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Abstract

The ordinary untyped λ-calculus has a set-theoretic model proposed
in two related forms by Scott and Plotkin in the 1970s. Recently
Scott showed how to introduce probability by extending these mod-
els with random variables. However, to reason about correctness
and to add further features, it is useful to reinterpret the construc-
tion in a higher-order Boolean-valued model involving a measure
algebra. In this paper we develop the semantics of an extended
stochastic λ-calculus suitable for modeling a simple higher-order
probabilistic programming language. We exhibit a number of key
equations satisfied by the terms of our language. The terms are
interpreted using a continuation-style semantics with an additional
argument, an infinite sequence of coin tosses, which serve as a
source of randomness. The construction of the model requires a
subtle measure-theoretic analysis of the space of coin-tossing se-
quences. We also introduce a fixpoint operator as a new syntactic
construct, as β-reduction turns out not to be sound for unrestricted
terms. Finally, we develop a new notion of equality between terms
interpreted in a measure algebra, allowing one to reason about
terms that may not be equal almost everywhere. This provides a
new framework and reasoning principles for probabilistic programs
and their higher-order properties.

1 Introduction

Probabilistic programming languages [4–7, 9–11, 18] have become
popular recently, sparked by renewed interest in verification and
machine learning. The subject began with an imperative first-order
language [9], and there has been significant recent interest in ex-
tending to higher-order functional languages [7, 10, 11, 17]. The
higher-order functional paradigm allows one to integrate probabil-
ity distributions smoothly into the programming language through
the probability monad, but finding a cartesian-closed category that
can incorporate higher-order features as well as appropriate proba-
bilistic constructions has proven elusive. Only recently [7] has a suit-
able category been constructed that satisfies all desiderata.

In the present paper, we take an entirely new approach to the
semantics of higher-order probabilistic computation. In [15], the
senior author of the present paper proposed a way of incorporat-
ing random variables into a certain kind of model of the untyped
λ-calculus by using the continuity of the λ-calculus operations mod-
eled by enumeration operators on the powerset of the integers. This
set-theoretic model suggests at once incorporating higher types,
but to do this requires a nonstandard Boolean-valued interpretation
of set theory. Boolean-valued models (see [1] for history and a basic
exposition) were employed by Scott [14] to construct models of set
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theory in order to obtain independence results. The independence
of the Continuum Hypothesis was obtained by introducing a mas-
sive number of real-valued random variables. In this model, the
random variables turned out to be the real numbers of the Boolean-
valued logic. The continuity of real algebra has an analogue in
the continuity of operations in the powerset model. The measure
algebra of a standard Borel space, a complete Boolean algebra, is
needed to bring this idea to fruition. Ordinary logical propositions
take truth values in this Boolean algebra instead of in the simple
two-element Boolean algebra.

The ideas behind the present work were outlined only briefly in [15].
The primary goal here is to develop an equational theory based on
these ideas in which equations between stochastic λ-terms have
probabilistic meaning. In this paper we flesh out these ideas and
provide a continuation-passing semantics for such an equational
theory. The system will provide reasoning principles for establish-
ing the equality of λ-terms under various program transforma-
tions.

The notions of equality and invariance are subtle in the presence of
probabilities. In the calculus described below, there is a probabilistic
choice operator ⊕, which captures the idea that a choice is to be
made between two terms based on a random process. The source
of randomness is called a tossing process: a process that generates
a sequence of fair coin tosses, the outcomes of which are used to
resolve the probabilistic choices. In general, equality of terms does
not mean that identical values are produced, as the final values will
depend on the tosses. Instead, we interpret equality statements as
elements of a measure algebra formed from the usual measurable
sets quotiented by the ideal of negligible sets. Given a tossing
process T , a pair of closed termsM,N will define a set of tossing
sequences where they agree JM = N KT , which is an element of the
Boolean algebra. This may be the top element—corresponding to
certainty—or something else. However, we would like statements
not to be dependent on the specific outcome of a tossing process;
rather, we would prefer that truth values of equations be invariant
under certain changes in the tossing process. Accordingly, we define
a relation ≈ on the elements of the Boolean algebra to capture the
idea that two truth values of an equation, say JM = N KT and
JM = N KT′ for different tossing processes T and T ′, are related by
an automorphism of the Boolean algebra. We write JM = N KT ≈

JM = N KT′ when this occurs. Many of the equalities that we
establish are stated in this way, and the automorphisms relating
them are constructed.

A second subtlety is that we often prove results of the form JM =
KKT ≈ JN = KKT , for closed stochastic terms M,N and closed
term K of the classic untyped λ-calculus (here called a stable term),
instead of proving for example that JM = N KT evaluates to the top
element of the Boolean algebra. Here we are using the idea that
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a tossing process, once it has resolved the choices, makes a term
of the stochastic λ-calculus look like an ordinary λ-term. In these
cases one cannot prove that JM = N KT is the top element directly,
since this might not be true, but the weaker statement above serves
to replace this statement.

Our main contributions are:

1. We develop a use of random variables in this framework in order
to identify a class of tossing processes that can serve as a sources
of randomness in probabilistic programs. We show that with
this choice, the semantics is invariant under automorphisms of
the measure algebra effected by remapping the tossing process.
This provides a canonical meaning to programs.

2. We introduce the stochastic λ-calculus by augmenting the ordi-
nary λ-calculus with a probabilistic choice construct. We flesh
out the continuation-passing semantics proposed in [15], with
the crucial new observation that β-reduction is not sound for all
terms with probabilistic choice. To compensate, we need to in-
troduce an explicit fixpoint operator in order to have recursive
programs.

3. We develop a Boolean-valued reasoning framework for the
stochastic λ-calculus and prove soundness results with respect
to the continuation-passing semantics.

The main technical contributions and novelty are in items 1 and 3.
In order to obtain the invariance of the semantics, it was necessary
to identify a rather subtle condition that we call monolithic. This
is the part that required the deepest foray into the technicalities
of measure theory. As far as we know, Item 3 is a completely new
way of thinking about equational logic. We have only developed
the rudiments here for the purposes of the present investigation,
but there is clearly a much deeper theory to be explored.

We have not developed an operational semantics or rewrite rules,
but have left these investigations for future work. However, because
of the restrictions on β-reduction, all probabilistic choices for a
term in the argument position must be resolved before applying
the function; thus it most resembles a call-by-value strategy, but of
course one cannot talk about evaluation strategies in the absence
of a reduction system.

2 Standard Probability Spaces

In this section we introduce a few concepts and results regarding
standard probability spaces. The concepts of disintegration of a
space and of monolithic maps between spaces are essential.

Definition 2.1. Given a measurable space (X , Σ) and a probability
measure µ on it, (X , Σ, µ) is a standard probability space iff (X , Σ)
is Borel isomorphic to a Polish space1 equipped with its Borel
algebra2.

Consider, e.g., the set 2N of infinite binary sequences with the
Cantor topology3, which has, as basic open sets, the sets {α | x ≺

α }, where α ranges over 2N, x ∈ {0, 1}∗, and ≺ denotes prefix. Let
B be the Borel σ -algebra of the Cantor topology.

1A Polish space is the topological space induced by a complete separable metric space.
2The Borel algebra of a topology is the σ -algebra generated by the open sets.
3The space is the topological power of ω copies of the discrete space 2 = {0, 1}.

The (fair) coin-flipping probability measure4 P on B is generated
by its values on intervals:

P({α | x ≺ α }) = 2−|x | .

The measure space Ω = (2N,B, P) is a standard probability space
that we will use in the rest of this paper.

We consider measure-preserving maps between standard probabil-
ity spaces. The category we use,Meas/0 has maps identified if they
are equal almost everywhere, i.e. except for on a null set.

Definition 2.2. If fj : (X j , Σj , µ j ) → (Z ,Ξ, ξ ) , j = 1, 2 are two
measure-preserving maps with common codomain, we say f1 � f2
or (X1, f1) � (X2, f2) if there exists a measure-preserving isomor-
phism i : X1 → X2 such that f2 ◦ i = f1, except on a subset of X1
of measure 0.

There is a measure-preserving Borel isomorphism between any
standard probability space (X , Σ, µ) whenever µ is atomless (i.e. all
singletons have measure 0), and Ω.

Definition 2.3. Let f : (X , Σ, µ) → (Y ,Θ,ν ) be ameasure-preserving
map between standard probability spaces. A set S ∈ Σ is 1-sheeted
with respect to f if for all y ∈ Y we have that S ∩ f −1(y) has at
most 1 element. A map f is monolithic if it has no 1-sheeted sets of
positive measure.

Note that S is 1-sheeted if the restriction of f to S is injective. For
instance, 2N is a 1-sheeted set of measure 1 for the identity function
id : 2N → 2N, and the set {(an ) ∈ 2N | a1 = 0} is a 1-sheeted set of
measure 1

2 for the function tail : 2N → 2N, which takes all but the
first element of a sequence to return a sequence.
Next, f is monolithic whenever all such one-sheeted measurable
sets have measure 0. For example, the map evens : 2N → 2N which
takes every second member of a sequence to construct a sequence is
monolithic (proven in Section 4), while id and tail are not.

The following theorem provides a useful characterization of the
concept of monolithic map5

Theorem2.4. Let f : (X , Σ, µ) → (Y ,Θ,ν ) be ameasure-preserving
map of standard probability spaces. Then f is monolithic iff there
exists a standard probability space (Z ,Ξ, ξ ) such that all points of Z
have ξ -measure 0, and (Z × Y ,π2) is isomorphic to (X , f ); where π2
denotes the second projection.

We conclude this section with a useful result regarding the compo-
sition of monolithic maps.

Lemma 2.5. Let f : (X , Σ, µ) → (Y ,Θ,ν ) and д : (Y ,Θ,ν ) →

(Z ,Ξ, ξ ) be measure-preserving maps. If S ∈ Σ is 1-sheeted with
respect to д ◦ f , then it is 1-sheeted with respect to f . Therefore if f
is monolithic, then д ◦ f is monolithic.

Proof. Let S ∈ Σ be a 1-sheeted set with respect to д ◦ f , i.e. for all
z ∈ Z , S ∩ f −1(д−1(z)) has cardinality at most 1. If y ∈ Y , then

S ∩ f −1(y) ⊆ S ∩ f −1(д−1(д(y)))

so f −1(y)∩S has cardinality at most 1, so S is 1-sheeted with respect
to f .
4This is the Haar measure on 2N as a compact group based onmod 2 addition.
5This concept is formulated in terms of decompositions in [13, §3.1], which are better
known as disintegrations[2, §452 E].
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The statement about 1-sheeted sets of positive measure then follows
by taking the contrapositive. □

3 Topology and measure of P(N)

LetN be the set of natural numbers, P(N) its powerset and Pf in (N)

the set of finite subsets of N. We follow [12, 15] to identify some
structure on N that is relevant to our purpose.

The pairing function puts the set of pairs of natural numbers into a
one-to-one correspondence with the positive integers by: (m,n) =
2n (2m+1). The function ⟨ ⟩ puts finite sequences of natural numbers
into a one-to-one correspondence with N by nested pairing and
this can be used to enumerate finite subsets of N using a function
that we call set . Now we can define the Kleene star :

X ∗ = {n | set(n) ⊆ X }.

All these identify different structures on N giving us

N � 1 + (N × N) � N∗.

Enumeration operators are identified with sets F ⊆ Nwhich operate
on X ⊆ P(N) through the binary operation of application:

F (X ) = {m ∈ N | ∃s ∈ X ∗.(s,m) ∈ F }.

The intuition here is that while enumerating the elements in X ,
one can also enumerate the elements of X ∗ and the pairs in F :
every match between a sequence number s ∈ X ∗ and the first term
of a pair (s,m) ∈ F witnesses the fact that m ∈ F (X ). Following
[3, 15], we say that a set A ⊆ P(N) is enumeration reducible to a set
B ⊆ P(N) when there exists a recursively enumerable set F ∈ P(N)
such that A = F (B). Hence, the computable enumeration operators
are those given by recursively enumerable sets F .

3.1 The positive topology on P(N)

The positive topology on P(N) is induced by the sets

Qn = {X | n ∈ X ∗}.

The continuity of a function Φ : P(N) → P(N) in the positive
topology can be characterized as follows:

m ∈ Φ(X ) iff ∃n ∈ X ∗ s.t.m ∈ Φ(set(n)).

Viewing P(N) as an algebraic lattice, the positive topology coin-
cides with the Scott topology on P(N), which has basic open sets
{b | a ⊆ b}, where a ⊆ N is finite; and positive continuity coincides
with Scott continuity.

The following two results are proven in [15].

Theorem 3.1. The application operation F (X ) is continuous as a
function of two variables on P(N).

Theorem 3.2. For every continuous function Φ : P(N) → P(N)
there is a largest set F such that for any X ∈ P(N), Φ(X ) = F (X ),
where Φ(X ) denotes ordinary function application, while F (X ) is
application in the set-based model. In fact, F can be directly defined
by F = {0} ∪ {(n,m) | m ∈ Φ(set(n))}.

In view of this fact, we define λ-abstraction onP(N) as follows:

λX .F (X ) = {0} ∪ {(n,m) | m ∈ F (set(n))}.

There is a homeomorphic embedding

Cont[P(N),P(N)] → {λX .F (X ) | F ∈ P(N)},

where Cont[P(N),P(N)] denotes the space of continuous funtions
on P(N) (w.r.t. positive topology). This gives a natural topology to
the space of continuous functions, which is a retract ofP(N).

It is useful to introduce a couple of continuous functions:

Pair(X )(Y ) = {2n | n ∈ X } ∪ {2m + 1 | m ∈ Y } ,

Fst(Z ) = {n | 2n ∈ Z } , Snd(Z ) = {m | 2m + 1 ∈ Z } ,

Test(Z )(X )(Y ) = {n ∈ X | 0 ∈ Z } ∪ {m ∈ Y | ∃k .k + 1 ∈ Z } .

These definitions make the topological space P(N) homeomorphic
to its cartesian square, P(N) � P(N)×P(N) and show that subsets
of P(N) can be regarded as binary relations on P(N).

Before concluding this paragraph we shall emphasize a few topo-
logical aspects connecting P(N) and 2N that will be of great use in
what follows.

There exists a straightforward bijection χ : P(N) → 2N that maps
a subset of N to its characteristic function: χ (a)i = 1 if i ∈ a and
χ (a)i = 0 if i < a. The image of a basic open set of the Scott
topology under χ is {β | χ (a) ≤ β}, where a is a finite set and
≤ is the componentwise extension of the order 0 ≤ 1. This space
is the topological power of ω copies of Sierpiński space, the two-
element T0 space with open sets ∅, {1}, and {0, 1}. Thus, we have
two topologies on 2N but they both generate the same Borel sets
B, and hence, when equipped with the coin-flipping probability
measure, the same Lebesgue completion. This follows from the fact
that every basic Cantor open set is a finite Boolean combination of
basic Scott open sets and vice versa [16].

3.2 Random Variables on Ω

Let Ω = (2N,B, P) denote the standard probability space of infinite
binary sequences, with B the Borel-algebra of the Cantor topology,
and with the coin-flipping probability measure P , as defined in
§ 3.2. The following theorem relates Ω to the reals and allows us
to use Ω as the “source of randomness” when we define random
variables.

Theorem 3.3. The measure spaces Ω and [0, 1] with Lebesgue mea-
sure, restricted to Borel sets, are Borel isomorphic.

We view P(N) as a measurable space with the Borel-algebra of
the positive topology on P(N). This allows us to define random
variables on Ω = (2N,B, P) as the measurable functions

ξ : Ω → P(N).

Let R(Ω) denote the set of these P(N)-valued random variables on
Ω. Given a random variable ξ , we obtain a measure on P(N) by
P ◦ ξ−1. A family of random variables is independent if the induced
measures are independent.

On R(Ω) we define a few functions. Firstly, we associate to any
X ∈ P(N) a random variable X̂ defined by X̂ (ω) = X for anyω ∈ Ω.
Secondly, since application, λ-abstraction, Pair, Fst and Snd are all
continuous functions on P(N), they can be canonically extended
to R(Ω). In [15] it is emphasized that R(Ω) is a (non-extensional)
model for untyped λ-calculus. Moreover, an equation between two
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random variables ξ ,η ∈ R(Ω) can be interpreted as the measurable
event

[ξ = η] = {ω ∈ Ω | ∀n ∈ ξ (ω).n ∈ η(ω) ∧ ∀n ∈ η(ω).n ∈ ξ (ω)},

which is a Borel set in B, and this motivates the study of the algebra
of events of Ω defined below.

3.3 The Algebra of Events

Given the probability space Ω = (2N,B, P), we define the alge-
bra of events (also known as the measure algebra) as the Boolean
algebra

B/Null= (B/Null ,∪,∩,∼, ∅/Null ,Ω/Null )

which is the quotient algebra of the σ -algebra B modulo the σ -ideal
of Borel sets of P-measure zero. Observe that we do not get more
expressive if we consider the P-Lebesgue completion of B/Null :
because every Lebesgue measurable set differs from a Borel set by
a null set, the measure algebra of Lebesgue measurable sets modulo
P-null sets is isomorphic to B/Null .

We call the elements of B/Null events and for A ∈ B we denote its
equivalence class by A/Null .

Theorem 3.4. (B/Null ,∪,∩,∼, ∅/Null ,Ω/Null ) is a σ -complete
Boolean algebra in which any family of pairwise disjoint elements is
countable ( i.e. it satisfies the countable chain condition). Therefore
it is a complete Boolean algebra.

B/Null plays a central role in the semantics of the stochastic λ-
calculus.

4 Tossing processes

A key ingredient in any probabilistic programming language is
the source of randomness. As in [15], this is taken to be a random
variable which uses an infinite sequence of independent fair coin
tosses to resolve the random choice. The semantics should not
depend on the vagaries of a particular sequence; accordingly, we
aim to prove a property that shows that the semantics should be
independent, in a suitable sense, of the coin tosses that occur. This
is where the notion of monolithic function becomes important. We
call the special random variables that we use tossing processes. This
section is devoted to the properties of tossing processes.

4.1 Independent coin sequences

We need to move between sequences of coin tosses and subsets of
N by using some appropriate coding and decoding functions. Con-
cretely, we can a Borel-measurable map pack : 2N → P(N) which
encodes a sequence as a set in a way that can be easily inverted
and its inverse, called unpack, is Borel-measurable as well.

Moreover, these can be defined so that they properly relate the well-
known operations on sequences head : 2N → 2 and tail : 2N → 2N,
given by head(a) = a0 and tail(a)(n) = an+1, to the functions
Fst and Snd defined on sets in Section 3 (i.e., on constant random
variables) as stated in the following lemma6.

Lemma 4.1. Let a ∈ 2N and α ∈ {0, 1}.
6A detailed construction of a pair of such coding/decoding functions can be found in
the appendix.

1. {α } = Fst(pack(a)) iff head(a) = α .

2. Snd(pack(a)) = pack(tail(a)).

Let Ω = (2N,B, P) be the probability space defined in § 3.2.

Definition 4.2. A coin flip is a random variable that has the form
F : Ω → {{0}, {1}}. A coin flip is fair whenever P(F−1({0})) = 1/2.

An independent sequence of coin tosses (ICS) is a random variable
T : Ω → P(N) such that Fst(T ) is a fair coin flip and Snd(T ) is
another ICS—with the successive flips all mutually independent.

Note that an ICS is a {{0}, {1}}-valued map, i.e., specialized to take
values in the image of pack. Every ICS T : Ω → P(N) is of the
form T = pack ◦T for some (Borel) measurable map T : Ω → 2N.
By Lemma 4.1, Fst◦pack◦T = head◦T , so the condition of Fst(T )

being a fair coin is that for i ∈ {0, 1},

P((head ◦T )−1(i)) =
1
2
,

That Snd(T ) is an ICS implies that for alln ∈ N and i ∈ {0, 1},

P((evn ◦T )−1(i)) =
1
2
,

where evn : 2N → {0, 1} forn ∈ N, is defined by evn (a) = an .

The condition of independence implies that for any finite increasing
sequence (mi )

n
i=1 inN, and finite sequence (bi )

n
i=1 in {0, 1},

P

( n⋂
i=1

(ev(mi ) ◦T )
−1(bi )

)
= 2−n .

This means that the image measureT∗(P) = P ◦T−1 agrees with the
standard coin-flipping measure on 2N on basic clopens of Cantor
topology. As basic clopens form a π -system (they are closed under
finite intersections) and generate the Borel sets of 2N, T∗(P) and
the coin-flipping measure agree on all Borel sets [19, Lemma 1.6],
so we have that T is measure-preserving from Ω to 2N.

Conversely, for any measure-preserving mapT : Ω → 2N, pack ◦T
will be an independent sequence of coin tosses.

These provide the following characterization for ICS.

Theorem 4.3 (Characterization). Independent coin sequences are
exactly the maps of the form pack ◦T , for some measure-preserving
map T : Ω → Ω.

Nowwe focus on another important function for our discussion,

evens : 2N → 2N,

defined by evens(a)(n) = a2n .

Theorem 4.4. A measure-preserving map T : 2N → 2N is mono-
lithic iff T � evens.

Proof. Because N � N + N by mapping the odd numbers to the
first part and the even numbers to the second part, we have (2N ×

2N,π2) � (2N, evens). As any atomless standard probability space
is isomorphic to 2N, applying Theorem 2.4 withX andY specialized
to 2N, we get the desired equivalence. □

4
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4.2 Tossing Processes

We are ready to define the concept of tossing process; the crucial
point is to insist on a monolithic function.

Definition 4.5 (Tossing Process). A tossing process is an indepen-
dent sequence of coin tosses T = pack ◦T , where T : 2N → 2N is
a monolithic measure-preserving map.

We denote by Toss the set of tossing processes. The next theorem
states that all tossing processes are the same up to a measure-
preserving automorphism of the measure algebra. Let Aut(Ω) de-
note the set of measure-preserving automorphisms on Ω.

Theorem 4.6 (Representation Theorem). For any two tossing pro-
cesses S and T there exists a measure-preserving automorphism
α : Ω → Ω ∈ Aut(Ω) such that T = S ◦ α except for on a subset of
Ω of measure 0.

4.3 Tossing Process Operators

Before concluding this section, we show a few useful operators on
R(Ω) that are closed on tossing processes.

Let
(.)e , (.)o , Swap : Toss → R(Ω),

defined for an arbitrary tossing processT = pack◦T as follows.

T e = pack ◦ evens ◦T

T o = pack ◦ odds ◦T

Swap(T ) = pack ◦ swap ◦T ,

where odds, swap : Ω → Ω are defined by odds(a)(n) = a2n+1 and
swap(a)(2n) = a2n+1, swap(a)(2n + 1) = a2n .

Lemma 4.7. If T is a tossing process, then Snd(T ), T e , T o and
Swap(T ) are tossing processes as well.

5 Stochastic λ-Calculus

In this section we introduce the stochastic λ-calculus. The syntax
of the stochastic λ-calculus over a set V ∋ x of variables extends
the syntax of the classical untyped λ-calculus with a (binary) prob-
abilistic choice operator ⊕ on λ-terms, and a fixpoint combinator
µx .M :

M := x | λx .M | MM | µx .M | M ⊕ M .

Notation: In what follows we will call terms without any occur-
rence of ⊕ stable terms; however, a stable term may contain the
fixpoint operator. And, as usual, we use M{N /x} to denote the
substitution of the variable x by the term N inM .

Unlike in the classical λ-calculus, in the stochastic λ-calculus the fix-
point combinator cannot be defined from the other operators, as we
will demonstrate later. For the development of the fixpoint operator,
it is useful to define the unfolding of a recursive term.

Given µx .M , its unfolding is the sequence of termsM0,M1, . . . ,Mn , . . .

defined inductively as follows.

M0 = (λx .xx)(λx .xx), and for arbitrary n, Mn+1 = (λx .M)Mn .

6 Probabilistic Continuation Semantics

The continuation semantics for the stochastic λ-calculus interprets
a λ-term relative to an environment giving values to the free vari-
ables, a continuation giving a subsequent computation, and a tossing
process T used to resolve probabilistic choices.

We know that the set R(Ω) of random variables with the point-
wise order forms a domain such that [R(Ω) → R(Ω)] is a con-
tinuous retract of R(Ω), where [R(Ω) → R(Ω)] is the space of
Scott-continuous functions. We write this explicitly by introducing
the functions

ϕ : R(Ω) → [R(Ω) → R(Ω)] and ψ : [R(Ω) → R(Ω)] → R(Ω).

It is useful to also define the direct and the continuation-passing
semantics for stable λ-terms. We use x to range over variables, E to
range over arbitrary environments,C to range over arbitrary contin-
uations, and T to range over arbitrary tossing processes. As before,
the n-th unfolding of the term µx .M is denoted byMn .

Let ⟨·⟩ denote the direct semantics and ⟨⟨·⟩⟩ the continuation-passing
semantics for stable λ-terms. In addition, for stochastic terms, we
denote by L·M the continuation-passing semantics augmented with
a tossing process.

⟨·⟩ : Term → Env → R(Ω)

⟨⟨·⟩⟩ : Term → Env → Cont → R(Ω)

L·M : Term → Env → Cont → Toss → R(Ω).

where

Env = Var → R(Ω) Cont = [R(Ω) → R(Ω)]

The direct semantics is

⟨x⟩E = E(x)

⟨MN ⟩E = ϕ(⟨M⟩E)(⟨N ⟩E)

⟨λx .M⟩E = ψ (λv . ⟨M⟩(E{v/x}))

⟨µx .M⟩E = sup
n

⟨Mn⟩E.

With continuations, define

⟨⟨x⟩⟩EC = C(E(x))

⟨⟨MN ⟩⟩EC = ⟨⟨M⟩⟩E(λa . ⟨⟨N ⟩⟩E(λb .C(ϕ(a)b)))

⟨⟨λx .M⟩⟩EC = C(ψ (λv . ⟨⟨M⟩⟩(E{v/x})(λu .u)))

⟨⟨µx .M⟩⟩EC = sup
n

⟨⟨Mn⟩⟩EC .

The probabilistic continuation is defined as follows.

LxMECT = C(E(x))

LMN MECT = LMME(λa . LN ME(λb .C(ϕ(a)b))T e )T o

Lλx .MMECT = C(ψ (λv . LMM(E{v/x})(λu .u)T ))

LM ⊕ N MECT = Test(Fst(T ))(LMMEC(Snd(T )))(LN MEC(Snd(T )))

Lµx .MMECT = sup
n

LMnMECT

The relation between the three semantics for stable terms is stated
in the following proposition.

Proposition 6.1. If M is a stable term, then for an arbitrary envi-
ronment E, an arbitrary continuation process C , and an arbitrary
tossing process T ,

C(⟨M⟩E) = ⟨⟨M⟩⟩EC = LMMECT .
5
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A corollary of this lemma is that if a closed program has a value,
then its value is the same for all tossing processes.

Corollary 6.2 (Absoluteness I). If M is a stable term, then for an
arbitrary environment E, continuation processC , and tossing processes
T ,T ′,

LMMECT = LMMECT ′ .

We conclude this section with two useful lemmas.

Lemma 6.3. For any stochastic λ-terms M,N , any arbitrary envi-
ronment E, any arbitrary continuation C and any arbitrary tossing
process T , the following statements hold, where Mn denote the n-
unfolding of µx .M .

1. Lλy.(µx .M)MECT = sup
n

Lλy.MnMECT ;

2. LN (µx .M)MECT = sup
n

LNMnMECT ;

3. L(λx .M)N MECT = sup
n

LMnN MECT ;

Lemma 6.4. For any stochastic λ-terms M,N , any arbitrary envi-
ronment E, any arbitrary continuation C and any arbitrary tossing
process T ,

L(λx .M)N MECT = LMME{LN ME(λw .w)T e/x}CT o .

We conclude this section by presenting a direct consequence of
Theorem 4.6.

Theorem 6.5 (Absoluteness II). Given a termM , for an arbitrary
environment E, an arbitrary continuation process C , and arbitrary
tossing processes T ,T ′, there exists a measure-preserving automor-
phism α : Ω → Ω ∈ Aut(Ω) such that

{ω ∈ Ω | LMMECT(ω) = LMMEC(T ′ ◦ α)(ω)}/Null= Ω/Null .

7 A Boolean-Valued Model

The Boolean-valued model gives a novel interpretation of equal-
ity. Equalities of closed terms, when interpreted over R(Ω), are
associated with events in B/Null up to a measure-preserving au-
tomorphism of Ω. Since we are working with closed terms we
evaluate terms in the empty environment and with the the identity
continuation.

Let ∅ denote the empty environment and id = λx .x denote the
identity continuation.

Definition 7.1. For arbitrary closed termsM , N , and tossing pro-
cess T , let

JM = N KT =
{
ω ∈ Ω

�� LMM∅idT(ω) = LN M∅idT(ω)
}
/Null .

Note that JM = N KT ∈ B/Null and that this value depends directly
on the tossing process T . However, since the tossing processes are
all equal up to a measure-preserving automorphism, as proven
in Theorem 4.6, JM = N KT is unique up to an automorphism of
B/Null .

In what follows, for arbitrary A,A′ ∈ B/Null , we write

A ≈ A′

if there exists a measure-preserving automorphism of σ of B/Null
such that σ (A) = A′.

Theorem 7.2 (Absoluteness III). For arbitrary closed termsM , N ,
and arbitrary tossing processes T and T ′ = T ◦α , where α ∈ Aut(Ω),

α−1(JM = N KT ) = JM = N KT′ ,

where α−1 is the set-theoretical inverse of α , hence an automorphism
of B/Null . Consequently,

JM = N KT ≈ JM = N KT′ .

Proof. JM = N KT′ =
{
ω ∈ Ω

�� LMM∅idT ′(ω) = LN M∅idT ′(ω)
}
/Null

=
{
ω ∈ Ω

�� LMM∅id(T ◦ α)(ω) = LN M∅id(T ◦ α)(ω)
}
/Null .

Since ∅ and id are constant, this set is further equal to{
ω ∈ Ω

�� LMM∅idT(α(ω)) = LN M∅idT(α(ω))
}
/Null

= α−1(
{
ω ∈ Ω

�� LMM∅idT(ω) = LN M∅idT(ω)
}
/Null )

= α−1(JM = N KT ).
□

This last theorem suggests that in what follows we can use any
tossing process to evaluate the equality between closed programs,
since the result is in any case unique up to an automorphism of the
measure algebra.

8 Sound Equations

In this section we establish a series of sound equations that pro-
vide basic reasoning principles for our stochastic λ-calculus. These
equations are by no means complete, but they do describe several
basic facts about R(Ω). We also show how the usual equations for
α-reduction and β-reduction are generalized. Note that, for stable
closed terms, we have the soundness ofα-reduction and β-reduction
for the model R(Ω) of ordinary λ-calculus from Lemma 6.1.

In what follows, all the terms in expressions of the form JM = N KT
are implicitly assumed to be closed terms.

The first result shows how one can substitute terms in equations
with terms that are equal almost everywhere.

Theorem 8.1 (Substitution). IfM and N are closed terms such that
JM = N KT = Ω/Null , then for any closed stable term K ,

JM = KKT = JN = KKT .

Proof. We have that

JM = N KT = {ω ∈ Ω | LMM∅idT(ω) = LN M∅idT(ω)}/Null .

This means that JM = N KT = Ω/Null implies that LMM∅idT and
LN M∅idT are equal almost everywhere. But then,

JM = KKT = {ω ∈ Ω | LMM∅idT(ω) = LKM∅idT(ω)}/Null

= {ω ∈ Ω | LN M∅idT(ω) = LKM∅idT(ω)}/Null= JN = KKT
□

There are many interesting properties that one can prove in this set-
ting. We begin by observing that both α-reduction and β-reduction
for stable terms (i.e. terms without any occurence of ⊕) hold, as
direct consequences of the fact that R(Ω) is a model of the usual
untyped λ-calculus [15]. However, α-reduction also holds for our
stochastic λ-calculus; this follows from the probabilistic continua-
tion semantics of λ-terms introduced in Section 6.
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Theorem 8.2 (α-reduction). IfM is a term without free occurrences
of y, then

Jλx .M = λy.M{y/x}KT = Ω/Null .

Nowwe state β-reduction only for stable terms. Later in this section
we will show that an unrestricted version of β-reduction is not
possible, but that we have, however, some extensions that involve
terms that might be not stable.

Theorem 8.3 (β-reduction). Let N andM be stable terms. Then,

J(λx .M)(N ) = M{N /x}KT = Ω/Null .

Next we prove a series of results regarding the properties of the
probabilistic choice operator. It is useful to start with the following
lemma.

Lemma 8.4. LetM1,M2,N1,N2 be closed terms and T an arbitrary
tossing process. If for any stable closed term K and each i ∈ {1, 2} we
have that JMi = KKSnd(T) ≈ JNi = KKSnd(T), then for any stable
closed term K ,

JM1 ⊕ M2 = KKT ≈ JN1 ⊕ N2 = KKT .

Proof. The key observation is that there exists a j ∈ {1, 2} such that

LM1 ⊕ M2M∅idT = LMj M∅idSnd(T )

and at the same time

LN1 ⊕ N2M∅idT = LNj M∅idSnd(T ).

Also, since K is stable, LKM∅idT = LKM∅idSnd(T ). Hence,

JM1 ⊕ M2 = KKT

= {ω ∈ Ω | LM1 ⊕ M2M∅idT(ω) = LKM∅idT(ω)}/Null

= {ω ∈ Ω | LMj M∅idSnd(T )(ω) = LKM∅idSnd(T )(ω)}/Null

= JMj = KKSnd(T).

Similarly,
JN1 ⊕ N2 = KKT = JNj = KKSnd(T).

Now we use the hypothesis that guarantees that

JMj = KKSnd(T) ≈ JNj = KKSnd(T).

□

A first fundamental property of probabilistic choice is a kind of
commutativity, stated in the following axiom. Note that one cannot
assert commutativity naively; one has to talk in terms of a stable
term obtained by resolving all the choices.

Theorem 8.5 (⊕-commutativity). IfK is a stable term, then we have

JM ⊕ N = KKT ≈ JN ⊕ M = KKT .

Proof. The map neg : 2N → 2N, where neg(a)(0) = 1 − a(0) and
neg(a)(i) = a(i) for i > 0 is measurable and measure-preserving.
The tossing process T is of the form pack ◦T for some measure-
preserving monolithic map T : Ω → 2N. By Lemma 2.5, T ′ =

pack◦neg◦T is also a tossing process, and so by Theorem 4.6 there

exists a measure-preserving automorphism α : Ω → Ω such that
T ′ = α ◦ T . We start by observing that

LM ⊕ N M ∅ idT
= Test(Fst(T ))(LMM ∅ id (Snd(T )))(LN M ∅ id (Snd(T )))

= Test(Fst(T ′))(LN M ∅ id (Snd(T )))(LMM ∅ id (Snd(T )))

= LN ⊕ MM ∅ idT ′

= LN ⊕ MM ∅ id (T ◦ α),

using the fact that Snd(T ′) = Snd(T ), since neg only affects the
first part. So

JM ⊕ N = KKT
= {ω ∈ Ω | LM ⊕ N M ∅ idT(ω) = LKM ∅ idT(ω)}/Null

= {ω ∈ Ω | LN ⊕ MM ∅ idT(α(ω)) = LKM ∅ idT(ω)}/Null

= {ω ∈ Ω | LN ⊕ MM ∅ idT(α(ω)) = LKM ∅ idT(α(ω))}/Null

= α−1({ω ∈ Ω | LN ⊕ MM ∅ idT(ω) = LKM ∅ idT(ω)})/Null

= α−1(JN ⊕ M = KK),

where the third equality holds because LKM does not depend on ω
since it is stable. □

Next we state that ⊕ is idempotent in the same sense as in the
previous theorem.

Theorem 8.6 (⊕-idempotence). If K is a stable term, then we have

JM ⊕ M = KKT ≈ JM = KKT .

The next two theorems state that ⊕ is distributive to the left and to
the right with respect to application.

Theorem 8.7 (Left-distributivity of ⊕ w.r.t. application). If K is a
stable term, then we have

J(M1 ⊕ M2)(N ) = KKT ≈ JM1N ⊕ M2N = KKT .

Proof. The semantics of application gives us

L(M1 ⊕M2)(N )M∅idT = LM1 ⊕M2M∅(λx .LN M∅(λy.(xy id))T e )T o .

Assume that Test(Fst(T )), applied to a particular ω ∈ Ω chooses
Mi for some i ∈ {1, 2}, in the continuation semantics ofM1 ⊕ M2.

Let T ′ = Snd(Swap(T )). The previous term is further equal to

LMi M∅(λx .LN M∅(λy.(xy id))T e )(Snd(T o )) = LMiN M∅id(Snd(T ′))

= LM1N ⊕ M2N M∅idT ′ .

In the last line we have used the fact that if Test(Fst(T )), when
applied to a particular ω ∈ Ω in the semantics ofM1 ⊕M2, chooses
Mi , then the same test applied to the same ω in the semantics of
M1N ⊕ M2N will chooseMiN for the same i ∈ {1, 2}.

Since Snd and Swap both preserve tossing processes (Lemma 4.7),
there exists an automorphism α ∈ Aut(Ω) such that T ′ = T ◦ α .
Hence, we have

J(M1 ⊕ M2)(N ) = KKT
= {ω ∈ Ω | L(M1 ⊕ M2)N M∅idT(ω) = LKM∅idT(ω)}/Null

= {ω ∈ Ω | LM1N ⊕ M2N M∅idT ′(ω) = LKM∅idT(ω)}/Null .

SinceK is stable, LKM∅idT(ω) = LKM∅id(T ◦α)(ω) and the previous
set is equal to

= {ω ∈ Ω | LM1N ⊕ M2N M∅idT ′(ω) = LKM∅idT ′(ω)}/Null
7
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= α−1({ω ∈ Ω | LM1N ⊕ M2N M∅idT(ω) = LKM∅idT(ω)}/Null )

= α−1(JM1N ⊕ M2N = KKT ).

□

Theorem 8.8 (Right-distributivity of ⊕ w.r.t. application). If K is
a stable term, then we have

JN (M1 ⊕ M2) = KKT ≈ JNM1 ⊕ NM2 = KKT .

Proof. The proof is similar to the one for left-distributivity, except
that instead of T ′ we use T ′′ = Swap(Snd(T )). □

Using Lemma 8.4, we can prove the entropic equality equation.

Theorem 8.9 (Entropic equality). IfK is a stable term, then we have

J(M1 ⊕M2) ⊕ (N1 ⊕N2) = KKT ≈ J(M1 ⊕N1) ⊕ (M2 ⊕N2) = KKT .

By exploiting the idempotence of ⊕ and the entropic equality, one
can derive ⊕-distributivity.

Theorem 8.10 (⊕-distributivity). IfK is a stable term, then we have

1. JN ⊕ (M1 ⊕ M2) = KKT ≈ J(N ⊕ M1) ⊕ (N ⊕ M2) = KKT ;

2. J(M1 ⊕ M2) ⊕ N = KKT ≈ J(M1 ⊕ N ) ⊕ (M2 ⊕ N ) = KKT .

There are also some equalities between terms that aremuch stronger;
these are equalities that hold almost everywhere which means that
they are interpreted as the top element of the Boolean algebra. One
such equation is λ-distributivity.

Theorem 8.11 (λ-distributivity w.r.t. ⊕).

Jλx .(M1 ⊕ M2) = λx .M1 ⊕ λx .M2KT = Ω/Null .

Proof. From the semantics of λ-terms we get

Lλx .(M1 ⊕ M2)M∅idT = id(ψ (λv . LM1 ⊕ M2M(∅{v/x})(λu .u)T )) .

Assume that Test(Fst(T )), applied to a particular ω ∈ Ω chooses
Mi for some i ∈ {1, 2}, when applied in the continuation semantics
ofM1 ⊕ M2. Then, the previous term is equal to

id(ψ (λv . LMi M(∅{v/x})(λu .u)(Snd(T )))) = Lλx .Mi M∅id(Snd(T ))

= Lλx .M1 ⊕ λx .M2M∅idT .

In the last line we have used the fact that if Test(Fst(T )), when
applied to a particular ω ∈ Ω in the semantics ofM1 ⊕M2, chooses
Mi , then the same test applied to the same ω in the semantics of
λx .M1 ⊕ λx .M2 will choose λx .Mi for the same i ∈ {1, 2}. □

Theorem 8.12 (Order of applications). IfN1,N2 are two stable close
terms, then

J((λx .λy.M)N1)N2 = ((λy.λx .M)N2)N1KT = Ω/Null .

At this point we are ready to prove the soundness of some equations
involving the fixpoint operators.

Theorem 8.13 (Recursive application).

Jµx .M = (λx .M)(µx .M)KT = Ω/Null .

Proof. We know that, for each n ≥ 0, Mn+1 = (λx .M)Mn . Hence,
for arbitrary E, C and T ,

LMn+1MECT = L(λx .M)MnMECT .

Lemma 6.4 applied to this equality gives us further that

LMn+1MECT = LMME{LMnME(λw .w)T e/x}CT o .

Hence, supnLMn+1MECT = supnLMME{LMnME(λw .w)T e/x}CT o

and using Scott continuity we get

sup
n

LMn+1MECT = LMME{sup
n

LMnME(λw .w)T e/x}CT o .

SinceM is continuous, hence monotonic, the above is equivalent to

sup
n

LMnMECT = LMME{sup
n

LMnME(λw .w)T e/x}CT o ,

or equivalently, Lµx .MMECT = LMME{Lµx .MME(λw .w)T e/x}CT o

and again applying Lemma 6.4, Lµx .MMECT = L(λx .M)(µx .M)MECT .
In particular, we also have

Lµx .MM∅idT = L(λx .M)(µx .M)M∅idT .

□

Theorem 8.14 (Recursive choice).

Jµx .(x ⊕ M) ≡ µx .MKT = Ω/Null .

Proof. Consider arbitrary E,C and T . For eachω ∈ Ω, the sequence
LMi MECT(ω) is increasing and its limit is Lµx .MMECT(ω).

Consider now the unfoldings of the term µx .(x ⊕ M). They can be
represented as a balanced tree structure, where the nodes are the
Mi and row at depth k represents the syntax of (x ⊕ M)k , where
sibling’s nodes are connected by ⊕. For instance, we have that

(x ⊕ M)0 = M0,

(x ⊕ M)1 = M0 ⊕ M1,

(x ⊕ M)2 = (M0 ⊕ M1) ⊕ (M1 ⊕ M2),

(x⊕M)3 = ((M0⊕M1)⊕(M1⊕M2))⊕((M1⊕M2)⊕(M2⊕M3)), etc.
For each ω ∈ Ω and each i ∈ N there exists j ≤ i such that

L(x ⊕ M)i MECT(ω) = LM j MEC(Sndi (T ))(ω).

In fact, each ω ∈ Ω represents a path in this syntactic tree (e.g., 0
chooses the left branch and 1 chooses the right branch) and the in-
tersection of this path with the i-th level of the graph (representing
(x ⊕ M)i ) is exactly the termM j satisfying the previous equation.

(L(x ⊕M)i MECT(ω))i ∈N increasingly converges to Lµx .MMECT(ω),
except for those ω for which the sequence stabilises, i.e., for those
ω ∈ Ω for which the corresponding path in the syntactic tree
always chooses the left branch after a certain level. This is the set

S = {ω ∈ Ω | ω = v0∗,w ∈ {0, 1}∗}.

Obviously S is a null set, and this concludes our proof. □

The results we have proven so far allow us to say more about
β-reduction. Firstly we prove that an unrestricted version of β-
reduction cannot be stated for the stochastic λ-calculus.

Theorem 8.15. There exist termsM,N (which are not stable) such
that

J(λx .M)(N ) = M{N /x}KT , Ω/Null .
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Proof. We exploit the results in Theorems 8.5 - 8.3 to derive a con-
tradiction from the assumption that for all terms M,N we have
that J(λx .M)(N ) = M{N /x}KT = Ω/Null .
Consider the following terms

⊤ = λx .λy.x , ⊥ = λx .λy.y, xor = λx .λy.x(y⊥⊤)(y⊤⊥), N = ⊤⊕⊥.

Then, considerM = (λx .xor xx)N . On one hand we have that all
the following equations have the value Ω/Null when evaluated for
T , due to Theorem 8.1.

M = xorNN = N (N⊥⊤)(N⊤⊥)

Hence, for any closed stable term K ,

JM = KKT ≈ J(⊤(N⊥⊤)(N⊤⊥)) ⊕ (⊥(N⊥⊤)(N⊤⊥) = KKT
≈ J(N⊥⊤) ⊕ (N⊥⊤) = KKT ≈ JN⊥⊤ = KKT

J(⊤⊥⊤) ⊕ (⊥⊥⊤) = KKT ≈ J⊥ ⊕ ⊤ = KKT ≈ J⊤ ⊕ ⊥ = KKT .
On the other hand, we have that for any closed stable term K ,:

JM = KKT ≈ J(λx .xor xx)⊤ ⊕ (λx .xor xx)⊥ = KKT
≈ J(xor⊤⊤) ⊕ (xor⊥⊥) = KKT ≈ J⊥ ⊕ ⊥ = KKT ≈ J⊥ = KKT .

Putting together these two sequences of automorphic elements we
get that for any closed stable term K ,

J⊤ ⊕ ⊥ = KKT ≈ J⊥ = KKT .

Since ⊥ is a closed stable term, this last equation that

J⊤ ⊕ ⊥ = ⊥KT = Ω/Null ,

meaning R(Ω) is a degenerate model, i.e. a singleton; this is a
contradiction. □

We can, however, have a stronger version of β-reduction than the
one stated in Theorem 8.3.

Theorem 8.16 (Extended β-reduction). If λx .M1, λx .M2 are closed
terms and N is a stable closed term such that for any stable closed
term K and any i ∈ {1, 2} we have that

J(λx .Mi )N = KKT ≈ JMi {N /x} = KKT ,

then for any stable closed term K ,

J(λx .(M1 ⊕ M2))N = KKT ≈ JM1{N /x} ⊕ M2{N /x} = KKT .

Proof. Note that

L(λx .(M1 ⊕ M2))N M∅idT

= Lλx .(M1 ⊕ M2)M∅(λa.LN M∅(λb .id(ϕ(a)b))T e )T o

and applying λ-distributivity,

= Lλx .M1 ⊕ λx .M2)M∅(λa.LN M∅(λb .id(ϕ(a)b))T e )T o

now we solve the probabilistic choice and get some j ∈ {1, 2} such
that

= Lλx .Mj M∅(λa.LN M∅(λb .id(ϕ(a)b))T e )Snd(T o )
L(λx .Mj )N M∅idT ′,

where T ′ = Swap(Snd(T )). Hence, we have that

J(λx .(M1 ⊕ M2))N = KKT
= {ω ∈ Ω | L(λx .M1 ⊕ λx .M2))N M∅idT(ω) = LKM∅idT(ω)}/Null

= {ω ∈ Ω | L(λx .Mj )N M∅idT ′(ω) = LKM∅idT(ω)}/Null .

Since K is stable, LKM∅idT = LKM∅idT ′, so

= {ω ∈ Ω | L(λx .Mj )N M∅idT ′(ω) = LKM∅idT ′(ω)}/Null

= J(λx .Mj )N = KKT′ ≈ JMj {N /x} = KKT′ .

Similarly we get that

JM1{N /x} ⊕ M2{N /x} = KKT ≈ JMj {N /x} = KKT′′ ,

for some tossing T ′′. Further, Theorema 7.2 ensures us that

JMj {N /x} = KKT′ ≈ JMj {N /x} = KKT′′ ,

which concludes our proof, since ≈ is transitive. □

9 Generating Random Numbers

In this section we present a small example of programming in
the stochastic λ-calculus and use the semantics to argue for the
correctness of the program behavior. Our program takes a Church
numeral n and produces a random Church numeral from 0 to 2n − 1
with equal probability.

Functions for Church Numerals and Booleans. In the follow-
ing, we use mathematical symbols as the names of lambda terms,
for ease of notation. Note that this means arithmetical expressions
are in (forward) Polish notation.

Recall that a Church numeral for the number n ∈ N is a function
of two arguments f and x , returning f applied n times to x . We
use the well-known encodings of the arithmetic operations succ,
+ and ×.

Picking a Random Number from 0 to 2n − 1. The following
stochastic λ-term is the key of our encoding.

rand = λn.n(λx .((× 2 x) ⊕ (succ(× 2 x))))0.

In intuitive terms, the program starts with a number equal to 0 and
flips a fair coin n times, either doubling the number or doubling
and adding one, depending on the outcome.

The following statement, if demonstrated, proves that the program
has the desired behavior. It exemplifies how our deduction princi-
ples can be applied.

Statement: For all Church numeralsn and tossing processesT ,
2n−1∨
i=0

Jrandn = iKT = Ω/Null

and for all 0 ≤ i, j ≤ 2n − 1

Jrandn = iKT ≈ Jrandn = jKT .

Therefore, for each 0 ≤ i ≤ 2n − 1, Jrand n = iKT are of equal
probabilities and summing to 1, i.e. of probability 2−n .

Sketch: We do not provide a detailed proof of this statement, that
would require further developments of the deduction principles.
Instead, we sketch below how such a proof shall be organized.
Induction on n: the inductive hypothesis we need is that
∞∨
i=0

Jrandn = iKT = Ω/Null , that for all i ≥ 2n , we have

Jrandn = iKT = ∅/Null , and for all 0 ≤ i, j ≤ 2n − 1, we have
Jrandn = iKT ≡ Jrandn = jKT .

We start with the base case, n = 0. Then

rand 0 = 0(λx .((× 2 x) ⊕ (succ(× 2 x))))0 = 0.

We have Jrand 0 = 0K = Ω/Null . This shows the three facts we
want, because 0 ≤ i ≤ 20 − 1 = 0 implies i = 0.
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For the inductive step, we temporarily introduce the name

f ′ = (λx .((× 2 x) ⊕ (succ(× 2 x)))),

for the latter part of the definition of rand, excluding the final 0.
We start by re-expressing rand (succn) in terms of randn.

rand(succ n) = (succ n)f ′0 = f ′(nf ′0) = f ′(rand n)

= (λx .((× 2 x) ⊕ (succ(× 2 x))))(rand n)

= ((λx . × 2 x) ⊕ (λx .succ(× 2 x)))(rand n)

= ((λx . × 2 x)(rand n)) ⊕ ((λx .succ(× 2 x))(rand n)).

We first have to prove that
∞∨
i=0

Jrand (succn) = iKT = Ω/Null .

By the inductive hypothesis, we have
∞∨
i=0

Jrandn = iKT = Ω/Null .

By well-definedness of function application, it holds that
∞∨
i=0

J(λx . × 2 x)(rand n) = iKT = Ω/Null ,

∞∨
i=0

J(λx .succ(× 2 x))(rand n) = iKT = Ω/Null .

so, because of the properties of ⊕ (Theorems 8.5,8.10),
∞∨
i=0

Jrand (succn) = iKT = Ω/Null .

For the second part of the inductive hypothesis, that i ≥ 2n+1
implies Jrand (succn) = iKT = ∅/Null , we make a case split de-
pending on whether i is even or odd. As both cases are similar, we
only show the case where i is even.
Then i = 2i ′ for some integer i ′. By the inductive hypothesis
Jrandn = i ′KT = ∅/Null , so by well-definedness and the fact
that (× 2i ′) = i , we have Jrand (succn) = iKT = ∅/Null .

Finally, we need to show that for all 0 ≤ i, j ≤ 2n+1 − 1 we have
Jrand (succn) = iKT ≈ Jrand (succn) = jKT .
We have a four-way case split according to whether i and j are odd
or even. We treat the case where i and j are even, as the other three
cases are similar. We have that there are i ′, j ′ such that i = 2i ′ and
j = 2j ′. Hence,

Jrand(succ n) = iKT
= J(λx .× 2x)(randn)⊕((λx .succ(× 2x))(randn)) = (λx .× 2x)i ′KT

≈ J(λx . × 2 x)(rand n) = (λx . × 2 x)i ′KT
= Jrand n = i ′KT = Jrand n = j ′KT = Jrand(succ n) = jKT .

This shall complete the proof.

10 Conclusions

We see this paper as the beginning of an investigation into ran-
dom processes at higher type. There are many things to investi-
gate:

• We need to understand how this relates to more categorical
approaches [7] to probability theory at higher type by con-
structing a suitable cartesian closed category of quasi-Borel
spaces.

• We need to develop a deeper understanding of the Boolean-
valued reasoning principles that we have used here.

• It would be very interesting to develop suitable dependently-
typed versions of a stochastic λ-calculus; indeed this was one
of the main motivations of [15].

• The relation between invariance results as we have used them
and exchangability and symmetry principles in probability the-
ory (see, for example, [8]) need to be understood better.
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A The functions pack and unpack

For a better connection with the mainstream of measure theory, we
consider how to pack and unpack sequences in 2N. In aid of this,
we consider two infinite sequences in N:

s0n = 2n − 1 and s1n = 3 · 2n − 1.

These sequences solve the recurrence relations:

{s00 = 0 ; s0n = 2s0n−1 + 1}n≥1 and {s10 = 2 ; s1n = 2s1n−1 + 1}n≥1 .

Therefore each sequence is even iff n = 0. Moreover, sij = s
i′
j′ implies

i = i ′ and j = j ′.

We define a family of maps unpackn : P(N) → 2 by

unpackn (S) =

{
0 if s0n ∈ S

1 otherwise
,

and two maps unpack : P(N) → 2N and pack : 2N → P(N) as
follows:

unpack(S)(n) = unpackn (S) pack(a) =
∞⋃
i=0

{saii }.

It is not difficult to verify that the maps unpackn , unpack and pack
are (Borel) measurable, and that for all a ∈ 2N, we have

unpack(pack(a))(n) = an .
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