Abstract. The optimized Schwarz method and the closely related 2-Lagrange multiplier method are domain decomposition methods which can be used to parallelize the solution of partial differential equations. Although these methods are known to work well in special cases (e.g., when the domain is a square and the two subdomains are rectangles), the problem has never been systematically stated nor analyzed for general domains with general subdomains. The problem of cross points (when three or more subdomains meet at a single vertex) has been particularly vexing. We introduce a 2-Lagrange multiplier method for domain decompositions with cross points. We estimate the condition number of the iteration and provide an optimized Robin parameter for general domains. We hope that this new systematic theory will allow broader utilization of optimized Schwarz and 2-Lagrange multiplier preconditioners.

Key words. Domain decomposition, Schwarz method, partial differential equation, parallel preconditioner, Krylov space, 2-Lagrange multiplier

1. Introduction. In mathematics, physics and engineering, it is useful to solve elliptic partial differential equations, such as the Laplace problem

$$\Delta u = f \text{ in } \Omega \text{ and } u = 0 \text{ on } \partial \Omega.$$ \hfill (1.1)

Such problems are often solved numerically. The discretized problem has the form

$$Au = f,$$ \hfill (1.2)

where A is a large invertible $n \times n$ matrix, f is a given n-dimensional vector, and u is the desired solution.

When A is large, it may be desirable to solve it iteratively, by breaking it up into smaller pieces using a domain decomposition method. Such methods are readily made parallel, since each subdomain can be assigned to a separate processor. At the geometric level, a nonoverlapping domain decomposition is a partition of the domain Ω into nonoverlapping parts $\Omega_1, \ldots, \Omega_p$. From this partition, we can further define the “artificial interface”

$$\Gamma = \Omega \cap \left(\bigcup_{i=1}^{p} \partial \Omega_i \right).$$

The set $\partial \Omega$ is called the natural boundary, since it is an intrinsic part of the original problem definition. The interface Γ is artificial in that it bears no relationship to the “physical” problem (1.1). Indeed, it is introduced purely for the purpose of calculation.

The partition $\Omega_1, \ldots, \Omega_p$ can be used to assign the n degrees of freedom of u to the various subdomains. Although the geometric domain decomposition is nonoverlapping, from the algebraic point of view there is a kind of overlap since degrees of...
freedom along interfaces may have to be shared between two or more adjacent subdomains.\(^1\) The current article is concerned mainly with such methods, which are nonoverlapping in the geometric (or PDE) interpretation, while at the algebraic level, the degrees of freedom along \(\Gamma\) are shared between the adjacent subdomains.

The 2-Lagrange multiplier (2LM) method was introduced in [9]. The main idea is to replace the large system (1.2) with a related nonsingular system

\[
A_{2LM} \lambda = h
\]

of much smaller dimension. The \(\lambda\) vector is the Lagrange multiplier vector. Although \(A_{2LM}\) is much smaller than \(A\), we consider that \(A_{2LM}\) is still too large to be solved directly, and we are interested in finding a parallel iterative solver that exploits the decomposition \(\Omega_1, \ldots, \Omega_p\) of the domain \(\Omega\). In the case of two nonoverlapping subdomains, there are two Lagrange multipliers per interface node in \(\Gamma\), which explains the nomenclature. The terminology “Lagrange multiplier” is an analogy to the FETI methods [10], where the Lagrange multipliers genuinely arise as part of a relaxation of continuity constraints.

The 2LM method is known to be closely related to the nonoverlapping optimized Schwarz method (OSM). We now briefly outline the history of the OSM, and refer to [11] and [12] for details. The OSM was introduced in [3], [30], [31], under various names. Attempts have been made to find optimized transmission conditions for various differential equations and/or suitable domains; see e.g., [16], [19], [20], [21], [22].

For some simple problems and domains, optimized transmission conditions can be found by Fourier analysis. In addition to the Laplace and Helmholtz problems, this Fourier method can be used for various other canonical problems; see [2], [7], [14], [15], [27], [28] for convection-diffusion problems, [13], [17] for the wave equation, [1], [5] for Maxwell’s equations, [6] for fluid dynamics, and [29], [32] for the shallow water equation.

Proofs of convergence for more general situations have been recently obtained [25], [26]; but the techniques used are not amenable to finding the optimal parameters. A proof of convergence for the nonoverlapping algorithm without cross points was provided in [24], using energy estimates (this proof does not provide condition number estimates or optimized parameter values). We mention in passing that one way of obtaining convergence of the nonoverlapping algorithm is to define a relaxation of the method [4]. There is an ongoing effort to estimate the spectral radius of the optimized Schwarz iteration with cross points, see [18].

All of these methods have been described for domain decompositions without cross points, but the presence of cross points poses a difficulty. OSMs have seen limited deployment in applications. We surmise that this is because of the poorly understood performance of the OSM when there are cross points. It is difficult for practitioners to use the method when it is not even clearly defined. Our major innovation in the present article is to introduce and analyze a systematic method to deal with cross

\(^1\)We briefly mention that this has caused some confusion in the community. Some domain decompositions which are nonoverlapping at the geometric (or PDE) level (for example, the nonoverlapping optimized Schwarz method) end up using overlapping blocks of the matrix \(A\). Conversely, a (classical) additive Schwarz preconditioner with nonoverlapping blocks of \(A\) actually corresponds (in the geometric or PDE interpretation) to an overlapping domain decomposition whose subdomains overlap by exactly one grid interval. In other words, the amounts of overlap at the geometric and algebraic levels are not necessarily related.
Our new methods generalize the nonoverlapping OSM or 2LM method to general domains and subdomains with cross points.

We have three main results. Our first main result is to give a nonoverlapping OSM, or a 2LM system, defined even when there are cross-points. We show that we can recover the solution to the system $Au = f$ from the unique solution to this nonoverlapping OSM. This main result is important because the 2LM method or the nonoverlapping OSM has never been formulated systematically in the presence of cross points with general subdomains.

Our second main result gives the optimized Robin parameter and a condition number estimate for the nonoverlapping OSM in terms of the spectral properties of local Schur complements. We apply this estimate to a PDE to obtain our third main result.

Our paper is organized as follows. In Section 2, we introduce the 2LM method and show that (1.2) and (1.3) are equivalent, even if A is nonsymmetric. In Section 3, we provide condition number estimates for the 2LM method in terms of algebraic properties of A. In Section 4, we give condition number estimates for the case when A is the discretization of an elliptic PDE. We end with some conclusions in Section 5.

2. Solving $Au = f$ using Robin subproblems. We assume that the domain is in \mathbb{R}^2 or \mathbb{R}^3 and is discretized using some grid of points $\{x_1, \ldots, x_n\}$, as in Figure 2.1. The domain is further partitioned into nonoverlapping subdomains $\Omega_1, \ldots, \Omega_p$ with artificial interface Γ.

To fix ideas, in the remainder of the present paper, we will assume that the vertices are arranged as follows:

- x_1, \ldots, x_{n_1} in Ω_1
- $x_{n_1} + 1, \ldots, x_{n_1 + n_2}$ in Ω_2
- \ldots
- $x_{n_p - n_{p-1} + 1}, \ldots, x_{n_p}$ in Ω_p
- $x_{n_p + 1}, \ldots, x_n$ in Γ

see Figure 2.1.

Throughout the present article, we will use (1.1) as a model problem. Nevertheless, we do not use any of the special features of (1.1) until Section 3. For instance, our first main result (at the end of Section 2) does not require that the matrix A be symmetric or positive definite.

2. The idea that the condition number could be estimated from the spectral properties of the local Schur complements occurred to us when we were reading [8].

3. The ideas in the present paper can be applied to more general domains and even graphs. Our choice makes for a simple exposition.
2.1. Restriction matrices and traces. We now consider \(n \)-dimensional vectors. We interpret such a vector \(u \) as a function defined at each vertex \(x_j \). To each subdomain \(\Omega_j \), we may define a restriction matrix \(R_j \), which restricts an arbitrary \(n \)-dimensional vector \(u \) to an \(n_j \)-dimensional vector \(R_j u \), which contains only the components of \(u \) corresponding to \(\Omega_j \) and its artificial boundary \(\partial \Omega_j \cap \Gamma \).

Example 2.1. The restriction matrix \(R_1 \) corresponding to \(\Omega_1 \) in Figure 2.1 is

\[
R_1 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

The top two rows, labeled \(R_{I1} \), correspond to the restriction to the interior vertices \(\{x_1, x_2\} \), while the bottom four rows, labeled \(R_{I1} \), correspond to the restriction to the interface vertices \(\{x_0, x_{10}, x_{11}, x_{12}\} \).

We similarly partition \(R_2, \ldots, R_p \) into interior parts \(R_{ij} \) (top) and artificial interface parts \(R_{ij} \) (bottom).

For \(j = 1, \ldots, p \), let \(u_j \) be an arbitrary \(n_j \)-dimensional vector. We interpret such a vector as a function on \(\Omega_j \). We further partition \(u_j \) so that the top part \(u_{Ij} \) corresponds to the vertices of \(\Omega_j \setminus \Gamma \), while the bottom part \(u_{Ij} \) corresponds to the vertices of \(\partial \Omega_j \cap \Gamma \), i.e.: \(u_j = \begin{bmatrix} u_{Ij} \\ u_{Ij} \end{bmatrix} \). We can think of the vector \((u_{I1}^T, \ldots, u_{Ip}^T) \) as a function which is defined on \(\Omega \) and which is continuous inside of each \(\Omega_j \), but which has jump discontinuities across \(\Gamma \). For such a function, we define the multi-valued or many-sided trace

\[
u_G = \begin{bmatrix} u_{I1} \\ \vdots \\ u_{Ip} \end{bmatrix}
\]

(2.1)
of dimension \(n_G \). The \(n_G \) degrees of freedom of \(u_G \) correspond to vertices \(\{x_{n_j+1}, \ldots, x_n\} \) on \(\Gamma \), but \(u_G \) contains multiple degrees of freedom for each \(x_j \) (one per subdomain adjacent to \(x_j \)). For each interface \(x_j \in \Gamma \), we let \(m_j \) be the number of subdomains adjacent to \(x_j \). We say that \(x_j \) is a regular interface vertex if \(m_j = 2 \), and we say that \(x_j \) is a cross point if \(m_j \geq 3 \).

2.2. Continuous many-sided traces. Although in general the many-sided trace \(u_G \) corresponds to a discontinuous function, it may happen that \(u_G \) corresponds in fact to a continuous function. This occurs precisely when the degrees of freedom of \(u_G \) associated with the interface vertices \(x_j \) all agree, for each \(j = n_j + 1, \ldots, n \). We now make this concept more explicit. To that end, we define \(\Pi \) to be the permutation matrix that reorders the entries of the many-sided trace \(u_G \) so that all degrees of freedom associated with the first interface vertex \(x_{n_j+1} \) appear first, followed by the degrees of freedom associated with the second interface vertex \(x_{n_j+2} \), and so on.
Then, for $k = n_I + 1, \ldots, n$, we let

$$M_k = \begin{bmatrix} 1 & -\frac{1}{m_k-1} & \cdots & -\frac{1}{m_k-1} \\ -\frac{1}{m_k-1} & 1 & \cdots & -\frac{1}{m_k-1} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{m_k-1} & -\frac{1}{m_k-1} & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{m_k \times m_k}. \quad (2.2)$$

Note that the kernel of M_k is spanned by the vector of ones.\(^4\) Finally, let

$$M = \tilde{\Pi}^T \text{diag} \{M_{n_I+1}, \ldots, M_n\} \tilde{\Pi}. \quad (2.3)$$

By the construction of M, we have that u_G is a continuous many-sided trace if and only if

$$Mu_G = 0. \quad (2.4)$$

We also define the $n_G \times n_G$ symmetric matrix G of “interface interactions” by

$$G = \begin{bmatrix} R_{\Gamma_1}R_{\Gamma_1}^T & \cdots & R_{\Gamma_1}R_{\Gamma_p}^T \\ \vdots & \ddots & \vdots \\ R_{\Gamma_p}R_{\Gamma_1}^T & \cdots & R_{\Gamma_p}R_{\Gamma_p}^T \end{bmatrix}. \quad (2.5)$$

The entries of G are all either 0 or 1. The rows (or columns) of G precisely span the space of continuous many-sided traces, and hence we have that $MG = GM = 0$. The matrix $\tilde{\Pi}$ can be used to block-diagonalize G and we obtain

$$G = \tilde{\Pi}^T \text{diag} \left\{ 1_{m_{n_I+1} \times m_{n_I+1}}, \ldots, 1_{m_n \times m_n} \right\} \tilde{\Pi}, \quad (2.6)$$

where $1_{m_j \times m_j}$ denotes the $m_j \times m_j$ matrix of ones.

We define the orthogonal projection matrix K whose range is the space of continuous many-sided traces. It can be given succinctly using the matrix $\tilde{\Pi}$:

$$K = \tilde{\Pi}^T \text{diag} \left\{ \frac{1}{m_{n_I+1}}, \ldots, \frac{1}{m_n} \right\} \tilde{\Pi}. \quad (2.7)$$

If u_1, \ldots, u_p are given and if the many-sided trace u_G is continuous, then there is a unique u such that

$$u_k = R_k u, \quad k = 1, \ldots, p. \quad (2.8)$$

This u is given by “gluing together” the local functions u_1, \ldots, u_p.

2.3. Decomposition of the matrix A. We now consider the $n \times n$ linear system (1.2) where A and f are given and u is the unknown quantity. We assume that the “global stiffness matrix” A is decomposed into “local stiffness matrices” A_{N_1}, \ldots, A_{N_p}, one per subdomain, and likewise for the data f, such that

$$A = \sum_{j=1}^p R_j^T A_{N_j} R_j \quad \text{and} \quad f = \sum_{j=1}^p R_j^T f_j. \quad (2.9)$$

\(^4\)The formula (2.2) is not the only possible choice, and indeed all of our results hold (mutatis mutandis) if we use any other normal matrix M whose kernel is the range of G.

5
For $j = 1, \ldots, p$, the matrix A_{Nj} acts on the subdomain Ω_j and hence can be partitioned into blocks that act on the interior of Ω_j and on artificial interface vertices of Ω_j. We can likewise partition f_1, \ldots, f_p to obtain

$$A_{Nj} = \begin{bmatrix} A_{IIj} & A_{ITj} \\ A_{TIj} & A_{TTj} \end{bmatrix} \quad \text{and} \quad f_j = \begin{bmatrix} f_{Ij} \\ f_{Tj} \end{bmatrix}.$$

In the case of the model problem (1.1), the local stiffness matrices correspond to Neumann problems on the subdomains, with bilinear forms

$$a_j(u, v) := \int_{\Omega_j} \nabla u \cdot \nabla v, \quad \text{for} \ j = 1, \ldots, p.$$

The vector f_j is obtained from the functional $v \mapsto \int_{\Omega_j} f v$.

2.4. Robin subproblems.

Given “Robin data” $\lambda_1, \ldots, \lambda_p$ and “transmission condition” matrices B_1, \ldots, B_p, we can compute “local solutions” u_1, \ldots, u_p using

$$\begin{bmatrix} A_{IIk} & A_{ITk} \\ A_{TIk} & A_{TTk} + B_k \end{bmatrix} \begin{bmatrix} u_{Ik} \\ u_{Tk} \end{bmatrix} = \begin{bmatrix} f_{Ik} \\ f_{Tk} + \lambda_k \end{bmatrix}, \quad \text{for} \ k = 1, \ldots, p. \quad (2.10)$$

We can eliminate interior nodes from (2.10) by using Schur complements. For each Neumann matrix A_{Nk}, we define the Schur complement and “condensed right-hand-side”

$$S_k = A_{TTk} - A_{TIk}A_{IIk}^{-1}A_{ITk} \quad \text{and} \quad g_k = f_{Tk} - A_{TIk}A_{IIk}^{-1}f_{Ik}.$$

We define S and B to be the block-diagonal matrices $S = \text{diag}\{S_1, \ldots, S_p\}$ and $B = \text{diag}\{B_1, \ldots, B_p\}$, respectively, and we define g to be the column vector $g = [g_1^T, \ldots, g_p^T]^T$. The system (2.10) is then equivalent to the Schur relation

$$(S + B)u_G = g + \lambda. \quad (2.11)$$

Here and in the sequel, we assume that B and $S + B$ are invertible.

In the domain decomposition parlance, the Schur complements S_1, \ldots, S_p are known as (discrete) Dirichlet-to-Neumann maps. For the model problem (1.1), it is known that each S_j is nonsingular if $\partial \Omega_j$ intersects the natural boundary $\partial \Omega$. If $\partial \Omega_j$ does not intersect $\partial \Omega$ then the kernel of S_j is spanned by the vector 1 of ones. We then say that Ω_j floats. This characterization of the kernel of S will be used in Section 3 and onwards.

2.5. The equivalence of (1.2) and (1.3).

In the present subsection, we show that the $n_G \times n_G$ system (1.3), where

$$A_{2LM} = (BM - GB)(S + B)^{-1} + G \quad \text{and} \quad h = -(BM - GB)(S + B)^{-1}g, \quad (2.12)$$

is equivalent to (1.2). The solution λ of (1.3) is a many-sided trace $\lambda = [\lambda_1^T, \ldots, \lambda_p^T]^T$. We do not assume that (1.2) arises from the model problem (1.1). We begin with a technical result.
Lemma 2.2. Assume that A is invertible. Let $R_{Γ}$ be the matrix which restricts u to its single-valued trace $u_{Γ}$: $R_{Γ} = \begin{bmatrix} I \end{bmatrix} \in \mathbb{R}^{(u-n_{Γ}) \times n}$. There is a unique solution $u_{i}, \ldots, u_{p}, λ_{1}, \ldots, λ_{p}$ to the simultaneous equations (2.10), (2.4) and the equation

$$\sum_{k} R_{Γ} R_{Γk}^{T} λ_{k} = \sum_{k} R_{Γ} R_{Γk}^{T} B_{k} u_{Γk}. \tag{2.13}$$

If v is the unique solution to the linear problem $Av = f$, then $u = v$, where u is the unique solution to (2.8).

Proof. Assume we have $λ_{1}, \ldots, λ_{p}$ as well as u_{1}, \ldots, u_{p} satisfying (2.10), (2.4), (2.13). By (2.4), the local solutions u_{i}, \ldots, u_{p} meet continuously and we obtain a u such that (2.8) is satisfied. We see that, for this u,

$$Au = \sum_{k} R_{Γ}^{T} \begin{bmatrix} A_{IIk} & A_{ITk} \\ A_{ΓIk} & A_{ΓTk} \end{bmatrix} R_{k} u = \begin{bmatrix} \sum_{k} R_{Γ} R_{Γk}^{T} A_{IIk} u_{k} + \sum_{k} R_{Γ} R_{Γk}^{T} A_{ΓIk} u_{Γk} \end{bmatrix}, \tag{2.14}$$

where we have used (2.8). Equation (2.10) further yields

$$Au = \begin{bmatrix} f_{Γ} + \sum_{k} R_{Γ} R_{Γk}^{T} λ_{k} - \sum_{k} R_{Γ} R_{Γk}^{T} B_{k} u_{Γk} \end{bmatrix} \equiv f, \tag{2.13}$$

which shows that indeed any solution $u_{i}, \ldots, u_{p}, λ_{1}, \ldots, λ_{p}$ to the system (2.10), (2.4), (2.13) yields u, via (2.8), which is the unique solution to $Au = f$, as required.

We now show the uniqueness of $u_{1}, \ldots, u_{p}, λ_{1}, \ldots, λ_{p}$. Assume that $u_{1}^{∗}, \ldots, u_{p}^{∗}, λ_{1}^{∗}, \ldots, λ_{p}^{∗}$ is a different solution of (2.10), (2.4), (2.13). If $u_{i} = u_{i}^{∗}$ for $i = 1, \ldots, p$, then (2.10) gives that $λ_{i} = λ_{i}^{∗}$ for $i = 1, \ldots, p$. Hence, we may assume that $u_{i} \neq u_{i}^{∗}$ for some i. We then obtain $u^{∗}$ satisfying (2.8) for which again $Au^{∗} = f$. Since A is invertible, it must be that $u^{∗} = u$. Hence $u_{i}^{∗} = R_{Γ} u^{∗} = R_{Γ} u = u_{i}$, which contradicts $u_{i}^{∗} \neq u_{i}$. Hence, the solution to the system (2.10), (2.4), (2.13) is unique.

Using (2.11), the systems (2.4) and (2.13) (with (2.10) having been eliminated) become

$$M(S + B)λ = -M(S + B)g \quad \text{and} \quad \sum_{k=1}^{p} R_{Γ} R_{Γk}^{T} (I - B_{k}(S_{k} + B_{k})^{-1}) λ_{k} = \sum_{k=1}^{p} R_{Γ} R_{Γk}^{T} B_{k}(S_{k} + B_{k})^{-1} g_{k}, \tag{2.16}$$

respectively. Since M is a square matrix, the system (2.15) is already square and hence the system (2.15), (2.16) is rectangular (taller than it is wide). By construction, any solution $λ_{1}, \ldots, λ_{p}$ can be turned into a solution u of $Au = f$ using (2.10) and then (2.8). It is more convenient to solve a square nonsingular system. This is achieved by picking some matrices C_{1} and C_{2}, and finding the system $C_{1}(2.15) + C_{2}(2.16)$. We now make the choices $C_{1} = B$ and

$$C_{2} = \begin{bmatrix} R_{Γ1} R_{Γ1}^{T} \\ \vdots \\ R_{Γp} R_{Γp}^{T} \end{bmatrix} \tag{2.17}$$

These choices C_{1} and C_{2} give (1.3) and (2.12). We are now able to show our first main result.
Theorem 2.3. Assume that A and $S + B$ are invertible, and B^{-1} is positive definite. The system (1.3) is equivalent to the system (2.15)-(2.16). In particular, it has a unique solution λ, from which the unique solution u to (1.2) can be recovered.

Proof. It suffices to show that the rows of the left-hand-side of (2.15) and (2.16) lie in the linear span of the rows of (2.12). We begin by recovering the rows of (2.16).

We left-multiply A_{2LM} by GB^{-1}. By construction, the rows of G are continuous many-sided traces, and hence $GM = 0$. Therefore,

$$GB^{-1}A_{2LM} = GB^{-1}G(I - B(S + B)^{-1}).$$

(2.18)

We will now show that the range of $GB^{-1}G$ is precisely the range of G. This will allow us to recover (2.16) from the rows of (2.18).

Clearly, the range of $GB^{-1}G$ is included in the range of G. Let $k = \text{rank } G$, and choose a matrix U of width k such that the columns of GU form a basis for the column space of G. In fact, by using a QR decomposition, we may assume that the columns of GU are orthonormal. Since B^{-1} is positive definite, there is a real number $\alpha > 0$ such that $v^T B^{-1} v \geq \alpha v^T v$, for all vectors v. Therefore, since the columns of GU are orthonormal, and since G is symmetric, we get that

$$v^T U^T GB^{-1} GU v \geq \alpha v^T U^T GGU v = \alpha v^T v$$

for any v. Hence, $X = U^T GB^{-1} GU$ is positive definite. Since X is a $k \times k$ matrix, we get that the rank of X is k. But,

$$k = \text{rank } X = \text{rank } U^T GB^{-1} GU \leq \text{rank } GB^{-1} G \leq k.$$

Hence, rank $GB^{-1} G = k = \text{rank } G$ and the range of $GB^{-1} G$ is the entire range of G.

Therefore, there is a matrix Y such that $Y GB^{-1} G = G$. Left-multiplying (2.18) by Y, we obtain

$$Y GB^{-1} A_{2LM} = G(I - B(S + B)^{-1}).$$

(2.19)

We can now recover (2.16) by selecting suitable rows of (2.19). We now show how to do this.

Note that each row of $R\Gamma$ coincides with some row of some $R\Gamma_j$. Therefore, there is a matrix V, which selects the appropriate rows of

$$G = \begin{bmatrix} R\Gamma_1 \\
\vdots \\
R\Gamma_p \end{bmatrix} \begin{bmatrix} R\Gamma_1^T & \cdots & R\Gamma_p^T \end{bmatrix},$$

such that $VG = R\Gamma \begin{bmatrix} R\Gamma_1^T & \cdots & R\Gamma_p^T \end{bmatrix}$. For this matrix V, we have

$$VY GB^{-1} A_{2LM} = R\Gamma \begin{bmatrix} R\Gamma_1^T & \cdots & R\Gamma_p^T \end{bmatrix} (I - B(S + B)^{-1}),$$

which is the matrix on the left-hand-side of (2.16).

Now that we have recovered the matrix on the left-hand-side of (2.16), we may recover (2.15) via the relation (1.3) = $C_1(2.15) + C_2(2.16)$, as required.

Remark 2.4. For Theorem 2.3, we have not assumed that A is symmetric nor positive definite.
2.6. Motivation for the 2LM method. When the subdomains are arranged in a strip (and there are no cross points), it is known [33] that the Richardson iteration applied to (1.3) is equivalent to the OSM. This is interesting because the OSM is known to converge rapidly [25]. Existing convergence factor estimates\(^5\) using Fourier transforms suggest that the condition number of \(A_{\text{2LM}}\) varies in the grid parameter \(h\) like \(O(h^{-\frac{1}{2}})\). The remainder of the present article will show that this is true in general (cf. (4.3)), and further elucidate the dependence of the condition number on the number of subdomains.

3. The symmetric case; condition number estimates. Here and in the rest of the present paper, we assume that \(A\) arises from (1.1) or a similar problem, as follows. We assume that \(A\) symmetric and positive definite and \(S\) is symmetric and semidefinite. We also assume that the kernel of \(S\) is spanned by the indicating functions of the subdomains that float.

From (2.2), (2.6), (2.7), we see that \((M + G)K = MK + GK = G\). Since the range of \(G\) is precisely the kernel of \(M\), we also conclude that \(M + G\) is invertible. Hence,

\[
(M + G)^{-1}G = K. \tag{3.1}
\]

Therefore, we take \(B = aI\) (where \(a > 0\) is a parameter to be chosen) and we left-multiply (1.3) by \((M - G)^{-1}\) to obtain an equivalent symmetric system:

\[
A_{\text{S2LM}}\lambda = h_S, \quad \text{where} \quad A_{\text{S2LM}} = a(S + aI)^{-1} - K \quad \text{and} \quad h_S = -a(S + aI)^{-1}g. \tag{3.2}
\]

The matrix \(Q\) is interpreted as the Robin-to-Dirichlet map, scaled by the tuning parameter \(a\). Since condition numbers are submultiplicative,

\[
\mathcal{K}(A_{\text{2LM}}) \leq M_0\mathcal{K}(A_{\text{S2LM}}) \quad \text{and} \quad \mathcal{K}(A_{\text{S2LM}}) \leq M_0\mathcal{K}(A_{\text{2LM}}), \tag{3.3}
\]

where \(M_0 = \mathcal{K}(M - G)\). We say that \(A_{\text{2LM}}\) and \(A_{\text{S2LM}}\) are spectrally equivalent.\(^6\)

In order to estimate the condition number of \(A_{\text{S2LM}}\), we prove a matrix analytical result which allows us to bound the modulus of the eigenvalues of \(A_{\text{S2LM}}\) below and above. We will make repeated use of the weighted Young inequality

\[
|\xi\zeta| \leq \frac{s}{2}\xi^2 + \frac{1}{2s}\zeta^2. \tag{3.4}
\]

Lemma 3.1. Let \(Q\) be a symmetric and positive definite matrix, with eigenvalues \(0 < q_1 \leq q_2 \leq \ldots \leq q_n \leq 1\). Let \(K\) be an orthogonal projection and define \(A_{\text{S2LM}} = Q - K\). Let \(P = I - Q\) and denote the \(k\) nonzero eigenvalues of \(P\) by \(1 > p_1 \geq p_2 \geq \ldots \geq p_k > 0\). Let \(\mathcal{N} = \ker P\) be the nullspace of \(P\). Define \(E\) to be the orthogonal projection onto \(\mathcal{N}\). Assume that there is a real number \(0 \leq r < 1\) such that

\[
\|Ec\| \leq r\|c\| \tag{3.5}
\]

for every \(c\) such that \(Kc = c\). Assume that \(\min\{q_1, p_k\} > 0\) is small and \(r\) is close to 1. Then, the spectrum of \(A_{\text{S2LM}} = Q - K\) satisfies

\[
|\sigma(A_{\text{S2LM}})| \subset [\min\{p_k, q_1\}(1-r), 1]. \tag{3.6}
\]

\(^5\)It bears repeating that such estimates are only known for special PDEs and special domains, divided into two special subdomains, while the present article considers the general case.

\(^6\)We will see in Section 3.1 that, under some conditions, \(M_0\) is not too large.
In particular, the condition number $\mathcal{K}(A_{S2LM})$ is bounded by

$$\mathcal{K}(A_{S2LM}) \leq (\min\{p_k, q_1\}(1 - r))^{-1}. \quad (3.7)$$

Proof. The spectrum of Q can be given as a function of the spectrum of S:

$$\sigma(Q) = \left\{ \frac{a}{z + a} : z \in \sigma(S) \right\}.$$

Note that $0 < \frac{a}{z + a} \leq 1$ (since $z \geq 0$ by the semi-definite hypothesis on S) and hence $\sigma(Q) \subset [0, 1]$. Since $\sigma(K) = \{0, 1\}$, we have that $\sigma(A_{S2LM}) = \sigma(Q - K) \subset [-1, 1]$, which proves the upper bound of (3.6). We now estimate the eigenvalue of A_{S2LM} with the smallest magnitude.

For any given λ, define $c = K\lambda$ (the continuous part of λ) and $d = \lambda - c$ (the discontinuous part of λ). In this way, $\|\lambda\|^2 = \|c\|^2 + \|d\|^2$ and $A_{S2LM}\lambda = -Pc + Qd$. By the spectral theorem, without loss of generality we may assume that P and Q are both diagonal matrices $P = \text{diag}\{p_1, \ldots, p_k, 0, \ldots, 0\}$ and $Q = \text{diag}\{q_1, \ldots, q_k, 1, \ldots, 1\}$, since P and Q are symmetric and $PQ = QP$. Therefore, we have

$$\|A_{S2LM}\lambda\|^2 = \sum_{i=1}^{k} p_i^2 c_i^2 + \sum_{i=1}^{n} q_i^2 d_i^2 - 2 \sum_{i=1}^{k} p_i c_i q_i d_i.$$

We introduce a parameter $t > 0$ (to be determined later) and use the hypothesis that $c^2 d = 0$ to obtain

$$\|A_{S2LM}\lambda\|^2 = \sum_{i=1}^{k} p_i^2 c_i^2 + \sum_{i=1}^{n} q_i^2 d_i^2 - 2 \sum_{i=1}^{k} p_i c_i q_i d_i + 2 \sum_{i=1}^{n} tc_i d_i$$

$$= \sum_{i=1}^{k} p_i^2 c_i^2 + \sum_{i=1}^{n} q_i^2 d_i^2 - 2 \sum_{i=1}^{k} \left(1 - \frac{t}{p_i q_i}\right) p_i c_i q_i d_i + 2 \sum_{i=k+1}^{n} tc_i d_i.$$

We now use the weighted Young inequality (3.4) with the choices $\xi = p_i c_i$, $\zeta = q_i d_i$ and $s = s_i > 0$, for $i = 1, \ldots, k$, where we have introduced the positive parameters s_1, \ldots, s_k, which will be determined later. In addition, we also use the weighted Young inequality with the choices $\xi = c_i$, $\zeta = d_i$ and $s = \sigma$, for $i = k + 1, \ldots, n$ where $\sigma > 0$ will be determined later. We obtain

$$\|A_{S2LM}\lambda\|^2 \geq \sum_{i=1}^{k} p_i^2 \left(1 - \left(1 - \frac{t}{p_i q_i}\right) s_i\right) c_i^2 + \sum_{i=1}^{k} q_i^2 \left(1 - \left(1 - \frac{t}{p_i q_i}\right) s_i^{-1}\right) d_i^2$$

$$+ \sum_{i=k+1}^{n} (1 - t\sigma^{-1}) d_i^2 - \sum_{i=k+1}^{n} t \sigma c_i^2.$$

Now we use the hypothesis that $\|E c\| \leq r\|c\|$, which implies that $\|E c\|^2 \leq \frac{r^2}{1 - r^2} \|I -$
\[\|A_{S2LM}\| \geq \sum_{i=1}^{k} (p_i^2 - p_i^1 \left(1 - \frac{t}{p_iq_i} \right) s_i - \frac{t\sigma r^2}{1 - r^2}) e_i^2 \]
\[\geq \sum_{i=1}^{k} q_i^2 \left(1 - \left(1 - \frac{t}{p_iq_i} \right) s_i^{-1} \right) \bar{d}_i^2 + \sum_{i=k+1}^{n} (1 - t\sigma^{-1})\bar{d}_i^2 \]
\[\geq \min \{ \alpha_i \} \| (I - E)c \|^2 + \min \{ \beta_i \} \| (I - E)d \|^2 + (1 - t\sigma^{-1})\| Ed \|^2. \]

We again use that \(\| Ec \| \leq r \| c \| \), which implies that \(\| (I - E)c \|^2 \geq (1 - r^2)\| c \|^2 \), and hence

\[\|A_{S2LM}\| \geq \min \left\{ (1 - r^2) \min \{ \alpha_i \}, \min \{ \beta_i \}, 1 - t\sigma^{-1} \right\} \| \lambda \|^2. \]

There are now two cases to consider, namely \(\min \{ p_k, q_1 \} = p_k \) and \(\min \{ p_k, q_1 \} = q_1 \). We treat the case \(\min \{ p_k, q_1 \} = p_k \) in detail; the case \(\min \{ p_k, q_1 \} = q_1 \) is done in a similar fashion.

We now choose the parameters \(s_1, \ldots, s_k, \sigma, t \) in such a way that \(\rho \geq p_k^2(1 - r^2) \).

This can be achieved using the following procedure. First, we solve \(1 - t\sigma^{-1} = p_k^2(1 - r^2) \) for \(t \). Then we solve \(\beta_i = p_k^2(1 - r^2) \) for \(s_i \) (cf. (3.8)). The resulting weights are

\[t = \sigma - \sigma (r - 1)^2 p_k^2 > 0 \quad \text{and} \quad s_i = \frac{q_i \left(p_iq_i - \sigma + \sigma (r - 1)^2 p_k^2 \right)}{p_i \left(q_i^2 - p_k^2(1 - r)^2 \right) > 0}. \]

The coefficient \(t \) is positive, and so is the coefficient \(s_i \), provided that \(\sigma \) is small enough. We make the choice

\[\sigma = p_k(1 - r), \quad (3.10) \]

and check (by substituting into (3.9)) that this value of \(\sigma \) is small enough that \(s_i \) is indeed positive, provided \(p_k < r \).

We substitute the values of \(t, s_i, q_i \) and \(\sigma \) given by (3.9), (3.10) and \(q_i = 1 - p_i \) into \((1 - r^2)\alpha_i \) to obtain

\[\phi(p_i) := (1 - r^2)\alpha_i = \quad (3.11) \]
\[\left(\begin{array}{c} -1 + p_k \left(-2 p_i \left(-1 + r \right) \right) \left(-1 + p_i \right) \left(-1 + r \right)^2 p_k \left(-2 p_i \left(-1 + r \right) \right) \left(-1 + p_i \right) \left(-1 + r \right)^3 \\
-1 + r \left(-2 p_i r^2 + 1 + p_i \right) p_k + 2 p_i \left(r + 1 \right) \left(-1 + r \right)^2 \left(-1 + p_i \right) p_k^2 \left(-2 p_i r^2 + 1 + p_i \right) p_k \left(-1 + r \right)^3 \\
\end{array} \right) / \left(\begin{array}{c} -1 + p_i \left(-1 + r \right)^2 p_k^2 \left(-1 + r \right)^2 \\
\end{array} \right). \]

The function \(\phi(p_i) \) has no singularities in the interval \(p_i \in [p_k, 1 - p_k] \) and \(\phi'(p_i) = 0 \) at the roots

\[p^{(1)} = \frac{-1 + p_k^{-2}(-1 + r)^2}{-1 + (1 - p_i)^2 p_k + p_k^2(-1 + r)^2} \quad (3.12) \]
\[p^{(2)} = -(p_k r - p_k - 1)(p_k r - p_k + 1)^2. \]
We now find the sign of $\Phi_{p_i}(r, p_k) := \phi(p_i) - p_k^2(1-r)^2$. Since $\phi(p_i)$ is a differentiable function for $p_i \in [p_k, 1-p_k]$, we have that

$$\Phi_{p_i}(r, p_k) \geq \min_{p_i \in \{p^{(1)}, p^{(2)}, p_k, 1-p_k\}} \Phi_{p_i}(r, p_k).$$

We consider the case $p^{(1)}$ in detail, the other cases are similar.

To find the sign of $\Phi_{p^{(1)}}(r, p_k)$, we solve $\Phi_{p^{(1)}}(r, p_k) = 0$ for the unknown p_k, giving the roots

$$p_k^{1,\pm} = \frac{\pm \sqrt{1-r^2}}{r-1} \quad \text{and} \quad p_k^{2,\pm} = \frac{\pm 1}{r-1}.$$

We have plotted these roots in the (r, p_k) plane in Figure 3.1 (top-left). We note that the zeros of $\Phi_{p^{(1)}}(r, p_k)$ (as a function of p_k and r) do not intersect the rectangle $R = \{(r, p_k) \mid 0.204 < r < 1 \text{ and } 0 < p_k < 0.5\}$. We then compute $\Phi_{p^{(1)}}(0.5, 0.25) \approx 0.7229 > 0$, which proves that $\Phi_{p^{(1)}}(r, p_k)$ is positive throughout the rectangle R.

The cases $p_i = p^{(2)}$, $p_i = p_k$ and $p_i = 1 - p_k$ lead to the top-right, bottom-left and bottom-right parts (respectively) of Figure 3.1, and the result follows.

Remark 3.2. Lemma 3.1 assumes that $\min\{q_1, p_k\}$ is small and r approaches 1, but we were not able to find a counter example. These “limiting” assumptions may not be necessary. In the case $p_k = \min\{q_1, p_k\}$, our current proof method shows that (3.7) holds provided that $0 < p_k < 0.5$ and $0.5 < r < 1$. It is possible that the choice...
of σ in (3.10) could be improved in such a way that the conclusion (3.6) holds7 for all $0 \leq r < 1$.

We now give an example that shows that, for our purpose, (3.6) cannot be improved meaningfully without additional assumptions on A_{S2LM}.

Example 3.3 ($\sigma_{\text{min}}(A_{S2LM})$ with $n = 2$). For given parameters $\theta \in \mathbb{R}$ and $0 < q_1 < 1$,

\begin{align*}
K &= \begin{bmatrix}
\cos \theta \\
\sin \theta
\end{bmatrix}
\begin{bmatrix}
\cos \theta & \sin \theta \\
\cos \sin \theta & \sin \theta
\end{bmatrix} =
\begin{bmatrix}
\cos^2 \theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & \sin^2 \theta
\end{bmatrix},
Q &= \begin{bmatrix}
q_1 \\
1
\end{bmatrix}
\quad \text{and} \quad A_{S2LM} = Q - K =
\begin{bmatrix}
q_1 - \cos^2 \theta & \cos \theta \sin \theta \\
-\cos \theta \sin \theta & \cos^2 \theta
\end{bmatrix}.
\end{align*}

Note that we have chosen $n = 2$ and $k = 1$, and we have that $p_k = p_1 = 1 - q_1$. We then have that $r = \sin \theta$, or $\theta = \arcsin r$. Direct calculations give

$$
\sigma_{\text{min}}(A_{S2LM}) = \frac{(p_k - 1) + \sqrt{(p_k + 1)^2 - 4r^2p_k}}{2},
$$

from which we find

$$
1 \leq \frac{\sigma_{\text{min}}(A_{S2LM})}{p_k(1-r)} \leq 4 \quad \text{for all} \quad 0 < p_k < \frac{1}{2} \quad \text{and} \quad 0 < r < 1.
$$

A series expansion further shows that $\sigma_{\text{min}}(A_{S2LM}) \approx 2p_k(1-r)$ near $p_k = 0$ and $r = 1$.

In dimensions $n \geq 3$, one can find examples of Q and K such that the condition number $K(Q - K)$ is much smaller than $(p_k(1-r))^{-1}$, but Example 3.3 shows that the estimate (3.7) cannot be improved without further assumptions on A_{S2LM}.

3.1. Gridlike domain decomposition. We now estimate r in (3.7). For $j = 1, \ldots, p$, let n_{rj} denote the number of vertices on the artificial interface $\partial \Omega_j \cap \Gamma$ of the jth subdomain. Let $\Omega_1, \ldots, \Omega_p$ be the subdomains that float (they are not

7We mention that the case $r = 0$ admits a simpler proof.
adjacent to the natural boundary $\partial \Omega$). Consider the piecewise constant many-sided trace $\lambda \in \mathcal{N}$ given by

$$
\lambda = \begin{bmatrix}
\frac{1}{\sqrt{n_{\Gamma_1}}} & \frac{1}{\sqrt{n_{\Gamma_1}}} & \cdots & \frac{1}{\sqrt{n_{\Gamma_1}}}
\vdots & \cdots & \vdots & \vdots
\frac{1}{\sqrt{n_{\Gamma_1}}} & \frac{1}{\sqrt{n_{\Gamma_1}}} & \cdots & \frac{1}{\sqrt{n_{\Gamma_1}}}
0 & 0 & \cdots & 0
\vdots & \vdots & \ddots & \vdots
0 & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
z_1 \\
z_p
\end{bmatrix} \in \mathcal{N},
$$

where we have denoted by 1_j the j-dimensional column vector of ones. Note that J has orthonormal columns ($J^T J = I$) and hence $\|J z\| = \|z\|$. We can project $\lambda = J z$ onto the continuous many-sided traces by multiplying by K. We are therefore trying to estimate $\|K J z\| / \|J z\| = \|K J z\| / \|z\|$. We are looking for the principal eigenvalue of $Z := J^T K^2 J = J^T (I - Z)$. We have that $Z = D W D$, where

$$
D = \text{diag} \left\{ \frac{1}{\sqrt{n_{\Gamma_1}}}, \ldots, \frac{1}{\sqrt{n_{\Gamma_1}}} \right\} \quad \text{and} \quad W = (W_{ij}) = \left(\sum_{x_k \in \partial \Omega \cap \partial \Omega_i} \frac{1}{m_k} \right).
$$

Since J has orthonormal columns and since K is an orthogonal projection, we have that $\rho(Z) \leq 1$ and $\rho(Z) = 1 - \lambda_{\text{min}}(I - Z)$ and hence

$$
\|K J z\| \leq \sqrt{1 - \lambda_{\text{min}}(I - Z)} \|J z\|. \tag{3.17}
$$

It turns out that $I - Z$ is the stiffness matrix of a graph Laplacian. For simplicity of exposition, we treat a special case. We now assume that the domain decomposition is gridlike.

Definition 3.4. A domain decomposition is gridlike of diameter ℓ in 2d (resp. 3d) if the following properties hold:

1) There is a homeomorphism Φ such that

$$
\Phi(\Gamma) = \Phi(\Omega) \cap \{ (x, y) \mid x \in \{1, \ldots, \ell\} \text{ or } y \in \{1, \ldots, \ell\} \} \quad (2d \text{ case}), \quad \text{or}
\Phi(\Gamma) = \Phi(\Omega) \cap \{ (x, y, z) \mid x \in \{1, \ldots, \ell\} \text{ or } y \in \{1, \ldots, \ell\} \text{ or } z \in \{1, \ldots, \ell\} \} \quad (3d \text{ case}).
$$

In particular, each subdomain Ω_i is either adjacent to the natural boundary $\partial \Omega$, or $\Phi(\Omega_i)$ is a square (resp. a cube).

2) The subdomain Ω_i **floats** (i.e. S_i has kernel spanned by the vector 1 of ones) if and only if $\partial \Omega_i \cap \partial \Omega$ is empty. In other words, the kernel \mathcal{N} of S is the set of many-valued traces that are constant on each subdomain, and that are zero on the subdomains that are adjacent to the natural boundary $\partial \Omega$.

3) For subdomains that float, the number of degrees of freedom m_e is the same along each edge of the square (in 3d, we assume that there are m_e degrees of freedom per edge and m_e^2 per face). We further assume that m_e is the same for each floating subdomain. In 2d, each square-like subdomain consists
of 4m_e edge degrees of freedom, and 4 cross points, hence there are n_{Γ_k} = 4m_e + 4 degrees of freedom per floating subdomain. (In 3d, we get n_{Γ_k} = 6m_e^2 + 12m_e + 8 degrees of freedom per floating subdomain.) Therefore, the trace u_{Γ_k} of u_k on the floating subdomain Ω_k is a vector in R^{4m_e + 4} (resp. u_{Γ_k} ∈ R^{6m_e^2 + 12m_e + 8}).

Remark 3.5. In a typical situation where Ω has unit diameter and all the subdomains are approximately the same size, then the Euclidian diameter H of the subdomains is roughly 1/ℓ. Furthermore, for a gridlike decomposition, the coefficient M_0 of (3.3) is M_0 = 3 in 2d, and M_0 = 7 in 3d, since M − G block diagonalizes with ᾱ (cf. (2.3) and (2.6)) and the condition of M − G is given by the 4 × 4 case in 2d, or the 8 × 8 case in 3d.

Lemma 3.6. Let Ω_1, . . . , Ω_p be a gridlike domain decomposition of diameter ℓ ≥ 2 of Ω. Let c be a continuous many-sided trace and let N be the space of piecewise constant many-sided traces that are zero everywhere except on the floating subdomains. Let E be the orthogonal projection onto N. Then we have the inequality

\[\|Ec\| \leq \sqrt{1 - C_N \ell^{-2}} \|c\| \] \hfill (3.18)

where

\[C_N = \frac{\pi^2}{4} \approx 2.47 \quad (2d \ case), \ or \quad C_N = \frac{3\pi^2}{16} \approx 1.85 \quad (3d \ case). \] \hfill (3.19)

Proof. We give the proof for the 2d case, the 3d case is proven in a completely analogous manner. For a planar gridlike domain decomposition with m = m_e degrees of freedom along each edge, we find from (3.16) that

\[
(I - Z)_{ij} = \begin{cases}
8m + 12 & \text{if } i = j, \\
16m + 16 & \text{if } \Omega_i \text{ and } \Omega_j \text{ share an edge,} \\
-2m + 2 & \text{if } \Omega_i \text{ and } \Omega_j \text{ share only a corner, and} \\
16m + 16 & \text{otherwise.}
\end{cases}
\]

We write \((I - Z)\) as \(X + Y\), where

\[
X_{ij} = \begin{cases}
\frac{8m + 8}{16m + 16} - \frac{1}{2} & \text{if } i = j, \\
\frac{-2m + 2}{16m + 16} = -\frac{1}{8} & \text{if } \Omega_i \text{ and } \Omega_j \text{ share an edge,} \\
0 & \text{otherwise.}
\end{cases}
\]

In the non-gridlike case, one can show from (2.2) and (2.6) that M_0 = max_k m_k − 1, which is only large in degenerate cases where a cross point is adjacent to a large number of subdomains. We also note that even if the choice of \(M_k\) is not the one given by (2.2), the only impact is to obtain a different value of M_0 and we still have spectral equivalence of \(A_{2LM}\) and \(A_{S2LM}\), provided that one makes a “moderate” choice for \(M_k\). This also shows that all moderate choices of \(M_k\) lead to spectrally equivalent algorithms, since \(A_{S2LM}\) is independent of any choice of a symmetric \(M\), \(A_{S2LM}\) is independent of the choice of \(M\) because (3.1) holds for any symmetric or normal choice of \(M\) whose kernel is the range of \(G\).
and

\[
Y_{ij} = \begin{cases}
\frac{4}{16m + 16} & \text{if } i = j, \\
\frac{-1}{16m + 16} & \text{if } \Omega_i \text{ and } \Omega_j \text{ share only a corner, and} \\
0 & \text{otherwise.}
\end{cases}
\]

Because \(\Omega_i \) shares only a corner with precisely four adjacent subdomains, we see that \(Y \) is diagonally semidominant and hence semidefinite. Likewise, because \(\Omega_i \) shares an edge with precisely four adjacent subdomains, \(X \) is also semidefinite (and, as we will see shortly, positive definite). Hence, \(\lambda_{\min}(I - Z) \geq \lambda_{\min}(X) \). The matrix \(X \) is the graph Laplacian of the subdomain connectivity graph. To estimate the smallest eigenvalue of \(X \), note that \(X \) is a submatrix of \(X_{\square} \), the \((\ell - 1)^2 \times (\ell - 1)^2 \) finite difference Laplacian for the square of side \(\ell + 1 \) with a 5-point scheme and with homogeneous Dirichlet conditions around the perimeter. The eigenvalues of \(X_{\square} \) were computed in [34] and we obtain the desired result.

In 3d, the proof is completely analogous and we find that

\[
C_N \geq \frac{3(m^2 + 2m_e + 1)\pi^2}{4(3m_e^2 + 6m_e + 4)} \geq \frac{3\pi^2}{16},
\]

as required. \(\square \)

3.2. Condition numbers of \(A_{2LM} \) and \(A_{S2LM} \). Our second main result is algebraic.

Theorem 3.7 (Condition number estimates for \(A_{2LM} \) and \(A_{S2LM} \), algebraic case). Assume that \(A \) is symmetric and positive definite. Let \(\Omega \) be a domain and \(\Omega_1, \ldots, \Omega_p \) be a domain decomposition with restriction matrices \(R_1, \ldots, R_p \). Assume that \(S \) is symmetric and semi-definite. Let \(s_{\min} > 0 \) be the smallest nonzero eigenvalue of \(S \), and \(s_{\max} \) be the largest eigenvalue of \(S \), with “nonsingular” condition number \(K_0(S) = \frac{s_{\max}}{s_{\min}} \). Let \(B = a_{\text{opt}} I \) where

\[
a_{\text{opt}} = \sqrt{s_{\max} s_{\min}}.
\]

Define \(K \) by (2.7) and \(A_{S2LM} \) by (3.2). Assume that the domain decomposition is gridlike of diameter \(\ell \). For large values of \(K_0(S) \) and of \(\ell \), we have the following estimates:

\[
K(A_{S2LM}) \leq \frac{8}{\pi^2} \ell^2 \sqrt{K_0(S)} \quad (2d), \quad K(A_{S2LM}) \leq \frac{32}{3\pi^2} \ell^2 \sqrt{K_0(S)} \quad (3d),
\]

\[
K(A_{2LM}) \leq \frac{24}{\pi^2} \ell^2 \sqrt{K_0(S)} \quad (2d), \quad K(A_{2LM}) \leq \frac{224}{3\pi^2} \ell^2 \sqrt{K_0(S)} \quad (3d).
\]

Proof. We let \(Q = a(S + aI)^{-1} \) (cf. (3.2)) with eigenvalues \(0 < q_1 \leq \ldots \leq q_n \leq 1 \) and \(P = I - Q = S(S + aI)^{-1} \) with positive eigenvalues \(1 > p_1 \geq \ldots \geq p_k > 0 \), as per the statement of Lemma 3.1. We calculate that

\[
p_k = \min_{z \in \{s_{\min}, \ldots, s_{\max}\}} \frac{z}{z + a_{\text{opt}}} = \frac{s_{\min}}{s_{\min} + \sqrt{s_{\min} s_{\max}}} = \frac{1}{1 + \sqrt{K_0(S)}} \quad \text{and} \quad (3.23)
\]

\[
q_1 = \min_{z \in \{0, s_{\min}, \ldots, s_{\max}\}} \frac{a_{\text{opt}}}{z + a_{\text{opt}}} = \frac{\sqrt{s_{\min} s_{\max}}}{s_{\max} + \sqrt{s_{\min} s_{\max}}} = \frac{1}{1 + \sqrt{K_0(S)}} = p_k. \quad (3.24)
\]
We substitute the value of \(r \) given by (3.18) and the values of \(p_k \) and \(q_1 \) into (3.7) to find that

\[
K(A_{S2LM}) \leq \frac{1 + \sqrt{K_0(S)}}{1 - \sqrt{1 - C_N\ell^2}} = \frac{2}{C_N} \sqrt{K_0(S)}\ell^2 + \text{smaller terms.} \tag{3.25}
\]

Using (3.19) with (3.25) yields (3.21), and (3.22) follows from (3.3). The value of \(M_0 \) is \(M_0 = 3 \) in 2d, or \(M_0 = 7 \) in 3d, cf. Remark 3.5. \(\square \)

4. Estimates for the elliptic case. The main application is for elliptic problems.

Lemma 4.1. Let \(h > 0 \) be the fine grid parameter, and let \(H > 0 \). Assume that the following properties hold:

1) \(\Omega_1, \ldots, \Omega_p \) are polygons or polyhedra of diameter \(H_i < H \).
2) For \(i = 1, \ldots, p \), either \(\Omega_i \) floats, or the size of the intersection of \(\partial \Omega_i \) with \(\partial \Omega \) is comparable to \(\partial \Omega \).
3) The triangulation \(T_h \) is quasi-uniform (cf. [35, Definition B.3]).
4) The matrix \(A \) is the finite element discretization of the bilinear form

\[
a(u, v) = \int_{\Omega} a(x)\nabla u(x) \cdot \nabla v(x) \, dx,
\]

with piecewise polynomial basis functions. The function \(a(x) \) is assumed to be bounded \(0 < a_{\min} \leq a(x) \leq a_{\max} \) in such a way that \(a(u, v) \) is equivalent to the seminorm \(\int_{\Omega} \nabla u \cdot \nabla v \). We further assume that \(a(x) \) is constant on each subdomain \(\Omega_i \).

Then, there is a constant \(C_{dd} \), which depends on the shape of \(\Omega \) and the subdomains, but not on the grid parameter \(h \) or on the size of the subdomains, such that the inequality

\[
K_0(S) \leq C_{dd} \frac{H}{h}, \tag{4.1}
\]

is satisfied.

Proof. By replacing each subdomain \(\Omega_i \) by \(\frac{1}{h} \Omega_i \), we may assume without loss of generality that \(H_i = 1 \). Let \(u_{\Gamma_i} \) be a (finite element) trace on \(\partial \Omega_i \). If \(\Omega_i \) floats, further assume that the average of \(u_{\Gamma_i} \) is zero (so that \(u_{\Gamma_i} \) is orthogonal to the kernel of \(S_i \)). According to [35, Lemma 4.10], there are constants \(c \) and \(C \) such that

\[
c |u_{\Gamma_i}|_{H^{\frac{1}{2}}(\partial \Omega_i)}^2 \leq u_{\Gamma_i}^T S_i u_i \leq C |u_{\Gamma_i}|_{H^{\frac{1}{2}}(\partial \Omega_i)}^2. \tag{4.2}
\]

According to [35], all constants appearing in the present proof depend on the regularity and shape of the domain decomposition and on the elliptic operator, but do not depend on the size or number of the subdomains, or on the finite element grid parameter \(h \).

There is also a constant \(c' \) such that \(|u_{\Gamma_i}|_{L^2(\partial \Omega_i)} \leq c' |u_{\Gamma_i}|_{H^{\frac{1}{2}}(\partial \Omega_i)} \) [35, Lemma A.17]. There is yet another constant \(C' \) such that \(|u_{\Gamma_i}|_{H^{\frac{1}{2}}(\partial \Omega_i)} \leq C' \sqrt{h} |u_{\Gamma_i}|_{L^2(\partial \Omega_i)} \) [35, Lemma B.5]. Hence, the estimate (4.2) becomes

\[
\frac{c}{(c')^2} |u_{\Gamma_i}|_{L^2(\partial \Omega_i)}^2 \leq u_{\Gamma_i}^T S_i u_i \leq \frac{C(C')^2}{h} |u_{\Gamma_i}|_{L^2(\partial \Omega_i)}^2.
\]

The spectral equivalence of \(u_{\Gamma_i}^T u_{\Gamma_i} \) and \(|u_{\Gamma_i}|_{L^2(\partial \Omega_i)}^2 \) [35, Lemma B.5 or the end of the proof of Lemma 4.11] gives (4.1). \(\square \)
Our third main result is the condition number estimates for the 2LM method for an elliptic problem.

Theorem 4.2 (Condition number estimates for \(A_{\text{2LM}}\) and \(A_{\text{S2LM}}\) for elliptic PDEs). Let \(\Omega\) be a domain of unit diameter and \(\Omega_1, \ldots, \Omega_p\) be a domain decomposition with restriction matrices \(R_1, \ldots, R_p\). Consider an elliptic problem and assume the domain decomposition is gridlike of diameter \(\ell\) with subdomains of diameter \(H \approx 1/\ell\). Assume that the hypotheses of Lemma 4.1 are satisfied. Let \(a = a_{\text{opt}} > 0\) be the optimized parameter choice (3.20), and let \(B = aI\). Define \(K\) by (2.7) and \(A_{\text{S2LM}}\) by (3.2). Define further \(M\) by (2.2), \(G\) by (2.5) and \(A_{\text{2LM}}\) by (2.12). Then, when \(h\) and \(H\) are sufficiently small, the condition numbers \(K(A_{\text{S2LM}})\) and \(K(A_{\text{2LM}})\) are bounded by

\[
K(A_{\text{S2LM}}), K(A_{\text{2LM}}) \leq CH^{-\frac{3}{2}}h^{-\frac{1}{2}},
\]

where the constant \(C\) depends on the regularity of the elliptic form \(a(u,v)\) as well as the shape of \(\Omega\) and the shapes of the subdomains, but not on the sizes or number of subdomains, nor on the parameter \(h\) of the triangulation \(T_h\).

The proof is by substituting the estimate (4.1) into the condition number estimates of Theorem 3.7.

5. Conclusions. We have given a new optimized 2-Lagrange multiplier method and provided condition number estimates. The condition number estimates are consistent with the optimized Schwarz literature and are verified by numerical experiments.

Acknowledgements. We are grateful to our colleagues Martin J. Gander, Felix Kwok and Hui Zhang for useful discussions.
REFERENCES

