20

21

22

23

24

25

26

27

28

29

30

54

55

56

57

58

59

60

61

Boolean-Valued Semantics for the Stochastic A-Calculus

Giorgio Bacci

Aalborg University, Denmark

Radu Mardare

Aalborg University, Denmark
Abstract

The ordinary untyped A-calculus has a set-theoretic model proposed
in two related forms by Scott and Plotkin in the 1970s. Recently
Scott showed how to introduce probability by extending these mod-
els with random variables. However, to reason about correctness
and to add further features, it is useful to reinterpret the construc-
tion in a higher-order Boolean-valued model involving a measure
algebra. In this paper we develop the semantics of an extended
stochastic A-calculus suitable for modeling a simple higher-order
probabilistic programming language. We exhibit a number of key
equations satisfied by the terms of our language. The terms are
interpreted using a continuation-style semantics with an additional
argument, an infinite sequence of coin tosses, which serve as a
source of randomness. The construction of the model requires a
subtle measure-theoretic analysis of the space of coin-tossing se-
quences. We also introduce a fixpoint operator as a new syntactic
construct, as f-reduction turns out not to be sound for unrestricted
terms. Finally, we develop a new notion of equality between terms
interpreted in a measure algebra, allowing one to reason about
terms that may not be equal almost everywhere. This provides a
new framework and reasoning principles for probabilistic programs
and their higher-order properties.

1 Introduction

Probabilistic programming languages [4-7, 9-11, 18] have become
popular recently, sparked by renewed interest in verification and
machine learning. The subject began with an imperative first-order
language [9], and there has been significant recent interest in ex-
tending to higher-order functional languages [7, 10, 11, 17]. The
higher-order functional paradigm allows one to integrate probabil-
ity distributions smoothly into the programming language through
the probability monad, but finding a cartesian-closed category that
can incorporate higher-order features as well as appropriate proba-
bilistic constructions has proven elusive. Only recently [7] has a suit-
able category been constructed that satisfies all desiderata.

In the present paper, we take an entirely new approach to the
semantics of higher-order probabilistic computation. In [15], the
senior author of the present paper proposed a way of incorporat-
ing random variables into a certain kind of model of the untyped
A-calculus by using the continuity of the A-calculus operations mod-
eled by enumeration operators on the powerset of the integers. This
set-theoretic model suggests at once incorporating higher types,
but to do this requires a nonstandard Boolean-valued interpretation
of set theory. Boolean-valued models (see [1] for history and a basic
exposition) were employed by Scott [14] to construct models of set

LICS’18, July 09-12, 2018, Oxford, UK
2018.

Robert Furber

Aalborg University, Denmark

Prakash Panangaden

McGill University, Canada

Dexter Kozen

Cornell University, USA

Dana Scott
Carnegie Mellon University, USA

theory in order to obtain independence results. The independence
of the Continuum Hypothesis was obtained by introducing a mas-
sive number of real-valued random variables. In this model, the
random variables turned out to be the real numbers of the Boolean-
valued logic. The continuity of real algebra has an analogue in
the continuity of operations in the powerset model. The measure
algebra of a standard Borel space, a complete Boolean algebra, is
needed to bring this idea to fruition. Ordinary logical propositions
take truth values in this Boolean algebra instead of in the simple
two-element Boolean algebra.

The ideas behind the present work were outlined only briefly in [15].
The primary goal here is to develop an equational theory based on
these ideas in which equations between stochastic A-terms have
probabilistic meaning. In this paper we flesh out these ideas and
provide a continuation-passing semantics for such an equational
theory. The system will provide reasoning principles for establish-
ing the equality of A-terms under various program transforma-
tions.

The notions of equality and invariance are subtle in the presence of
probabilities. In the calculus described below, there is a probabilistic
choice operator @, which captures the idea that a choice is to be
made between two terms based on a random process. The source
of randomness is called a tossing process: a process that generates
a sequence of fair coin tosses, the outcomes of which are used to
resolve the probabilistic choices. In general, equality of terms does
not mean that identical values are produced, as the final values will
depend on the tosses. Instead, we interpret equality statements as
elements of a measure algebra formed from the usual measurable
sets quotiented by the ideal of negligible sets. Given a tossing
process 7, a pair of closed terms M, N will define a set of tossing
sequences where they agree [M = N] ¢, which is an element of the
Boolean algebra. This may be the top element—corresponding to
certainty—or something else. However, we would like statements
not to be dependent on the specific outcome of a tossing process;
rather, we would prefer that truth values of equations be invariant
under certain changes in the tossing process. Accordingly, we define
arelation ~ on the elements of the Boolean algebra to capture the
idea that two truth values of an equation, say [M = N]¢ and
[M = N] 4 for different tossing processes 7 and 7, are related by
an automorphism of the Boolean algebra. We write [M = N]s =
[M = NJ]4 when this occurs. Many of the equalities that we
establish are stated in this way, and the automorphisms relating
them are constructed.

A second subtlety is that we often prove results of the form [M =
K]7 ~ [N = K], for closed stochastic terms M, N and closed
term K of the classic untyped A-calculus (here called a stable term),
instead of proving for example that [M = N] ¢ evaluates to the top
element of the Boolean algebra. Here we are using the idea that

62
63

64

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99
100
101
102
103
104
105
106
107
108
109

110

112
113
114
115
116
117
118
119
120
121
122

123
124
125
126
127
128
129

130

132
133

134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151

153

154

156
157

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

180

182
183

LICS’18, July 09-12, 2018, Oxford, UK Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott

a tossing process, once it has resolved the choices, makes a term
of the stochastic A-calculus look like an ordinary A-term. In these
cases one cannot prove that [M = N] ¢ is the top element directly,
since this might not be true, but the weaker statement above serves
to replace this statement.

Our main contributions are:

1. We develop a use of random variables in this framework in order
to identify a class of tossing processes that can serve as a sources
of randomness in probabilistic programs. We show that with
this choice, the semantics is invariant under automorphisms of
the measure algebra effected by remapping the tossing process.
This provides a canonical meaning to programs.

2. We introduce the stochastic A-calculus by augmenting the ordi-
nary A-calculus with a probabilistic choice construct. We flesh
out the continuation-passing semantics proposed in [15], with
the crucial new observation that f-reduction is not sound for all
terms with probabilistic choice. To compensate, we need to in-
troduce an explicit fixpoint operator in order to have recursive
programs.

3. We develop a Boolean-valued reasoning framework for the
stochastic A-calculus and prove soundness results with respect
to the continuation-passing semantics.

The main technical contributions and novelty are in items 1 and 3.
In order to obtain the invariance of the semantics, it was necessary
to identify a rather subtle condition that we call monolithic. This
is the part that required the deepest foray into the technicalities
of measure theory. As far as we know, Item 3 is a completely new
way of thinking about equational logic. We have only developed
the rudiments here for the purposes of the present investigation,
but there is clearly a much deeper theory to be explored.

We have not developed an operational semantics or rewrite rules,
but have left these investigations for future work. However, because
of the restrictions on f-reduction, all probabilistic choices for a
term in the argument position must be resolved before applying
the function; thus it most resembles a call-by-value strategy, but of
course one cannot talk about evaluation strategies in the absence
of a reduction system.

2 Standard Probability Spaces

In this section we introduce a few concepts and results regarding
standard probability spaces. The concepts of disintegration of a
space and of monolithic maps between spaces are essential.

Definition 2.1. Given a measurable space (X, ¥) and a probability
measure y on it, (X, 2, p) is a standard probability space iff (X, X)
is Borel isomorphic to a Polish space! equipped with its Borel
algebra?.

Consider, e.g., the set 2N of infinite binary sequences with the
Cantor topology>, which has, as basic open sets, the sets {a | x <
a}, where a ranges over N xe {0, 1}*, and < denotes prefix. Let
B be the Borel o-algebra of the Cantor topology.

LA Polish space is the topological space induced by a complete separable metric space.
2The Borel algebra of a topology is the o-algebra generated by the open sets.
3The space is the topological power of @ copies of the discrete space 2 = {0, 1}.

The (fair) coin-flipping probability measure* P on B is generated
by its values on intervals:

P{a | x <a}) =27,

The measure space Q = (2, 8, P) is a standard probability space
that we will use in the rest of this paper.

We consider measure-preserving maps between standard probabil-
ity spaces. The category we use, Meas/0 has maps identified if they
are equal almost everywhere, i.e. except for on a null set.

Definition 2.2. If f; : (X;,2;, ;) — (Z,8,¢),j = 1,2 are two
measure-preserving maps with common codomain, we say fi = f2
or (X1, f1) = (Xp, f2) if there exists a measure-preserving isomor-
phism i : X1 — X such that f2 o i = fi, except on a subset of X1
of measure 0.

There is a measure-preserving Borel isomorphism between any
standard probability space (X, X, i) whenever p is atomless (i.e. all
singletons have measure 0), and Q.

Definition 2.3. Let f : (X, X, p) — (Y, ©, v) be a measure-preserving
map between standard probability spaces. A set S € X is I-sheeted
with respect to f if for all y € Y we have that S N f~1(y) has at
most 1 element. A map f is monolithic if it has no 1-sheeted sets of
positive measure.

Note that S is 1-sheeted if the restriction of f to S is injective. For
instance, 2V is a 1-sheeted set of measure 1 for the identity function
id : 2V — 2N and the set {(an) € 2 | a; = 0} is a 1-sheeted set of
measure % for the function tail : 2 — ZN, which takes all but the
first element of a sequence to return a sequence.

Next, f is monolithic whenever all such one-sheeted measurable
sets have measure 0. For example, the map evens : 2 — 2N which
takes every second member of a sequence to construct a sequence is
monolithic (proven in Section 4), while id and tail are not.

The following theorem provides a useful characterization of the
concept of monolithic map®

Theorem 2.4. Let f : (X,2, u) — (Y, O, v) be a measure-preserving
map of standard probability spaces. Then f is monolithic iff there
exists a standard probability space (Z, Z, £) such that all points of Z
have &-measure 0, and (Z X Y, y) is isomorphic to (X, f); where
denotes the second projection.

We conclude this section with a useful result regarding the compo-
sition of monolithic maps.

Lemma 2.5. Let f : (X,2,pu) — (Y,0,v) andg : (Y,0,v) —
(Z,E, &) be measure-preserving maps. If S € X is 1-sheeted with
respect to g o f, then it is 1-sheeted with respect to f. Therefore if f
is monolithic, then g o f is monolithic.

Proof. Let S € X be a 1-sheeted set with respect to g o f, i.e. for all
z € Z,5N f~1(g71(2)) has cardinality at most 1. If y € Y, then

SN esn e W)
so f~1(y)NS has cardinality at most 1, so S is 1-sheeted with respect

to f.

4This is the Haar measure on 2" as a compact group based on mod 2 addition.
5This concept is formulated in terms of decompositions in [13, §3.1], which are better
known as disintegrations[2, §452 E].

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

204

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

226
227
228
229
230
231
232
233
234

236
237
238
239
240
241
242
243
244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

305

Boolean-Valued Semantics for the Stochastic A-Calculus

The statement about 1-sheeted sets of positive measure then follows
by taking the contrapositive. O

3 Topology and measure of P(N)

Let N be the set of natural numbers, P(N) its powerset and £ ;,,(N)
the set of finite subsets of N. We follow [12, 15] to identify some
structure on N that is relevant to our purpose.

The pairing function puts the set of pairs of natural numbers into a
one-to-one correspondence with the positive integers by: (m, n) =
2"™(2m+1). The function () puts finite sequences of natural numbers
into a one-to-one correspondence with N by nested pairing and
this can be used to enumerate finite subsets of N using a function
that we call set. Now we can define the Kleene star:

X* ={n| set(n) € X}.
All these identify different structures on N giving us
N=1+(NxN)==N*

Enumeration operators are identified with sets F € N which operate
on X C P(N) through the binary operation of application:

F(X)={m eN|3s € X*.(s,m) € F}.

The intuition here is that while enumerating the elements in X,
one can also enumerate the elements of X* and the pairs in F:
every match between a sequence number s € X* and the first term
of a pair (s,m) € F witnesses the fact that m € F(X). Following
[3, 15], we say that a set A C P(N) is enumeration reducible to a set
B C P(N) when there exists a recursively enumerable set F € P(N)
such that A = F(B). Hence, the computable enumeration operators
are those given by recursively enumerable sets F.

3.1 The positive topology on P(N)

The positive topology on P(N) is induced by the sets
Qn = {X |neX}.

The continuity of a function @ : P(N) — P(N) in the positive
topology can be characterized as follows:

m € ®(X) iff In € X* s.t. m € O(set(n)).

Viewing P(N) as an algebraic lattice, the positive topology coin-
cides with the Scott topology on P (N), which has basic open sets
{b | a C b}, where a C N is finite; and positive continuity coincides
with Scott continuity.

The following two results are proven in [15].

Theorem 3.1. The application operation F(X) is continuous as a
function of two variables on P(N).

Theorem 3.2. For every continuous function ® : P(N) — P(N)
there is a largest set F such that for any X € P(N), ®(X) = F(X),
where ®(X) denotes ordinary function application, while F(X) is
application in the set-based model. In fact, F can be directly defined
by F = {0} U{(n,m) | m € ®(set(n))}.

In view of this fact, we define A-abstraction on P(N) as follows:

AX.F(X) = {0} U {(n,m) | m € F(set(n))}.

LICS’18, July 09-12, 2018, Oxford, UK

There is a homeomorphic embedding
Cont[P(N), P(N)] = {AX.F(X) | F € P(N)},

where Cont[P(N), P(N)] denotes the space of continuous funtions
on P(N) (w.r.t. positive topology). This gives a natural topology to
the space of continuous functions, which is a retract of P(N).

It is useful to introduce a couple of continuous functions:
Pair(X)(Y)={2n|neX}Uu{2m+1|meY},
Fst(Z)={n|2neZ}, Snd(Z)={m|2m+1€Z},
Test(Z)(X)(Y)={neX|0eZ}U{meY |Tkk+1€Z}.

These definitions make the topological space P (IN) homeomorphic
to its cartesian square, P(N) = P(N) x P(N) and show that subsets
of P(N) can be regarded as binary relations on P (N).

Before concluding this paragraph we shall emphasize a few topo-
logical aspects connecting P(N) and 2% that will be of great use in
what follows.

There exists a straightforward bijection y : P(N) — 2V that maps
a subset of N to its characteristic function: y(a); = 1if i € a and
x(a); = 0if i ¢ a. The image of a basic open set of the Scott
topology under y is {f | x(a) < p}, where a is a finite set and
< is the componentwise extension of the order 0 < 1. This space
is the topological power of w copies of Sierpiriski space, the two-
element Ty space with open sets 0, {1}, and {0, 1}. Thus, we have
two topologies on 2N but they both generate the same Borel sets
8B, and hence, when equipped with the coin-flipping probability
measure, the same Lebesgue completion. This follows from the fact
that every basic Cantor open set is a finite Boolean combination of
basic Scott open sets and vice versa [16].

3.2 Random Variables on Q

Let Q = (21, 8, P) denote the standard probability space of infinite
binary sequences, with 5 the Borel-algebra of the Cantor topology,
and with the coin-flipping probability measure P, as defined in
§ 3.2. The following theorem relates Q to the reals and allows us
to use Q as the “source of randomness” when we define random
variables.

Theorem 3.3. The measure spaces Q and [0, 1] with Lebesgue mea-
sure, restricted to Borel sets, are Borel isomorphic.

We view P(N) as a measurable space with the Borel-algebra of
the positive topology on P(N). This allows us to define random
variables on Q = (2N, B, P) as the measurable functions

£:Q — PN).

Let R(Q) denote the set of these P (N)-valued random variables on
Q. Given a random variable £, we obtain a measure on P(N) by
P o &1, A family of random variables is independent if the induced
measures are independent.

On R(Q) we define a few functions. Firstly, we associate to any
X € P(N) a random variable X defined by X(w) = X forany w € Q.
Secondly, since application, A-abstraction, Pair, Fst and Snd are all
continuous functions on P(N), they can be canonically extended
to R(Q). In [15] it is emphasized that R(Q) is a (non-extensional)
model for untyped A-calculus. Moreover, an equation between two

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

354
355
356
357
358
359
360
361
362
363
364
365

366

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

384

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

LICS’18, July 09-12, 2018, Oxford, UK Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott

random variables £, 1 € R(Q) can be interpreted as the measurable
event

[E=n]={weQ|Vne&lw)nenw)AVnen(w)nc (o)}

which is a Borel set in 8B, and this motivates the study of the algebra
of events of Q defined below.

3.3 The Algebra of Events

Given the probability space Q@ = (2N, 8, P), we define the alge-
bra of events (also known as the measure algebra) as the Boolean
algebra

B/ Nutr= B/ Nutl>Y> 0~ 0/ Nu11s @/ Nuil)

which is the quotient algebra of the o-algebra 8 modulo the o-ideal
of Borel sets of P-measure zero. Observe that we do not get more
expressive if we consider the P-Lebesgue completion of B/ xn,;:
because every Lebesgue measurable set differs from a Borel set by
a null set, the measure algebra of Lebesgue measurable sets modulo
P-null sets is isomorphic to B/ Ny

We call the elements of B/ p,;; events and for A € B we denote its
equivalence class by A/ ny11-

Theorem 3.4. (B/Nu11,Y> N, ~, 0/ Nuils @/ Null) is a o-complete
Boolean algebra in which any family of pairwise disjoint elements is
countable (i.e. it satisfies the countable chain condition). Therefore
it is a complete Boolean algebra.

B/nu11 plays a central role in the semantics of the stochastic A-
calculus.

4 Tossing processes

A key ingredient in any probabilistic programming language is
the source of randomness. As in [15], this is taken to be a random
variable which uses an infinite sequence of independent fair coin
tosses to resolve the random choice. The semantics should not
depend on the vagaries of a particular sequence; accordingly, we
aim to prove a property that shows that the semantics should be
independent, in a suitable sense, of the coin tosses that occur. This
is where the notion of monolithic function becomes important. We
call the special random variables that we use tossing processes. This
section is devoted to the properties of tossing processes.

4.1 Independent coin sequences

We need to move between sequences of coin tosses and subsets of
N by using some appropriate coding and decoding functions. Con-
cretely, we can a Borel-measurable map pack : 2 — P(N) which
encodes a sequence as a set in a way that can be easily inverted
and its inverse, called unpack, is Borel-measurable as well.

Moreover, these can be defined so that they properly relate the well-
known operations on sequences head: 2N — 2 and tail: 2NV — 21V,
given by head(a) = a¢ and tail(a)(n) = ap+1, to the functions
Fst and Snd defined on sets in Section 3 (i.e., on constant random

variables) as stated in the following lemma®.

Lemma 4.1. Leta € 2N and a € {0,1}.

®A detailed construction of a pair of such coding/decoding functions can be found in
the appendix.

1. {a} = Fst(pack(a)) iff head(a) = a.
2. Snd(pack(a)) = pack(tail(a)).

Let Q = (2N, B, P) be the probability space defined in § 3.2.

Definition 4.2. A coin flip is a random variable that has the form
F: Q — {{0},{1}}. A coin flip is fair whenever P(F~1({0})) = 1/2.

An independent sequence of coin tosses (ICS) is a random variable
T : Q — P(N) such that Fst(7") is a fair coin flip and Snd(7") is
another ICS—with the successive flips all mutually independent.

Note that an ICS is a {{0}, {1} }-valued mayp, i.e., specialized to take
values in the image of pack. Every ICS 7: Q — P(N) is of the
form 7~ = pack o T for some (Borel) measurable map T: Q — 2.
By Lemma 4.1, Fstopacko T = head o T, so the condition of Fst(7")
being a fair coin is that for i € {0, 1},
P((head o T)(0)) = .

That Snd(7") is an ICS implies that foralln € Nandi € {0, 1},
1
P((eva o T)7N(D) = 5,
whereev,,: 2V — {0,1} forn € N, is defined by evy(a) = ap.

The condition of independence implies that for any finite increasing
sequence (m;).; in N, and finite sequence (b;)}"_, in {0, 1},

n
P (ﬂ(ev(m» : T)*(bl-)) =2,
i=1

This means that the image measure T,,(P) = Po T~! agrees with the
standard coin-flipping measure on 2V on basic clopens of Cantor
topology. As basic clopens form a 7-system (they are closed under
finite intersections) and generate the Borel sets of 2N T,(P) and
the coin-flipping measure agree on all Borel sets [19, Lemma 1.6],
so we have that T is measure-preserving from Q to 21,

Conversely, for any measure-preserving map T: Q — 2N, packoT
will be an independent sequence of coin tosses.

These provide the following characterization for ICS.

Theorem 4.3 (Characterization). Independent coin sequences are
exactly the maps of the form pack o T, for some measure-preserving
mapT: Q — Q.

Now we focus on another important function for our discussion,
evens : ZN — ZN,
defined by evens(a)(n) = azp.

Theorem 4.4. A measure-preserving map T : 2V — 2V is mono-
lithic iff T = evens.

Proof. Because N = N + N by mapping the odd numbers to the
first part and the even numbers to the second part, we have (2" x
2N, 75) = (2%, evens). As any atomless standard probability space
is isomorphic to 2, applying Theorem 2.4 with X and Y specialized
to 2N, we get the desired equivalence. O

428
429
430
431
432
433
434
435
436
437
438
439
440

460
461
462
463
464
465
466
467
468
469
470
471

472

478
479
480
481
482
483
484
485
486
487
488

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

520

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

549

Boolean-Valued Semantics for the Stochastic A-Calculus

4.2 Tossing Processes

We are ready to define the concept of tossing process; the crucial
point is to insist on a monolithic function.

Definition 4.5 (Tossing Process). A tossing process is an indepen-
dent sequence of coin tosses 7~ = pack o T, where T : 2V — 2N jg
a monolithic measure-preserving map.

We denote by Toss the set of tossing processes. The next theorem
states that all tossing processes are the same up to a measure-
preserving automorphism of the measure algebra. Let Aut(Q) de-
note the set of measure-preserving automorphisms on Q.

Theorem 4.6 (Representation Theorem). For any two tossing pro-
cesses S and T there exists a measure-preserving automorphism
a:Q — Qe Aut(Q) such that T = S o a except for on a subset of
Q of measure 0.

4.3 Tossing Process Operators

Before concluding this section, we show a few useful operators on
R(Q) that are closed on tossing processes.

Let
()¢, (.)°, Swap : Toss — R(Q),

defined for an arbitrary tossing process 7~ = packoTas follows.

7°¢ =packoevensoT
7° =packooddsoT
Swap(7") = packoswap o T,

where odds, swap: Q — Q are defined by odds(a)(n) = azp+1 and
swap(a)(2n) = agp+1, swap(a)(2n + 1) = azp.

Lemma 4.7. If 7 is a tossing process, then Snd(7"), 7€, T° and
Swap(7") are tossing processes as well.

5 Stochastic A-Calculus

In this section we introduce the stochastic A-calculus. The syntax
of the stochastic A-calculus over a set V 3 x of variables extends
the syntax of the classical untyped A-calculus with a (binary) prob-
abilistic choice operator @ on A-terms, and a fixpoint combinator
px.M:

M:=x|Ax.M| MM | px.M | M & M.

Notation: In what follows we will call terms without any occur-
rence of @ stable terms; however, a stable term may contain the
fixpoint operator. And, as usual, we use M{N/x} to denote the
substitution of the variable x by the term N in M.

Unlike in the classical A-calculus, in the stochastic A-calculus the fix-
point combinator cannot be defined from the other operators, as we
will demonstrate later. For the development of the fixpoint operator,
it is useful to define the unfolding of a recursive term.

Given px.M, its unfolding is the sequence of terms M®, M*, ..., M", . ..

defined inductively as follows.

My = (Ax.xx)(Ax.xx), and for arbitrary n, M1 = (Ax. M)M™.

LICS’18, July 09-12, 2018, Oxford, UK

6 Probabilistic Continuation Semantics

The continuation semantics for the stochastic A-calculus interprets
a A-term relative to an environment giving values to the free vari-
ables, a continuation giving a subsequent computation, and a tossing
process 7 used to resolve probabilistic choices.

We know that the set R(Q2) of random variables with the point-
wise order forms a domain such that [R(Q) — R(Q)] is a con-
tinuous retract of R(Q), where [R(Q) — R(Q)] is the space of
Scott-continuous functions. We write this explicitly by introducing
the functions

@ :R(Q) = [R(Q) = R(Q)] and ¢ : [R(Q) — R(Q)] — R(Q).

It is useful to also define the direct and the continuation-passing
semantics for stable A-terms. We use x to range over variables, E to
range over arbitrary environments, C to range over arbitrary contin-
uations, and 7~ to range over arbitrary tossing processes. As before,
the n-th unfolding of the term px.M is denoted by M".

Let (-) denote the direct semantics and) the continuation-passing
semantics for stable A-terms. In addition, for stochastic terms, we
denote by () the continuation-passing semantics augmented with
a tossing process.

(-) : Term — Env — R(Q)
{-) : Term — Env — Cont — R(Q)
() : Term — Env — Cont — Toss — R(Q).
where
Env = Var — R(Q) Cont = [R(Q) — R(Q)]
The direct semantics is
(x)E = E(x)
(MN)E = ¢({M)E)({N)E)
(Ax. M)E = y(dv. (M)(E{v/x}))
(ux.M)E = sup{M")E.

With continuations, define
{xHEC = C(E(x))
{MNYEC = {MYE(Aa.{NYE(Ab.C($(a)b)))
{Ax . MYEC = C((Av . {MY(E{v/x})(Au.u)))
{ux.MYEC = sip((M"))EC.

The probabilistic continuation is defined as follows.
(x)ECT = C(E(x))
(MN)ECT = (M)E(Aa. (N)Eb.C(¢(a)b))T €)T°
(Ax.M)ECT = C(y/(Av. (M)(E{v/x})(Au.u)T))
(M & N)ECT = Test(Fst(7))((M)EC(Snd(7)))((N)EC(Snd(7)))
(ux.M)ECT = sup(M")ECT

The relation between the three semantics for stable terms is stated
in the following proposition.

Proposition 6.1. IfM is a stable term, then for an arbitrary envi-
ronment E, an arbitrary continuation process C, and an arbitrary
tossing process T,

C(M)E) = (MYEC = (M)ECT .

559
560
561
562
563

564

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

590

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

610

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

LICS’18, July 09-12, 2018, Oxford, UK Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott

A corollary of this lemma is that if a closed program has a value,
then its value is the same for all tossing processes.

Corollary 6.2 (Absoluteness I). If M is a stable term, then for an
arbitrary environment E, continuation process C, and tossing processes
VA

(M)ECT = (M)ECT" .

We conclude this section with two useful lemmas.

Lemma 6.3. For any stochastic A-terms M, N, any arbitrary envi-
ronment E, any arbitrary continuation C and any arbitrary tossing
process T, the following statements hold, where M™ denote the n-
unfolding of px.M.

1. (Ay.(ux.M))ECT = sup(Ay.M")ECT;
n
2. (N(ux.M))ECT = sup(NM")ECT;
n
3. ((Ax.M)N)ECT = sup(M"N)ECT ;
n

Lemma 6.4. For any stochastic A-terms M, N, any arbitrary envi-
ronment E, any arbitrary continuation C and any arbitrary tossing
process T,

((Ax.M)N)ECT = (M)E{(N)E(Aw.w)T ¢ /x}CT°.

We conclude this section by presenting a direct consequence of
Theorem 4.6.

Theorem 6.5 (Absoluteness II). Given a term M, for an arbitrary
environment E, an arbitrary continuation process C, and arbitrary
tossing processes T, T, there exists a measure-preserving automor-
phisma : Q — Q € Aut(Q) such that

{w e Q| (M)ECT (0) = (M)EC(T” o a)(@)}/ Nuli= @/ Nuli -

7 A Boolean-Valued Model

The Boolean-valued model gives a novel interpretation of equal-
ity. Equalities of closed terms, when interpreted over R(Q), are
associated with events in B/ n,; up to a measure-preserving au-
tomorphism of Q. Since we are working with closed terms we
evaluate terms in the empty environment and with the the identity
continuation.

Let 0 denote the empty environment and id = Ax.x denote the
identity continuation.

Definition 7.1. For arbitrary closed terms M, N, and tossing pro-
cess T, let

[M=N]7={weQ | (M)0idT (») = (N)0idT () } / Nu1l -

Note that [M = N]4 € B/ Ny and that this value depends directly
on the tossing process 7. However, since the tossing processes are
all equal up to a measure-preserving automorphism, as proven
in Theorem 4.6, [M = N] 4 is unique up to an automorphism of

B/ Null-
In what follows, for arbitrary A, A’ € B/ 11, we write
Ax A

if there exists a measure-preserving automorphism of o of B/ n 1
such that o(A) = A’.

Theorem 7.2 (Absoluteness III). For arbitrary closed terms M, N,
and arbitrary tossing processes T andT' = T oa, where a € Aut(Q),
a”!([M = N]5) = [M = N]g,
where a1 is the set-theoretical inverse of a, hence an automorphism

of B/ Nui1- Consequently,
[M = N]q~[M=N]g.

Proof. [M = N]» = {0 € Q | (M)0idT"(w) = (N)0idT (@) } / Nuni
={oeQ | (M)0id(T o a)(w) = (N)0id(T o a)®) } / Null-
Since 0 and id are constant, this set is further equal to
{0 € Q | (MOIdT (@(w)) = (N)OIdT (@(@)) } /N
=a'({w € Q | (M)0idT (w) = (N)0idT () } / Nuil)
= a”{([M = N]p).
[m}

This last theorem suggests that in what follows we can use any
tossing process to evaluate the equality between closed programs,
since the result is in any case unique up to an automorphism of the
measure algebra.

8 Sound Equations

In this section we establish a series of sound equations that pro-
vide basic reasoning principles for our stochastic A-calculus. These
equations are by no means complete, but they do describe several
basic facts about R(Q). We also show how the usual equations for
a-reduction and f-reduction are generalized. Note that, for stable
closed terms, we have the soundness of a-reduction and S-reduction
for the model R(Q) of ordinary A-calculus from Lemma 6.1.

In what follows, all the terms in expressions of the form [M = N] ¢
are implicitly assumed to be closed terms.

The first result shows how one can substitute terms in equations
with terms that are equal almost everywhere.

Theorem 8.1 (Substitution). If M and N are closed terms such that
[M = N] g = Q/nu1i, then for any closed stable term K,

[M=K]7 = [N =Kl

Proof. We have that
[M = Ny = {0 € @ | (M)OidT (@) = (NDOidT (@)} / nutr-

This means that [M = N] ¢ = Q/n,; implies that (M)0id7 and
(N)0idT are equal almost everywhere. But then,

[M = K]y = {o € Q| (M)0idT () = (K)OidT ()} Nt
= {0 € Q | (N)0idT () = (K)OidT (@)}/nuti= N = K7
]

There are many interesting properties that one can prove in this set-
ting. We begin by observing that both a-reduction and f-reduction
for stable terms (i.e. terms without any occurence of ®) hold, as
direct consequences of the fact that R(Q) is a model of the usual
untyped A-calculus [15]. However, a-reduction also holds for our
stochastic A-calculus; this follows from the probabilistic continua-
tion semantics of A-terms introduced in Section 6.

672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

718

720
721

723
724

726
727
728
729
730
731

732

733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792

793

Boolean-Valued Semantics for the Stochastic A-Calculus

Theorem 8.2 (a-reduction). IfM is a term without free occurrences
of y, then

[Ax.M = Ay M{y/x}|7 = @/ Nun-

Now we state ff-reduction only for stable terms. Later in this section
we will show that an unrestricted version of S-reduction is not
possible, but that we have, however, some extensions that involve
terms that might be not stable.

Theorem 8.3 (f-reduction). Let N and M be stable terms. Then,

[(Ax.M)N) = M{N/x}]7 = Q/Nu11-

Next we prove a series of results regarding the properties of the
probabilistic choice operator. It is useful to start with the following
lemma.

Lemma 8.4. Let M1, Mz, N1, Ny be closed terms and T~ an arbitrary
tossing process. If for any stable closed term K and each i € {1, 2} we
have that [M; = K]spd(7) = [Ni = Klsnd(7) then for any stable
closed term K,

[M] @ M, :K]]r]’ ~ [[N1 O Ny = K]]T-

Proof. The key observation is that there exists a j € {1, 2} such that
(M1 ® M2)0idT = (M;)0idSnd(7")
and at the same time
(N1 & N2)0idT = (N;)0idSnd(7").
Also, since K is stable, (K)0id7 = (K)0idSnd(7"). Hence,
[M; ® My = K]
={w € Q| (M & M2)0idT () = (K)0idT (0)}/ Nuil
= {w € Q| (M;)0idSnd(T)(w) = (K)0idSnd(T)w)}/ Nyl
= [Mj = K]sna(7)-
Similarly,
[N1 @ N2 = K] = [Nj = K]snd(7)-
Now we use the hypothesis that guarantees that

[M; = Klsna() = [Nj = Klsnd(7)-

A first fundamental property of probabilistic choice is a kind of
commutativity, stated in the following axiom. Note that one cannot
assert commutativity naively; one has to talk in terms of a stable
term obtained by resolving all the choices.

Theorem 8.5 (®-commutativity). IfK is a stable term, then we have

[M®&N =K]s~ [N&M = K]

Proof. The map neg : 28 — 2N, where neg(a)(0) = 1 — a(0) and
neg(a)(i) = a(i) for i > 0 is measurable and measure-preserving.
The tossing process 7 is of the form pack o T for some measure-
preserving monolithic map T : Q — 2. By Lemma 2.5, 7/ =
packonegoT is also a tossing process, and so by Theorem 4.6 there

LICS’18, July 09-12, 2018, Oxford, UK

exists a measure-preserving automorphism o : Q — Q such that
7' = a o T. We start by observing that

(M@ N)0idT

= Test(Fst(7)((M) 0id (Snd(7)))((N) 0 id (Snd(7")))
= Test(Fst(7”))((N) 0id (Snd(7)))((M) 0 id (Snd(7")))
= (NoM)0idT”’

= (NeM)0id(T o a),

using the fact that Snd(7”) = Snd(7"), since neg only affects the
first part. So

[Me&N =K]qs

={weQ|(M&N)0idT(w) = (K) 0id T(0)}/ Null
={weQ|(NoM)0idT (a(w) = (K) 0id T (0)}/ Nuil
={weQ|(NoM)0idT (a(w) = (K) 0id T (a(w)}/ Nunl
=a{oe Q| (NeM)0idT (o) = (K) 0id T ()})/ Null
=a ([N ®M =K]),

where the third equality holds because (K| does not depend on w
since it is stable. O

Next we state that @ is idempotent in the same sense as in the
previous theorem.

Theorem 8.6 (®-idempotence). IfK is a stable term, then we have
[[M@MZK]]TZ [[M:K]]T.

The next two theorems state that @ is distributive to the left and to

the right with respect to application.

Theorem 8.7 (Left-distributivity of @ w.r.t. application). IfK isa
stable term, then we have

[[(Ml ® My)(N) = K]]rr ~ IIMIN ® MyN = K]]rr.

Proof. The semantics of application gives us
(M1 & M2)(N))0idT = (M1 & Ma)O(Ax.(N)O(Ay.(xy id))T €)T° .

Assume that Test(Fst(77)), applied to a particular w € Q chooses
M; for some i € {1, 2}, in the continuation semantics of M; & M.

Let 7/ = Snd(Swap(7)). The previous term is further equal to
(M;)O(Ax.(N)O(Ay.(xy id))T ¢)(Snd(7°)) = (M;N)0id(Snd(7"))

= (MN & MyN)0idT”" .

In the last line we have used the fact that if Test(Fst(7")), when
applied to a particular w € Q in the semantics of M; @ Mz, chooses
M;, then the same test applied to the same w in the semantics of
M1N & M N will choose M;N for the same i € {1, 2}.

Since Snd and Swap both preserve tossing processes (Lemma 4.7),
there exists an automorphism a € Aut(Q) such that 7/ = 7 o a.
Hence, we have
[(M1 & M2)(N) = K]
={w € Q[((M; ® Mp)N)0idT () = (K)0idT (0)}/ Null
={w € Q| (MN & MyN)0idT ' (w) = (K)0idT («)}/ Null-

Since K is stable, (K)0id7 (w) = (K)0id(7 o)(w) and the previous
set is equal to

={w € Q| (MN & MyN)0idT "' (w) = (K)0idT ' (0)}/ Null

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

854

855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

915

LICS’18, July 09-12, 2018, Oxford, UK Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott

=a ({w e Q| (MN & MyN)0idT (w) = (K)0idT («)}/ Nuil)
= a Y([MN ® MzN = K] 7).

]

Theorem 8.8 (Right-distributivity of @ w.r.t. application). IfK is
a stable term, then we have

[[N(M] & M) = K]]r]- X [[NMl @® NM; = KHT.

Proof. The proof is similar to the one for left-distributivity, except
that instead of 7/ we use 7" = Swap(Snd(7")). O

Using Lemma 8.4, we can prove the entropic equality equation.

Theorem 8.9 (Entropic equality). IfK is a stable term, then we have

[(M1 ® M2) ® (N1 ® N2) = K] = [(M; ® N1)® (M2 ® N2) = K] 7.

By exploiting the idempotence of @ and the entropic equality, one

can derive ®-distributivity.

Theorem 8.10 (®-distributivity). IfK is a stable term, then we have
1.[NeM; & M) =K]7=[(NeM)® (N M)=K]r;
2.[(M; & M3)® N =K]5~ [(M; ® N)® (My & N) = K] 7

There are also some equalities between terms that are much stronger;

these are equalities that hold almost everywhere which means that

they are interpreted as the top element of the Boolean algebra. One
such equation is A-distributivity.

Theorem 8.11 (A-distributivity w.r.t. @).

[[Ax.(M1 ® M) = Ax.M; @ Ax.Mz]]«r =Q/Null-

Proof. From the semantics of A-terms we get
(Ax.(Mq @ M2))0idT = id(Y(Av. (M1 & M2)(0{v/x})(Au.u)T)).

Assume that Test(Fst(77)), applied to a particular 0 € Q chooses
M; for some i € {1, 2}, when applied in the continuation semantics
of M1 @ M. Then, the previous term is equal to

id((Av. (M) (0{v/x})(Au.u)(Snd(7)))) = (Ax.M;)0id(Snd(7))

= (Ax.M; @ Ax.M3)0idT .

In the last line we have used the fact that if Test(Fst(7")), when
applied to a particular w € Q in the semantics of Mj ® Ma, chooses
M;, then the same test applied to the same w in the semantics of
Ax.M7 & Ax.My will choose Ax.M; for the same i € {1, 2}. m}

Theorem 8.12 (Order of applications). IfNi, Ny are two stable close
terms, then

[(Ax.Ay.M)N1)N2 = (Ay.Ax.M)N2)N1]l = Q/ nuii-
At this point we are ready to prove the soundness of some equations
involving the fixpoint operators.
Theorem 8.13 (Recursive application).

[px.M = (Ax M)(px.M)]7 = Q/ Nu1-

Proof. We know that, for each n > 0, ML = (Ax.M)M™. Hence,
for arbitrary E, C and 7,

(MM) ECT = ((Ax.M)M™)ECT .
Lemma 6.4 applied to this equality gives us further that
(MM ECT = (M)E{(M™)E(Aw.w)T ¢ /x}CT°.

Hence, sup,, (M"Y)ECT™ = sup,,(M)E{(M") EQAw.w)T ¢ /x}CT°
and using Scott continuity we get

sup(M™) ECT = (M)E{sup(M™)EQAw.w)T € /x}CT°.

Since M is continuous, hence monotonic, the above is equivalent to

sup(M")ECT = (M)E{sup(M")E(Aw.w)T ¢ /x}CT°,

or equivalently, (ux.M)ECT = (M)E{(ux.M)E(Aw.w)T ¢ /x}CT°

and again applying Lemma 6.4, (ux.M)ECT = ((Ax.M)(ux.M))ECT .

In particular, we also have

(px. M)0idT = ((Ax.M)(ux.M))0idT .

Theorem 8.14 (Recursive choice).

[px.(x ® M) = px. M7 = Q/ Nuni-

Proof. Consider arbitrary E, C and 7. For each w € Q, the sequence
(M')ECT (w) is increasing and its limit is (ux.M)ECT ().

Consider now the unfoldings of the term px.(x @ M). They can be
represented as a balanced tree structure, where the nodes are the
M and row at depth k represents the syntax of (x ® M)¥, where
sibling’s nodes are connected by @. For instance, we have that

(xeM)° =M,
(xo M) =M o M,
(x®M)? = (M & MY) & (M* & M?),
xoM)? = (MPoMHeM e M?)e(M oM?)o(M?aM?)), etc.
For each w € Q and each i € N there exists j < i such that
((x & M)DECT () = (M/)EC(Snd*(T))(w).

In fact, each w € Q represents a path in this syntactic tree (e.g., 0
chooses the left branch and 1 chooses the right branch) and the in-
tersection of this path with the i-th level of the graph (representing
(x ® M)?) is exactly the term M/ satisfying the previous equation.

(((x® M)} ECT (w)); e increasingly converges to (ux.M)ECT (w),
except for those w for which the sequence stabilises, i.e., for those
w € Q for which the corresponding path in the syntactic tree
always chooses the left branch after a certain level. This is the set

S={weQlw=0v0"we{0,1}"}.

Obviously S is a null set, and this concludes our proof. O

The results we have proven so far allow us to say more about
p-reduction. Firstly we prove that an unrestricted version of f-
reduction cannot be stated for the stochastic A-calculus.

Theorem 8.15. There exist terms M, N (which are not stable) such
that

[(Ax.M)(N) = M{N/x}]7 # @/ Nul1-

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

956

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

976

977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

1037

Boolean-Valued Semantics for the Stochastic A-Calculus

Proof. We exploit the results in Theorems 8.5 - 8.3 to derive a con-
tradiction from the assumption that for all terms M, N we have
that [(Ax.M)(N) = M{N/x}]7 = Q/Nui1-

Consider the following terms

T = Ax.Ay.x, L = Ax.Ay.y, xor = Ax.Ay.x(yLT)(yTL), N=ToL.

Then, consider M = (Ax.xor xx)N. On one hand we have that all
the following equations have the value Q/n,,;; Wwhen evaluated for
7, due to Theorem 8.1.

M =x0orNN = N(NLT)(NTL)
Hence, for any closed stable term K,
[M=K]qy~[(T(NLT)NTL) & (L(NLT)NTL) =K]s
~ [(NLT)® (NLT) =K]q = [NLT =K]s
[(TLT) @ (LLiT)=K]yr~[LoT=K]yr~[T&L=K]sr
On the other hand, we have that for any closed stable term K:
[M = K] 7 ~ [(Ax.xor xx)T & (Ax.xor xx)L = K]
~ [(xorTT)® (xorLLl) =K]g~[L® L =K]qy~[L=K]s.

Putting together these two sequences of automorphic elements we
get that for any closed stable term K,

[TeL=K]sr=[L=K]s
Since L is a closed stable term, this last equation that
[Te1=1]7r=9Q/Nu

meaning R(Q) is a degenerate model, i.e. a singleton; this is a
contradiction. O

We can, however, have a stronger version of f-reduction than the
one stated in Theorem 8.3.

Theorem 8.16 (Extended f-reduction). If Ax.Mj, Ax.Ms are closed
terms and N is a stable closed term such that for any stable closed
term K and any i € {1, 2} we have that

[[(Ax.Mi)N = KH‘T ~ [[MI{N/X} = K]]T,
then for any stable closed term K,
[(Ax.(M1 ® M2))N = K] ~ [Mi{N/x} ® Ma{N/x} = K] 7.

Proof. Note that
((Ax.(My & M2))N)0idT
= (Ax.(M; @ M3))0(Aa.(N)O(Ab.id(¢(a)b))T €)T°
and applying A-distributivity,
= (Ax.M; ® Ax.M2))0(Aa.(N)O(Ab.id(H(a)b))T ¢)T°
now we solve the probabilistic choice and get some j € {1, 2} such
that
= (Ax.M;)0(Aa.(N)O(Ab.id(¢(a)b))T ¢)Snd(T°)
((Ax.M;)N)0id T,
where 7/ = Swap(Snd(7)). Hence, we have that
[(Ax.(M; ® M2))N = K]
={w € Q| ((Ax.M; & Ax.M2))N)0idT (w) = (K)0idT (0)}/ Nuil
={w € Q| ((Ax.Mj)N)0idT "' (w) = (K)0idT ()} Nu11-
Since K is stable, (K)0id7 = (K)0id7’, so
={w € Q| (Ax.Mj)N)0idT "' (w) = (K)0idT " (0)}/ Nuii
= [(Ax.Mj)N = K] g7 ~ [M;{N/x} = K] 7.

LICS’18, July 09-12, 2018, Oxford, UK

Similarly we get that
[Mi{N/x} ® M2{N/x} = K]7 ~ [M;{N/x} = K] 7,
for some tossing 7”. Further, Theorema 7.2 ensures us that
[Mj{N/x} = K]q ~ [Mj{N/x} = K] 77,

which concludes our proof, since % is transitive. O

9 Generating Random Numbers

In this section we present a small example of programming in
the stochastic A-calculus and use the semantics to argue for the
correctness of the program behavior. Our program takes a Church
numeral n and produces a random Church numeral from 0 to 2" — 1
with equal probability.

Functions for Church Numerals and Booleans. In the follow-
ing, we use mathematical symbols as the names of lambda terms,
for ease of notation. Note that this means arithmetical expressions
are in (forward) Polish notation.

Recall that a Church numeral for the number n € N is a function
of two arguments f and x, returning f applied n times to x. We
use the well-known encodings of the arithmetic operations succ,
+ and X.

Picking a Random Number from 0 to 2" — 1. The following
stochastic A-term is the key of our encoding.

rand = An.n(Ax.((X 2 x) @ (succ(X 2 x))))0.

In intuitive terms, the program starts with a number equal to 0 and
flips a fair coin n times, either doubling the number or doubling
and adding one, depending on the outcome.

The following statement, if demonstrated, proves that the program
has the desired behavior. It exemplifies how our deduction princi-
ples can be applied.

Statement: For all Church numerals n and tossing processes 7,
2n-1

\/ [randn = il = O/ yuu
i=0

andforall0 <i,j<2" -1
[randn = i]q =~ [randn = j] .
Therefore, for each 0 < i < 2" — 1, [rand n = i]J4 are of equal

probabilities and summing to 1, i.e. of probability 27".

Sketch: We do not provide a detailed proof of this statement, that
would require further developments of the deduction principles.
Instead, we sketch below how such a proof shall be organized.
Induction on n: the inductive hypothesis we need is that

\/[[randn = i) = Q/ Nui1, that for all i > 2", we have

i=0

[randn = i]5 = 0/nu1, and for all 0 < i,j < 2™ — 1, we have
[randn =i]gq = [randn = j] 7.

We start with the base case, n = 0. Then
rand @ = 0(Ax.((X 2 x) & (succ(X 2 x))))0 = 0.

We have [rand0 = 0] = Q/ ;- This shows the three facts we
want, because 0 <i<20-1=0 implies i = 0.

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

1098

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

1159

LICS’18, July 09-12, 2018, Oxford, UK Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott

For the inductive step, we temporarily introduce the name
= (Ax.((x 2 x) ® (succ(X 2 x)))),

for the latter part of the definition of rand, excluding the final 0.
We start by re-expressing rand (succ n) in terms of rand n.

rand(succ n) = (succ n)f’0 = f'(nf’0) = f'(rand n)
= (Ax.((X 2 x) ® (succ(X 2 x))))(rand n)
= ((Ax. X 2 x) ® (Ax.succ(Xx 2 x)))(rand n)
= ((Ax. x 2 x)(rand n)) ® ((Ax.succ(x 2 x))(rand n)).

We first have to prove that \/[[rand (succn) = i) = Q/Nuil-
i=0

[Se)

By the inductive hypothesis, we have \/[[rand n=ily=Q/Null-
i=0

By well-definedness of function application, it holds that

\/[[(Ax. X 2 x)(rand n) = i]v = Q/Null»
i=0

\/[[(Ax.succ(x 2x))(rand n) = i]7 = Q/Nunl-
i=0
so, because of the properties of @ (Theorems 8.5,8.10),

(o8]

\/[[rand (succn) =il = Q/Null-

i=0
For the second part of the inductive hypothesis, that i > 2"*1
implies [rand (succn) = i~ = 0/ Ny, Wwe make a case split de-
pending on whether i is even or odd. As both cases are similar, we
only show the case where i is even.
Then i = 2i’ for some integer i’. By the inductive hypothesis
[randn = i’ = O/ Ny, so by well-definedness and the fact
that (x 2i") = i, we have [rand (succn) = i] 7= 0/nu1;-

Finally, we need to show that for all 0 < i,j < 2n*1 _ 1 we have
[rand (succn) = i ~ [rand (succn) = j]
We have a four-way case split according to whether i and j are odd
or even. We treat the case where i and j are even, as the other three
cases are similar. We have that there are i’, j* such that i = 2i” and
j =2j’. Hence,
[rand(succ n) = i
= [(Ax.x 2 x)(randn)®((Ax.succ(X 2 x))(randn)) = (Ax.x 2 x)i’]
~ [(Ax. X 2 x)(rand n) = (Ax. X 2 x)i’] ¢
= [rand n = i"]4 = [rand n = j']+ = [rand(succ n) = j] 7
This shall complete the proof.

10 Conclusions

We see this paper as the beginning of an investigation into ran-
dom processes at higher type. There are many things to investi-
gate:

e We need to understand how this relates to more categorical
approaches [7] to probability theory at higher type by con-
structing a suitable cartesian closed category of quasi-Borel
spaces.

e We need to develop a deeper understanding of the Boolean-
valued reasoning principles that we have used here.

10

o It would be very interesting to develop suitable dependently-
typed versions of a stochastic A-calculus; indeed this was one
of the main motivations of [15].

o The relation between invariance results as we have used them
and exchangability and symmetry principles in probability the-
ory (see, for example, [8]) need to be understood better.

Acknowledgments

This research was supported by a DFF Danish research grant, by
a grant from NSERC (Canada), and by a grant from the National
Science Foundation (USA). We gratefully acknowledge the support
of the Simons Institute Logical Structures in Computation Pro-
gram in Fall 2016. We thank Ugo Dal Lago, Cameron Freer, Marco
Gaobardi, Chris Heunen, Alex Simpson and Sam Staton for useful
discussions.

References

[1] John L. Bell. 1985. Boolean-Valued Models and Independence Proofs in Set Theory
(2nd ed.). Number 12 in Oxford Logic Guides. Oxford University Press.

[2] David H. Fremlin. 2003. Measure Theory, Volume 4. http://www.essex.ac.uk/
maths/people/fremlin/mt.htm. (2003).

[3] R. M. Friedberg and H. Rogers. 1959. Reducibility and Completeness for sets of
integers. Mathematical Logic Quarterly 5 (1959), 117-125.

[4] Noah Goodman, Vikash Mansingkha, Daniel Roy, Keith Bonawitz, and Joshua

Tenenbaum. 2008. Church: a language for generative models. In Proceedings of

the 24th Conference on Uncertainty in Artificial Intelligence. 220-229.

Andrew D. Gordon, Thore Graepel, Nicolas Rolland, Claudio V. Russo, Johannes

Borgstrém, and John Guiver. 2014. Tabular: a schema-driven probabilistic pro-

gramming language. In Proceedings of POPL ’14, San Diego, CA, USA, January

20-21, 2014. 321-334.

[6] V. Gupta, R. Jagadeesan, and P. Panangaden. 1999. Stochastic Processes as
Concurrent Constraint Programs. In Proceedings of the 26th Proceedings Of The
Annual ACM Symposium On Principles Of Programming Languages. 189-202.

[7] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A conve-
nient category for higher-order probability theory. In Proceedings of the Thirty-
second Annual ACM-IEEE Symposium on Logic in Computer Science.

[8] Olav Kallenberg. 2006. Probabilistic symmetries and invariance principles. Springer
Science and Business Media.

[9] D.Kozen. 1981. Semantics of Probabilistic Programs. Journal of Computer and

Systems Sciences 22 (1981), 328-350.

Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. 2014. On Coinductive

Equivalences for Higher-order Probabilistic Functional Programs. In Proceedings

of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’14). ACM, New York, NY, USA, 297-308.

Norman Ramsey and Avi Pfeffer. 2002. Stochastic lambda calculus and monads of

probability distributions. In The 29th SIGPLAN-SIGACT Symposium on Principles

of Programming Languages. 154-165.

[12] H. Rogers. 1967. Theory of Recursive Functions and Effective Computability.

McGraw-Hill.

Vladimir A. Rohlin. 1952. On the Fundamental Ideas of Measure Theory. Amer.

Math. Soc. Transl. 71 (1952).

Dana Scott. 1967. A Proof of the Independence of the Continuum Hypothesis.

Mathematical Systems Theory 1, 2 (1967), 89-111.

D. Scott. 2014. Stochastic Lambda Calculi: An extended Abstract. Journal of

Applied Logic 12 (2014), 369-376.

S. Smolka, P. Kumar, N. Fosterand D. Kozen, and A. Silva. 2017. Cantor meets

Scott: Domain-theoretic foundations for probabilistic network programming. In

Proceedings of the 44th ACM SIGPLAN Symp. Principles of Programming Languages

(POPL’17). ACM, 557-571. ACM SIGPLAN Notices - POPL ’17, Volume 52 Issue

1.

Sam Staton, Hongseok Yang, Frank Wood, Chris Heunen, and Ohad Kammar. 2017.

Semantics for probabilistic programming: higher-order functions, continuous

distributions, and soft constraints. In Proceedings of the 31st Annual ACM-IEEE

Symposium On Logic In Computer Science. 525-534.

David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. 2016.

Design and implementation of probabilistic programming language anglican.

In Proceedings of the 28th Symposium on the Implementation and Application of

Functional Programming Languages. ACM, 6.

David Williams. 1991. Probability with Martingales. Cambridge University Press.

[5

=
=

[11

[13

[14

=
&

[16

(17

[18

=
2

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

http://www.essex.ac.uk/maths/people/fremlin/mt.htm
http://www.essex.ac.uk/maths/people/fremlin/mt.htm

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280

1281

Boolean-Valued Semantics for the Stochastic A-Calculus

A The functions pack and unpack

For a better connection with the mainstream of measure theory, we
consider how to pack and unpack sequences in 2. In aid of this,
we consider two infinite sequences in N:

s9=2" _1andsl =3-2" - 1.

These sequences solve the recurrence relations:

0 0 0 1 1 1
{s9=0; sp =25, ;+1}p>1 and {s;=2; s, =25, 1 +1}u>1.

Therefore each sequence is even iff n = 0. Moreover, s]’: = s]’: implies
i=i’andj=j".

We define a family of maps unpack,, : P(N) — 2 by

0 ifsdes

unpack, ($) = 1 otherwise

and two maps unpack : P(N) — 2" and pack : 2N — P(N) as
follows:

unpack(S)(n) = unpack,(S) pack(a) = U{s?i}.
i=0

It is not difficult to verify that the maps unpack,,, unpack and pack
are (Borel) measurable, and that for all a € 2N we have

unpack(pack(a))(n) = ap.

11

LICS’18, July 09-12, 2018, Oxford, UK

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342

	Abstract
	1 Introduction
	2 Standard Probability Spaces
	3 Topology and measure of P(N)
	3.1 The positive topology on P(N)
	3.2 Random Variables on
	3.3 The Algebra of Events

	4 Tossing processes
	4.1 Independent coin sequences
	4.2 Tossing Processes
	4.3 Tossing Process Operators

	5 Stochastic -Calculus
	6 Probabilistic Continuation Semantics
	7 A Boolean-Valued Model
	8 Sound Equations
	9 Generating Random Numbers
	10 Conclusions
	Acknowledgments
	References
	A The functions pack and unpack

