [DLT08, FKP17, KM18] are not stochastic.
Desharnais, Laviolette and Tracol [DLT08] define an ε-probabilistic bisimulation game for
probabilistic automata, where ε > 0 captures the maximal amount of difference in behaviour
that is allowed. Their measure of difference in behaviour is incomparable to our probabilistic
bisimilarity distances (see [DLT08, Section 6]). König and Mika-Michalski [KM18] generalize
the game of Desharnais et al. in a categorical setting so that it is applicable to a large
class of systems including probabilistic automata. Fijalkow, Klin and Panangaden [FKP17]
consider a more restricted class of systems, namely systems with probabilities but without
nondeterminism. In the games in [DLT08, FKP17, KM18] players choose sets of states, a
phenomenon that one does not encounter in our game.

5. A Coupling Characterisation of the Bisimilarity Distance

In this section we provide an alternative characterisation for the probabilistic bisimilarity
distance dλ based on the notion of coupling structure for a probabilistic automaton. This
characterisation generalises the one by Chen et al. [CvBW12, Theorem 8] (see also [BBLM13,
Theorem 8]) for the bisimilarity pseudometric of Desharnais et al. [DGJP04] for labelled
Markov chains. Our construction exploits Mémoli’s dual characterisation of the Hausdorff
distance (Theorem 2.1).

Definition 5.1. A coupling structure for A is a tuple C = (f, ρ) consisting of

• a map f : D(S)×D(S)→ D(S × S) such that, for all µ, ν ∈ D(S), f(µ, ν) ∈ Ω(µ, ν), and

• a map ρ : S × S → 2D(S)×D(S), such that for all s, t ∈ S, ρ(s, t) ∈ R(δ(s), δ(t)).

For convenience, the components f and ρ of a coupling structure will be called measure-
coupling map and set-coupling map, respectively.

The definition of coupling structure is better understood in relation to the automaton it
induces. The probabilistic automaton induced from C = (f, ρ), denoted

AC = (S × S,L× L,→C , `C) ,
has S×S as set of states, L×L as set of labels, transition relation→C ⊆ (S×S)×D(S×S),
defined as (s, t)→C f(µ, ν) if (µ, ν) ∈ ρ(s, t), and labeling function `C : S×S → L×L defined
as `C(s, t) = (`(s), `(t)). Intuitively, AC describes the concurrent execution of two copies of
the probabilistic automaton A, synchronized by the coupling structure C. Coupling structures
are used to limiting the non-determinism only to set-couplings by fixing a particular choice
f(µ, ν) of measure-coupling between any pair of distributions µ, ν.

Let λ ∈ (0, 1]. For each C we define the function ΓCλ : [0, 1]S×S → [0, 1]S×S as

ΓCλ(d)(s, t) =

{
1 if `(s) 6= `(t)

λ ·max{
∑

u,v∈S d(u, v) · ω(u, v) | (s, t)→C ω} otherwise.

Lemma 5.2. The function ΓCλ is well-defined and monotone.

Proof. The well definition of ΓCλ follows by the fact that λ ∈ (0, 1] and
∑

u,v∈S d(u, v) ·ω(u, v)

is a convex combination of a sequence of [0, 1]-valued numbers, namely (d(u, v))u,v∈S .
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As for monotonicity, let d, d′ ∈ [0, 1]S×S and d v d′. Let s, t ∈ S, it suffices to show that
ΓCλ(d)(s, t) ≤ ΓCλ(d′)(s, t). We distinguish the following cases:

• If `(s) 6= `(t), then ΓCλ(d)(s, t) = 1 = ΓCλ(d′)(s, t).
• If `(s) = `(t), then we have

ΓCλ(d)(s, t) = λ ·max{
∑

u,v∈S d(u, v) · ω(u, v) | (s, t)→C ω}
= λ

∑
u,v∈S d(u, v) · ω∗(u, v) (for some (s, t)→C ω∗)

≤ λ
∑

u,v∈S d
′(u, v) · ω∗(u, v) (d v d′ and ω∗(u, v) ≥ 0 for all u, v ∈ S)

≤ λ ·max{
∑

u,v∈S d
′(u, v) · ω(u, v) | (s, t)→C ω} ((s, t)→C ω∗)

= ΓCλ(d′)(s, t) .

By Knaster-Tarski’s fixed point theorem, ΓCλ has a least fixed point, denoted by γCλ . As

in [BBLM13], we call γCλ the λ-discounted discrepancy w.r.t. C or simply λ-discrepancy.

Remark 5.3. Note that, the 1-discrepancy γC1 (s, t) is the maximal probability of reaching
a pair of states (u, v) in the probabilistic automaton AC such that `(u) 6= `(v) by starting
from the state pair (s, t). It is well known that the maximal reachability probability can
be computed in polynomial-time as the optimal solution of a linear program (see [BK08,
Theorem 10.100] or [Put94, Chapter 6]). The linear program can be trivially generalized to
compute γCλ , for any λ ∈ (0, 1].

Lemma 5.4. For all λ ∈ (0, 1] and coupling structure C of A, ∆λ(γCλ) v γCλ .

Proof. Let C = (f, ρ). Let s, t ∈ S and R = ρ(s, t). We distinguish two cases.

• If `(s) 6= `(t), then ∆λ(γCλ)(s, t) = 1 = γCλ(s, t).
• If `(s) = `(t),

∆λ(γCλ)(s, t) = λ · H(K(γCλ))(δ(s), δ(t)) (def. ∆λ)

= λ ·min{max(µ,ν)∈R′ K(γCλ)(µ, ν) | R′ ∈ R(δ(s), δ(t))} (Theorem 2.1)

≤ λ ·max(µ,ν)∈RK(γCλ)(µ, ν) (R ∈ R(δ(s), δ(t)))

= λ ·max(µ,ν)∈R minω∈Ω(µ,ν)

∑
u,v∈S γ

C
λ(u, v) · ω(u, v) (def. K(γCλ))

≤ λ ·max(µ,ν)∈R
∑

u,v∈S γ
C
λ(u, v) · f(µ, ν)(u, v) (f(µ, ν) ∈ Ω(µ, ν))

= λ ·max{
∑

u,v∈S γ
C
λ(u, v) · ω(u, v) | (s, t)→C ω} (def. →C)

= ΓCλ(γCλ)(s, t) (def. ΓCλ)

= γCλ(s, t) . (γCλ fixed point of ΓCλ)

By the generality of the chosen s and t, we conclude that ∆λ(γCλ) v γCλ .

Corollary 5.5. For all λ ∈ (0, 1] and coupling structure C for A, dλ v γCλ .

Proof. By Knaster-Tarski’s fixed point theorem, dλ is the least prefix point of ∆λ, therefore
by Lemma 5.4 we can conclude that dλ v γCλ .

The next lemma shows that the probabilistic bisimilarity distance can be characterised
as the λ-discrepancy for a vertex coupling structure, that is, a coupling structure C = (f, ρ)
such that f(µ, ν) ∈ V (Ω(µ, ν)) for all µ, ν ∈ D(S).
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Lemma 5.6. For all λ ∈ (0, 1] there exists a vertex coupling structure C for A such that
dλ = γCλ .

Proof. We construct a vertex coupling structure C = (f, ρ) as follows.
We define f : D(S)×D(S)→ D(S × S) by

f(µ, ν) ∈ argminω∈V (Ω(µ,ν))

∑
u,v∈S dλ(u, v) · ω(u, v) .

Hence,
K(dλ)(µ, ν) =

∑
u,v∈S dλ(u, v) · f(µ, ν)(u, v) . (5.1)

We define ρ : S × S → 2D(S)×D(S) by

ρ(s, t) =
{(
µ, argmin

ν∈δ(t)
K(dλ)(µ, ν)

)
| µ ∈ δ(s)

}
∪
{(

argmin
µ∈δ(s)

K(dλ)(µ, ν), ν
)
| ν ∈ δ(t)

}
.

Hence, ρ(s, t) ∈ R(δ(s), δ(t)) and

H(K(dλ))(δ(s), δ(t)) = max{K(dλ)(µ, ν) | (µ, ν) ∈ ρ(s, t)} . (5.2)

Next, we show that ΓCλ(dλ) v dλ. Let s, t ∈ S. We distinguish two cases:

• If `(s) 6= `(t), then dλ(s, t) = ∆λ(dλ)(s, t) = 1 = ΓCλ(dλ)(s, t).
• If `(s) = `(t), we have

ΓCλ(dλ)(s, t) = λ ·max{
∑

u,v∈S dλ(u, v) · ω(u, v) | (s, t)→C ω} (def. ΓCλ)

= λ ·max{
∑

u,v∈S dλ(u, v) · f(µ, ν)(u, v) | (µ, ν) ∈ ρ(s, t)} (def. →C)
= λ ·max{K(dλ)(µ, ν) | (µ, ν) ∈ ρ(s, t)} (eq. (5.1))

= λ · H(K(dλ))(δ(s), δ(t)) (eq. (5.2))

= dλ(s, t) . (dλ fixed point of ∆λ)

Therefore ΓCλ(dλ) = dλ. Since γCλ is the least fixed point of ΓCλ, by Knaster-Tarski’s fixed

point theorem γCλ v dλ. Moreover, by Corollary 5.5, dλ v γCλ . Thus dλ = γCλ .

Theorem 5.7. Let λ ∈ (0, 1]. Then, the following hold:

(1) dλ = u{γCλ | C coupling structure for A};
(2) s ∼ t iff γCλ(s, t) = 0 for some vertex coupling structure C for A.

Proof. (1) follows by Corollary 5.5 and Lemma 5.6; (2) by Theorem 3.3 and Lemma 5.6.

Note that together with Lemma 5.6, Theorem 5.7.1 states that dλ is the minimal
λ-discrepancy obtained by ranging over the subset of vertex coupling structures.

Remark 5.8 (On the relation with probabilistic bisimilarity games). The coupling structure
characterization of the distance is strongly related to the simple stochastic game charac-
terization presented in Section 4. Indeed, the notion of vertex coupling structure captures
essentially the strategies for the min player on a probabilistic bisimilarity game in the
following sense: the measure-coupling map component describes the strategy on the vertices
of the form (µ, ν) ∈ R for some R ∈ Vmax, while the set-coupling map deals with the
description of the strategy on the min vertices (s, t) ∈ S × S. The discrepancy γC1 captures
the value w.r.t an optimal strategy for the max player when the min player has fixed their
strategy a priori.
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6. Computing the Bisimilarity Distance

We describe a procedure for computing the bisimilarity distances based on Condon’s simple
policy iteration algorithm [Con90]. Our procedure extends a similar one proposed in [TvB16,
BBLM13] for computing the bisimilarity distances of Desharnais et al. [DGJP04] for labelled
Markov chains. The extension takes into account the additional presence of nondeterminism
in the choice of the transitions.

Condon’s simple policy iteration algorithm computes the values of a simple stochastic
game provided that the game is stopping, i.e., for each pair of strategies for the min and
max players the token reaches a 0-sink or 1-sink vertex with probability one.

As we have shown in Theorem 4.6, the probabilistic bisimilarity distances are the values
of the corresponding vertices in the simple stochastic game given in Definition 4.5. Thus, if
we prove that the game is stopping we can apply Condon’s simple policy iteration algorithm
to compute the probabilistic bisimilarity distances.

Proposition 6.1. For λ ∈ (0, 1), the simple stochastic game in Definition 4.5 is stopping.

Proof. For each pair of strategies for the min and max players, each vertex in the induced
Markov chain reaches the 0-sink vertex ⊥ with probability at least 1− λ. Since λ < 1, from
any state, the probability of never reaching ⊥ is zero, i.e., the probability of eventually
reaching the sink state ⊥ is one.

However, for λ = 1 the game in Definition 4.5 may not be stopping as shown below.

Example 6.2. Consider the probabilistic automaton in Figure 2 and its associated prob-
abilistic bisimilarity game. By choosing a strategy σmax for the max player such that
σmax(R) = (1t,1u), the vertex (t, u) has probability zero to reach a sink. This can be seen
in Figure 2, since there are no paths using the edge (R, (1t,1u)) leading to a sink.

In [TvB16], by imposing the bisimilar state pairs to be 0-sinks, for the case of labelled
Markov chains the simple stochastic game was proven to be stopping. This method does not
generalize to probabilistic automata. Indeed, Example 6.2 provides a counterexample even
when bisimilar state pairs are 0-sinks.

In the remainder of the section, we provide a general algorithm to compute the bisimilarity
distance for every λ ∈ (0, 1], by adapting Condon’s simple policy iteration algorithm. Our
solution will exploit the coupling characterization of the distance discussed in Section 5.
This allows us to skip the construction of the simple stochastic game which may have size
exponential in the number of states of the automaton.

6.1. Simple Policy Iteration Strategy. Condon’s algorithm iteratively updates the
strategies of the min and max players in turn, on the basis of the current over-approximation
of the value of the game. Next we show how Condon’s policy updates can be performed
directly on coupling structures.

For the update of the coupling structure, we use a measure-coupling map k(d)(µ, ν) ∈
V (Ω(µ, ν)) and a set-coupling map h(d)(s, t) ∈ R(δ(s), δ(t)) such that

k(d)(µ, ν) ∈ argmin
{∑

u,v∈S ω(u, v) · d(u, v) | ω ∈ V (Ω(µ, ν))
}

, and (6.1)

h(d)(s, t) ∈ argmin
{

max(µ,ν)∈RK(d)(µ, ν) | R ∈ R(δ(s), δ(t))
}
. (6.2)

for d : S × S → [0, 1], µ, ν ∈ D(S), and s, t ∈ S.
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The following lemma explains how the above ingredients can be used by the min player
to improve its strategy.

Lemma 6.3. Let C = (f, ρ). If there exist s, t ∈ S such that ∆λ(γCλ)(s, t) < γCλ(s, t) then,

γDλ < γCλ for a coupling structure D = (k(γCλ), ρ[(s, t)/R]), where R = h(γCλ)(s, t).

Proof. Assume ∆λ(γCλ)(s, t) < γCλ(s, t). Next we show ΓDλ (γCλ) < γCλ . In particular we prove

that ΓDλ (γCλ)(s, t) < γCλ(s, t) and, for all (u, v) 6= (s, t), ΓDλ (γCλ)(u, v) ≤ γCλ(u, v).

By ∆λ(γCλ)(s, t) < γCλ(s, t), we necessarily have `(s) = `(t). Thus

∆λ(γCλ)(s, t) = λ · H(K(γCλ))(δ(s), δ(t)) (`(s) = `(t) and def. ∆λ)

= λ ·min{ max
(µ,ν)∈R′

K(γCλ)(µ, ν) | R′ ∈ R(δ(s), δ(t))} (Theorem 2.1)

= λ ·max(µ,ν)∈RK(γCλ)(µ, ν) (R = h(γCλ)(s, t) and (6.2))

= λ ·max(µ,ν)∈R minω∈Ω(µ,ν)

∑
u,v∈S γ

C
λ(u, v) · ω(u, v) (def. K(γCλ))

= λ ·max(µ,ν)∈R
∑

u,v∈S γ
C
λ(u, v) · k(γCλ)(µ, ν)(u, v) (by (6.1))

= ΓDλ (γCλ)(s, t) . (def. D and ΓDλ )

Therefore, ΓDλ (γCλ)(s, t) = ∆λ(γCλ)(s, t) < γCλ(s, t).
Let u, v ∈ S such that (u, v) 6= (s, t). We distinguish two cases.

• If `(u) 6= `(v), then ΓDλ (γCλ)(u, v) = 1 = ΓCλ(γCλ)(u, v) = γCλ(u, v).
• If `(u) = `(v), then

ΓDλ (γCλ)(u, v) = λ ·max(µ,ν)∈ρ(u,v)

∑
x,y∈S k(γCλ)(µ, ν)(x, y) · γCλ(x, y) (def. ΓDλ and D)

≤ λ ·max(µ,ν)∈ρ(u,v)

∑
x,y∈S f(µ, ν)(x, y) · γCλ(x, y) ((6.1), f(µ, ν) ∈ Ω(µ, ν))

= ΓCλ(γCλ)(u, v) = γCλ(u, v) . (def. ΓCλ and γCλ)

Thus ΓDλ (γCλ) < γCλ . By Knaster-Tarski’s fixed point theorem, we conclude that γDλ < γCλ .

Lemma 6.3 suggests that C = (f, ρ) can be improved by replacing the measure-coupling
map f with k(γCλ) and updating the set-coupling map ρ at (s, t) with R = h(γCλ)(s, t).

Note that a measure-coupling k(d)(µ, ν) satisfying (6.1) can be computed by solv-
ing a linear program and ensuring that the optimal solution is a vertex of the polytope
Ω(µ, ν) [Orl85, KS95]. A set-coupling h(d)(s, t) satisfying (6.2) is the following:

R =
{

(µ, φ(µ)) | µ ∈ δ(s)
}
∪
{

(ψ(ν), ν) | ν ∈ δ(t)
}
∈ R(δ(s), δ(t)) , (6.3)

where φ, ψ are such that φ(µ) ∈ argminν∈δ(t)K(d)(µ, ν) and ψ(ν) ∈ argminµ∈δ(s)K(d)(µ, ν).

The following lemma justifies our choice of h(d)(s, t).

Lemma 6.4. Let R be as in (6.3). Then H(K(d))(δ(s), δ(t)) = max(µ,ν)∈RK(d)(µ, ν).

Proof. By Theorem 2.1 and R ∈ R(δ(s), δ(t)), we have

H(K(d))(δ(s), δ(t)) ≤ max(µ,ν)∈RK(d)(µ, ν) .

Hence, it suffices to prove

(i) K(d)(µ, φ(µ)) ≤ H(K(d))(δ(s), δ(t)), for all µ ∈ δ(s), and
(ii) K(d)(ψ(ν), ν) ≤ H(K(d))(δ(s), δ(t)), for all ν ∈ δ(t).
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Algorithm 1: Simple policy iteration algorithm computing dλ for λ ∈ (0, 1).

1 Initialise C = (f, ρ) as an arbitrary vertex coupling structure for A
2 while ∃(s, t).∆λ(γCλ)(s, t) < γCλ(s, t) do
3 R← h(γCλ)(s, t)

4 C ←
(
k(γCλ), ρ[(s, t)/R]

)
/* update coupling structure */

5 end

6 return γCλ /* γCλ = dλ */

We prove (i). Let µ ∈ δ(s). Then

H(K(d))(δ(s), δ(t)) ≥ max
µ′∈δ(s)

min
ν∈δ(t)

K(d)(µ′, ν) (def. H)

≥ min
ν∈δ(t)

K(d)(µ, ν) (µ ∈ δ(s))

= K(d)(µ, φ(µ)) (φ(µ) ∈ argminν∈δ(t)K(d)(µ, ν))

The proof for (ii) follows similarly.

Remark 6.5. The update procedure entailed by Lemma 6.3 can be performed in polynomial-
time in the size of the probabilistic automaton A. Indeed, k(d)(µ, ν) can be obtained by
solving a transportation problem in polynomial time [Orl85, KS95]. As for h(d)(s, t), one
can obtain φ(µ) (resp. ψ(ν)) by computing K(d)(µ, ν) in polynomial time and selecting the
ν (resp. µ) ranging over δ(t) (resp. δ(s)) that achieves the minimum.

6.2. Discounted case. The simple policy iteration algorithm for computing dλ in the case
λ < 1 is presented in Algorithm 1. The procedure starts by computing an initial vertex
coupling structure C0 (line 1), e.g., by using the North-West corner method in polynomial
time (see, e.g., [Str89, pg. 180]). Then it continues by iteratively generating a sequence

C0, C1, . . . , Cn of vertex coupling structures where dλ = γCnλ . At each iteration, the current
coupling structure Ci is tested for optimality (line 2) by checking whether the corresponding

λ-discrepancy γCiλ is a fixed point for ∆λ. If there exists (s, t) ∈ S violating the equality

γCiλ = ∆λ(γCiλ ), it constructs Ci+1 by updating Ci at (s, t) as prescribed by Lemma 6.3 (line 4).

This guarantees that γCiλ = γ
Ci+1

λ , i.e., a strict improvement of the λ-discrepancy towards
the minimal one.

Termination follows by the fact that there are only finitely many vertex coupling
structures for A. Furthermore, the correctness of the output of the algorithm is due to the
fact that, ∆λ has a unique fixed point when 0 ≤ λ < 1.

Theorem 6.6. Let λ ∈ (0, 1). Algorithm 1 is terminates and computes dλ.

Proof. First we prove termination. Note that the set

{γCλ | C vertex coupling structure for A} (6.4)

is finite because for all s, t ∈ S the set R(δ(s), δ(t)) is finite, and for all µ ∈ δ(s) and
ν ∈ δ(t) the polytope Ω(µ, ν) has finitely many vertices, i.e., V (Ω(µ, ν)) is finite. Towards a
contradiction, assume that Algorithm 1 does not terminate. Let C0, C1, C2, . . . be the infinite
sequence of coupling structures generated during a non-terminating execution of Algorithm 1.

Since the set in (6.4) is finite, there must be i < j such that γCiλ = γ
Cj
λ .
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On the contrary, next we prove that the updates of the coupling structures in Algorithm 1

ensure that for all n ∈ N, γCnλ = γ
Cn+1

λ . Let n ∈ N. Since we are considering a non-terminating

execution we have that ∆λ(γCnλ )(s, t) < γCnλ (s, t), for some s, t ∈ S. Cn+1 is obtained from
the update performed in line 4, which is exactly the one prescribed by Lemma 6.3. Therefore

we have that γCnλ = γ
Cn+1

λ . Hence, Algorithm 1 terminates.
When the execution of Algorithm 1 has reached the return statement, we have that

∆λ(γCnλ )(s, t) ≥ γCnλ (s, t) for all s, t ∈ S, i.e., γCnλ v ∆λ(γCn1 ). By Lemma 5.4, γCnλ w
∆λ(γCnλ ), therefore γCnλ = ∆λ(γCnλ ). The operator ∆λ is λ-Lipschitz continuous [Tan18,
Proposition 10.3.2(b)] thus, by Banach’s fixed-point theorem, ∆λ has a unique fixed point.
Hence, γCλ = dλ.

6.3. Undiscounted case. For λ = 1, the termination condition of the simple policy-
iteration algorithm of Section 6.1 is not sufficient to guarantee correctness, since Algorithm 1
may terminate prematurely by returning a fixed point of ∆1 that is not the minimal one.

Towards a way to obtain a stronger termination condition, we introduce the notion of
self-closed relations w.r.t. a fixed point for ∆1, originally due to [Fu12].

Definition 6.7. A relation M ⊆ S × S is self-closed w.r.t. d = ∆1(d) if, whenever s M t,

(i) `(s) = `(t) and d(s, t) > 0,
(ii) if s → µ and d(s, t) = minν′∈δ(t)K(d)(µ, ν ′) then there exists t → ν and ω ∈ Ω(µ, ν)

such that d(s, t) =
∑

u,v∈S d(u, v) · ω(u, v) and supp(ω) ⊆M ,

(iii) if t→ ν and d(s, t) = minµ′∈δ(s)K(d)(µ′, ν) then there exists s→ µ and ω ∈ Ω(µ, ν)
such that d(s, t) =

∑
u,v∈S d(u, v) · ω(u, v) and supp(ω) ⊆M .

Two states are self-closed w.r.t d, written s ≈d t, if they are related by some self-closed
relation w.r.t. d.

It can be easily shown that ≈d is the largest self-closed relation w.r.t. d. Note that the
concept of self-closeness above is defined only for fixed points of ∆1. As remarked in [Fu12],
the largest self-closed relation ≈d can be computed in polynomial time by using partition
refinement techniques similar to those employed to compute the largest bisimilarity relation.

Example 6.8. The following is a parametric definition for a family of fixed points of ∆1

over the probabilistic automaton in Figure 2, for 1
2 ≤ α ≤ 1:

dα(t, u) = dα(u, t) = α ,

dα(t, t) = dα(u, u) = dα(v, v) = 0 ,

dα(t, v) = dα(u, v) = dα(v, t) = dα(v, u) = 1 .

For α 6= 1
2 , an example of a self-closed relation w.r.t. dα is given by the relation M = {(t, u)}.

It is easy to verify that condition (i) holds true since `(t) = `(u) and dα(t, u) = α >
0. The only case where (ii) is non-trivial is when t → 1t, as minν′∈δ(u)K(dα)(1t, ν

′) =
K(dα)(1t,1u) = dα(t, u). In this case, condition (ii) is satisfied since u→ 1u and ω = 1(t,u) ∈
Ω(1t,1u) is a measure-coupling such that dα(s, t) =

∑
u,v dα(u, v) ·ω(u, v) and supp(ω) ⊆M .

As for the last condition (iii), it holds true because the premise of the implication is never
satisfied. With similar arguments one can easily verify that M ′ = {(t, u), (u, t)} is also a
self-closed set w.r.t. dα, and in particular it is the greatest one.

For α = 1
2 , we have that dα is the least fixed points. The only admissible self-closed

relation for it is the empty set.
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The next lemma (Lemma 6.10) characterizes self-closed relation M in terms of the
existence of certain optimal strategies for the probabilistic bisimilarity game given in
Definition 4.5. Intuitively, M is a set of nodes such that, if you play optimally with respect
to the current value d you still remain within M .

Example 6.9. As shown in Example 6.8, for 1
2 < α ≤ 1, M = {(t, u)} is a self-closed

relation w.r.t. dα for the probabilistic automaton depicted in Figure 2. Consider now dα
as the current value for the probabilistic bisimilarity game associated with the automaton
(see Figure 2(right)). An optimal strategy relative to the current value dα is the one where
the min player chooses R from (t, u), and 1(t,u) from (1t,1u); while the max player chooses
(1t,1u) from R. This particular choice of the strategy makes the two players stay within M ,
without ever reaching a sink state.

Lemma 6.10. Given d = ∆1(d), a relation M ⊆ S × S is self-closed w.r.t. d, if and only if,
whenever s M t then

(a) `(s) = `(t) and d(s, t) > 0,
(b) there exists R ∈ R(δ(s), δ(t)) such that d(s, t) = max(µ′,ν′)∈RK(d)(µ′, ν ′) and for all

(µ, ν) ∈ R such that d(s, t) = K(d)(µ, ν), there exists ω ∈ Ω(µ, ν) such that d(s, t) =∑
u,v∈S d(u, v) · ω(u, v) and supp(ω) ⊆M .

Proof. (⇐) Let s M t. Def. 6.7.(i) follows from (a). Next we show that (b) implies Def.
6.7.(ii). Let R be the set-coupling for (δ(s), δ(t)) satisfying (b) and µ ∈ δ(s) be such that
d(s, t) = minν′∈δ(t)K(d)(µ, ν ′). Then by definition of set-coupling, there exists ν ∈ δ(t) such
that (µ, ν) ∈ R. Clearly K(d)(µ, ν) ≥ minν′∈δ(t)K(d)(µ, ν ′). Moreover,

K(d)(µ, ν) ≤ max
(µ′,ν′)∈R

K(d)(µ′, ν ′) ((µ, ν) ∈ R)

= d(s, t) (by (b))

= min
ν′∈δ(t)

K(d)(µ, ν ′) . (hp. on µ)

Therefore, K(d)(µ, ν) = d(s, t). By (µ, ν) ∈ R and (b), there exists ω ∈ Ω(µ, ν) such that
d(s, t) =

∑
u,v∈S d(u, v) ·ω(u, v) and supp(ω) ⊆M . Hence, Def. 6.7.(ii) holds true. Condition

Def. 6.7.(iii) follows similarly.
(⇒) Let s M t. Condition (a) follows by Def. 6.7.(i). Assume Def. 6.7.(ii) and (iii) hold

true. Then, we can define φ : δ(s)→ δ(t) and ψ : δ(t)→ δ(s) such that

(1) φ(µ) ∈ argminν′∈δ(t)K(d)(µ, ν ′) and if K(d)(µ, φ(µ)) = d(s, t) then, there exists ω ∈
Ω(µ, φ(µ)) such that

∑
u,v∈S d(u, v) · ω(u, v) = d(s, t) and supp(ω) ⊆M .

(2) ψ(ν) ∈ argminµ′∈δ(s)K(d)(µ′, ν) and if K(d)(ψ(ν), ν) = d(s, t) then there exists ω ∈
Ω(ψ(ν), ν) such that

∑
u,v∈S d(u, v) · ω(u, v) = d(s, t) and supp(ω) ⊆M .

Define R = {(µ, φ(µ)) | µ ∈ δ(s)} ∪ {(ψ(ν), ν) | ν ∈ δ(t)}. By construction R ∈ R(δ(s), δ(t)).
Then, the following hold

max
(µ,ν)∈R

K(d)(µ, ν) = max{max
µ∈δ(s)

K(d)(µ, φ(µ)), max
ν∈δ(t)

K(d)(ψ(ν), ν))} (def. R)

= H(K(d))(δ(s), δ(t)) (by def. φ and ψ)

= d(s, t) . (d = ∆1(d))
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Let (µ, ν) ∈ R such that d(s, t) = K(d)(µ, ν). By definition, ν = φ(µ) or µ = ψ(ν). If
ν = φ(µ) then, d(s, t) = K(d)(µ, φ(µ)) and, by φ, there exists ω ∈ Ω(µ, φ(µ)) such that∑

u,v∈S d(u, v) · ω(u, v) = d(s, t) and supp(ω) ⊆M . The case µ = ψ(ν) is analogous.

The next lemma states that if for a fixed point d = ∆1(d) the relation ≈d is nonempty,
then d is not the least fixed point of ∆1.

Lemma 6.11. Let d = ∆1(d). If there exists a nonempty self-closed relation M w.r.t.
d, then there exists dM < d such that ∆1(dM ) v dM . Moreover, dM can be computed in
polynomial time in the size of the probabilistic automaton A.

Proof. Let M be a nonempty self-closed relation w.r.t. d. For arbitrary s, t ∈ S, µ ∈ δ(s),
and ν ∈ δ(t), define

θs(µ, t) = d(s, t)− min
ν∈δ(t)

K(d)(µ, ν) and θt(s, ν) = d(s, t)− min
µ∈δ(s)

K(d)(µ, ν) .

Note that, θs(µ, t) and θt(s, ν) are non-negative since d = ∆1(d). Let θ = min{θ1, θ2, θ3}
where

• θ1 = min{θs(µ, t) | (s, t) ∈M ∧ µ ∈ δ(s) ∧ θs(µ, t) > 0};
• θ2 = min{θt(s, ν) | (s, t) ∈M ∧ ν ∈ δ(t) ∧ θt(s, ν) > 0};
• θ3 = min{d(s, t) | (s, t) ∈M};
where min ∅ = 1. Note that θ3 > 0, because M is a nonempty self-closed relation w.r.t. d.
Therefore θ > 0. We define the map dM : S × S → [0, 1] as

dM (s, t) =

{
d(s, t)− θ if (s, t) ∈M
d(s, t) if (s, t) /∈M

It is clear that dM is well-defined. Moreover dM < d because M is nonempty and θ > 0.
Next we prove that ∆1(dM ) v dM . Let s, t ∈ S. We consider two cases:

• Assume (s, t) /∈M . Then

∆1(dM )(s, t) ≤ ∆1(d)(s, t) (by dM v d and ∆1 monotone)

= d(s, t) (d = ∆1(d))

= dM (s, t) ((s, t) /∈M)

• Assume (s, t) ∈M . Then `(s) = `(t). Let µ ∈ δ(s). We consider two subcases below:
(1) If θs(µ, t) > 0 we have

dM (s, t) = d(s, t)− θ (def. dM )

≥ d(s, t)− θs(µ, t) (0 < θ ≤ θs(µ, t))
= min

ν∈δ(t)
K(d)(µ, ν) (def. θs(µ, t))

≥ min
ν∈δ(t)

K(dM )(µ, ν) (dM v d and K monotone)

(2) If θs(µ, t) = 0, then d(s, t) = minν∈δ(t)K(d)(µ, ν). Since M is self-closed w.r.t. d, there
exists ν ′ ∈ δ(t) such that d(s, t) =

∑
u,v∈S d(u, v) · ω(u, v), for some ω ∈ Ω(µ, ν ′) such
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that supp(ω) ⊆M . Thus

min
ν∈δ(t)

K(dM )(µ, ν) ≤ K(dM )(µ, ν ′) (ν ′ ∈ δ(t))

= min
ω′∈Ω(µ,ν′)

∑
u,v∈S

dM (u, v) · ω′(u, v) (def. K(dM ))

≤
∑
u,v∈S

dM (u, v) · ω(u, v) (ω ∈ Ω(µ, ν ′))

=
∑
u,v∈M

dM (u, v) · ω(u, v) (supp(ω) ⊆M)

=
∑
u,v∈M

(d(u, v)− θ) · ω(u, v) (def. dM )

=
( ∑
u,v∈M

d(u, v) · ω(u, v)
)
− θ (

∑
u,v∈M ω(u, v) = 1)

= d(s, t)− θ (d(s, t) =
∑

u,v∈S d(u, v) · ω(u, v))

= dM (s, t) (def. dM )

So that, in both cases 1 and 2 we have dM (s, t) ≥ minν∈δ(t)K(dM )(µ, ν). Since this
inequality holds for all µ ∈ δ(s), we have dM (s, t) ≥ maxµ∈δ(s) minν∈δ(t)K(dM )(µ, ν).
Symmetrically, we can prove dM (s, t) ≥ maxν∈δ(t) minµ∈δ(s)K(dM )(µ, ν). Thus, by defini-
tion of Hausdorff lifting, dM (s, t) ≥ H(K(dM ))(δ(s), δ(t)). From this we conclude

dM (s, t) ≥ H(K(dM ))(δ(s), δ(t))

= ∆1(dM )(s, t) (`(s) = `(t) and def. ∆1)

Finally, we consider the complexity of computing dM . For computing θ, we need to compute
in turn θ1, θ2, and θ3. Since M ⊆ S × S, computing θ3 can be done in quadratic time in
|S|. The computation of θ1 requires at most |M | ·

∑
s∈S |δ(s)| solutions of a transportation

problem. This can be done in polynomial-time in the size of A. Similarly for θ2.

The proof of Lemma 6.11 is essentially that of [Fu12, Theorem 3]. Given a nonempty
self-closed relation M w.r.t. d, the above result can be used to obtain a prefix point of ∆1,
namely dM , that improves d towards the search of the least fixed point. The prefix point
dM of Lemma 6.11 is obtained from d by subtracting a suitable value θ > 0 from all the
distances computed at pairs of states in M :

dM (s, t) =

{
d(s, t)− θ if (s, t) ∈M ,

d(s, t) if (s, t) /∈M .

The value of θ that gives us the smallest prefix point defined as above, is the maximal value
satisfying the following inequalities

θ ≤ d(s, t)− min
ν′∈δ(t)

K(d)(µ, ν ′) for all (s, t) ∈M and µ ∈ δ(s),

θ ≤ d(s, t)− min
µ′∈δ(s)

K(d)(µ′, ν) for all (s, t) ∈M and ν ∈ δ(t),

θ ≤ d(s, t) for all (s, t) ∈M .

The fact that dM is a prefix point follows by the fact that M is a self-closed relation.
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The following lemma provides us with a termination condition for the simple policy
iteration algorithm to compute d1. Indeed, according to it, if d is a fixed point of ∆1, we
can assert that d is equal to bisimilarity distance d1 by simply checking that the maximal
self-closed relation w.r.t. d is empty.

Lemma 6.12. Let d = ∆1(d). If ≈d = ∅, then d = d1.

Proof. Let d = ∆1(d). We proceed by contraposition. Assume that d 6= d1. We define a
non-empty self-closed relation M w.r.t. d as follows.

m = maxs,t∈S d(s, t)− d1(s, t) , M = {(s, t) ∈ S × S | d(s, t)− d1(s, t) = m} .
Clearly, m > 0 and M 6= ∅ because d 6= d1.

Let (s, t) ∈M . We prove that the three conditions of Definition 6.7 hold true.

(1) d(s, t) > 0 because 0 < m = d(s, t)− d1(s, t) ≤ d(s, t). Now we prove that `(s) = `(t).
Towards a contradiction, assume `(s) 6= `(t). Then, the following inequalities hold

0 < m = d(s, t)− d1(s, t) = ∆1(d)(s, t)−∆1(d1)(s, t) = 1− 1 = 0 ,

leading to the contradiction that 0 < 0.
(2) Let µ ∈ δ(s) such that d(s, t) = minν∈δ(t)K(d)(µ, ν). Then we have

d1(s, t) = ∆1(d1)(s, t) (by def. d1)

= H(K(d1))(δ(s), δ(t)) (by `(s) = `(t))

≥ minν∈δ(t)K(d1)(µ, ν) (by def. H)

Let ν∗ ∈ δ(t), ω ∈ Ω(µ, ν∗) such that

minν∈δ(t)K(d1)(µ, ν) = K(d1)(µ, ν∗) =
∑

u,v∈S d1(u, v) · ω(u, v) . (6.5)

Then, the following inequalities hold

K(d1)(µ, ν∗) =
∑

u,v∈S d1(u, v) · ω(u, v) (by (6.5))

=
∑

u,v∈S
(
d(u, v)− (d(u, v)− d1(u, v))

)
· ω(u, v)

≥
∑

u,v∈S(d(u, v)−m) · ω(u, v) (def. m)

=
(∑

u,v∈S d(u, v) · ω(u, v)
)
−m (ω ∈ D(S × S))

≥ K(d)(µ, ν∗)−m (def. K and ω ∈ Ω(µ, ν∗))

Thus, we have

d(s, t) ≤ K(d)(µ, ν∗) (d(s, t) = minν∈δ(t)K(d)(µ, ν))

≤ K(d1)(µ, ν∗) +m (K(d1)(µ, ν∗) ≥ K(d)(µ, ν∗)−m)

≤ d1(s, t) +m (d1(s, t) ≥ minν∈δ(t)K(d1)(µ, ν) and def. ν∗)

= d1(s, t) + (d(s, t)− d1(s, t)) (def. m and (s, t) ∈M)

= d(s, t)

Therefore, all the above inequalities are, in fact, equalities. Hence,

d(s, t) = K(d)(µ, ν∗) and d1(s, t) = K(d1)(µ, ν∗) . (6.6)

We conclude by proving that ω satisfies the following

d(s, t) =
∑

u,v∈S d(u, v) · ω(u, v) and supp(ω) ⊆M .
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Algorithm 2: Simple policy iteration algorithm computing d1.

1 Initialise C = (f, ρ) as an arbitrary vertex coupling structure for A
2 isMin← false

3 while ¬isMin do
4 while ∃(s, t).∆1(γC1 )(s, t) < γC1 (s, t) do
5 R← h(γC1 )(s, t)

6 C ←
(
k(γC1 ), ρ[(s, t)/R]

)
/* update coupling structure */

7 end

8 Let M ← ≈γC1 /* note that γC1 = ∆1(γC1 ) */

9 if M = ∅ then
10 isMin← true /* γC1 = d1 */

11 else
12 Compute d = (γC1 )M as in Lemma 6.11

13 Re-initialise C as a vertex coupling structure s.t. ΓC1(d) = ∆1(d)

14 end

15 end

16 return γC1

This can be observed as follows∑
u,v∈S d(u, v) · ω(u, v) ≥ d(s, t) (ω ∈ Ω(µ, ν∗) and (6.6))

= d1(s, t) +m ((s, t) ∈M and def. m)

=
(∑

u,v∈S d1(u, v) · ω(u, v)
)

+m (by (6.6) and (6.5))

=
∑

u,v∈S(d1(u, v) +m) · ω(u, v) (ω ∈ D(S × S))

≥
∑

u,v∈S
(
d1(u, v) + (d(u, v)− d1(u, v))

)
· ω(u, v) (def. m)

=
∑

u,v∈S d(u, v) · ω(u, v)

Hence, the above are in fact equalities and in particular d(s, t) =
∑

u,v∈S d(u, v) ·ω(u, v).
Consider now the following inequalities

m = d(s, t)− d1(s, t) ((s, t) ∈M)

= d(s, t)−
∑

u,v∈S d1(u, v) · ω(u, v) (by (6.6) and (6.5))

=
∑

u,v∈S
(
d(u, v)− d1(u, v)

)
· ω(u, v) (d(s, t) =

∑
u,v∈S d(u, v) · ω(u, v))

Since d(u, v)− d1(u, v) ≤ m for all u, v ∈ S, the above equalities imply that whenever
ω(u, v) > 0 then d(u, v)− d1(u, v) = m. Therefore supp(ω) ⊆M .

(3) Can be argued symmetrically to the previous case.

Therefore, M is a nonempty self-closed relation with respect to d.

Algorithm 2 extends the procedure described in Section 6.1 by encapsulating the policy
iteration update (lines 4–7) into an outer-loop (lines 3–15) that is responsible to check whether

the fixed point γCi1 returned is the minimal one. According to Lemma 5.4, ∆1(γCi1 ) v γCi1 .

Hence, when we reach line 8, we have that ∆1(γCi1 ) = γCi1 . Therefore, by Lemmas 6.11

and 6.12, γCi1 = d1 if and only if M = ≈
γ
Ci
1

is empty. If M is empty, we set the variable isMin
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to true (line 10) causing the outer-loop to terminate. Otherwise, we construct d = (γCi1 )M as
in Lemma 6.11 (line 12) and re-start the inner-loop from a vertex coupling structure Ci+1 such

that Γ
Ci+1

1 (d) = ∆1(d) (line 13) (e.g., by using Ci+1 = (k(d), ρ) where ρ(s, t) = h(d)(s, t) for

all s, t ∈ S). As proven in Theorem 6.13, γCi1 = γ
Ci+1

1 . This guarantees a strict improvement
of the discrepancy towards the minimal one. Termination of Algorithm 2 is justified by
similar arguments as for the discounted case.

Theorem 6.13. Algorithm 2 terminates and computes d1.

Proof. First we prove termination. Recall that {γC1 | C vertex coupling structure for A}
is finite. Towards a contradiction, assume that Algorithm 2 does not terminate. Let
C0, C1, C2, . . . be the infinite sequence of coupling structures updates generated during a
non-terminating execution of Algorithm 2. Since the set above is finite, there must be

i < j such that γCi1 = γ
Cj
1 . On the contrary, next we prove that the updates of the coupling

structures in Algorithm 2 ensure that for all n ∈ N, γCn1 = γ
Cn+1

1 . Let n ∈ N. We consider
two cases:

• Assume ∆1(γCn1 )(s, t) < γCn1 (s, t), for some s, t ∈ S. In this case Cn+1 is obtained from the
update performed in line 6, which is exactly the one prescribed by Lemma 6.3. Therefore

we have that γCnλ = γ
Cn+1

λ .

• Assume ∆1(γCn1 )(s, t) ≥ γCn1 (s, t) for all s, t ∈ S, i.e., γCn1 v ∆1(γCn1 ). By Lemma 5.4

γCn1 w ∆1(γCn1 ), therefore γCn1 = ∆1(γCn1 ). In this case Cn+1 is constructed as a vertex

coupling structure such that Γ
Cn+1

1 (d) = ∆1(d) where M = ≈
γCn1
6= ∅ and d = (γCn1 )M (see

line 13). Then the following inequalities hold

γCn1 = d w ∆1(d) (Lemma 6.11)

= Γ
Cn+1

1 (d) (by construction)

w γCn+1

1 (by Γ
Cn+1

1 (d) v d and Knaster-Tarski fixed point theorem)

This concludes the proof that γCn1 = γ
Cn+1

1 for all n ∈ N.
When the execution of Algorithm 2 has reached line 10 we have that γC1 = ∆1(γC1 ).

Moreover, we have ≈γC1 = ∅. Therefore, by Lemma 6.12 we have that γC1 = d1. From

here isMin is set to true. This prevents further executions of the body of the outer-loop.
Therefore Algorithm 2 reached the return statement with γC1 = d1.

6.4. Experimental Results. In this section, we evaluate the performance of the simple
policy iteration algorithms on a collection of randomly generated probabilistic automata.
All the algorithms have been implemented in Java and the source code is publicly available3.

The performance of Algorithm 1 has been compared with an implementation of the
value iteration algorithm proposed by Fu [Fu12, Section 4]. This algorithm works as follows.
Starting from the bottom element, it iteratively applies ∆λ to the current distance function
generating the increasing chain 0 v ∆λ(0) v ∆2

λ(0) v · · · v ∆k−1
λ (0) v ∆k

λ(0).
For each input instance, the comparison involves the following steps:

3https://bitbucket.org/discoveri/probabilistic-bisimilarity-distances-probabilistic-automata.
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n = |S| Simple Policy Iteration Value Iteration
Error

time (sec) # TP # C time (sec) # TP # Iter

10 0.122 360.9 25.0 0.138 607.1 5.8 0.03018
11 0.167 457.2 30.5 0.189 779.5 6.0 0.03090
12 0.238 565.9 37.4 0.265 976.0 6.3 0.02814
13 0.309 679.3 44.2 0.351 1177.7 6.4 0.04198
14 0.412 813.4 52.2 0.463 1443.0 6.7 0.03673
15 0.569 963.3 61.1 0.634 1764.0 6.9 0.03790
20 2.694 1881.4 113.4 2.874 3325.5 7.6 0.03781
30 15.832 4629.1 263.6 16.642 10309.5 9.9 0.02615
40 99.433 17812.6 710.8 104.036 30870.3 8.8 0.01162
50 137.624 13985.4 753.0 144.098 35118.3 12.3 0.00975

Table 1: Comparison between Simple Policy and Value Iteration Algorithm. Average per-
formance conducted on 100 randomly generated automata with number of states
n = 10..50, nondeterministic out-degree k = 1..3, and probabilistic out-degree
p = 2..3. Discount λ = 0.8; accuracy 0.000001.

(1) We run Algorithm 1, storing execution time, the number of solved transportation
problems, and the number of coupling structures generated during the execution (i.e.,
the number of times a λ-discrepancy has been computed);

(2) Then, on the same instance, we execute the value iteration algorithm until the running
time exceeds that of step 1. We report the execution time, the number of solved
transportation problems, and the number of iterations.

(3) Finally, we report the error maxs,t∈S |dλ(s, t)−d(s, t)| between the distance dλ computed
in step 1 and the approximate result d obtained in step 2.

This has been done for a collection of automata varying from 10 to 50 states. For each
n = 10, . . . , 50, we considered 100 randomly generated probabilistic automata, varying
probabilistic out-degree and nondeterministic out-degree. Table 1 reports the average results
of the comparison. Our algorithm is able to compute the solution before value iteration can
under-approximate it with an error ranging from 0.004 to 0.06 which is a non negligible
error considering that we fixed λ = 0.8 and the distance has values in [0, 1].

Furthermore in Figure 3 we observe that the execution time of the simple policy iteration
algorithm is particularly influenced by the degree of nondeterminism of the automaton. This
may be explained by the fact that the current implementation uses a linear program for
computing the λ-discrepancy (cf. Remark 5.3) which has O(n2k2) variables and O(n2k2)
constraints where n and k are the number of states and the nondeterministic out-degree of
the automaton, respectively.

Algorithm 2 extends the simple policy iteration algorithms proposed in [BBLM13,
TvB16] for labelled Markov chains. As pointed out in [Tan18], implementations based on
the decision procedure for the existential fragment of the first-order theory of the reals
struggle to handle labelled Markov chains with a fifty states. For probabilistic automata,
the algorithms in [CdAMR08, CdAMR10] suffer from the same problem. The performance
of Algorithm 2 is comparable to that of Algorithm 1 (cf. Table 2). Despite the fact that the
simple policy algorithm is not guaranteed to be sound when the discount factor equals one,
our experiments show that in practice a single iteration of the outer-loop of Algorithm 2
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Figure 3: Average performance for the Simple Policy Iteration Algorithm conducted on 100
randomly generated automata varying number of states n = 10..50, nondetermin-
istic out-degree k = 1..3, and probabilistic out-degree p = 2..3. Discount factor
λ = 0.8; accuracy 0.000001.

n = |S| Simple Policy Iteration Value Iteration
Error

time (sec) # TP # C # Iter time (sec) # TP # Iter

10 0.129 394.8 25.9 1 0.144 647.4 6.2 0.07726
11 0.179 513.3 32.1 1 0.202 837.1 6.4 0.08236
12 0.263 655.1 39.1 1 0.293 1080.1 6.8 0.08988
13 0.352 815.2 46.6 1 0.394 1310.5 7.0 0.10222
14 0.465 966.6 53.9 1 0.514 1615.5 7.3 0.11156
15 0.703 1159.5 62.5 1 0.786 2042.7 7.7 0.12045
20 3.044 2291.7 111.8 1 3.316 3845.2 8.7 0.13823
30 15.905 5088.6 223.1 1 16.929 9956.3 10.2 0.16030
40 44.354 8597.3 364.0 1 47.580 16527.8 10.5 0.18830
50 113.586 13484.7 545.0 1 121.639 28694.5 11.7 0.20939

Table 2: Average performance of Algorithm 2 conducted on 100 randomly generated au-
tomata with number of states n = 10..50, nondeterministic out-degree k = 1..3,
and probabilistic out-degree p = 2..3. Discount λ = 1; accuracy 0.000001.

is often sufficient to yield the correct solution, although it is still not clear to us how to
precisely characterise the conditions under which this situation happens.

Remark 6.14 (Worst-case Time Complexity). Tang and van Breugel [TvB16, Tan18])
showed that in the worst case, the simple policy iteration algorithm takes exponential
time even with automata that are purely probabilistic (i.e., labelled Markov chains). The
addition of nondeterminism also contributes in the exponential growth of the running time
(cf. Figure 3).
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7. Relation with Probabilistic Model Checking

In this section we show how the probabilistic bisimilarity distance of Deng et al. relates
to the problem of model checking ω-regular specifications against probabilistic automata,
where the nondeterministic choices are resolved by randomized schedulers.

Probabilistic automata are used for the verification of concurrent probabilistic systems,
where the choice of how to interleave the executions of the parallel components is modelled
by means of nondeterminism in the choice of the next transition to be taken. Technically, an
execution of a probabilistic automaton A = (S,L,→, `) is an infinite sequence s0s1 . . . ∈ Sω
of labelled states obtained by taking a succession of probabilistic transitions si → µi such that
µi(si+1) > 0, for each i ∈ N. The choice of the transition to be taken at each state is resolved
by means of a scheduler. In this paper we consider randomized schedulers, i.e., functions
π : S+ → D(S) mapping a nonempty and finite sequence of states s0 . . . sn ∈ S+ (the
execution history) to a convex combination of distributions of the form

∑
sn→µ αµ ·µ ∈ D(S),

for some αµ ∈ [0, 1] such that
∑

sn→µ αµ = 1. Roughly, a randomized scheduler decides the
probability with which the next transition is chosen given the history of visited states.

The combination of a probabilistic automata A with a scheduler π induces a Markov
chain on a random variable X = (X0, X1, . . . ) ∈ Sω on the measurable space of infinite
sequences over S with distribution

Prπs (X0 = s0, . . . , Xn = sn) = 1s(s0) ·
n−1∏
i=0

π(s0 . . . si)(si+1) ,

where 1x denotes the Dirac distribution concentrated at x. The above describes the
probability of executing the sequence of steps s0 . . . sn by starting from the state s under
the randomized scheduler π.

The measurable sets of Sω are the elements of the infinite product σ-algebra (2S)ω, i.e.,
the smallest σ-algebra containing the subsets of the form s0 . . . snS

ω = {s0 . . . snw | w ∈ Sω}
(a.k.a., discrete cylinders), for arbitrary n ∈ N, si ∈ S and 0 ≤ i ≤ n. Measurable sets are
the subsets of sequences where the probability measure Prπs is well-defined. For a measurable
set H ⊆ Sω, we denote by Prπs (X ∈ H) the probability that an execution starting from s
under the scheduler π belongs to H.

Rather than measuring the probability of concrete executions over Sω, one is often more
interested in the probability that certain execution traces satisfy abstract properties over
the measurable space Lω of infinite sequences of labels, representing the sequences of atomic
properties satisfied by concrete executions of the automaton.

Formally, for a measurable set E ⊆ Lω, we denote by Prπs (`(X) ∈ E) the probability
that an execution generates a sequence of labels in E, where `(X) = (`(X0), `(X1), . . . ) ∈ Lω
is the random variable induced from X by the labelling function `. The σ-algebra of Lω

contains all the ω-regular languages expressible over the alphabet L [BK08, Chapter 10].
This means that the probability of the runs of A of satisfying ω-regular properties, possibly
expressed in the form of LTL formulas, can be formally measured by Prπs , hence allowing
the quantitative analysis of probabilistic automata.

The quantitative analysis of a probabilistic automaton A against ω-regular specifications,
more commonly known as probabilistic model-checking, amounts to establishing the maximal
and minimal probability of satisfying ω-regular properties E ⊆ Lω over infinite sequences of
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labels from a starting state s. Formally, this corresponds to computing

Maxs(E) = supπ∈Π Prπs (`(X) ∈ E) and Mins(E) = infπ∈Π Prπs (`(X) ∈ E)

where the infimum and supremum are taken over the set Π of all randomized schedulers.
Note that, considering minimal or maximal probabilities corresponds to a worst/best-case
analysis (see [BK08, Chapter 10] for more details).

The following is the main result of the section. It states that the probabilistic bisimilarity
distance bounds the difference between maximal and minimal probability of satisfying any
measurable linear-time property (e.g., ω-regular specifications) on two given initial states.

Theorem 7.1. For all measurable subsets E ⊆ Lω,

|Maxs(E)−Maxt(E)| ≤ d1(s, t) and |Mins(E)−Mint(E)| ≤ d1(s, t) .

The above can be seen as a quantitative generalization of the folklore result that bisimilar
states satisfy the same linear-time properties with the same probability.

Remark 7.2. The relevance of Theorem 7.1 is not just theoretical, but could possibly lead
to significant practical applications. Imagine that the distance d1(s, t) between some given
states s and t is small (and known); then, computing Maxs(E) (resp. Mins(E)) in the state
s may be enough for obtaining a good approximation for the actual value of Maxt(E) (resp.
Mint(E)) without the need of computing it on the state t. This approach may lead to
savings in the overall model-checking time of t, especially if the executions starting from s
have a significant reduced degree of nondeterminism than whose starting from t.

The proof of Theorem 7.1 is based on the coupling characterisation of the bisimilarity
distance presented in Theorem 5.7 and the following technical lemma (Lemma 7.3) which
establishes under which conditions the discrepancy associated with a coupling structure can
be used to bound the variational distance between the probability induced by a probabilistic
automaton A under two different schedulers. Specifically, we establish how, from a coupling
structure C, one can retrieve a set-coupling RC ∈ R(Π,Π) of schedulers for A such that for

each pair of schedulers (π, π′) for A in RC , the difference |Prπs (`(X) ∈ E)− Prπ
′
t (`(X) ∈ E)|

for any measurable E ⊆ Lω, is bounded by the discrepancy γC1 (s, t).
The definition of RC can be intuitively understood by recalling that γC1 (s, t) corresponds

to the maximal probability of reaching a pair of states with different labels from the state pair
(s, t) in the automaton AC induced from C. Roughly, RC collects all the pairs of schedulers
for A obtained as the left and right projection of a scheduler for AC . How the projections are
defined is technical and the interested reader can found the formal definition in the proof.

Lemma 7.3. For any coupling structure C for A and s, t ∈ S, exists RC ∈ R(Π,Π) such that,

for all measurable E ⊆ Lω and (π, π′) ∈ RC, |Prπs (`(X) ∈ E)− Prπ
′
t (`(X) ∈ E)| ≤ γC1 (s, t).

Proof. Fix s, t ∈ S and C = (f, ρ) a coupling structure for A. Let AC be the automaton
associated with the coupling structure C.

We split the proof in two parts. (Part 1) deals with the definition of the set-coupling

RC ∈ R(Π,Π); (Part 2) with proving that |Prπs (`(X) ∈ E)− Prπ
′
t (`(X) ∈ E)| ≤ γC1 (s, t), for

all pairs of randomized schedulers (π, π′) ∈ RC .
Hereafter, for a nonempty finite sequence σ ∈ S+ and a random variable X on Sω, we

use X ≺ σ to denote X ∈ σSω.
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Part 1: Let (X,Y ) ∈ Sω × Sω be the random variable describing the infinite sequence of
state pairs along a run of AC . Then, for any two nonempty finite sequences of the same
length σ = σ0 . . . σn and τ = τ0 . . . τn over S,

Prπ(s,t)((X,Y ) ≺ 〈σ, τ〉) = Prπ(s,t)(X ≺ σ, Y ≺ τ)

is the probability that, starting from (s, t), a run of AC under the scheduler π has
prefix 〈σ, τ〉 = (σ0, τ0) . . . (σn, τn). The above can be alternatively formulated in terms of
conditional probabilities in the following two ways:

Prπ(s,t)(X ≺ σ, Y ≺ τ) = Prπ(s,t)(X ≺ σ) · Prπ(s,t)(Y ≺ τ | X ≺ σ) , (7.1)

Prπ(s,t)(X ≺ σ, Y ≺ τ) = Prπ(s,t)(Y ≺ τ) · Prπ(s,t)(X ≺ σ | Y ≺ τ) . (7.2)

Given a scheduler π for AC, we define the maps πS , πT : S+ → D(S) as follows4, for
arbitrary nonempty sequences σ, τ over S

πS(σ)(u) =
∑
τ∈S|σ|

(
Prπ(s,t)(Y ≺ τ | X ≺ σ)

∑
v∈S

π(〈σ, τ〉)(u, v)
)
, (7.3)

πT (τ)(u) =
∑
σ∈S|τ |

(
Prπ(s,t)(X ≺ σ | Y ≺ τ)

∑
v∈S

π(〈σ, τ〉)(u, v)
)
. (7.4)

We call πS and πT , the left and right projections of π.
Intuitively, πS(σ)(u) describes the probability that under the scheduler π a run of AC

with initial state (s, t) has a prefix of the form 〈σu, τ ′〉, for some τ ′ ∈ S|σ|+1; symmetrically,

πT (τ)(u) is the probability that the prefix is of the form 〈σ′, τu〉, for some σ′ ∈ S|τ |+1.
Next, we prove that πS and πT are well-defined schedulers for A. We provide the proof

only for πS , as it is similar for πT . We need to show that πS(σ) is a convex combination of
the form

∑
µ∈δ(σn) αµ · µ, for some αµ ∈ [0, 1] such that

∑
µ∈δ(σn) αµ = 1. By hypothesis

that π is a scheduler for AC, we have that π(〈σ, τ〉) =
∑

(µ,ν)∈ρ(σn,τn) ξµ,ν · f(µ, ν), for

some ξµ,ν ∈ [0, 1], such that
∑

(µ,ν)∈ρ(σn,τn) ξµ,ν = 1. Without loss of generality, we can

assume that ξµ,ν = 0, whenever (µ, ν) /∈ ρ(σn, τn). Let κσ,τ = Prπ(s,t)(Y ≺ τ | X ≺ σ),

4We assume that Prπ(s,t)(E | F ) = 0, whenever Prπ(s,t)(F ) = 0 for any two measurable events E,F .
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then

πS(σ)(u) =
∑
τ∈S|σ|

(
κσ,τ

∑
v∈S

π(〈σ, τ〉)(u, v)
)

(eq. (7.3))

=
∑
τ∈S|σ|

(
κσ,τ

∑
v∈S

∑
(µ,ν)∈ρ(σn,τn)

ξµ,ν · f(µ, ν)(u, v)
)

(π scheduler)

=
∑
τ∈S|σ|

(
κσ,τ

∑
(µ,ν)∈ρ(σn,τn)

ξµ,ν
∑
v∈S

f(µ, ν)(u, v)
)

=
∑
τ∈S|σ|

(
κσ,τ

∑
(µ,ν)∈ρ(σn,τn)

ξµ,ν · µ(u)
)

(f measure-coupling map)

=
∑
τ∈S|σ|

(
κσ,τ

∑
µ∈δ(σn)

∑
ν∈δ(τn)

ξµ,ν · µ(u)
)

(ρ set-coupling map)

=
∑

µ∈δ(σn)

( ∑
τ∈S|σ|

κσ,τ
∑

ν∈δ(τn)

ξµ,ν

)
· µ(u)

By letting αµ =
∑

τ∈S|σ| κσ,τ
∑

ν∈δ(τn) ξµ,ν , we get πS(σ) =
∑

µ∈δ(σn) αµ · µ in the desired

form. Next we show that this is a convex combination, i.e.,
∑

µ∈δ(σn) αµ = 1.∑
µ∈δ(σn)

αµ =
∑

µ∈δ(σn)

∑
τ∈S|σ|

κσ,τ
∑

ν∈δ(τn)

ξµ,ν (def. αµ)

=
∑
τ∈S|σ|

κσ,τ
∑

µ∈δ(σn)

∑
ν∈δ(τn)

ξµ,ν

=
∑
τ∈S|σ|

κσ,τ
∑

(µ,ν)∈ρ(σn,τn)

ξµ,ν (ρ set-coupling map)

=
∑
τ∈S|σ|

κσ,τ (
∑

(µ,ν)∈ρ(σn,τn) ξµ,ν = 1)

=
∑
τ∈S|σ|

Prπ(s,t)(Y ≺ τ | X ≺ σ) (def. κσ,τ )

= 1 (probability)

So, πS and πT are well-defined schedulers for A. Given the above, we define the relation
RC ⊆ Π×Π on schedulers for A by

RC = {(πS , πT ) | π scheduler on AC} .
To better understand the definition of RC, recall that AC can be interpreted as the
automaton describing the concurrent execution of two copies of A synchronised according
to C. Then, πS and πT can be interpreted as the schedulers on obtained from π, by
respectively taking the left and right projections of the executions of AC as computations
on A. The relation RC is given as the collection of these pair of projections.

Next we prove that RC is a set-coupling for (Π,Π), that is

{π1 | ∃π2 ∈ Π. (π1, π2) ∈ RC} = Π and {π2 | ∃π1 ∈ Π. (π1, π2) ∈ RC} = Π .

By definition of RC , this is equivalent to prove that for an arbitrary pair of schedulers πS , πT
for A we can find a scheduler π for AC such that (7.3), (7.4) hold (hence, (πS , πT ) ∈ RC).
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Let σ = σ0 . . . σn and τ = τ0 . . . τn be a pair of nonempty finite sequences of the same
length over S, and assume πS(σ) =

∑
µ∈δ(σn) α

σ
µ · µ and πT (τ) =

∑
ν∈δ(τn) β

τ
ν · ν, for some

ασµ, β
τ
ν ∈ [0, 1] such that

∑
µ∈δ(σn) α

σ
µ = 1 and

∑
ν∈δ(τn) β

τ
ν = 1. We define

π(〈σ, τ〉) =
∑

(µ,ν)∈ρ(σn,τn)

ξσ,τµ,ν · f(µ, ν) where ξσ,τµ,ν =

{
ασµ · βτν if (µ, ν) ∈ ρ(σn, τn)

0 otherwise .

By the fact that ρ(σn, τn) is a set-coupling in R(δ(σn), δ(τn)) and the definition of ξσ,τµ,ν ,
it is easy to see that for all µ ∈ δ(σn) and ν ∈ δ(τn)∑

ν∈δ(τn)

ξσ,τµ,ν = ασµ and
∑

µ∈δ(σn)

ξσ,τµ,ν = βτν . (7.5)

Next we show that (7.3) holds. Let κσ,τ = Prπ(s,t)(Y ≺ τ | X ≺ σ), then

πS(σ)(u)

=
∑
τ∈S|σ|

κσ,τ πS(σ)(u) (convex combination)

=
∑
τ∈S|σ|

κσ,τ

( ∑
µ∈δ(σn)

ασµ · µ(u)
)

(eq. (7.3))

=
∑
τ∈S|σ|

κσ,τ

( ∑
µ∈δ(σn)

∑
ν∈δ(τn)

ξσ,τµ,ν · µ(u)
)

(by (7.5))

=
∑
τ∈S|σ|

κσ,τ

( ∑
µ∈δ(σn)

∑
ν∈δ(τn)

ξσ,τµ,ν
∑
v∈S

f(µ, ν)(u, v)
)

(f(µ, ν) ∈ Ω(µ, ν))

=
∑
τ∈S|σ|

κσ,τ

( ∑
(µ,ν)∈ρ(σn,τn)

ξσ,τµ,ν
∑
v∈S

f(µ, ν)(u, v)
)

(ρ set-coupl. map)

=
∑
τ∈S|σ|

(
κσ,τ

∑
v∈S

∑
(µ,ν)∈ρ(σn,τn)

ξσ,τµ,ν · f(µ, ν)(u, v)
)

=
∑
τ∈S|σ|

(
Prπ(s,t)(Y ≺ τ | X ≺ σ)

∑
v∈S

π(〈σ, τ〉)(u, v)
)

(def. κσ,τ and π)

Equation (7.4) is proven symmetrically.
Part 2: We prove Prπ(s,t) ∈ Ω(PrπSs ,PrπTt ) first. Showing the marginal conditions corresponds

to prove that, for all nonempty sequences σ = σ0 . . . σn and τ = τ0 . . . τn over S,

PrπSs (X ≺ σ) = Prπ(s,t)(X ≺ σ) and PrπTt (Y ≺ τ) = Prπ(s,t)(Y ≺ τ) .

We prove only the equality on the left, as the other is similar. We proceed by induction
on n ≥ 0.
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• Base case, n = 0. Then σ = σ0 ∈ S and

PrπSs (X ≺ σ0) = 1s(σ0) (def. PrπSs )

=
∑
τ0∈S

1s(σ0) · 1t(τ0) (convex combination)

=
∑
τ0∈S

1(s,t)(σ0, τ0) (def. 1(s,t))

=
∑
τ0∈S

Prπ(s,t)(X ≺ σ0, Y ≺ τ0) (def. Prπ(s,t))

= Prπ(s,t)(X ≺ σ0) . (additivity)

• Inductive step, n ≥ 0. Let σ = σ0 . . . σn and s′ ∈ S, then

PrπSs (X ≺ σs′)
= PrπSs (X ≺ σ) · πS(σ)(s′) (def. PrπSs )

= Prπ(s,t)(X ≺ σ) · πS(σ)(s′) (inductive hp)

= Prπ(s,t)(X ≺ σ) ·
∑
τ∈S|σ|

(
Prπ(s,t)(Y ≺ τ | X ≺ σ) ·

∑
t′∈S

π(〈σ, τ〉)(s′, t′)
)

(eq. (7.3))

=
∑
τ∈S|σ|

∑
t′∈S

Prπ(s,t)(X ≺ σ) · Prπ(s,t)(Y ≺ τ | X ≺ σ) · π(〈σ, τ〉)(s′, t′)

=
∑
τ∈S|σ|

∑
t′∈S

Prπ(s,t)(X ≺ σ, Y ≺ τ) · π(〈σ, τ〉)(s′, t′) (by (7.1))

=
∑
τ∈S|σ|

∑
t′∈S

Prπ(s,t)(X ≺ σs
′, Y ≺ τt′) (def. Prπ(s,t))

= Prπ(s,t)(X ≺ σs
′) . (additivity)

The right-marginal condition is proven symmetrically.
Note that the discrepancy γC1 (s, t) is the maximal probability of reaching a state pair

(u, v) such that `(u) 6= `(v) by starting from the state pair (s, t) in AC . That is,

γC1 (s, t) = sup
π

Prπ(s,t)(`(X) 6= `(Y )) , (7.6)

where π ranges over all schedulers for AC . Thus, from Prπ(s,t) ∈ Ω(PrπSs ,PrπTt ) we have

PrπSs (E) = Prπ(s,t)(`(X) ∈ E)

≥ Prπ(s,t)(`(X) = `(Y ), `(Y ) ∈ E)

= 1− Prπ(s,t)(`(X) 6= `(Y ) ∪ `(Y ) 6∈ E)

≥ 1− Prπ(s,t)(`(X) 6= `(Y ))− Prπ(s,t)(`(Y ) 6∈ E)

= Prπ(s,t)(`(Y ) ∈ E)− Prπ(s,t)(`(X) 6= `(Y ))

≥ Prπ(s,t)(`(Y ) ∈ E)− γC1 (s, t)

= PrπT(s,t)(E)− γC1 (s, t) .

From the above, we conclude that |PrπSs (`(X) ∈ E)− PrπTt (`(Y ) ∈ E)| ≤ γC1 (s, t).
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The proofs follows immediately by combining Part 1 and 2.

Given Lemma 7.3 it is easy to establish the result stated in Theorem 7.1.

Proof of Theorem 7.1. Let dR(x, y) = |x− y| denote the Euclidean distance on the real line
and define K = {Prπs (`(X) ∈ E) | π ∈ Π} and H = {Prπt (`(X) ∈ E) | π ∈ Π}.

Then, by [Mém11, Lemma 3.2]

H(dR)(K,H) ≥ max{| supK − supH|, | inf K − inf H|}
= max{|Maxs(E)−Maxt(E)|, |Mins(E)−Mint(E)|} .

Next we show that d1(s, t) ≥ H(dR)(K,H).

H(dR)(K,H)

= inf

{
sup

(π,π′)∈R
|Prπs (`(X) ∈ E)− Prπ

′
t (`(X) ∈ E)|

∣∣∣R ∈ R(Π,Π)

}
(Theorem 2.1)

≤ inf{γC1 | C coupling structure for A } (Lemma 7.3)

= d1(s, t) . (Theorem 5.7)

Therefore, |Maxs(E)−Maxt(E)| ≤ d1(s, t) and |Mins(E)−Mint(E)| ≤ d1(s, t).

Another consequence of Lemma 7.3 is that the bisimilarity distance provides an upper
bound of the Hausdorff lifting of the variational distance between sets of distributions
induced by the Markov chains obtained by ranging over all possible schedulers. In the
theorem we use TV to denote the total variation distance between probability measures,
defined as TV (µ, ν) = supE |µ(E)− ν(E)|, where E ranges over all measurable subsets.

Theorem 7.4. H(TV )({Prπs (`(X) ∈ ·) | π ∈ Π}, {Prπt (`(X) ∈ ·) | π ∈ Π}) ≤ d1(s, t).

Proof.

H(TV )({Prπs (`(X) ∈ ·) | π ∈ Π}, {Prπt (`(X) ∈ ·) | π ∈ Π}) =

= inf

{
sup

(π,π′)∈R
TV (Prπs (`(X) ∈ ·),Prπ

′
t (`(X) ∈ ·)) | R ∈ R(Π,Π)

}
(Theorem 2.1)

= inf

{
sup

(π,π′)∈R
sup
E
|Prπs (`(X) ∈ E)− Prπ

′
t (`(X) ∈ E)|

∣∣∣R ∈ R(Π,Π)

}
(def. TV )

≤ inf{γC1 | C coupling structure for A } (Lemma 7.3)

= d1(s, t) . (Theorem 5.7)

Theorem 7.4 can be alternatively stated as follows. For any scheduler π there exists
a scheduler π′ such that |Prπs (`(X) ∈ E) − Prπ

′
t (`(X) ∈ E)| ≤ d1(s, t), for all measurable

subsets E ⊆ Lω.
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8. Conclusion and Future Work

We presented a novel characterization of the probabilistic bisimilarity distance of Deng et
al. [DCPP06] as the solution of a simple stochastic game. Starting from it, we designed
algorithms for computing the distances based on Condon’s simple policy iteration algorithm.
The correctness of Condon’s approach relies on the assumption that the input game is
stopping. This may not be the case for our probabilistic bisimilarity games when the
discount factor is one. We overcame this problem by means of an improved termination
condition based on the notion of self-closed relation due to Fu [Fu12].

As in [TvB16], our simple policy iteration algorithm has exponential worst-case time
complexity. Nevertheless, experiments show that our method can compete in practice with
the value iteration algorithm by Fu [Fu12] which has theoretical polynomial-time complexity
for λ < 1. To the best of our knowledge, our algorithm is the first practical solution for
computing the bisimilarity distance when λ = 1, performing orders of magnitude faster
than the existing solutions based on the existential fragment of the first-order theory of the
reals [CdAMR08, CdAMR10, CHL07].

As future work, we plan to improve upon the current implementation in the line
of [TvB18a], by exploiting the fact that bisimilar states and probabilistic distance one [TvB18b]
can be efficiently pre-computed before starting the policy iteration. We believe that this
would yield a significant cut down in the time required to compute the discrepancy at each
iteration which turned out to be the bottleneck of our algorithms.

More efficient algorithms might lead to the speedup of verification tools for concurrent
probabilistic systems, as behavioral distances relate to the satisfiability of logical properties.
For the case of labelled Markov chains, in [CvBW12, BBLM15] the variational difference
between two states with respect to their probability of satisfying linear-time properties (eg.,
LTL formulas) is shown to be bound by the (undiscounted) probabilistic bisimilarity distance.
In Section 7 we showed that a similar result holds for the case of probabilistic automata
with additional subtleties that arise by the need of handling the nondeterminism. In light of
this relation it would be interesting to develop approximated techniques to cut down the
overall model-checking time of probabilistic automata as briefly discussed in Remark 7.2.

We also plan to extend the work on approximated minimization [BBLM17, BBLM18]
to the case of probabilistic automata and explore the possible relation between the prob-
abilistic bisimilarity distance with more expressive logics for concurrent probabilistic sys-
tems [CdAMR08, CdAMR10, Mio12].

Acknowledgments. The authors are grateful to the referees for their constructive feedback.
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