
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Boolean-Valued Semantics for the Stochastic λ-Calculus

Giorgio Bacci
Aalborg University, Denmark

Robert Furber
Aalborg University, Denmark

Dexter Kozen
Cornell University, USA

Radu Mardare
Aalborg University, Denmark

Prakash Panangaden
McGill University, Canada

Dana Scott
Carnegie Mellon University, USA

Abstract

The ordinary untyped λ-calculus has a set-theoretic model proposed
in two related forms by Scott and Plotkin in the 1970s. Recently
Scott showed how to introduce probability by extending these mod-
els with random variables. However, to reason about correctness
and to add further features, it is useful to reinterpret the construc-
tion in a higher-order Boolean-valued model involving a measure
algebra. In this paper we develop the semantics of an extended
stochastic λ-calculus suitable for modeling a simple higher-order
probabilistic programming language. We exhibit a number of key
equations satisfied by the terms of our language. The terms are
interpreted using a continuation-style semantics with an additional
argument, an infinite sequence of coin tosses, which serve as a
source of randomness. The construction of the model requires a
subtle measure-theoretic analysis of the space of coin-tossing se-
quences. We also introduce a fixpoint operator as a new syntactic
construct, as β-reduction turns out not to be sound for unrestricted
terms. Finally, we develop a new notion of equality between terms
interpreted in a measure algebra, allowing one to reason about
terms that may not be equal almost everywhere. This provides a
new framework and reasoning principles for probabilistic programs
and their higher-order properties.

1 Introduction

Probabilistic programming languages [4–7, 9–11, 18] have become
popular recently, sparked by renewed interest in verification and
machine learning. The subject began with an imperative first-order
language [9], and there has been significant recent interest in ex-
tending to higher-order functional languages [7, 10, 11, 17]. The
higher-order functional paradigm allows one to integrate probabil-
ity distributions smoothly into the programming language through
the probability monad, but finding a cartesian-closed category that
can incorporate higher-order features as well as appropriate proba-
bilistic constructions has proven elusive. Only recently [7] has a suit-
able category been constructed that satisfies all desiderata.

In the present paper, we take an entirely new approach to the
semantics of higher-order probabilistic computation. In [15], the
senior author of the present paper proposed a way of incorporat-
ing random variables into a certain kind of model of the untyped
λ-calculus by using the continuity of the λ-calculus operations mod-
eled by enumeration operators on the powerset of the integers. This
set-theoretic model suggests at once incorporating higher types,
but to do this requires a nonstandard Boolean-valued interpretation
of set theory. Boolean-valued models (see [1] for history and a basic
exposition) were employed by Scott [14] to construct models of set

LICS’18, July 09–12, 2018, Oxford, UK
2018.

theory in order to obtain independence results. The independence
of the Continuum Hypothesis was obtained by introducing a mas-
sive number of real-valued random variables. In this model, the
random variables turned out to be the real numbers of the Boolean-
valued logic. The continuity of real algebra has an analogue in
the continuity of operations in the powerset model. The measure
algebra of a standard Borel space, a complete Boolean algebra, is
needed to bring this idea to fruition. Ordinary logical propositions
take truth values in this Boolean algebra instead of in the simple
two-element Boolean algebra.

The ideas behind the present work were outlined only briefly in [15].
The primary goal here is to develop an equational theory based on
these ideas in which equations between stochastic λ-terms have
probabilistic meaning. In this paper we flesh out these ideas and
provide a continuation-passing semantics for such an equational
theory. The system will provide reasoning principles for establish-
ing the equality of λ-terms under various program transforma-
tions.

The notions of equality and invariance are subtle in the presence of
probabilities. In the calculus described below, there is a probabilistic
choice operator ⊕, which captures the idea that a choice is to be
made between two terms based on a random process. The source
of randomness is called a tossing process: a process that generates
a sequence of fair coin tosses, the outcomes of which are used to
resolve the probabilistic choices. In general, equality of terms does
not mean that identical values are produced, as the final values will
depend on the tosses. Instead, we interpret equality statements as
elements of a measure algebra formed from the usual measurable
sets quotiented by the ideal of negligible sets. Given a tossing
process T , a pair of closed termsM,N will define a set of tossing
sequences where they agree JM = N KT , which is an element of the
Boolean algebra. This may be the top element—corresponding to
certainty—or something else. However, we would like statements
not to be dependent on the specific outcome of a tossing process;
rather, we would prefer that truth values of equations be invariant
under certain changes in the tossing process. Accordingly, we define
a relation ≈ on the elements of the Boolean algebra to capture the
idea that two truth values of an equation, say JM = N KT and
JM = N KT′ for different tossing processes T and T ′, are related by
an automorphism of the Boolean algebra. We write JM = N KT ≈

JM = N KT′ when this occurs. Many of the equalities that we
establish are stated in this way, and the automorphisms relating
them are constructed.

A second subtlety is that we often prove results of the form JM =
KKT ≈ JN = KKT , for closed stochastic terms M,N and closed
term K of the classic untyped λ-calculus (here called a stable term),
instead of proving for example that JM = N KT evaluates to the top
element of the Boolean algebra. Here we are using the idea that

1



123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

LICS’18, July 09–12, 2018, Oxford, UK Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

a tossing process, once it has resolved the choices, makes a term
of the stochastic λ-calculus look like an ordinary λ-term. In these
cases one cannot prove that JM = N KT is the top element directly,
since this might not be true, but the weaker statement above serves
to replace this statement.

Our main contributions are:

1. We develop a use of random variables in this framework in order
to identify a class of tossing processes that can serve as a sources
of randomness in probabilistic programs. We show that with
this choice, the semantics is invariant under automorphisms of
the measure algebra effected by remapping the tossing process.
This provides a canonical meaning to programs.

2. We introduce the stochastic λ-calculus by augmenting the ordi-
nary λ-calculus with a probabilistic choice construct. We flesh
out the continuation-passing semantics proposed in [15], with
the crucial new observation that β-reduction is not sound for all
terms with probabilistic choice. To compensate, we need to in-
troduce an explicit fixpoint operator in order to have recursive
programs.

3. We develop a Boolean-valued reasoning framework for the
stochastic λ-calculus and prove soundness results with respect
to the continuation-passing semantics.

The main technical contributions and novelty are in items 1 and 3.
In order to obtain the invariance of the semantics, it was necessary
to identify a rather subtle condition that we call monolithic. This
is the part that required the deepest foray into the technicalities
of measure theory. As far as we know, Item 3 is a completely new
way of thinking about equational logic. We have only developed
the rudiments here for the purposes of the present investigation,
but there is clearly a much deeper theory to be explored.

We have not developed an operational semantics or rewrite rules,
but have left these investigations for future work. However, because
of the restrictions on β-reduction, all probabilistic choices for a
term in the argument position must be resolved before applying
the function; thus it most resembles a call-by-value strategy, but of
course one cannot talk about evaluation strategies in the absence
of a reduction system.

2 Standard Probability Spaces

In this section we introduce a few concepts and results regarding
standard probability spaces. The concepts of disintegration of a
space and of monolithic maps between spaces are essential.

Definition 2.1. Given a measurable space (X , Σ) and a probability
measure µ on it, (X , Σ, µ) is a standard probability space iff (X , Σ)
is Borel isomorphic to a Polish space1 equipped with its Borel
algebra2.

Consider, e.g., the set 2N of infinite binary sequences with the
Cantor topology3, which has, as basic open sets, the sets {α | x ≺

α }, where α ranges over 2N, x ∈ {0, 1}∗, and ≺ denotes prefix. Let
B be the Borel σ -algebra of the Cantor topology.

1A Polish space is the topological space induced by a complete separable metric space.
2The Borel algebra of a topology is the σ -algebra generated by the open sets.
3The space is the topological power of ω copies of the discrete space 2 = {0, 1}.

The (fair) coin-flipping probability measure4 P on B is generated
by its values on intervals:

P({α | x ≺ α }) = 2−|x | .

The measure space Ω = (2N,B, P) is a standard probability space
that we will use in the rest of this paper.

We consider measure-preserving maps between standard probabil-
ity spaces. The category we use,Meas/0 has maps identified if they
are equal almost everywhere, i.e. except for on a null set.

Definition 2.2. If fj : (X j , Σj , µ j ) → (Z ,Ξ, ξ ) , j = 1, 2 are two
measure-preserving maps with common codomain, we say f1 � f2
or (X1, f1) � (X2, f2) if there exists a measure-preserving isomor-
phism i : X1 → X2 such that f2 ◦ i = f1, except on a subset of X1
of measure 0.

There is a measure-preserving Borel isomorphism between any
standard probability space (X , Σ, µ) whenever µ is atomless (i.e. all
singletons have measure 0), and Ω.

Definition 2.3. Let f : (X , Σ, µ) → (Y ,Θ,ν ) be ameasure-preserving
map between standard probability spaces. A set S ∈ Σ is 1-sheeted
with respect to f if for all y ∈ Y we have that S ∩ f −1(y) has at
most 1 element. A map f is monolithic if it has no 1-sheeted sets of
positive measure.

Note that S is 1-sheeted if the restriction of f to S is injective. For
instance, 2N is a 1-sheeted set of measure 1 for the identity function
id : 2N → 2N, and the set {(an ) ∈ 2N | a1 = 0} is a 1-sheeted set of
measure 1

2 for the function tail : 2N → 2N, which takes all but the
first element of a sequence to return a sequence.
Next, f is monolithic whenever all such one-sheeted measurable
sets have measure 0. For example, the map evens : 2N → 2N which
takes every second member of a sequence to construct a sequence is
monolithic (proven in Section 4), while id and tail are not.

The following theorem provides a useful characterization of the
concept of monolithic map5

Theorem2.4. Let f : (X , Σ, µ) → (Y ,Θ,ν ) be ameasure-preserving
map of standard probability spaces. Then f is monolithic iff there
exists a standard probability space (Z ,Ξ, ξ ) such that all points of Z
have ξ -measure 0, and (Z × Y ,π2) is isomorphic to (X , f ); where π2
denotes the second projection.

We conclude this section with a useful result regarding the compo-
sition of monolithic maps.

Lemma 2.5. Let f : (X , Σ, µ) → (Y ,Θ,ν ) and д : (Y ,Θ,ν ) →

(Z ,Ξ, ξ ) be measure-preserving maps. If S ∈ Σ is 1-sheeted with
respect to д ◦ f , then it is 1-sheeted with respect to f . Therefore if f
is monolithic, then д ◦ f is monolithic.

Proof. Let S ∈ Σ be a 1-sheeted set with respect to д ◦ f , i.e. for all
z ∈ Z , S ∩ f −1(д−1(z)) has cardinality at most 1. If y ∈ Y , then

S ∩ f −1(y) ⊆ S ∩ f −1(д−1(д(y)))

so f −1(y)∩S has cardinality at most 1, so S is 1-sheeted with respect
to f .
4This is the Haar measure on 2N as a compact group based onmod 2 addition.
5This concept is formulated in terms of decompositions in [13, §3.1], which are better
known as disintegrations[2, §452 E].

2



245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

Boolean-Valued Semantics for the Stochastic λ-Calculus LICS’18, July 09–12, 2018, Oxford, UK

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

The statement about 1-sheeted sets of positive measure then follows
by taking the contrapositive. □

3 Topology and measure of P(N)

LetN be the set of natural numbers, P(N) its powerset and Pf in (N)

the set of finite subsets of N. We follow [12, 15] to identify some
structure on N that is relevant to our purpose.

The pairing function puts the set of pairs of natural numbers into a
one-to-one correspondence with the positive integers by: (m,n) =
2n (2m+1). The function ⟨ ⟩ puts finite sequences of natural numbers
into a one-to-one correspondence with N by nested pairing and
this can be used to enumerate finite subsets of N using a function
that we call set . Now we can define the Kleene star :

X ∗ = {n | set(n) ⊆ X }.

All these identify different structures on N giving us

N � 1 + (N × N) � N∗.

Enumeration operators are identified with sets F ⊆ Nwhich operate
on X ⊆ P(N) through the binary operation of application:

F (X ) = {m ∈ N | ∃s ∈ X ∗.(s,m) ∈ F }.

The intuition here is that while enumerating the elements in X ,
one can also enumerate the elements of X ∗ and the pairs in F :
every match between a sequence number s ∈ X ∗ and the first term
of a pair (s,m) ∈ F witnesses the fact that m ∈ F (X ). Following
[3, 15], we say that a set A ⊆ P(N) is enumeration reducible to a set
B ⊆ P(N) when there exists a recursively enumerable set F ∈ P(N)
such that A = F (B). Hence, the computable enumeration operators
are those given by recursively enumerable sets F .

3.1 The positive topology on P(N)

The positive topology on P(N) is induced by the sets

Qn = {X | n ∈ X ∗}.

The continuity of a function Φ : P(N) → P(N) in the positive
topology can be characterized as follows:

m ∈ Φ(X ) iff ∃n ∈ X ∗ s.t.m ∈ Φ(set(n)).

Viewing P(N) as an algebraic lattice, the positive topology coin-
cides with the Scott topology on P(N), which has basic open sets
{b | a ⊆ b}, where a ⊆ N is finite; and positive continuity coincides
with Scott continuity.

The following two results are proven in [15].

Theorem 3.1. The application operation F (X ) is continuous as a
function of two variables on P(N).

Theorem 3.2. For every continuous function Φ : P(N) → P(N)
there is a largest set F such that for any X ∈ P(N), Φ(X ) = F (X ),
where Φ(X ) denotes ordinary function application, while F (X ) is
application in the set-based model. In fact, F can be directly defined
by F = {0} ∪ {(n,m) | m ∈ Φ(set(n))}.

In view of this fact, we define λ-abstraction onP(N) as follows:

λX .F (X ) = {0} ∪ {(n,m) | m ∈ F (set(n))}.

There is a homeomorphic embedding

Cont[P(N),P(N)] → {λX .F (X ) | F ∈ P(N)},

where Cont[P(N),P(N)] denotes the space of continuous funtions
on P(N) (w.r.t. positive topology). This gives a natural topology to
the space of continuous functions, which is a retract ofP(N).

It is useful to introduce a couple of continuous functions:

Pair(X )(Y ) = {2n | n ∈ X } ∪ {2m + 1 | m ∈ Y } ,

Fst(Z ) = {n | 2n ∈ Z } , Snd(Z ) = {m | 2m + 1 ∈ Z } ,

Test(Z )(X )(Y ) = {n ∈ X | 0 ∈ Z } ∪ {m ∈ Y | ∃k .k + 1 ∈ Z } .

These definitions make the topological space P(N) homeomorphic
to its cartesian square, P(N) � P(N)×P(N) and show that subsets
of P(N) can be regarded as binary relations on P(N).

Before concluding this paragraph we shall emphasize a few topo-
logical aspects connecting P(N) and 2N that will be of great use in
what follows.

There exists a straightforward bijection χ : P(N) → 2N that maps
a subset of N to its characteristic function: χ (a)i = 1 if i ∈ a and
χ (a)i = 0 if i < a. The image of a basic open set of the Scott
topology under χ is {β | χ (a) ≤ β}, where a is a finite set and
≤ is the componentwise extension of the order 0 ≤ 1. This space
is the topological power of ω copies of Sierpiński space, the two-
element T0 space with open sets ∅, {1}, and {0, 1}. Thus, we have
two topologies on 2N but they both generate the same Borel sets
B, and hence, when equipped with the coin-flipping probability
measure, the same Lebesgue completion. This follows from the fact
that every basic Cantor open set is a finite Boolean combination of
basic Scott open sets and vice versa [16].

3.2 Random Variables on Ω

Let Ω = (2N,B, P) denote the standard probability space of infinite
binary sequences, with B the Borel-algebra of the Cantor topology,
and with the coin-flipping probability measure P , as defined in
§ 3.2. The following theorem relates Ω to the reals and allows us
to use Ω as the “source of randomness” when we define random
variables.

Theorem 3.3. The measure spaces Ω and [0, 1] with Lebesgue mea-
sure, restricted to Borel sets, are Borel isomorphic.

We view P(N) as a measurable space with the Borel-algebra of
the positive topology on P(N). This allows us to define random
variables on Ω = (2N,B, P) as the measurable functions

ξ : Ω → P(N).

Let R(Ω) denote the set of these P(N)-valued random variables on
Ω. Given a random variable ξ , we obtain a measure on P(N) by
P ◦ ξ−1. A family of random variables is independent if the induced
measures are independent.

On R(Ω) we define a few functions. Firstly, we associate to any
X ∈ P(N) a random variable X̂ defined by X̂ (ω) = X for anyω ∈ Ω.
Secondly, since application, λ-abstraction, Pair, Fst and Snd are all
continuous functions on P(N), they can be canonically extended
to R(Ω). In [15] it is emphasized that R(Ω) is a (non-extensional)
model for untyped λ-calculus. Moreover, an equation between two

3



367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

LICS’18, July 09–12, 2018, Oxford, UK Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

random variables ξ ,η ∈ R(Ω) can be interpreted as the measurable
event

[ξ = η] = {ω ∈ Ω | ∀n ∈ ξ (ω).n ∈ η(ω) ∧ ∀n ∈ η(ω).n ∈ ξ (ω)},

which is a Borel set in B, and this motivates the study of the algebra
of events of Ω defined below.

3.3 The Algebra of Events

Given the probability space Ω = (2N,B, P), we define the alge-
bra of events (also known as the measure algebra) as the Boolean
algebra

B/Null= (B/Null ,∪,∩,∼, ∅/Null ,Ω/Null )

which is the quotient algebra of the σ -algebra B modulo the σ -ideal
of Borel sets of P-measure zero. Observe that we do not get more
expressive if we consider the P-Lebesgue completion of B/Null :
because every Lebesgue measurable set differs from a Borel set by
a null set, the measure algebra of Lebesgue measurable sets modulo
P-null sets is isomorphic to B/Null .

We call the elements of B/Null events and for A ∈ B we denote its
equivalence class by A/Null .

Theorem 3.4. (B/Null ,∪,∩,∼, ∅/Null ,Ω/Null ) is a σ -complete
Boolean algebra in which any family of pairwise disjoint elements is
countable ( i.e. it satisfies the countable chain condition). Therefore
it is a complete Boolean algebra.

B/Null plays a central role in the semantics of the stochastic λ-
calculus.

4 Tossing processes

A key ingredient in any probabilistic programming language is
the source of randomness. As in [15], this is taken to be a random
variable which uses an infinite sequence of independent fair coin
tosses to resolve the random choice. The semantics should not
depend on the vagaries of a particular sequence; accordingly, we
aim to prove a property that shows that the semantics should be
independent, in a suitable sense, of the coin tosses that occur. This
is where the notion of monolithic function becomes important. We
call the special random variables that we use tossing processes. This
section is devoted to the properties of tossing processes.

4.1 Independent coin sequences

We need to move between sequences of coin tosses and subsets of
N by using some appropriate coding and decoding functions. Con-
cretely, we can a Borel-measurable map pack : 2N → P(N) which
encodes a sequence as a set in a way that can be easily inverted
and its inverse, called unpack, is Borel-measurable as well.

Moreover, these can be defined so that they properly relate the well-
known operations on sequences head : 2N → 2 and tail : 2N → 2N,
given by head(a) = a0 and tail(a)(n) = an+1, to the functions
Fst and Snd defined on sets in Section 3 (i.e., on constant random
variables) as stated in the following lemma6.

Lemma 4.1. Let a ∈ 2N and α ∈ {0, 1}.
6A detailed construction of a pair of such coding/decoding functions can be found in
the appendix.

1. {α } = Fst(pack(a)) iff head(a) = α .

2. Snd(pack(a)) = pack(tail(a)).

Let Ω = (2N,B, P) be the probability space defined in § 3.2.

Definition 4.2. A coin flip is a random variable that has the form
F : Ω → {{0}, {1}}. A coin flip is fair whenever P(F−1({0})) = 1/2.

An independent sequence of coin tosses (ICS) is a random variable
T : Ω → P(N) such that Fst(T ) is a fair coin flip and Snd(T ) is
another ICS—with the successive flips all mutually independent.

Note that an ICS is a {{0}, {1}}-valued map, i.e., specialized to take
values in the image of pack. Every ICS T : Ω → P(N) is of the
form T = pack ◦T for some (Borel) measurable map T : Ω → 2N.
By Lemma 4.1, Fst◦pack◦T = head◦T , so the condition of Fst(T )

being a fair coin is that for i ∈ {0, 1},

P((head ◦T )−1(i)) =
1
2
,

That Snd(T ) is an ICS implies that for alln ∈ N and i ∈ {0, 1},

P((evn ◦T )−1(i)) =
1
2
,

where evn : 2N → {0, 1} forn ∈ N, is defined by evn (a) = an .

The condition of independence implies that for any finite increasing
sequence (mi )

n
i=1 inN, and finite sequence (bi )

n
i=1 in {0, 1},

P

( n⋂
i=1

(ev(mi ) ◦T )
−1(bi )

)
= 2−n .

This means that the image measureT∗(P) = P ◦T−1 agrees with the
standard coin-flipping measure on 2N on basic clopens of Cantor
topology. As basic clopens form a π -system (they are closed under
finite intersections) and generate the Borel sets of 2N, T∗(P) and
the coin-flipping measure agree on all Borel sets [19, Lemma 1.6],
so we have that T is measure-preserving from Ω to 2N.

Conversely, for any measure-preserving mapT : Ω → 2N, pack ◦T
will be an independent sequence of coin tosses.

These provide the following characterization for ICS.

Theorem 4.3 (Characterization). Independent coin sequences are
exactly the maps of the form pack ◦T , for some measure-preserving
map T : Ω → Ω.

Nowwe focus on another important function for our discussion,

evens : 2N → 2N,

defined by evens(a)(n) = a2n .

Theorem 4.4. A measure-preserving map T : 2N → 2N is mono-
lithic iff T � evens.

Proof. Because N � N + N by mapping the odd numbers to the
first part and the even numbers to the second part, we have (2N ×

2N,π2) � (2N, evens). As any atomless standard probability space
is isomorphic to 2N, applying Theorem 2.4 withX andY specialized
to 2N, we get the desired equivalence. □

4



489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

Boolean-Valued Semantics for the Stochastic λ-Calculus LICS’18, July 09–12, 2018, Oxford, UK

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

4.2 Tossing Processes

We are ready to define the concept of tossing process; the crucial
point is to insist on a monolithic function.

Definition 4.5 (Tossing Process). A tossing process is an indepen-
dent sequence of coin tosses T = pack ◦T , where T : 2N → 2N is
a monolithic measure-preserving map.

We denote by Toss the set of tossing processes. The next theorem
states that all tossing processes are the same up to a measure-
preserving automorphism of the measure algebra. Let Aut(Ω) de-
note the set of measure-preserving automorphisms on Ω.

Theorem 4.6 (Representation Theorem). For any two tossing pro-
cesses S and T there exists a measure-preserving automorphism
α : Ω → Ω ∈ Aut(Ω) such that T = S ◦ α except for on a subset of
Ω of measure 0.

4.3 Tossing Process Operators

Before concluding this section, we show a few useful operators on
R(Ω) that are closed on tossing processes.

Let
(.)e , (.)o , Swap : Toss → R(Ω),

defined for an arbitrary tossing processT = pack◦T as follows.

T e = pack ◦ evens ◦T

T o = pack ◦ odds ◦T

Swap(T ) = pack ◦ swap ◦T ,

where odds, swap : Ω → Ω are defined by odds(a)(n) = a2n+1 and
swap(a)(2n) = a2n+1, swap(a)(2n + 1) = a2n .

Lemma 4.7. If T is a tossing process, then Snd(T ), T e , T o and
Swap(T ) are tossing processes as well.

5 Stochastic λ-Calculus

In this section we introduce the stochastic λ-calculus. The syntax
of the stochastic λ-calculus over a set V ∋ x of variables extends
the syntax of the classical untyped λ-calculus with a (binary) prob-
abilistic choice operator ⊕ on λ-terms, and a fixpoint combinator
µx .M :

M := x | λx .M | MM | µx .M | M ⊕ M .

Notation: In what follows we will call terms without any occur-
rence of ⊕ stable terms; however, a stable term may contain the
fixpoint operator. And, as usual, we use M{N /x} to denote the
substitution of the variable x by the term N inM .

Unlike in the classical λ-calculus, in the stochastic λ-calculus the fix-
point combinator cannot be defined from the other operators, as we
will demonstrate later. For the development of the fixpoint operator,
it is useful to define the unfolding of a recursive term.

Given µx .M , its unfolding is the sequence of termsM0,M1, . . . ,Mn , . . .

defined inductively as follows.

M0 = (λx .xx)(λx .xx), and for arbitrary n, Mn+1 = (λx .M)Mn .

6 Probabilistic Continuation Semantics

The continuation semantics for the stochastic λ-calculus interprets
a λ-term relative to an environment giving values to the free vari-
ables, a continuation giving a subsequent computation, and a tossing
process T used to resolve probabilistic choices.

We know that the set R(Ω) of random variables with the point-
wise order forms a domain such that [R(Ω) → R(Ω)] is a con-
tinuous retract of R(Ω), where [R(Ω) → R(Ω)] is the space of
Scott-continuous functions. We write this explicitly by introducing
the functions

ϕ : R(Ω) → [R(Ω) → R(Ω)] and ψ : [R(Ω) → R(Ω)] → R(Ω).

It is useful to also define the direct and the continuation-passing
semantics for stable λ-terms. We use x to range over variables, E to
range over arbitrary environments,C to range over arbitrary contin-
uations, and T to range over arbitrary tossing processes. As before,
the n-th unfolding of the term µx .M is denoted byMn .

Let ⟨·⟩ denote the direct semantics and ⟨⟨·⟩⟩ the continuation-passing
semantics for stable λ-terms. In addition, for stochastic terms, we
denote by L·M the continuation-passing semantics augmented with
a tossing process.

⟨·⟩ : Term → Env → R(Ω)

⟨⟨·⟩⟩ : Term → Env → Cont → R(Ω)

L·M : Term → Env → Cont → Toss → R(Ω).

where

Env = Var → R(Ω) Cont = [R(Ω) → R(Ω)]

The direct semantics is

⟨x⟩E = E(x)

⟨MN ⟩E = ϕ(⟨M⟩E)(⟨N ⟩E)

⟨λx .M⟩E = ψ (λv . ⟨M⟩(E{v/x}))

⟨µx .M⟩E = sup
n

⟨Mn⟩E.

With continuations, define

⟨⟨x⟩⟩EC = C(E(x))

⟨⟨MN ⟩⟩EC = ⟨⟨M⟩⟩E(λa . ⟨⟨N ⟩⟩E(λb .C(ϕ(a)b)))

⟨⟨λx .M⟩⟩EC = C(ψ (λv . ⟨⟨M⟩⟩(E{v/x})(λu .u)))

⟨⟨µx .M⟩⟩EC = sup
n

⟨⟨Mn⟩⟩EC .

The probabilistic continuation is defined as follows.

LxMECT = C(E(x))

LMN MECT = LMME(λa . LN ME(λb .C(ϕ(a)b))T e )T o

Lλx .MMECT = C(ψ (λv . LMM(E{v/x})(λu .u)T ))

LM ⊕ N MECT = Test(Fst(T ))(LMMEC(Snd(T )))(LN MEC(Snd(T )))

Lµx .MMECT = sup
n

LMnMECT

The relation between the three semantics for stable terms is stated
in the following proposition.

Proposition 6.1. If M is a stable term, then for an arbitrary envi-
ronment E, an arbitrary continuation process C , and an arbitrary
tossing process T ,

C(⟨M⟩E) = ⟨⟨M⟩⟩EC = LMMECT .
5



611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

LICS’18, July 09–12, 2018, Oxford, UK Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

A corollary of this lemma is that if a closed program has a value,
then its value is the same for all tossing processes.

Corollary 6.2 (Absoluteness I). If M is a stable term, then for an
arbitrary environment E, continuation processC , and tossing processes
T ,T ′,

LMMECT = LMMECT ′ .

We conclude this section with two useful lemmas.

Lemma 6.3. For any stochastic λ-terms M,N , any arbitrary envi-
ronment E, any arbitrary continuation C and any arbitrary tossing
process T , the following statements hold, where Mn denote the n-
unfolding of µx .M .

1. Lλy.(µx .M)MECT = sup
n

Lλy.MnMECT ;

2. LN (µx .M)MECT = sup
n

LNMnMECT ;

3. L(λx .M)N MECT = sup
n

LMnN MECT ;

Lemma 6.4. For any stochastic λ-terms M,N , any arbitrary envi-
ronment E, any arbitrary continuation C and any arbitrary tossing
process T ,

L(λx .M)N MECT = LMME{LN ME(λw .w)T e/x}CT o .

We conclude this section by presenting a direct consequence of
Theorem 4.6.

Theorem 6.5 (Absoluteness II). Given a termM , for an arbitrary
environment E, an arbitrary continuation process C , and arbitrary
tossing processes T ,T ′, there exists a measure-preserving automor-
phism α : Ω → Ω ∈ Aut(Ω) such that

{ω ∈ Ω | LMMECT(ω) = LMMEC(T ′ ◦ α)(ω)}/Null= Ω/Null .

7 A Boolean-Valued Model

The Boolean-valued model gives a novel interpretation of equal-
ity. Equalities of closed terms, when interpreted over R(Ω), are
associated with events in B/Null up to a measure-preserving au-
tomorphism of Ω. Since we are working with closed terms we
evaluate terms in the empty environment and with the the identity
continuation.

Let ∅ denote the empty environment and id = λx .x denote the
identity continuation.

Definition 7.1. For arbitrary closed termsM , N , and tossing pro-
cess T , let

JM = N KT =
{
ω ∈ Ω

�� LMM∅idT(ω) = LN M∅idT(ω)
}
/Null .

Note that JM = N KT ∈ B/Null and that this value depends directly
on the tossing process T . However, since the tossing processes are
all equal up to a measure-preserving automorphism, as proven
in Theorem 4.6, JM = N KT is unique up to an automorphism of
B/Null .

In what follows, for arbitrary A,A′ ∈ B/Null , we write

A ≈ A′

if there exists a measure-preserving automorphism of σ of B/Null
such that σ (A) = A′.

Theorem 7.2 (Absoluteness III). For arbitrary closed termsM , N ,
and arbitrary tossing processes T and T ′ = T ◦α , where α ∈ Aut(Ω),

α−1(JM = N KT ) = JM = N KT′ ,

where α−1 is the set-theoretical inverse of α , hence an automorphism
of B/Null . Consequently,

JM = N KT ≈ JM = N KT′ .

Proof. JM = N KT′ =
{
ω ∈ Ω

�� LMM∅idT ′(ω) = LN M∅idT ′(ω)
}
/Null

=
{
ω ∈ Ω

�� LMM∅id(T ◦ α)(ω) = LN M∅id(T ◦ α)(ω)
}
/Null .

Since ∅ and id are constant, this set is further equal to{
ω ∈ Ω

�� LMM∅idT(α(ω)) = LN M∅idT(α(ω))
}
/Null

= α−1(
{
ω ∈ Ω

�� LMM∅idT(ω) = LN M∅idT(ω)
}
/Null )

= α−1(JM = N KT ).
□

This last theorem suggests that in what follows we can use any
tossing process to evaluate the equality between closed programs,
since the result is in any case unique up to an automorphism of the
measure algebra.

8 Sound Equations

In this section we establish a series of sound equations that pro-
vide basic reasoning principles for our stochastic λ-calculus. These
equations are by no means complete, but they do describe several
basic facts about R(Ω). We also show how the usual equations for
α-reduction and β-reduction are generalized. Note that, for stable
closed terms, we have the soundness ofα-reduction and β-reduction
for the model R(Ω) of ordinary λ-calculus from Lemma 6.1.

In what follows, all the terms in expressions of the form JM = N KT
are implicitly assumed to be closed terms.

The first result shows how one can substitute terms in equations
with terms that are equal almost everywhere.

Theorem 8.1 (Substitution). IfM and N are closed terms such that
JM = N KT = Ω/Null , then for any closed stable term K ,

JM = KKT = JN = KKT .

Proof. We have that

JM = N KT = {ω ∈ Ω | LMM∅idT(ω) = LN M∅idT(ω)}/Null .

This means that JM = N KT = Ω/Null implies that LMM∅idT and
LN M∅idT are equal almost everywhere. But then,

JM = KKT = {ω ∈ Ω | LMM∅idT(ω) = LKM∅idT(ω)}/Null

= {ω ∈ Ω | LN M∅idT(ω) = LKM∅idT(ω)}/Null= JN = KKT
□

There are many interesting properties that one can prove in this set-
ting. We begin by observing that both α-reduction and β-reduction
for stable terms (i.e. terms without any occurence of ⊕) hold, as
direct consequences of the fact that R(Ω) is a model of the usual
untyped λ-calculus [15]. However, α-reduction also holds for our
stochastic λ-calculus; this follows from the probabilistic continua-
tion semantics of λ-terms introduced in Section 6.

6



733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

Boolean-Valued Semantics for the Stochastic λ-Calculus LICS’18, July 09–12, 2018, Oxford, UK

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

Theorem 8.2 (α-reduction). IfM is a term without free occurrences
of y, then

Jλx .M = λy.M{y/x}KT = Ω/Null .

Nowwe state β-reduction only for stable terms. Later in this section
we will show that an unrestricted version of β-reduction is not
possible, but that we have, however, some extensions that involve
terms that might be not stable.

Theorem 8.3 (β-reduction). Let N andM be stable terms. Then,

J(λx .M)(N ) = M{N /x}KT = Ω/Null .

Next we prove a series of results regarding the properties of the
probabilistic choice operator. It is useful to start with the following
lemma.

Lemma 8.4. LetM1,M2,N1,N2 be closed terms and T an arbitrary
tossing process. If for any stable closed term K and each i ∈ {1, 2} we
have that JMi = KKSnd(T) ≈ JNi = KKSnd(T), then for any stable
closed term K ,

JM1 ⊕ M2 = KKT ≈ JN1 ⊕ N2 = KKT .

Proof. The key observation is that there exists a j ∈ {1, 2} such that

LM1 ⊕ M2M∅idT = LMj M∅idSnd(T )

and at the same time

LN1 ⊕ N2M∅idT = LNj M∅idSnd(T ).

Also, since K is stable, LKM∅idT = LKM∅idSnd(T ). Hence,

JM1 ⊕ M2 = KKT

= {ω ∈ Ω | LM1 ⊕ M2M∅idT(ω) = LKM∅idT(ω)}/Null

= {ω ∈ Ω | LMj M∅idSnd(T )(ω) = LKM∅idSnd(T )(ω)}/Null

= JMj = KKSnd(T).

Similarly,
JN1 ⊕ N2 = KKT = JNj = KKSnd(T).

Now we use the hypothesis that guarantees that

JMj = KKSnd(T) ≈ JNj = KKSnd(T).

□

A first fundamental property of probabilistic choice is a kind of
commutativity, stated in the following axiom. Note that one cannot
assert commutativity naively; one has to talk in terms of a stable
term obtained by resolving all the choices.

Theorem 8.5 (⊕-commutativity). IfK is a stable term, then we have

JM ⊕ N = KKT ≈ JN ⊕ M = KKT .

Proof. The map neg : 2N → 2N, where neg(a)(0) = 1 − a(0) and
neg(a)(i) = a(i) for i > 0 is measurable and measure-preserving.
The tossing process T is of the form pack ◦T for some measure-
preserving monolithic map T : Ω → 2N. By Lemma 2.5, T ′ =

pack◦neg◦T is also a tossing process, and so by Theorem 4.6 there

exists a measure-preserving automorphism α : Ω → Ω such that
T ′ = α ◦ T . We start by observing that

LM ⊕ N M ∅ idT
= Test(Fst(T ))(LMM ∅ id (Snd(T )))(LN M ∅ id (Snd(T )))

= Test(Fst(T ′))(LN M ∅ id (Snd(T )))(LMM ∅ id (Snd(T )))

= LN ⊕ MM ∅ idT ′

= LN ⊕ MM ∅ id (T ◦ α),

using the fact that Snd(T ′) = Snd(T ), since neg only affects the
first part. So

JM ⊕ N = KKT
= {ω ∈ Ω | LM ⊕ N M ∅ idT(ω) = LKM ∅ idT(ω)}/Null

= {ω ∈ Ω | LN ⊕ MM ∅ idT(α(ω)) = LKM ∅ idT(ω)}/Null

= {ω ∈ Ω | LN ⊕ MM ∅ idT(α(ω)) = LKM ∅ idT(α(ω))}/Null

= α−1({ω ∈ Ω | LN ⊕ MM ∅ idT(ω) = LKM ∅ idT(ω)})/Null

= α−1(JN ⊕ M = KK),

where the third equality holds because LKM does not depend on ω
since it is stable. □

Next we state that ⊕ is idempotent in the same sense as in the
previous theorem.

Theorem 8.6 (⊕-idempotence). If K is a stable term, then we have

JM ⊕ M = KKT ≈ JM = KKT .

The next two theorems state that ⊕ is distributive to the left and to
the right with respect to application.

Theorem 8.7 (Left-distributivity of ⊕ w.r.t. application). If K is a
stable term, then we have

J(M1 ⊕ M2)(N ) = KKT ≈ JM1N ⊕ M2N = KKT .

Proof. The semantics of application gives us

L(M1 ⊕M2)(N )M∅idT = LM1 ⊕M2M∅(λx .LN M∅(λy.(xy id))T e )T o .

Assume that Test(Fst(T )), applied to a particular ω ∈ Ω chooses
Mi for some i ∈ {1, 2}, in the continuation semantics ofM1 ⊕ M2.

Let T ′ = Snd(Swap(T )). The previous term is further equal to

LMi M∅(λx .LN M∅(λy.(xy id))T e )(Snd(T o )) = LMiN M∅id(Snd(T ′))

= LM1N ⊕ M2N M∅idT ′ .

In the last line we have used the fact that if Test(Fst(T )), when
applied to a particular ω ∈ Ω in the semantics ofM1 ⊕M2, chooses
Mi , then the same test applied to the same ω in the semantics of
M1N ⊕ M2N will chooseMiN for the same i ∈ {1, 2}.

Since Snd and Swap both preserve tossing processes (Lemma 4.7),
there exists an automorphism α ∈ Aut(Ω) such that T ′ = T ◦ α .
Hence, we have

J(M1 ⊕ M2)(N ) = KKT
= {ω ∈ Ω | L(M1 ⊕ M2)N M∅idT(ω) = LKM∅idT(ω)}/Null

= {ω ∈ Ω | LM1N ⊕ M2N M∅idT ′(ω) = LKM∅idT(ω)}/Null .

SinceK is stable, LKM∅idT(ω) = LKM∅id(T ◦α)(ω) and the previous
set is equal to

= {ω ∈ Ω | LM1N ⊕ M2N M∅idT ′(ω) = LKM∅idT ′(ω)}/Null
7



855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

LICS’18, July 09–12, 2018, Oxford, UK Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

= α−1({ω ∈ Ω | LM1N ⊕ M2N M∅idT(ω) = LKM∅idT(ω)}/Null )

= α−1(JM1N ⊕ M2N = KKT ).

□

Theorem 8.8 (Right-distributivity of ⊕ w.r.t. application). If K is
a stable term, then we have

JN (M1 ⊕ M2) = KKT ≈ JNM1 ⊕ NM2 = KKT .

Proof. The proof is similar to the one for left-distributivity, except
that instead of T ′ we use T ′′ = Swap(Snd(T )). □

Using Lemma 8.4, we can prove the entropic equality equation.

Theorem 8.9 (Entropic equality). IfK is a stable term, then we have

J(M1 ⊕M2) ⊕ (N1 ⊕N2) = KKT ≈ J(M1 ⊕N1) ⊕ (M2 ⊕N2) = KKT .

By exploiting the idempotence of ⊕ and the entropic equality, one
can derive ⊕-distributivity.

Theorem 8.10 (⊕-distributivity). IfK is a stable term, then we have

1. JN ⊕ (M1 ⊕ M2) = KKT ≈ J(N ⊕ M1) ⊕ (N ⊕ M2) = KKT ;

2. J(M1 ⊕ M2) ⊕ N = KKT ≈ J(M1 ⊕ N ) ⊕ (M2 ⊕ N ) = KKT .

There are also some equalities between terms that aremuch stronger;
these are equalities that hold almost everywhere which means that
they are interpreted as the top element of the Boolean algebra. One
such equation is λ-distributivity.

Theorem 8.11 (λ-distributivity w.r.t. ⊕).

Jλx .(M1 ⊕ M2) = λx .M1 ⊕ λx .M2KT = Ω/Null .

Proof. From the semantics of λ-terms we get

Lλx .(M1 ⊕ M2)M∅idT = id(ψ (λv . LM1 ⊕ M2M(∅{v/x})(λu .u)T )) .

Assume that Test(Fst(T )), applied to a particular ω ∈ Ω chooses
Mi for some i ∈ {1, 2}, when applied in the continuation semantics
ofM1 ⊕ M2. Then, the previous term is equal to

id(ψ (λv . LMi M(∅{v/x})(λu .u)(Snd(T )))) = Lλx .Mi M∅id(Snd(T ))

= Lλx .M1 ⊕ λx .M2M∅idT .

In the last line we have used the fact that if Test(Fst(T )), when
applied to a particular ω ∈ Ω in the semantics ofM1 ⊕M2, chooses
Mi , then the same test applied to the same ω in the semantics of
λx .M1 ⊕ λx .M2 will choose λx .Mi for the same i ∈ {1, 2}. □

Theorem 8.12 (Order of applications). IfN1,N2 are two stable close
terms, then

J((λx .λy.M)N1)N2 = ((λy.λx .M)N2)N1KT = Ω/Null .

At this point we are ready to prove the soundness of some equations
involving the fixpoint operators.

Theorem 8.13 (Recursive application).

Jµx .M = (λx .M)(µx .M)KT = Ω/Null .

Proof. We know that, for each n ≥ 0, Mn+1 = (λx .M)Mn . Hence,
for arbitrary E, C and T ,

LMn+1MECT = L(λx .M)MnMECT .

Lemma 6.4 applied to this equality gives us further that

LMn+1MECT = LMME{LMnME(λw .w)T e/x}CT o .

Hence, supnLMn+1MECT = supnLMME{LMnME(λw .w)T e/x}CT o

and using Scott continuity we get

sup
n

LMn+1MECT = LMME{sup
n

LMnME(λw .w)T e/x}CT o .

SinceM is continuous, hence monotonic, the above is equivalent to

sup
n

LMnMECT = LMME{sup
n

LMnME(λw .w)T e/x}CT o ,

or equivalently, Lµx .MMECT = LMME{Lµx .MME(λw .w)T e/x}CT o

and again applying Lemma 6.4, Lµx .MMECT = L(λx .M)(µx .M)MECT .
In particular, we also have

Lµx .MM∅idT = L(λx .M)(µx .M)M∅idT .

□

Theorem 8.14 (Recursive choice).

Jµx .(x ⊕ M) ≡ µx .MKT = Ω/Null .

Proof. Consider arbitrary E,C and T . For eachω ∈ Ω, the sequence
LMi MECT(ω) is increasing and its limit is Lµx .MMECT(ω).

Consider now the unfoldings of the term µx .(x ⊕ M). They can be
represented as a balanced tree structure, where the nodes are the
Mi and row at depth k represents the syntax of (x ⊕ M)k , where
sibling’s nodes are connected by ⊕. For instance, we have that

(x ⊕ M)0 = M0,

(x ⊕ M)1 = M0 ⊕ M1,

(x ⊕ M)2 = (M0 ⊕ M1) ⊕ (M1 ⊕ M2),

(x⊕M)3 = ((M0⊕M1)⊕(M1⊕M2))⊕((M1⊕M2)⊕(M2⊕M3)), etc.
For each ω ∈ Ω and each i ∈ N there exists j ≤ i such that

L(x ⊕ M)i MECT(ω) = LM j MEC(Sndi (T ))(ω).

In fact, each ω ∈ Ω represents a path in this syntactic tree (e.g., 0
chooses the left branch and 1 chooses the right branch) and the in-
tersection of this path with the i-th level of the graph (representing
(x ⊕ M)i ) is exactly the termM j satisfying the previous equation.

(L(x ⊕M)i MECT(ω))i ∈N increasingly converges to Lµx .MMECT(ω),
except for those ω for which the sequence stabilises, i.e., for those
ω ∈ Ω for which the corresponding path in the syntactic tree
always chooses the left branch after a certain level. This is the set

S = {ω ∈ Ω | ω = v0∗,w ∈ {0, 1}∗}.

Obviously S is a null set, and this concludes our proof. □

The results we have proven so far allow us to say more about
β-reduction. Firstly we prove that an unrestricted version of β-
reduction cannot be stated for the stochastic λ-calculus.

Theorem 8.15. There exist termsM,N (which are not stable) such
that

J(λx .M)(N ) = M{N /x}KT , Ω/Null .

8



977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

Boolean-Valued Semantics for the Stochastic λ-Calculus LICS’18, July 09–12, 2018, Oxford, UK

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

Proof. We exploit the results in Theorems 8.5 - 8.3 to derive a con-
tradiction from the assumption that for all terms M,N we have
that J(λx .M)(N ) = M{N /x}KT = Ω/Null .
Consider the following terms

⊤ = λx .λy.x , ⊥ = λx .λy.y, xor = λx .λy.x(y⊥⊤)(y⊤⊥), N = ⊤⊕⊥.

Then, considerM = (λx .xor xx)N . On one hand we have that all
the following equations have the value Ω/Null when evaluated for
T , due to Theorem 8.1.

M = xorNN = N (N⊥⊤)(N⊤⊥)

Hence, for any closed stable term K ,

JM = KKT ≈ J(⊤(N⊥⊤)(N⊤⊥)) ⊕ (⊥(N⊥⊤)(N⊤⊥) = KKT
≈ J(N⊥⊤) ⊕ (N⊥⊤) = KKT ≈ JN⊥⊤ = KKT

J(⊤⊥⊤) ⊕ (⊥⊥⊤) = KKT ≈ J⊥ ⊕ ⊤ = KKT ≈ J⊤ ⊕ ⊥ = KKT .
On the other hand, we have that for any closed stable term K ,:

JM = KKT ≈ J(λx .xor xx)⊤ ⊕ (λx .xor xx)⊥ = KKT
≈ J(xor⊤⊤) ⊕ (xor⊥⊥) = KKT ≈ J⊥ ⊕ ⊥ = KKT ≈ J⊥ = KKT .

Putting together these two sequences of automorphic elements we
get that for any closed stable term K ,

J⊤ ⊕ ⊥ = KKT ≈ J⊥ = KKT .

Since ⊥ is a closed stable term, this last equation that

J⊤ ⊕ ⊥ = ⊥KT = Ω/Null ,

meaning R(Ω) is a degenerate model, i.e. a singleton; this is a
contradiction. □

We can, however, have a stronger version of β-reduction than the
one stated in Theorem 8.3.

Theorem 8.16 (Extended β-reduction). If λx .M1, λx .M2 are closed
terms and N is a stable closed term such that for any stable closed
term K and any i ∈ {1, 2} we have that

J(λx .Mi )N = KKT ≈ JMi {N /x} = KKT ,

then for any stable closed term K ,

J(λx .(M1 ⊕ M2))N = KKT ≈ JM1{N /x} ⊕ M2{N /x} = KKT .

Proof. Note that

L(λx .(M1 ⊕ M2))N M∅idT

= Lλx .(M1 ⊕ M2)M∅(λa.LN M∅(λb .id(ϕ(a)b))T e )T o

and applying λ-distributivity,

= Lλx .M1 ⊕ λx .M2)M∅(λa.LN M∅(λb .id(ϕ(a)b))T e )T o

now we solve the probabilistic choice and get some j ∈ {1, 2} such
that

= Lλx .Mj M∅(λa.LN M∅(λb .id(ϕ(a)b))T e )Snd(T o )
L(λx .Mj )N M∅idT ′,

where T ′ = Swap(Snd(T )). Hence, we have that

J(λx .(M1 ⊕ M2))N = KKT
= {ω ∈ Ω | L(λx .M1 ⊕ λx .M2))N M∅idT(ω) = LKM∅idT(ω)}/Null

= {ω ∈ Ω | L(λx .Mj )N M∅idT ′(ω) = LKM∅idT(ω)}/Null .

Since K is stable, LKM∅idT = LKM∅idT ′, so

= {ω ∈ Ω | L(λx .Mj )N M∅idT ′(ω) = LKM∅idT ′(ω)}/Null

= J(λx .Mj )N = KKT′ ≈ JMj {N /x} = KKT′ .

Similarly we get that

JM1{N /x} ⊕ M2{N /x} = KKT ≈ JMj {N /x} = KKT′′ ,

for some tossing T ′′. Further, Theorema 7.2 ensures us that

JMj {N /x} = KKT′ ≈ JMj {N /x} = KKT′′ ,

which concludes our proof, since ≈ is transitive. □

9 Generating Random Numbers

In this section we present a small example of programming in
the stochastic λ-calculus and use the semantics to argue for the
correctness of the program behavior. Our program takes a Church
numeral n and produces a random Church numeral from 0 to 2n − 1
with equal probability.

Functions for Church Numerals and Booleans. In the follow-
ing, we use mathematical symbols as the names of lambda terms,
for ease of notation. Note that this means arithmetical expressions
are in (forward) Polish notation.

Recall that a Church numeral for the number n ∈ N is a function
of two arguments f and x , returning f applied n times to x . We
use the well-known encodings of the arithmetic operations succ,
+ and ×.

Picking a Random Number from 0 to 2n − 1. The following
stochastic λ-term is the key of our encoding.

rand = λn.n(λx .((× 2 x) ⊕ (succ(× 2 x))))0.

In intuitive terms, the program starts with a number equal to 0 and
flips a fair coin n times, either doubling the number or doubling
and adding one, depending on the outcome.

The following statement, if demonstrated, proves that the program
has the desired behavior. It exemplifies how our deduction princi-
ples can be applied.

Statement: For all Church numeralsn and tossing processesT ,
2n−1∨
i=0

Jrandn = iKT = Ω/Null

and for all 0 ≤ i, j ≤ 2n − 1

Jrandn = iKT ≈ Jrandn = jKT .

Therefore, for each 0 ≤ i ≤ 2n − 1, Jrand n = iKT are of equal
probabilities and summing to 1, i.e. of probability 2−n .

Sketch: We do not provide a detailed proof of this statement, that
would require further developments of the deduction principles.
Instead, we sketch below how such a proof shall be organized.
Induction on n: the inductive hypothesis we need is that
∞∨
i=0

Jrandn = iKT = Ω/Null , that for all i ≥ 2n , we have

Jrandn = iKT = ∅/Null , and for all 0 ≤ i, j ≤ 2n − 1, we have
Jrandn = iKT ≡ Jrandn = jKT .

We start with the base case, n = 0. Then

rand 0 = 0(λx .((× 2 x) ⊕ (succ(× 2 x))))0 = 0.

We have Jrand 0 = 0K = Ω/Null . This shows the three facts we
want, because 0 ≤ i ≤ 20 − 1 = 0 implies i = 0.

9



1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

LICS’18, July 09–12, 2018, Oxford, UK Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

For the inductive step, we temporarily introduce the name

f ′ = (λx .((× 2 x) ⊕ (succ(× 2 x)))),

for the latter part of the definition of rand, excluding the final 0.
We start by re-expressing rand (succn) in terms of randn.

rand(succ n) = (succ n)f ′0 = f ′(nf ′0) = f ′(rand n)

= (λx .((× 2 x) ⊕ (succ(× 2 x))))(rand n)

= ((λx . × 2 x) ⊕ (λx .succ(× 2 x)))(rand n)

= ((λx . × 2 x)(rand n)) ⊕ ((λx .succ(× 2 x))(rand n)).

We first have to prove that
∞∨
i=0

Jrand (succn) = iKT = Ω/Null .

By the inductive hypothesis, we have
∞∨
i=0

Jrandn = iKT = Ω/Null .

By well-definedness of function application, it holds that
∞∨
i=0

J(λx . × 2 x)(rand n) = iKT = Ω/Null ,

∞∨
i=0

J(λx .succ(× 2 x))(rand n) = iKT = Ω/Null .

so, because of the properties of ⊕ (Theorems 8.5,8.10),
∞∨
i=0

Jrand (succn) = iKT = Ω/Null .

For the second part of the inductive hypothesis, that i ≥ 2n+1
implies Jrand (succn) = iKT = ∅/Null , we make a case split de-
pending on whether i is even or odd. As both cases are similar, we
only show the case where i is even.
Then i = 2i ′ for some integer i ′. By the inductive hypothesis
Jrandn = i ′KT = ∅/Null , so by well-definedness and the fact
that (× 2i ′) = i , we have Jrand (succn) = iKT = ∅/Null .

Finally, we need to show that for all 0 ≤ i, j ≤ 2n+1 − 1 we have
Jrand (succn) = iKT ≈ Jrand (succn) = jKT .
We have a four-way case split according to whether i and j are odd
or even. We treat the case where i and j are even, as the other three
cases are similar. We have that there are i ′, j ′ such that i = 2i ′ and
j = 2j ′. Hence,

Jrand(succ n) = iKT
= J(λx .× 2x)(randn)⊕((λx .succ(× 2x))(randn)) = (λx .× 2x)i ′KT

≈ J(λx . × 2 x)(rand n) = (λx . × 2 x)i ′KT
= Jrand n = i ′KT = Jrand n = j ′KT = Jrand(succ n) = jKT .

This shall complete the proof.

10 Conclusions

We see this paper as the beginning of an investigation into ran-
dom processes at higher type. There are many things to investi-
gate:

• We need to understand how this relates to more categorical
approaches [7] to probability theory at higher type by con-
structing a suitable cartesian closed category of quasi-Borel
spaces.

• We need to develop a deeper understanding of the Boolean-
valued reasoning principles that we have used here.

• It would be very interesting to develop suitable dependently-
typed versions of a stochastic λ-calculus; indeed this was one
of the main motivations of [15].

• The relation between invariance results as we have used them
and exchangability and symmetry principles in probability the-
ory (see, for example, [8]) need to be understood better.

Acknowledgments

This research was supported by a DFF Danish research grant, by
a grant from NSERC (Canada), and by a grant from the National
Science Foundation (USA). We gratefully acknowledge the support
of the Simons Institute Logical Structures in Computation Pro-
gram in Fall 2016. We thank Ugo Dal Lago, Cameron Freer, Marco
Gaobardi, Chris Heunen, Alex Simpson and Sam Staton for useful
discussions.

References
[1] John L. Bell. 1985. Boolean-Valued Models and Independence Proofs in Set Theory

(2nd ed.). Number 12 in Oxford Logic Guides. Oxford University Press.
[2] David H. Fremlin. 2003. Measure Theory, Volume 4. http://www.essex.ac.uk/

maths/people/fremlin/mt.htm. (2003).
[3] R. M. Friedberg and H. Rogers. 1959. Reducibility and Completeness for sets of

integers. Mathematical Logic Quarterly 5 (1959), 117–125.
[4] Noah Goodman, Vikash Mansingkha, Daniel Roy, Keith Bonawitz, and Joshua

Tenenbaum. 2008. Church: a language for generative models. In Proceedings of
the 24th Conference on Uncertainty in Artificial Intelligence. 220–229.

[5] Andrew D. Gordon, Thore Graepel, Nicolas Rolland, Claudio V. Russo, Johannes
Borgström, and John Guiver. 2014. Tabular: a schema-driven probabilistic pro-
gramming language. In Proceedings of POPL ’14, San Diego, CA, USA, January
20-21, 2014. 321–334.

[6] V. Gupta, R. Jagadeesan, and P. Panangaden. 1999. Stochastic Processes as
Concurrent Constraint Programs. In Proceedings of the 26th Proceedings Of The
Annual ACM Symposium On Principles Of Programming Languages. 189–202.

[7] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A conve-
nient category for higher-order probability theory. In Proceedings of the Thirty-
second Annual ACM-IEEE Symposium on Logic in Computer Science.

[8] Olav Kallenberg. 2006. Probabilistic symmetries and invariance principles. Springer
Science and Business Media.

[9] D. Kozen. 1981. Semantics of Probabilistic Programs. Journal of Computer and
Systems Sciences 22 (1981), 328–350.

[10] Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. 2014. On Coinductive
Equivalences for Higher-order Probabilistic Functional Programs. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’14). ACM, New York, NY, USA, 297–308.

[11] Norman Ramsey and Avi Pfeffer. 2002. Stochastic lambda calculus and monads of
probability distributions. In The 29th SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. 154–165.

[12] H. Rogers. 1967. Theory of Recursive Functions and Effective Computability.
McGraw-Hill.

[13] Vladimir A. Rohlin. 1952. On the Fundamental Ideas of Measure Theory. Amer.
Math. Soc. Transl. 71 (1952).

[14] Dana Scott. 1967. A Proof of the Independence of the Continuum Hypothesis.
Mathematical Systems Theory 1, 2 (1967), 89–111.

[15] D. Scott. 2014. Stochastic Lambda Calculi: An extended Abstract. Journal of
Applied Logic 12 (2014), 369–376.

[16] S. Smolka, P. Kumar, N. Fosterand D. Kozen, and A. Silva. 2017. Cantor meets
Scott: Domain-theoretic foundations for probabilistic network programming. In
Proceedings of the 44th ACM SIGPLAN Symp. Principles of Programming Languages
(POPL’17). ACM, 557–571. ACM SIGPLAN Notices - POPL ’17, Volume 52 Issue
1.

[17] Sam Staton, Hongseok Yang, FrankWood, Chris Heunen, and Ohad Kammar. 2017.
Semantics for probabilistic programming: higher-order functions, continuous
distributions, and soft constraints. In Proceedings of the 31st Annual ACM-IEEE
Symposium On Logic In Computer Science. 525–534.

[18] David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. 2016.
Design and implementation of probabilistic programming language anglican.
In Proceedings of the 28th Symposium on the Implementation and Application of
Functional Programming Languages. ACM, 6.

[19] David Williams. 1991. Probability with Martingales. Cambridge University Press.

10

http://www.essex.ac.uk/maths/people/fremlin/mt.htm
http://www.essex.ac.uk/maths/people/fremlin/mt.htm


1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

Boolean-Valued Semantics for the Stochastic λ-Calculus LICS’18, July 09–12, 2018, Oxford, UK

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

A The functions pack and unpack

For a better connection with the mainstream of measure theory, we
consider how to pack and unpack sequences in 2N. In aid of this,
we consider two infinite sequences in N:

s0n = 2n − 1 and s1n = 3 · 2n − 1.

These sequences solve the recurrence relations:

{s00 = 0 ; s0n = 2s0n−1 + 1}n≥1 and {s10 = 2 ; s1n = 2s1n−1 + 1}n≥1 .

Therefore each sequence is even iff n = 0. Moreover, sij = s
i′
j′ implies

i = i ′ and j = j ′.

We define a family of maps unpackn : P(N) → 2 by

unpackn (S) =

{
0 if s0n ∈ S

1 otherwise
,

and two maps unpack : P(N) → 2N and pack : 2N → P(N) as
follows:

unpack(S)(n) = unpackn (S) pack(a) =
∞⋃
i=0

{saii }.

It is not difficult to verify that the maps unpackn , unpack and pack
are (Borel) measurable, and that for all a ∈ 2N, we have

unpack(pack(a))(n) = an .

11


	Abstract
	1 Introduction
	2 Standard Probability Spaces
	3 Topology and measure of P(N)
	3.1 The positive topology on P(N)
	3.2 Random Variables on 
	3.3 The Algebra of Events

	4 Tossing processes
	4.1 Independent coin sequences
	4.2 Tossing Processes
	4.3 Tossing Process Operators

	5 Stochastic -Calculus
	6 Probabilistic Continuation Semantics
	7 A Boolean-Valued Model
	8 Sound Equations
	9 Generating Random Numbers
	10 Conclusions
	Acknowledgments
	References
	A The functions pack and unpack

